JP5744551B2 - Electromagnetic generator - Google Patents

Electromagnetic generator Download PDF

Info

Publication number
JP5744551B2
JP5744551B2 JP2011023121A JP2011023121A JP5744551B2 JP 5744551 B2 JP5744551 B2 JP 5744551B2 JP 2011023121 A JP2011023121 A JP 2011023121A JP 2011023121 A JP2011023121 A JP 2011023121A JP 5744551 B2 JP5744551 B2 JP 5744551B2
Authority
JP
Japan
Prior art keywords
magnet assembly
holding portion
magnet
solenoid coil
electromagnetic generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011023121A
Other languages
Japanese (ja)
Other versions
JP2012165538A (en
Inventor
木下 伸治
伸治 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2011023121A priority Critical patent/JP5744551B2/en
Publication of JP2012165538A publication Critical patent/JP2012165538A/en
Application granted granted Critical
Publication of JP5744551B2 publication Critical patent/JP5744551B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Description

本発明は、永久磁石とソレノイドコイルがコイル巻装軸方向に相対移動することにより発電を行う電磁発電機に関する。   The present invention relates to an electromagnetic generator that generates electric power by moving a permanent magnet and a solenoid coil relative to each other in the coil winding axis direction.

永久磁石とソレノイドコイルがコイル巻装軸方向に相対的に移動して発電する電磁発電機は、永久磁石とソレノイドコイルが間隔を隔てて対向して配置されて、永久磁石とソレノイドコイルの相対的な移動による運動エネルギーをコイルに誘起される電気エネルギーに変換するようになっている。   An electromagnetic generator that generates electricity by moving a permanent magnet and a solenoid coil relative to each other in the coil winding axis direction is arranged such that the permanent magnet and the solenoid coil are opposed to each other with a space therebetween, and the relative relationship between the permanent magnet and the solenoid coil is It is designed to convert the kinetic energy generated by the simple movement into electrical energy induced in the coil.

ここで、外部の運動により永久磁石が往復移動する構成にした電磁発電機は、永久磁石が往復移動する移動方向切り替え位置に永久磁石と反発する反発用磁石を配置した電磁発電機が知られている(特許文献1参照)。   Here, an electromagnetic generator in which a permanent magnet is reciprocated by an external motion is known as an electromagnetic generator in which a repulsion magnet that repels a permanent magnet is arranged at a moving direction switching position in which the permanent magnet reciprocates. (See Patent Document 1).

特開2010−200479号公報JP 2010-200479 A

しかしながら、上述の従来技術にあっては、反発用磁石と永久磁石とがバネとして機能するだけの構成である。このため、反発用磁石の磁束密度変化を電力として利用されておらず、必要な電力を得るためには装置が大型化してしまうという課題がある。   However, in the above-described conventional technology, the repulsion magnet and the permanent magnet only have a function as a spring. For this reason, the magnetic flux density change of the magnet for repulsion is not utilized as electric power, but there exists a subject that an apparatus will enlarge to obtain required electric power.

また、永久磁石がコイルに対する相対的移動範囲が大きい構成のため、外部の運動が小さい場合はコイルと永久磁石が最適位置で対向配置されず、コイルに鎖交する磁束が少なくて発生する電力が小さいという課題がある。   In addition, since the permanent magnet has a large relative movement range with respect to the coil, when the external motion is small, the coil and the permanent magnet are not arranged opposite to each other at the optimum position, and the generated electric power is generated with a small amount of magnetic flux linked to the coil. There is a problem of being small.

そこで、この発明は、外部の小さい振動であっても発生電力の大きい、小型で、効率のよい電磁発電機を提供するものである。   Therefore, the present invention provides a small and efficient electromagnetic generator that generates large electric power even with a small external vibration.

上記の課題を解決するために、本発明の第1の特徴は、複数の永久磁石が、積層方向に磁化されて互いに同極面同士を向かい合わせて積層された磁石組立体と、磁石組立体の側面側の周囲に位置する第1のソレノイドコイルと、を備え、磁石組立体は、第1のソレノイドコイルと相対的な位置が変更可能に構成されており、磁石組立体の同極面同士を向かい合わせた平面位置が、静止位置で第1のソレノイドコイルの巻装軸方向の中心と一致するように、磁石組立体を保持する保持部と、磁石組立体の磁石組立体の軸方向の上下の端面の少なくとも一方に対向する第2のソレノイドコイルとを備え、保持部は、磁石組立体に対向し磁石組立体と反発する磁極の保持部用永久磁石を備えることを要旨とする。   In order to solve the above-described problem, a first feature of the present invention is that a magnet assembly in which a plurality of permanent magnets are magnetized in the stacking direction and stacked so that the same polar surfaces face each other, and a magnet assembly A first solenoid coil located around the side surface of the magnet assembly, the magnet assembly being configured such that the relative position of the magnet assembly can be changed, And a holding portion for holding the magnet assembly so that the planar position where the two faces each other coincides with the center of the winding axis direction of the first solenoid coil at the stationary position, and the axial direction of the magnet assembly of the magnet assembly And a second solenoid coil facing at least one of the upper and lower end faces, and the holding portion includes a permanent magnet for the holding portion of the magnetic pole facing the magnet assembly and repelling the magnet assembly.

かかる特徴によれば、静止位置で、積層方向に磁化された複数の永久磁石の同極面同士を向かい合わせた平面位置は、磁石の周方向に向かって磁束密度が最も大きくなっており、その平面位置に第1のソレノイドコイルの巻装軸方向の中心を一致させることで、第1のソレノイドコイルに鎖交する磁束を最大にすることができる。このため、永久磁石の移動距離と速度が小さくても第1のソレノイドコイルは大きな電力が得られる。また、磁石組立体の磁石組立体の軸方向の上下の端面に対向する第2のソレノイドコイルを備えるため、反発による保持部用永久磁石の磁束密度変化により第2のソレノイドコイルに電圧が誘起されて、第1のソレノイドコイルに加えた電力を供給できる。このため、限られた体格で大きな電力を発生させることができて、発電機を小型にすることができる。   According to such a feature, the magnetic flux density is the largest in the circumferential direction of the magnet at the plane position where the same polar surfaces of the plurality of permanent magnets magnetized in the stacking direction face each other at the stationary position. By making the center of the winding axis direction of the first solenoid coil coincide with the plane position, the magnetic flux linked to the first solenoid coil can be maximized. For this reason, even if the moving distance and speed of the permanent magnet are small, the first solenoid coil can obtain a large electric power. In addition, since the second solenoid coil facing the upper and lower end surfaces in the axial direction of the magnet assembly of the magnet assembly is provided, a voltage is induced in the second solenoid coil due to a change in the magnetic flux density of the permanent magnet for the holding portion due to repulsion. Thus, electric power applied to the first solenoid coil can be supplied. For this reason, a big electric power can be generated with a limited physique, and a generator can be reduced in size.

本発明の第2の特徴は、本発明の第1の特徴に記載の電磁発電機において、保持部用永久磁石の軸と同芯軸上に巻装されることを要旨とする。
かかる特徴によれば、保持部用永久磁石の磁束密度変化を大きくすることができる。このことから大きな電力が得られる。
The gist of the second feature of the present invention is that the electromagnetic generator according to the first feature of the present invention is wound around a shaft concentric with the shaft of the permanent magnet for holding portion.
According to this feature, the change in magnetic flux density of the permanent magnet for holding part can be increased. From this, large electric power can be obtained.

本発明の第3の特徴は、本発明の第1または第2のいずれかの特徴に記載の電磁発電機において、保持部は、磁石組立体を狭持するように、磁石組立体の軸方向の上下に保持部用永久磁石を備え、少なくとも一方の保持部永久磁石の磁石組立体に対向する面に第2のソレノイドコイルを備えることを要旨とする。
かかる特徴によれば、磁石組立体を、精度良くソレノイドコイルの巻装軸方向の中心を一致させることができる。
A third feature of the present invention is the electromagnetic generator according to any one of the first and second features of the present invention, wherein the holding portion holds the magnet assembly in an axial direction. And a second solenoid coil on a surface of the at least one holding unit permanent magnet facing the magnet assembly.
According to this feature, the magnet assembly can be accurately aligned with the center of the winding axis direction of the solenoid coil.

本発明の第4の特徴は、本発明の第1から第3のいずれかの特徴に記載の電磁発電機において、保持部と磁石組立体の一方の永久磁石との間に第1の気室を備え、保持部と磁石組立体の他方の永久磁石との間に第2の気室を備え、第1の気室と第2の気室とは、大気に連通することを要旨とする。
かかる特徴によれば、磁石組立体の移動による第1と第2の気室の体積変化に伴う気室内空気の流動は、磁石組立体外周の狭い通路を通る空気の流動に依存しない。そのため、磁石組立体の振動は、狭い通路を流動する空気による減衰が小さく、共振時の応答倍率が大きくなって、磁石組立体はソレノイドコイルと大きく高速で相対移動できる。このことから大きな電力が得られる。
A fourth feature of the present invention is the electromagnetic generator according to any one of the first to third features of the present invention, wherein the first air chamber is provided between the holding portion and one permanent magnet of the magnet assembly. The second air chamber is provided between the holding portion and the other permanent magnet of the magnet assembly, and the first air chamber and the second air chamber communicate with the atmosphere.
According to this feature, the flow of air in the air chamber accompanying the change in volume of the first and second air chambers due to the movement of the magnet assembly does not depend on the flow of air passing through a narrow passage on the outer periphery of the magnet assembly. Therefore, the vibration of the magnet assembly is less attenuated by the air flowing through the narrow passage, the response magnification at the time of resonance is increased, and the magnet assembly can move relative to the solenoid coil at a high speed. From this, large electric power can be obtained.

本発明の第5の特徴は、本発明の第1から第4のいずれかの特徴に記載の電磁発電機において、保持部は、第1の気室と第2の気室とが大気に連通するための連通孔を備えることを要旨とする。   According to a fifth aspect of the present invention, in the electromagnetic generator according to any one of the first to fourth aspects of the present invention, the holding unit is configured such that the first air chamber and the second air chamber communicate with the atmosphere. The gist is to provide a communication hole for the purpose.

本発明の第6の特徴は、本発明の第1から第5のいずれかの特徴に記載の電磁発電機において、保持部は、保持部用永久磁石と磁石組立体との距離を変更する距離調整機構を備えることを要旨とする。
かかる特徴によれば、磁石組立体と永久磁石との反発力は、離間する距離と指数関数的に変化するバネ特性を持つため、小さな距離の変更で傾きの大きく異なるバネ定数に変更できる。このため、保持部を僅かに移動しても固有振動数を大きく変化させることができて、発電機を小型にすることができる。
A sixth feature of the present invention is the electromagnetic generator according to any one of the first to fifth features of the present invention, wherein the holding portion is a distance for changing a distance between the permanent magnet for the holding portion and the magnet assembly. The gist is to provide an adjustment mechanism.
According to such a feature, the repulsive force between the magnet assembly and the permanent magnet has a spring characteristic that varies exponentially with the distance away from the magnet assembly, so that it can be changed to a spring constant having a greatly different inclination by changing a small distance. For this reason, even if it moves a holding part slightly, a natural frequency can be changed a lot and a generator can be reduced in size.

本発明の第7の特徴は、本発明の第6に記載の電磁発電機において、距離調整機構は、ねじ機構であることを要旨とする。
かかる特徴によれば、磁石組立体の移動方向固有振動数を精度良く調整して、外部の振動周波数と一致させることができる。
A seventh feature of the present invention is summarized in that, in the electromagnetic generator according to the sixth aspect of the present invention, the distance adjusting mechanism is a screw mechanism.
According to this feature, the natural frequency in the moving direction of the magnet assembly can be accurately adjusted to match the external vibration frequency.

本発明によれば、外部の小さい振動からでも発生電力の大きい電磁発電機を形成することができて、小型で効率のよい電磁発電機となる。   According to the present invention, an electromagnetic generator with large generated power can be formed even from a small external vibration, and the electromagnetic generator is small and efficient.

本発明に係る電磁発電機の断面図である。It is sectional drawing of the electromagnetic generator which concerns on this invention. 本発明に係る電磁発電機の斜視図である。1 is a perspective view of an electromagnetic generator according to the present invention. 磁石組立体の磁束密度分布を示す図である。It is a figure which shows magnetic flux density distribution of a magnet assembly. 磁石組立体と保持磁石のバネ特性を示す図である。It is a figure which shows the spring characteristic of a magnet assembly and a holding magnet. 本発明に係る電磁発電機の変更例1の断面図である。It is sectional drawing of the modification 1 of the electromagnetic generator which concerns on this invention. 本発明に係る電磁発電機の変更例2の断面図である。It is sectional drawing of the modification 2 of the electromagnetic generator which concerns on this invention. 本発明に係る電磁発電機の変更例3の斜視図である。It is a perspective view of the modification 3 of the electromagnetic generator which concerns on this invention.

(実施例1)
以下、本発明の一実施形態に係る電磁発電機の実施形態を図1から図4を参照して説明する。
Example 1
Hereinafter, an embodiment of an electromagnetic generator according to an embodiment of the present invention will be described with reference to FIGS. 1 to 4.

図1に示すように、電磁発電機1は、磁石組立体2と、磁石組立体2を移動方向に保持する保持部3、4と、保持部3、4を収容するケース8と、磁石組立体2との電磁誘導作用により電力を発生する第1のソレノイドコイル7とを備える。   As shown in FIG. 1, the electromagnetic generator 1 includes a magnet assembly 2, holding parts 3 and 4 that hold the magnet assembly 2 in the moving direction, a case 8 that holds the holding parts 3 and 4, and a magnet assembly And a first solenoid coil 7 that generates electric power by electromagnetic induction with the solid body 2.

保持部3、4は、保持具23、24と保持磁石21、22、およびボビン27,28と第2のソレノイドコイル29、30からなる。保持具23、24は外周におねじが形成され、保持磁石21、22を収容する窪みと、マイナスドライバー等の工具先端が嵌る溝25、26を備え、マイナスドライバー等の工具による回転で、保持具23、24のおねじとケース内周面のめねじによりねじ軸方向に移動可能である。保持磁石21、22は、磁石組立体2の向かい合う極と同極となる面を磁石組立体2に向けて、保持具23、24に接着により固定される。ボビン27,28は、保持磁石21、22の内周空孔に填め込まれて保持具23、24に固定されており、磁石組立体2に延伸して端部に径拡大部を有する非磁性体で形成されている。ボビン27、28の胴部には第2のソレノイドコイル29、30が周方向に巻き回されている。   The holding portions 3 and 4 include holders 23 and 24, holding magnets 21 and 22, bobbins 27 and 28, and second solenoid coils 29 and 30. The holders 23 and 24 are formed with screws on the outer periphery, and have recesses for receiving the holding magnets 21 and 22 and grooves 25 and 26 into which tool tips such as a flathead screwdriver fit. The tool 23, 24 can be moved in the screw axis direction by the male screw and the female screw on the inner peripheral surface of the case. The holding magnets 21 and 22 are fixed to the holders 23 and 24 by bonding so that the surface of the magnet assembly 2 having the same polarity as the facing pole faces the magnet assembly 2. The bobbins 27 and 28 are fitted in the inner peripheral holes of the holding magnets 21 and 22 and fixed to the holders 23 and 24. The bobbins 27 and 28 extend to the magnet assembly 2 and have non-magnetic portions having enlarged diameter portions at the ends. It is formed by the body. Second solenoid coils 29 and 30 are wound around the body of the bobbins 27 and 28 in the circumferential direction.

単位磁石11、12は保持磁石21、22に対向する面が「S」極に着磁され、他方の面が「N」極にされたものである。磁石組立体2は保持磁石21、22と向かい合う極が同極のため、これにより、磁石組立体2が保持磁石21または22に近づいた場合に磁石組立体2が、保持磁石21または22により反発して保持磁石21または22より離れる方向に移動する。   The unit magnets 11 and 12 have surfaces facing the holding magnets 21 and 22 magnetized as “S” poles and the other surfaces as “N” poles. Since the magnet assembly 2 has the same pole as the holding magnets 21 and 22, the magnet assembly 2 is repelled by the holding magnets 21 or 22 when the magnet assembly 2 approaches the holding magnets 21 or 22. Then, it moves in a direction away from the holding magnet 21 or 22.

ケース8は、非磁性体で形成され、好ましくは、樹脂(PPS等)の非導電性材料で形成されている。ケース8の胴部の中央には第1のソレノイドコイル7が収容される溝が備えられている。第1のソレノイドコイル7が収容される溝のケース8の軸方向の中心C1は、磁石組立体2が保持磁石21、22の磁力によって保持磁石21、22から離れて、外部の振動がない静止状態の時、同極面同士を向かい合わせた平面位置C2とほぼ一致している。   The case 8 is made of a nonmagnetic material, and preferably made of a nonconductive material such as a resin (PPS or the like). A groove for accommodating the first solenoid coil 7 is provided at the center of the body of the case 8. The axial center C1 of the case 8 of the groove in which the first solenoid coil 7 is accommodated is stationary when the magnet assembly 2 is separated from the holding magnets 21 and 22 by the magnetic force of the holding magnets 21 and 22 and there is no external vibration. In the state, it is almost coincident with the planar position C2 where the same polar surfaces face each other.

第1のソレノイドコイル7は、ケース8の胴部の中央の溝に周方向に巻き回された構成である。ケース8の溝の筒軸方向中心C1が、静止時の磁石組立体の同極面同士を向かい合わせた平面C2とほぼ一致しているため、第1のソレノイドコイル7の巻装軸方向中心もC1と一致し、静止時の磁石組立体の同極面同士を向かい合わせた平面位置C2とほぼ一致している。   The first solenoid coil 7 is configured to be wound in the circumferential direction in the central groove of the body portion of the case 8. Since the cylinder axial center C1 of the groove of the case 8 is substantially coincident with the plane C2 where the homopolar surfaces of the magnet assembly at rest are opposed to each other, the winding axial center of the first solenoid coil 7 is also the same. It coincides with C1 and substantially coincides with a planar position C2 where the same polar surfaces of the magnet assembly at rest face each other.

以上のように構成された電磁発電機1は、ケース8が取り付け部35により電動機等に固定され、電動機等を回転させると回転体のアンバランス等により電動機等の本体が振動し、発電機1が振動する。そして、電動機等の振動周波数と磁石組立体2が共振するように、保持具23、24を回転させて保持磁石21、22と磁石組立体2との距離を調節することで、磁石組立体2が共振して振動する。磁石組立体2は、振動によりケース8の軸方向に直線往復移動を行い、外周側の第1のソレノイドコイル7に誘導起電力が発生する。   In the electromagnetic generator 1 configured as described above, the case 8 is fixed to the electric motor or the like by the attachment portion 35, and when the electric motor or the like is rotated, the main body of the electric motor or the like vibrates due to unbalance of the rotating body or the like. Vibrates. Then, by rotating the holders 23 and 24 and adjusting the distance between the holding magnets 21 and 22 and the magnet assembly 2 so that the vibration frequency of the electric motor or the like and the magnet assembly 2 resonate, the magnet assembly 2. Resonates and vibrates. The magnet assembly 2 linearly reciprocates in the axial direction of the case 8 by vibration, and an induced electromotive force is generated in the first solenoid coil 7 on the outer peripheral side.

このように構成したことによって、磁石組立体2は、図3に示すように単位磁石を向かい合わせた平面位置の磁束密度が最も高くなっており、この磁束密度の最も高い、向かい合わせた平面位置と第1のソレノイドコイル7の巻装軸方向中心が静止時に一致しており、第1のソレノイドコイル7は磁束密度の最も高い位置を中心にして磁石組立体2と相対移動して誘導起電力を発生する。このことから、小さい移動距離であっても大きな誘導起電力を発生することができる。図3は、積層方向に磁場配向した異方性の磁石(サマリウムとコバルトを含む)を積層方向に着磁した、外径φ4.2mm、内径1.6mm、厚みが1mmの単位磁石を同極面同士を向かい合わせて積層した磁石組立体の、軸と直交する方向にホール素子を向けて積層方向に移動させて磁束密度を測定した磁束密度分布の図である。   With this configuration, the magnet assembly 2 has the highest magnetic flux density at the planar position where the unit magnets face each other as shown in FIG. 3, and the opposite planar position at which the magnetic flux density is the highest. And the center of the winding direction of the first solenoid coil 7 coincide with each other when stationary, and the first solenoid coil 7 moves relative to the magnet assembly 2 around the position where the magnetic flux density is the highest to induce the electromotive force. Is generated. Thus, a large induced electromotive force can be generated even with a small moving distance. FIG. 3 shows a unit magnet having an outer diameter of 4.2 mm, an inner diameter of 1.6 mm, and a thickness of 1 mm, in which an anisotropic magnet (including samarium and cobalt) magnetically oriented in the stacking direction is magnetized in the stacking direction. It is the figure of the magnetic flux density distribution which measured the magnetic flux density by moving the hall | hole element to the direction orthogonal to an axis | shaft and moving to a lamination direction of the magnet assembly laminated | stacked facing each other.

保持磁石21、22は内周空孔を通じてN極とS極が閉じた磁気回路を形成しており、磁石組立体2が近づいたり離れたりすることにより保持磁石21、22の内周空孔を通る磁束密度が変化し、ボビン27、28に巻き回された第2のソレノイドコイル29、30に誘導起電力が発生する。   The holding magnets 21 and 22 form a magnetic circuit in which the N pole and the S pole are closed through the inner peripheral holes, and the inner peripheral holes of the holding magnets 21 and 22 are formed when the magnet assembly 2 approaches or leaves. The magnetic flux density that passes through changes, and an induced electromotive force is generated in the second solenoid coils 29 and 30 wound around the bobbins 27 and 28.

第2のソレノイドコイル29、30の図示しないコイル端末線は直列に接続されており、直列接続されない一方のコイル端末線はケース8の外部に導出されて整流器等の外部機器に接続されている。また、直列接続されない他方のコイル端末線は第1のソレノイドコイル7の図示しないコイル端末線の一方に接続され、第1のソレノイドコイル7の他方のコイル端末線は、ケース8の外部に導出されて整流器等の外部機器に接続されている。これにより第1のソレノイドコイル7と第2のソレノイドコイル29、30は直列に接続されて、それぞれの発生電圧の合計された電圧が整流器等の外部機器に出力される構成になっている。なお、第2のソレノイドコイルはどちらか一方のみが備えられていても良い。   The coil terminal wires (not shown) of the second solenoid coils 29 and 30 are connected in series, and one coil terminal wire not connected in series is led out of the case 8 and connected to an external device such as a rectifier. The other coil terminal wire not connected in series is connected to one of the coil terminal wires (not shown) of the first solenoid coil 7, and the other coil terminal wire of the first solenoid coil 7 is led out of the case 8. Connected to an external device such as a rectifier. As a result, the first solenoid coil 7 and the second solenoid coils 29 and 30 are connected in series, and the total voltage of the generated voltages is output to an external device such as a rectifier. Note that only one of the second solenoid coils may be provided.

また、保持磁石21、22と磁石組立体2との距離は、距離と荷重の関係が図4に示すように距離に対して荷重が指数関数的に変化する関係にあるため、僅かな距離の調整で大幅に傾きの異なるバネ定数に設定することができる。このことから、磁石組立体2の移動方向固有振動数は、僅かな距離の変更で幅広い周波数に変更することができるため発電機の厚みを薄型にすることができる。さらに、ねじの回転による微少な距離調整ができるため、外部振動周波数に合わせた磁石組立体2の移動方向固有振動数の調整を高精度に行うことができて、共振により磁石組立体2はソレノイドコイル7と大きく高速で相対移動できる。そのため、大きな誘導起電力を発生することができる。図4は、積層方向に磁場配向した異方性のネオジ磁石を積層方向に着磁した、外径φ15mm、内径3.2mm、厚みが3mmの磁石を同極面同士を向かい合わせて積層した磁石組立体と、同一の単位磁石とを、同極面同士を向かい合わせて、保持磁石21、22と磁石組立体2との距離と荷重を測定したバネ特性の図である。   Further, the distance between the holding magnets 21 and 22 and the magnet assembly 2 is such that the relationship between the distance and the load is such that the load changes exponentially with respect to the distance as shown in FIG. It is possible to set a spring constant with a significantly different slope by adjustment. From this, the natural frequency in the moving direction of the magnet assembly 2 can be changed to a wide frequency by a slight change in the distance, so that the thickness of the generator can be reduced. Further, since the distance can be finely adjusted by rotating the screw, the natural frequency in the moving direction of the magnet assembly 2 can be adjusted with high accuracy according to the external vibration frequency. It can move relative to the coil 7 at a high speed. Therefore, a large induced electromotive force can be generated. FIG. 4 shows a magnet in which an anisotropic neodymium magnet that is magnetically oriented in the stacking direction is magnetized in the stacking direction, and a magnet having an outer diameter of φ15 mm, an inner diameter of 3.2 mm, and a thickness of 3 mm is stacked with the same polar surfaces facing each other. It is a figure of the spring characteristic which measured the distance and load of the holding magnets 21 and 22 and the magnet assembly 2 by making the assembly and the same unit magnet face to face with the same polar face.

以上のように構成された電磁発電機1において、好ましくは、磁石組立体2と保持部3、4とケース8との間に形成される気室5、6が大気と連通する連通孔31、32をケース8に備える。   In the electromagnetic generator 1 configured as described above, preferably, the air holes 5 and 6 formed between the magnet assembly 2, the holding portions 3 and 4, and the case 8 communicate with the atmosphere 31. 32 is provided in the case 8.

このように構成したことによって、磁石組立体2が一方の保持磁石側に移動した場合において、体積が減少する一方側の気室と体積が増加する他方側の気室は、それぞれの気室が連通孔から空気の流入流出を行うことができる。そのため、磁石組立体2の外周面とケース8との間に形成される狭い通路を通る空気の流通を少なくすることができて、磁石組立体2の振動を減衰させる減衰係数を小さくすることができる。外部振動の入力に対する磁石組立体2の共振応答倍率Qは、一般にQ=1/2ζで与えられる。すなわち共振時の最大応答は減衰比率の2倍の逆数であるため、狭い通路を流動する空気による減衰を小さくすることができて共振応答倍率Qが大きくなり、磁石組立体はソレノイドコイルと大きく高速で相対移動できる。そのため、大きな誘導起電力を発生することができる。ただし、連通孔31、32はケース8になくても保持具23、24に形成しても良い。   With this configuration, when the magnet assembly 2 moves to one holding magnet side, the air chamber on one side whose volume decreases and the air chamber on the other side where the volume increases increase. Inflow and outflow of air can be performed from the communication hole. Therefore, the flow of air through a narrow passage formed between the outer peripheral surface of the magnet assembly 2 and the case 8 can be reduced, and the attenuation coefficient for attenuating the vibration of the magnet assembly 2 can be reduced. it can. The resonance response magnification Q of the magnet assembly 2 with respect to the input of external vibration is generally given by Q = 1 / 2ζ. In other words, since the maximum response at the time of resonance is the reciprocal of twice the attenuation ratio, the attenuation due to the air flowing in the narrow passage can be reduced, the resonance response magnification Q is increased, and the magnet assembly is much larger than the solenoid coil. You can move relative. Therefore, a large induced electromotive force can be generated. However, the communication holes 31 and 32 may be formed in the holders 23 and 24 without being in the case 8.

図2には、図1の電磁発電機の斜視図である。ただし、図2のようにケース8は円筒形でなくても良く、多角柱形でもよい。それに伴い、図1の保持具23,24、単位磁石11、12は、ケース8の形状に合わせて、円板でなくても良く、多角板でも良い。単位磁石11、12が多角板であり、電磁発電機1が単位磁石11、12と同様の多角柱形である場合、電磁発電機1を複数設置する場合に、電磁発電機同士の間に無駄なスペースを作ることなく、設置することができる。よって、電磁発電機設置範囲あたりの発電効率が上昇する。   FIG. 2 is a perspective view of the electromagnetic generator shown in FIG. However, as shown in FIG. 2, the case 8 does not have to be cylindrical and may be polygonal. Accordingly, the holders 23 and 24 and the unit magnets 11 and 12 in FIG. 1 may not be a circular plate but may be a polygonal plate according to the shape of the case 8. When the unit magnets 11 and 12 are polygonal plates and the electromagnetic generator 1 has a polygonal column shape similar to that of the unit magnets 11 and 12, when a plurality of electromagnetic generators 1 are installed, it is wasted between the electromagnetic generators. It can be installed without creating a large space. Therefore, the power generation efficiency per electromagnetic generator installation range increases.

(実施例1の変更例1)
図5は、実施例1の変更例を示す。
図1に示した実施例1と共通する構成には、同じ符号を示し、説明は省略する。
(Modification 1 of Example 1)
FIG. 5 shows a modification of the first embodiment.
The same components as those in the first embodiment shown in FIG.

実施例1と実施例1の変更例1では、単位磁石11、12が十字穴付皿小ねじ14とナット13により締め付けられ、磁石組立体2が形成されている点で異なる。   The first embodiment and the first modification of the first embodiment are different in that the unit magnets 11 and 12 are fastened by a cross-recessed countersunk screw 14 and a nut 13 to form a magnet assembly 2.

保持磁石21、22は、磁石組立体2の向かい合う極と同極となる面を磁石組立体2に向けて、保持具23、24に接着により固定される。   The holding magnets 21 and 22 are fixed to the holders 23 and 24 by bonding so that the surface of the magnet assembly 2 having the same polarity as the facing pole faces the magnet assembly 2.

単位磁石11、12は、中心孔と孔の一方に円錐の面取を備える皿孔付の磁石である。単位磁石11、12の中心孔に十字穴付皿小ねじ14とナット13が嵌め込まれて、十字穴付皿小ねじ14とナット13を締め付けて磁石組立体2が形成される。単位磁石11、12はそれぞれ保持部に対向する面が「S」極に着磁され、他方の面が「N」極にされたものである。反発する単位磁石11、12の面同士を容易に一体化し、磁石組立体2を形成することが可能である。   The unit magnets 11 and 12 are countersunk magnets each having a conical chamfer in one of the center hole and the hole. A cross-recessed flat head machine screw 14 and a nut 13 are fitted into the center holes of the unit magnets 11 and 12, and the cross-head countersunk machine screw 14 and the nut 13 are tightened to form the magnet assembly 2. Each of the unit magnets 11 and 12 has a surface facing the holding portion magnetized as an “S” pole and the other surface as an “N” pole. The surfaces of the repulsive unit magnets 11 and 12 can be easily integrated to form the magnet assembly 2.

(実施例1の変更例2)
図6は、実施例1の変更例2を示す。
図1に示した実施例1と共通する構成には、同じ符号を示し、説明は省略する。
(Modification 2 of Example 1)
FIG. 6 shows a second modification of the first embodiment.
The same components as those in the first embodiment shown in FIG.

実施例1と実施例1の変更例2では、保持部3、4の保持部3,4と磁石組立体2の距離を調節する距離調整機構が異なる。   The distance adjusting mechanism for adjusting the distance between the holding portions 3 and 4 of the holding portions 3 and 4 and the magnet assembly 2 is different between the first embodiment and the second modification of the first embodiment.

保持部3、4は、保持具23、24と保持磁石21、22からなる。さらに保持具3,4は、距離調整機構23、24はケース8の軸方向に垂直な方向から、貫通ねじ41により締め付けられている。貫通ねじ41の締め付けを緩めることで、保持具23、24の筒軸方向に移動可能となる。   The holding portions 3 and 4 include holders 23 and 24 and holding magnets 21 and 22. Further, the holders 3 and 4 are fastened by a through screw 41 from the distance adjusting mechanisms 23 and 24 from a direction perpendicular to the axial direction of the case 8. By loosening the tightening of the through screw 41, the holders 23 and 24 can move in the cylinder axis direction.

(実施例1の変更例3)
図7は、実施例2の変更例3を示す。
図1、2に示した実施例1と共通する構成には、同じ符号を示し、説明は省略する。
(Modification 3 of Example 1)
FIG. 7 shows a third modification of the second embodiment.
1 and 2 are denoted by the same reference numerals, and description thereof is omitted.

実施例1と実施例1の変更例3では、ケース8が、磁石組立体2の位置を確認することができる、位置確認部36を有する点で異なる。位置確認部36はケース8の内部を目視できる構造であり、磁石組立体2の位置を目視で確認しながら、距離調整機構23、24をケース8の軸方向に移動させることができる。また、位置確認部36に目盛等を付している場合、より正確に磁石組立体2の位置を確認でき、距離調整機構23、24のより、高精度に保持部3,4と磁石組立体2の距離を調節することが可能となる。   The first embodiment and the third modification of the first embodiment are different in that the case 8 includes a position confirmation unit 36 that can confirm the position of the magnet assembly 2. The position confirmation unit 36 has a structure in which the inside of the case 8 can be visually confirmed, and the distance adjusting mechanisms 23 and 24 can be moved in the axial direction of the case 8 while visually confirming the position of the magnet assembly 2. Further, when the position confirmation unit 36 is provided with a scale or the like, the position of the magnet assembly 2 can be confirmed more accurately, and the holding units 3 and 4 and the magnet assembly can be more accurately performed by the distance adjustment mechanisms 23 and 24. The distance of 2 can be adjusted.

本発明は上述した実施の形態に限定されず、その要旨を逸脱しない範囲で種々変形可能である。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention.

1 電磁発電機
2 磁石組立体
3、4 保持部
5、6 気室
7 第1のソレノイドコイル
8 ケース
11、12 単位磁石
13 ナット
14 十字穴付皿小ねじ
21、22 保持磁石
23、24 保持具
25、26 溝
27、28 ボビン
29、30 第2のソレノイドコイル
31、32 連通孔
35 取り付け部
36 位置確認部
41 貫通ねじ
DESCRIPTION OF SYMBOLS 1 Electromagnetic generator 2 Magnet assembly 3, 4 Holding part 5, 6 Air chamber 7 1st solenoid coil 8 Case 11, 12 Unit magnet 13 Nut 14 Cross-recessed countersunk screw 21, 22 Holding magnet 23, 24 Holder 25, 26 Groove 27, 28 Bobbin 29, 30 Second solenoid coil 31, 32 Communication hole 35 Attaching part 36 Position confirmation part 41 Through screw

Claims (7)

複数の永久磁石が、積層方向に磁化されて互いに同極面同士を向かい合わせて積層された磁石組立体と、
前記磁石組立体の側面側の周囲に位置する第1のソレノイドコイルと、を備え、
前記磁石組立体は、前記第1のソレノイドコイルと相対的な位置が変更可能に構成されており、
前記磁石組立体の同極面同士を向かい合わせた平面位置が、静止位置で前記第1のソレノイドコイルの巻装軸方向の中心と一致するように、前記磁石組立体を保持する保持部と
記磁石組立体の軸方向の上下の端面の少なくとも一方に対向する第2のソレノイドコイルとを備え、
前記保持部は、前記磁石組立体に対向し前記磁石組立体と反発する磁極の保持部用永久磁石を備え
前記第1のソレノイドコイルと第2のソレノイドコイルとは、コイル接続線を介して直列に接続され、
前記保持部用永久磁石は、内周に空孔が形成されてなることを特徴とする電磁発電機。
A magnet assembly in which a plurality of permanent magnets are magnetized in the laminating direction and laminated so that the same polar surfaces face each other;
A first solenoid coil located around the side of the magnet assembly,
The magnet assembly is configured such that the relative position with the first solenoid coil can be changed,
A holding portion for holding the magnet assembly so that a planar position where the same polar surfaces of the magnet assembly face each other coincides with the center of the winding axis direction of the first solenoid coil at a stationary position ;
Before SL and a second solenoid coil to face at least one end face of the upper and lower axial magnet assembly,
The holding portion includes a permanent magnet for a holding portion of a magnetic pole facing the magnet assembly and repelling the magnet assembly ,
The first solenoid coil and the second solenoid coil are connected in series via a coil connection line,
The electromagnetic generator according to claim 1, wherein the permanent magnet for the holding portion is formed with a hole in an inner periphery .
前記第2のソレノイドコイルは、前記保持部用永久磁石の軸と同芯軸上に巻装されることを特徴とする請求項1に記載の電磁発電機。 The electromagnetic generator according to claim 1, wherein the second solenoid coil is wound on a concentric shaft with the shaft of the permanent magnet for holding portion. 前記保持部は、前記磁石組立体を狭持するように、前記磁石組立体の軸方向の上下に前記保持部用永久磁石を備え、少なくとも一方の前記保持部用永久磁石の前記磁石組立体に対向する面に前記第2のソレノイドコイルを備えることを特徴とする請求項1又は2に記載の電磁発電機。 The holding portion includes the permanent magnet for the holding portion above and below in the axial direction of the magnet assembly so as to sandwich the magnet assembly, and the magnet assembly of at least one of the permanent magnets for the holding portion is attached to the magnet assembly. electromagnetic power generator according to claim 1 or 2, characterized in that the opposing surfaces provided with a second solenoid coil. 前記保持部と前記磁石組立体の一方の前記永久磁石との間に第1の気室を備え、前記保持部と前記磁石組立体の他方の前記永久磁石との間に第2の気室を備え、
前記第1の気室と前記第2の気室とは、大気に連通することを特徴とする請求項1からのいずれか一項に記載の電磁発電機。
A first air chamber is provided between the holding portion and one of the permanent magnets of the magnet assembly, and a second air chamber is provided between the holding portion and the other permanent magnet of the magnet assembly. Prepared,
The electromagnetic generator according to any one of claims 1 to 3 , wherein the first air chamber and the second air chamber communicate with the atmosphere.
前記保持部は、前記第1の気室と前記第2の気室とが大気に連通するための連通孔を備えることを特徴とする請求項記載の電磁発電機。 The electromagnetic generator according to claim 4 , wherein the holding portion includes a communication hole for allowing the first air chamber and the second air chamber to communicate with the atmosphere. 前記保持部は、前記保持部用永久磁石と前記磁石組立体との距離を変更する距離調整機構を備えることを特徴とする請求項1からのいずれか一項に記載の電磁発電機。 The holding portion includes an electromagnetic generator according to any one of claims 1 5, characterized in that it comprises a distance adjusting mechanism for changing the distance between the magnet assembly and the permanent magnet holding portion. 前記距離調整機構は、ねじ機構であることを特徴とする請求項に記載の電磁発電機。 The electromagnetic generator according to claim 6 , wherein the distance adjusting mechanism is a screw mechanism.
JP2011023121A 2011-02-04 2011-02-04 Electromagnetic generator Expired - Fee Related JP5744551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011023121A JP5744551B2 (en) 2011-02-04 2011-02-04 Electromagnetic generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011023121A JP5744551B2 (en) 2011-02-04 2011-02-04 Electromagnetic generator

Publications (2)

Publication Number Publication Date
JP2012165538A JP2012165538A (en) 2012-08-30
JP5744551B2 true JP5744551B2 (en) 2015-07-08

Family

ID=46844357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011023121A Expired - Fee Related JP5744551B2 (en) 2011-02-04 2011-02-04 Electromagnetic generator

Country Status (1)

Country Link
JP (1) JP5744551B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715856B (en) * 2013-11-07 2016-04-20 北京工业大学 Floor type Blast Furnace Top Gas Recovery Turbine Unit (TRT)
KR101501389B1 (en) * 2013-11-14 2015-03-12 울산대학교 산학협력단 Adjustable resonance frequency based energy harvester
DE102018132249A1 (en) 2017-12-25 2019-06-27 Futaba Corporation Vibrational energy generator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001347227A (en) * 2000-06-06 2001-12-18 Noriyuki Enomoto Oscillator
JP2002374661A (en) * 2001-06-15 2002-12-26 Yamaguchi Technology Licensing Organization Ltd Portable generator and portable electronic apparatus comprising it
JP3962643B2 (en) * 2001-07-25 2007-08-22 松下電器産業株式会社 Electric-mechanical-acoustic transducer and portable terminal device
JP2005033917A (en) * 2003-07-14 2005-02-03 Mn Engineering Kk Oscillating generator
JP4551448B2 (en) * 2006-01-24 2010-09-29 日本電信電話株式会社 Acceleration generating device and pseudo force sense generating device
JP2008135590A (en) * 2006-11-29 2008-06-12 Hiihaisuto Seiko Kk Solenoid
JP2009118582A (en) * 2007-11-02 2009-05-28 Shibatekku Kk Power generation element, power generator and electronic apparatus
CA2709954C (en) * 2007-12-19 2016-05-24 Patrick Headstrom Magnetic spring system for use in a resonant motor
JP5705440B2 (en) * 2009-03-19 2015-04-22 株式会社竹中工務店 Power generation device, power generation system, structure, and method for designing power generation device

Also Published As

Publication number Publication date
JP2012165538A (en) 2012-08-30

Similar Documents

Publication Publication Date Title
JP6085173B2 (en) Electromagnetic generator
US6914351B2 (en) Linear electrical machine for electric power generation or motive drive
US20200169126A1 (en) Slotless brushless dc motor / actuator
US10242783B2 (en) Flux focusing arrangement for permanent magnets, methods of fabricating such arrangements, and machines including such arrangements
US20070108850A1 (en) Linear electrical machine for electric power generation or motive drive
WO2012014649A1 (en) Vibration generator
CN203588789U (en) Actuator
JP2012039824A (en) Vibration generator
JP5744551B2 (en) Electromagnetic generator
JP2012249442A (en) Oscillating generator
JP2015076618A (en) High speed solenoid
KR20160114656A (en) Linear electromagnetic actuator comprising two independent moving members
JP2004088884A (en) Linear vibration electric machine
WO2003107515A1 (en) Linear actuator, and pump and compressor devices using the actuator
JP2014515253A (en) Current generating turbine
CN104343873B (en) Permanent-magnetic flexible damping assembly
JP2011166893A (en) Oscillating generator
JP5849415B2 (en) Linear drive device and manufacturing method thereof
US20120313458A1 (en) Ironless Electrical Machines with Eddy Current Reducer
KR20050016556A (en) Linear actuator, and pump and compressor devices using the actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150430

R150 Certificate of patent or registration of utility model

Ref document number: 5744551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees