JP5743460B2 - How to create a tire model - Google Patents
How to create a tire model Download PDFInfo
- Publication number
- JP5743460B2 JP5743460B2 JP2010199998A JP2010199998A JP5743460B2 JP 5743460 B2 JP5743460 B2 JP 5743460B2 JP 2010199998 A JP2010199998 A JP 2010199998A JP 2010199998 A JP2010199998 A JP 2010199998A JP 5743460 B2 JP5743460 B2 JP 5743460B2
- Authority
- JP
- Japan
- Prior art keywords
- model
- tire
- node
- coordinate system
- orthogonal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Tires In General (AREA)
Description
本発明は、空気入りタイヤの数値解析のためのタイヤモデル作成方法に関する。 The present invention relates to a tire model creation method for numerical analysis of a pneumatic tire.
空気入りタイヤについて、FEM(有限要素法)のような数値解析で用いる要素モデルを作成する際、タイヤ内のカーカスプライやベルト等の骨格部材は、その部材が配置されている層に、その部材相当の剛性、異方性を有する膜要素(2Dモデルでは線で定義、3Dモデルでは平面で定義される)を配置する方法がある(例えば、非特許文献1参照。)が、ソリッド要素(2Dモデルでは平面で定義、3Dモデルでは多面体で定義される)の要素自体をどのように分割するかについては、従来は自由度が高く、モデル作成者のノウハウに依存する。また、最近では、骨格部材の位置を指定した後に、要素を自動で分割するようなモデル作成処理方法も一般的となっており、様々な処理ソフトが使用されている。 When creating an element model used in numerical analysis such as FEM (finite element method) for a pneumatic tire, a skeleton member such as a carcass ply or a belt in the tire is placed on the layer where the member is disposed. There is a method of arranging a membrane element (defined as a line in the 2D model and defined as a plane in the 3D model) having considerable rigidity and anisotropy (for example, see Non-Patent Document 1), but a solid element (2D How to divide the element itself (defined in a plane by a model and defined by a polyhedron in a 3D model) has a high degree of freedom and depends on the know-how of the model creator. Recently, a model creation processing method in which an element is automatically divided after designating a position of a skeleton member has become common, and various processing software is used.
一般的にタイヤの変形や応力分布解析を行う場合には、例えば要素座標系を、骨格部材に対して略直角方向を第1方向(以下、R方向)、骨格部材に沿う方向(接線方向)を第2方向(以下、Z方向)、上記2つの方向に直角の方向を第3方向(以下、C方向)として、該方向の歪・応力として解析する方法が評価しやすい。 In general, when performing deformation or stress distribution analysis of a tire, for example, an element coordinate system, a direction substantially perpendicular to the skeleton member is a first direction (hereinafter referred to as R direction), and a direction along the skeleton member (tangential direction) Is a second direction (hereinafter referred to as Z direction), and a direction perpendicular to the two directions is defined as a third direction (hereinafter referred to as C direction).
しかしながら、従来の処理ソフトによるモデル化では、図4に示すように、タイヤの数値解析用モデルの要素をランダムな自動分割で作成し、各要素の定義のしかた(各要素の節点の連結順序及び連結方向)もランダムとされるモデル化を行うため、計算後の後処理で、上記タイヤ解析に適当な座標系(R−C−Z座標系)へ、応力や歪を変換する処理が必要となる。 However, in modeling with conventional processing software, as shown in FIG. 4, the elements of the tire numerical analysis model are created by random automatic division, and each element is defined (the order of connection of the nodes of each element and In order to perform modeling in which the (link direction) is also random, post-processing after calculation requires processing to convert stress and strain to a coordinate system (RCZ coordinate system) suitable for the tire analysis. Become.
更に、タイヤ内の材料モデルとして異方性材料(材料主軸が要素主軸と一致しない材料)を用いる場合、要素分割や要素の定義がランダムに行われたモデルでは、その材料主軸を例えば要素主軸に沿った向きに後処理でそろえることは、ほぼ不可能となってしまう。 Furthermore, when an anisotropic material (a material whose principal axis does not coincide with the element principal axis) is used as a material model in the tire, in a model in which element division or element definition is performed at random, the material principal axis is used as the element principal axis, for example. It is almost impossible to align in the post direction by post-processing.
本発明は、上記問題点を解決するために成されたものであり、従来技術と比較して、タイヤ構造体の数値解析に要する時間を短縮できるタイヤモデルを作成することができるタイヤモデル作成方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and a tire model creation method capable of creating a tire model capable of reducing the time required for numerical analysis of a tire structure as compared with the prior art. The purpose is to provide.
上記目的を達成するために、請求項1の発明は、空気入りタイヤ数値解析用メッシュモデルの作成方法及び要素定義方法であって、骨格部材モデルを内部に含むタイヤモデルのタイヤ周方向に直交する方向の断面におけるセンター部からビード部までの領域の前記骨格部材モデルの形状に沿う方向を、前記タイヤモデルの骨格部材モデルの形状の接線に直交又は略直交する境界線により分割し、前記領域の骨格部材モデルの形状に対し直交する方向を、前記接線に平行又は略平行な境界線にて分割することにより、前記領域を多数個の要素に分割し、前記分割された全ての要素の各々について、前記要素の位置における前記接線の方向及び前記接線と直交する方向の一方を第1方向とし他方を第2方向とし前記第1方向及び前記第2方向に直交する方向を第3方向とし、前記第1方向の軸、前記第2方向の軸、及び前記第3方向の軸を有する座標系を前記分割された各要素の位置に応じた要素座標系とし、前記要素座標系の各々において、前記分割により生じた節点のうち複数の節点を順に連結して前記要素を定義するときに、1番目の節点と2番目の節点とが前記第1方向に向かって連結された節点として定義し、2番目の節点と3番目の節点とが前記第2方向に向かって連結された節点として定義し、3番目の節点と4番目の節点とが前記第1方向と逆方向に向かって連結された節点として定義する要素定義を行うことを特徴とするタイヤモデル作成方法であって、前記骨格部材モデルの材料主軸が前記要素座標系の各軸を表す要素主軸と一致しない異方性材料を用いたタイヤモデルの解析を行うためのタイヤモデルを作成する場合に前記要素座標系の前記要素定義を行うタイヤモデル作成方法である。 In order to achieve the above object, the invention of claim 1 is a method for creating a mesh model for numerical analysis of a pneumatic tire and an element defining method, which are orthogonal to the tire circumferential direction of a tire model including a skeleton member model therein. The direction along the shape of the skeleton member model in the region from the center portion to the bead portion in the cross section of the direction is divided by a boundary line orthogonal to or substantially orthogonal to the tangent line of the shape of the skeleton member model of the tire model. By dividing the direction perpendicular to the shape of the skeleton member model by a boundary line parallel or substantially parallel to the tangent line, the region is divided into a plurality of elements, and each of all the divided elements is divided. straight and the other as the one the first direction in a direction perpendicular to the tangential direction and the tangent line in the second direction to the first direction and the second direction at the position of said element The direction in which the third direction, the first direction axis, and the second axis, and elements coordinate system to the coordinate system having the axis of the third direction corresponding to the position of the divided respective elements, In each of the element coordinate systems, when defining the element by sequentially connecting a plurality of nodes among the nodes generated by the division, the first node and the second node are directed in the first direction. Defined as a connected node, a second node and a third node are defined as a node connected in the second direction, and a third node and a fourth node are defined in the first direction. A tire model creation method characterized by defining elements defined as nodes connected in the opposite direction , wherein the material principal axis of the skeleton member model coincides with the element principal axis representing each axis of the element coordinate system Tire using non-anisotropic material A tire model generating method for performing the element definition of the element coordinates system when creating a tire model for the analysis of the model.
このような方法によれば、分割された各要素の要素座標系をタイヤの解析に適した座標系に合わせることができ、タイヤ構造体の数値解析に要する時間を短縮できる。 According to such a method, the element coordinate system of each divided element can be matched with a coordinate system suitable for tire analysis, and the time required for numerical analysis of the tire structure can be shortened.
すなわち、上記のように材料主軸と要素主軸とが一致しない場合でも、後処理で各要素の要素座標系を材料主軸方向など所望の方向となるように要素座標系を回転させるだけで済むため、タイヤ構造体の数値解析に要する時間を短縮できる。 That is, even when the material principal axis does not coincide with the element principal axis as described above, it is only necessary to rotate the element coordinate system so that the element coordinate system of each element becomes a desired direction such as the material principal axis direction in post-processing, The time required for the numerical analysis of the tire structure can be shortened.
本発明によれば、従来技術と比較して、タイヤ構造体の数値解析に要する時間を短縮できる、という効果を有する。 According to the present invention, the time required for numerical analysis of a tire structure can be shortened as compared with the prior art.
以下、図面を参照して本発明の実施形態を詳細に説明する。本実施形態は、タイヤの挙動解析のためのタイヤモデル(解析モデル)の作成に本発明を適用したものである。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the present embodiment, the present invention is applied to creation of a tire model (analysis model) for tire behavior analysis.
本実施の形態の作用として、数値解析シミュレーションが可能なハードウェアで実行されるタイヤモデル作成・解析処理の処理ルーチンについて図1に示すフローチャートを参照して説明する。 As an operation of the present embodiment, a processing routine of tire model creation / analysis processing executed by hardware capable of numerical analysis simulation will be described with reference to a flowchart shown in FIG.
図1は、タイヤモデル作成・解析の処理ルーチンを示すものである。 FIG. 1 shows a processing routine for creating and analyzing a tire model.
ステップ100では、タイヤモデルの作成対象となるタイヤの設計案(タイヤ形状、構造、材料など)を定める。なお、この設計案には、骨格部材としてのベルトやカーカス等の設計データが含まれている。この骨格部材の設計データによりタイヤモデルに骨格部材をモデル化した骨格部材モデルを含ませることができる。 In step 100, a design plan (tire shape, structure, material, etc.) of a tire for which a tire model is to be created is determined. This design plan includes design data of a belt or a carcass as a skeleton member. Based on the design data of the skeleton member, a skeleton member model obtained by modeling the skeleton member can be included in the tire model.
次のステップ102及びステップ104でタイヤモデルを作成する。以下、各ステップの処理について詳細に説明する。 In the next step 102 and step 104, a tire model is created. Hereinafter, the processing of each step will be described in detail.
ステップ102では、要素分割を行う。要素分割とはタイヤモデルを小さな幾つかの(有限の)小部分(要素)に分割することをいう。本実施の形態では、図2に示すように、タイヤモデルのタイヤ周方向(回転方向)に直交する方向の断面におけるセンター部からビード部までの領域の前記骨格部材モデルの形状に沿う方向を、タイヤモデルの骨格部材モデルの形状の接線に直交又は略直交する境界線により分割し、上記領域の骨格部材モデルの形状に対し直交する方向を、上記接線に平行又は略平行な境界線にて分割することにより、上記領域を多数個の要素に分割する。 In step 102, element division is performed. Element division refers to dividing a tire model into several (finite) small parts (elements). In the present embodiment, as shown in FIG. 2, the direction along the shape of the skeleton member model in the region from the center portion to the bead portion in the cross section in the direction orthogonal to the tire circumferential direction (rotation direction) of the tire model, The tire model is divided by a boundary line orthogonal to or substantially orthogonal to the tangent of the shape of the skeleton member model of the tire model, and the direction orthogonal to the shape of the skeleton member model in the region is divided by a boundary line parallel to or substantially parallel to the tangent line. By doing so, the region is divided into a large number of elements.
ステップ104では、上記分割された各要素を定義する。ここでは、まず、タイヤの解析に適した局所座標系を要素座標系として定義する。具体的には図2に示すように、骨格部材モデルの形状の接線と直交する方向を第1方向(以下、R方向)、接線方向を第2方向(以下、Z方向)、上記2つの方向に直交する方向を第3方向(以下、C方向)とし、R軸、Z軸、及びC軸を有する局所座標系を各要素の要素座標系とする。なお、要素座標系を上記のように定義したため、要素座標系の向きは各要素の位置に応じたものとなる(図2の要素A、要素B参照)。 In step 104, the divided elements are defined. First, a local coordinate system suitable for tire analysis is defined as an element coordinate system. Specifically, as shown in FIG. 2, the direction orthogonal to the tangent of the shape of the skeleton member model is the first direction (hereinafter referred to as R direction), the tangential direction is the second direction (hereinafter referred to as Z direction), and the above two directions. A direction orthogonal to the third direction (hereinafter referred to as C direction) is a local coordinate system having an R axis, a Z axis, and a C axis as an element coordinate system of each element. Since the element coordinate system is defined as described above, the orientation of the element coordinate system depends on the position of each element (see element A and element B in FIG. 2).
そして、上記ステップ102の要素分割により生じた節点のうち複数の節点を順に連結して各要素を定義するときに、1番目の節点である第1節点N1と2番目の節点である第2節点N2とをR方向に沿うように(並んで)連結された節点として定義し、第2節点N2と3番目の節点である第3節点N3とをZ方向に並んで連結された節点として定義する。図2には4つの節点を有する要素が図示されているが、図示されるように、第1節点N1、第2節点N2、第3節点N3、第4節点N4の順に連結され、且つ第1節点N1と第2節点N2とがR方向に並び、第2節点N2と第3節点N3とがZ方向に並んで連結された節点として各要素が定義される。 Then, when defining each element by sequentially connecting a plurality of nodes among the nodes generated by the element division in step 102, the first node N1 which is the first node and the second node which is the second node N2 is defined as a node connected along the R direction (side by side), and the second node N2 and the third node N3, which is the third node, are defined as nodes connected side by side in the Z direction. . FIG. 2 shows an element having four nodes. As shown in FIG. 2, the first node N1, the second node N2, the third node N3, and the fourth node N4 are connected in this order, and Each element is defined as a node in which the node N1 and the second node N2 are arranged in the R direction, and the second node N2 and the third node N3 are connected in the Z direction.
ここで、各要素の定義方法について図3を参照して更に具体的に説明する。図3に示すように、各節点に番号が付与されている場合、要素1については、(101,102,112,111)の順に節点が連結されると共に、第1節点101及び第2節点102がR方向に並んで連結され、第2節点102及び第3節点112がZ方向に並んで連結された節点として定義される。また、要素2については、(111,112,122,121)の順に節点が連結されると共に、第1節点111及び第2節点112がR方向に並んで連結され、第2節点112及び第3節点122がZ方向に並んで連結された節点として定義される。 Here, the definition method of each element will be described more specifically with reference to FIG. As shown in FIG. 3, when numbers are assigned to the respective nodes, for element 1, the nodes are connected in the order of (101, 102, 112, 111), and the first node 101 and the second node 102 are connected. Are connected side by side in the R direction, and the second node 102 and the third node 112 are defined as nodes connected in parallel in the Z direction. For the element 2, the nodes are connected in the order of (111, 112, 122, 121), and the first node 111 and the second node 112 are connected side by side in the R direction, and the second node 112 and the third node Node 122 is defined as a node connected side by side in the Z direction.
なお、上記各要素を定義して生成された2次元のタイヤモデルから、更に3次元のタイヤモデルを作成する場合には、上記2次元のタイヤモデルをタイヤの周方向に3次元展開して3次元のタイヤモデルを作成する(図示省略)。このとき、周方向に要素分割されて3次元の要素が多数個生成され、各要素は前述のようにR方向、Z方向に並んで連結されると共にC方向に並んで連結された節点を含む複数の節点により定義される。 In the case where a further three-dimensional tire model is created from the two-dimensional tire model generated by defining each element, the two-dimensional tire model is developed three-dimensionally in the circumferential direction of the tire, and the three-dimensional tire model 3 A two-dimensional tire model is created (not shown). At this time, a large number of three-dimensional elements are generated by element division in the circumferential direction, and each element includes nodes connected side by side in the R direction and Z direction and connected in parallel in the C direction as described above. Defined by multiple nodes.
タイヤモデル作成後は、ステップ106で、境界条件の設定がなされる。境界条件とは、タイヤモデルに解析上すなわちタイヤの挙動をシミュレートする上で必要なものであり、タイヤモデルに付与する各種条件である。 After the tire model is created, boundary conditions are set in step 106. The boundary conditions are necessary for analyzing the tire model, that is, for simulating the behavior of the tire, and are various conditions given to the tire model.
ステップ108では、上述のようにして設定された数値モデルをもとに、有限要素法によるタイヤモデルの応力計算などの計算を行い、ステップ110では、上記計算結果を出力する。 In step 108, based on the numerical model set as described above, calculation such as stress calculation of the tire model by the finite element method is performed, and in step 110, the calculation result is output.
なお、各要素が上記方法で分割され、各要素の定義も前述したように規則的に定義されているため、タイヤの解析に適したR−Z−C局所座標系の各方向毎に歪・応力を解析する場合等に処理しやすい。例えば、Z方向の歪を解析したい場合には、各要素がタイヤ全体の全体座標系においてどのような向きであっても、上記各要素毎の定義により、Z方向の歪が抽出され、各要素毎にZ方向の歪を解析することができる。 In addition, since each element is divided by the above method and the definition of each element is regularly defined as described above, distortion / restriction in each direction of the RZC local coordinate system suitable for tire analysis is obtained. It is easy to process when analyzing stress. For example, when it is desired to analyze the strain in the Z direction, the strain in the Z direction is extracted according to the definition for each element, regardless of the orientation of each element in the overall coordinate system of the entire tire. The distortion in the Z direction can be analyzed every time.
一般的なFEM後処理ソフトでは、要素座標表示が可能であるため、何の特別な後処理も必要なく、タイヤ解析に適した座標系での歪・応力の表示と出力が可能となり、少ない労力と時間で計算結果を見ることが可能となる
特に、タイヤ内の材料モデルとして異方性材料(材料主軸が要素主軸と一致しない材料)を用いる場合、従来のように、要素分割や要素の定義がランダムに行われたモデルでは、その材料主軸を例えば要素主軸に沿った向きに後処理でそろえることは、ほぼ不可能であり、上記解析が困難であるが、本実施の形態のように要素分割、要素定義を行うことで、特別な後処理をすることなく解析できる。ここで、材料主軸とは、ベルトやカーカス等の骨格部材を構成するコードの向きやゴムに埋め込まれた繊維の向きに沿った方向及び当該方向に直交する方向をいう。要素主軸は、R−Z−C座標系の各軸をいう。
With general FEM post-processing software, element coordinates can be displayed, so no special post-processing is required, and strain and stress can be displayed and output in a coordinate system suitable for tire analysis. It is possible to see the calculation results in terms of time and time. In particular, when using anisotropic materials (materials whose material principal axis does not match the element principal axis) as the material model in the tire, as in the past, element division and element definition However, it is almost impossible to align the material principal axis in the direction along the element principal axis by post-processing, and the above analysis is difficult. By dividing and defining elements, analysis can be done without any special post-processing. Here, the material main axis means a direction along a direction of a cord constituting a skeleton member such as a belt or a carcass or a direction of a fiber embedded in rubber and a direction orthogonal to the direction. The element principal axis refers to each axis of the RZC coordinate system.
具体的には、上記のように予めタイヤ解析に適した局所座標系に要素座標系を合わせておけば、要素主軸と材料主軸が異なる場合においても、後処理において要素主軸が材料主軸とずれている分だけ角度を定義するだけで材料主軸方向の各結果の表示・出力が可能となる。より具体的には、上記ステップ110で、例えば、材料主軸に10度の傾きがある場合、要素主軸(要素座標系)も10度回転させ、この状態で要素座標系の各方向の歪や応力を見ればよい。 Specifically, if the element coordinate system is aligned with the local coordinate system suitable for tire analysis in advance as described above, even if the element principal axis and the material principal axis are different, the element principal axis is shifted from the material principal axis in post-processing. It is possible to display and output each result in the material principal axis direction by simply defining the angle. More specifically, in step 110, for example, when the material principal axis has an inclination of 10 degrees, the element principal axis (element coordinate system) is also rotated by 10 degrees, and in this state, strain and stress in each direction of the element coordinate system Just look at it.
従来のように、要素分割及び要素定義(要素を定義する際の当該要素の各節点を連結する順序と連結方向)をランダムに配置したモデルでは、その材料主軸と要素主軸とを所望の向きへ後処理でそろえることはほぼ不可能で、一度要素分割を再定義するなどの膨大かつ煩雑な処理が必要となる。本実施の形態で説明した方法を採用することで、こうした煩雑な処理が不要となり、解析に要する時間を大幅に短縮できる。 As in the past, in a model in which element division and element definition (the order in which the nodes of the element are connected and the connection direction when elements are defined) are randomly arranged, the material principal axis and the element principal axis are in the desired orientation. It is almost impossible to arrange them by post-processing, and enormous and complicated processing such as redefining element division once is required. By adopting the method described in this embodiment, such complicated processing is not necessary, and the time required for analysis can be greatly shortened.
なお本実施の形態では、要素座標系に適用する局所座標系を、骨格部材モデルの形状の接線と直交する方向をR方向、接線方向をZ方向、上記2つの方向に直交する方向をC方向と定義したが、これに限定されるものではなく、局所座標系の定義の仕方自体は自由であり、要素の定義方法が、前述したように規則的に定義されていればよい。
(実施例)
次に、実施例について説明する。タイヤサイズ195/65R15の乗用車用タイヤに対し、内部空気圧210kPa、垂直荷重4kNを負荷した状態での、補強交錯ベルト層間の、骨格部材であるカーカスプライ(以下、プライという場合もある)の形状に対して直交するR方向、接線方向であるZ方向、上記2つの方向と直交するC方向のR−Z−C要素座標系における歪・応力を、有限要素法により予測した。なお、該タイヤモデルは1枚のカーカスプライと、当該カーカスプライの外層側に2枚の補強交錯ベルトをもつタイヤのモデルである。そして、本実施例では、上記実施の形態で説明したように要素分割、及び要素定義を行った(図2も参照。)。
In this embodiment, the local coordinate system applied to the element coordinate system is the R direction in the direction orthogonal to the tangent of the shape of the skeleton member model, the Z direction in the tangential direction, and the C direction in the direction orthogonal to the above two directions. However, the present invention is not limited to this, and the definition method of the local coordinate system itself is free, and the element definition method only needs to be regularly defined as described above.
(Example)
Next, examples will be described. For car tires with a tire size of 195 / 65R15, in the form of a carcass ply (hereinafter sometimes referred to as a ply), which is a skeletal member, between layers of reinforcing cross belts with an internal air pressure of 210 kPa and a vertical load of 4 kN The strain and stress in the RZ-C element coordinate system in the R direction perpendicular to the Z direction, the Z direction that is the tangential direction, and the C direction perpendicular to the two directions were predicted by the finite element method. The tire model is a tire model having one carcass ply and two reinforcing cross belts on the outer layer side of the carcass ply. In this example, element division and element definition were performed as described in the above embodiment (see also FIG. 2).
なお、図2は2次元平面での図であるが、計算は上記R−Z−C局所座標系の定義に合わせて3次元展開したモデルにて実施した。歪・応力の値の取り出しには、有限要素法の計算結果から、補強交錯ベルト層間に存在する要素を要素番号(各要素を識別するために付与された番号)により指定し、補強交錯ベルト層間の各要素の歪のみを取り出すという後処理方法を用いた。 Although FIG. 2 is a diagram on a two-dimensional plane, the calculation was performed with a model developed three-dimensionally according to the definition of the RZC local coordinate system. The strain / stress values can be extracted by specifying the elements existing between the reinforcing and interlinking belt layers from the calculation results of the finite element method using element numbers (numbers assigned to identify each element). A post-processing method in which only the distortion of each element was taken out was used.
以下の表1に、補強交錯ベルト層間の要素を要素番号で指定し、要素座標系における各歪・応力を確認するまでに要した時間について、要素分割及び要素定義を不規則に行った場合の従来例のタイヤモデル(図4も参照)と比較して示す。ここでは、実施例において要した時間を、従来例において要した時間を100としたときの指数で表した。なお、値が少ないほど要した時間が短いことを示している。 In Table 1 below, the elements between the reinforcing cross belts are designated by element numbers, and the element division and element definitions are irregularly performed for the time required to check each strain and stress in the element coordinate system. This is shown in comparison with a conventional tire model (see also FIG. 4). Here, the time required in the example is represented by an index when the time required in the conventional example is set to 100. Note that the smaller the value, the shorter the required time.
本実施例では、要素番号を指定すると共に、当該指定した要素番号に対応する要素の歪を取り出すという指定をするだけで他に特別な後処理も必要なく、タイヤ解析に適した局所座標系で歪の表示が可能となるため、解析計算後の後処理解析結果出力を少ない労力と時間で得ることが可能となっている。一方、従来例では、タイヤ全体の座標系で表された歪を要素座標系(R−Z−C局所座標系)で表された歪に変換する必要があり、これに要した時間分、後処理時間が増大する結果となっている。 In this embodiment, the element number is designated, and it is only necessary to take out the distortion of the element corresponding to the designated element number, and no other special post-processing is required, and the local coordinate system suitable for tire analysis is used. Since distortion can be displayed, post-processing analysis result output after analysis calculation can be obtained with less labor and time. On the other hand, in the conventional example, it is necessary to convert the strain expressed in the coordinate system of the entire tire into the strain expressed in the element coordinate system (RZC local coordinate system). As a result, the processing time increases.
また、ここでは、パタンが付与されていないモデルにて比較を行ったが、周方向溝を入れたパタン付断面モデルにおいても、本モデル作成法のメリットは同じように得られる。 In addition, here, the comparison is performed using a model to which no pattern is applied. However, the merit of the model creation method can be similarly obtained even in a cross-sectional model with a pattern in which a circumferential groove is provided.
更に、上記従来例・実施例において、材料主軸が要素主軸と一致しない異方性材料のモデル化時間についても、比較を行った。タイヤモデルは上記実施例と同じサイズのものを使用した。補強交錯ベルト層にベルトの赤道方向からの傾斜分である30度だけ角度がずれた異方性材料をモデル化するのに要した時間について、同じモデルで比較を行った。その結果を、以下の表2に示す。ここでは、実施例において要した時間を、従来例において要した時間を100としたときの指数で表した。なお、値が少ないほど要した時間が短いことを示している。 Further, in the above-described conventional examples and examples, the modeling time of the anisotropic material in which the material principal axis does not coincide with the element principal axis was also compared. A tire model having the same size as the above example was used. The same model was used to compare the time required to model an anisotropic material whose angle was shifted by 30 degrees, which is the inclination of the belt from the equator direction, in the reinforcing cross belt layer. The results are shown in Table 2 below. Here, the time required in the example is represented by an index when the time required in the conventional example is set to 100. Note that the smaller the value, the shorter the required time.
本実施例のように、予めタイヤ解析に適した局所座標系に要素座標系を合わせておけば、要素主軸と材料主軸が異なる場合においても、材料主軸が要素主軸とずれている分の角度を定義するだけで結果の表示・出力が可能となるため、飛躍的に少ない労力と時間でモデル化が可能となっている。一方、要素分割及び要素定義をランダムに配置した従来例では、その材料主軸を所望の向きへ後処理でそろえることはほぼ不可能で、一度要素分割を再定義したため、膨大な時間を要した。 If the element coordinate system is matched with the local coordinate system suitable for tire analysis in advance as in this embodiment, even if the element principal axis and the material principal axis are different, the angle of the amount of deviation of the material principal axis from the element principal axis is Since it is possible to display and output the result simply by defining it, it is possible to model it with much less labor and time. On the other hand, in the conventional example in which the element division and the element definition are randomly arranged, it is almost impossible to align the material principal axis in a desired direction by post-processing.
なお、ここでは、歪について解析結果を出力する例について説明したが、応力など他の結果を出力する場合も同様である。 Although an example in which an analysis result is output for strain has been described here, the same applies to the case where other results such as stress are output.
Claims (1)
前記分割された全ての要素の各々について、前記要素の位置における前記接線の方向及び前記接線と直交する方向の一方を第1方向とし他方を第2方向とし前記第1方向及び前記第2方向に直交する方向を第3方向とし、前記第1方向の軸、前記第2方向の軸、及び前記第3方向の軸を有する座標系を前記分割された各要素の位置に応じた要素座標系とし、前記要素座標系の各々において、前記分割により生じた節点のうち複数の節点を順に連結して前記要素を定義するときに、1番目の節点と2番目の節点とが前記第1方向に向かって連結された節点として定義し、2番目の節点と3番目の節点とが前記第2方向に向かって連結された節点として定義し、3番目の節点と4番目の節点とが前記第1方向と逆方向に向かって連結された節点として定義する要素定義を行うことを特徴とするタイヤモデル作成方法であって、
前記骨格部材モデルの材料主軸が前記要素座標系の各軸を表す要素主軸と一致しない異方性材料を用いたタイヤモデルの解析を行うためのタイヤモデルを作成する場合に前記要素座標系の前記要素定義を行うタイヤモデル作成方法。 A method for creating a mesh model for pneumatic tire numerical analysis and an element definition method, wherein the skeleton in a region from a center portion to a bead portion in a cross section in a direction orthogonal to a tire circumferential direction of a tire model including a skeleton member model therein A direction along the shape of the member model is divided by a boundary line orthogonal to or substantially orthogonal to the tangent of the shape of the skeleton member model of the tire model, and the direction orthogonal to the shape of the skeleton member model of the region is defined as the tangent. Dividing the region into a number of elements by dividing at parallel or substantially parallel boundaries,
For each of all the divided elements, one of the direction of the tangent at the position of the element and the direction orthogonal to the tangent is a first direction, the other is a second direction, and the first direction and the second direction. The orthogonal direction is the third direction, and the coordinate system having the first direction axis, the second direction axis, and the third direction axis is an element coordinate system corresponding to the position of each of the divided elements. In each of the element coordinate systems, when defining the element by sequentially connecting a plurality of nodes among the nodes generated by the division, the first node and the second node are directed in the first direction. Defined as connected nodes, the second node and the third node are defined as nodes connected in the second direction, and the third node and the fourth node are defined in the first direction. And nodes connected in the opposite direction Performing the element definition that defines a tire model creation method comprising Te,
When creating a tire model for analyzing a tire model using an anisotropic material in which the material principal axis of the skeleton member model does not coincide with the element principal axis representing each axis of the element coordinate system, the element coordinate system Tire model creation method for defining elements .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010199998A JP5743460B2 (en) | 2010-09-07 | 2010-09-07 | How to create a tire model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010199998A JP5743460B2 (en) | 2010-09-07 | 2010-09-07 | How to create a tire model |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012056392A JP2012056392A (en) | 2012-03-22 |
JP5743460B2 true JP5743460B2 (en) | 2015-07-01 |
Family
ID=46054024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010199998A Expired - Fee Related JP5743460B2 (en) | 2010-09-07 | 2010-09-07 | How to create a tire model |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5743460B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5459362B2 (en) | 2012-07-24 | 2014-04-02 | Jfeスチール株式会社 | Setting method of material anisotropy information and sheet thickness information to analysis model of molded product, rigidity analysis method and collision analysis method |
JP6626707B2 (en) * | 2015-12-17 | 2019-12-25 | Toyo Tire株式会社 | Method, apparatus and program for correcting tire FEM model |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2761134B2 (en) * | 1991-10-16 | 1998-06-04 | 富士通株式会社 | Inspection method of finite element model |
JP2000222605A (en) * | 1999-02-01 | 2000-08-11 | Matsushita Electronics Industry Corp | Finite element generating device and finite element generating method |
JP4409072B2 (en) * | 2000-09-14 | 2010-02-03 | 本田技研工業株式会社 | Outline extraction device, outline extraction method, and recording medium recording outline extraction program |
JP4392151B2 (en) * | 2002-05-07 | 2009-12-24 | 住友ゴム工業株式会社 | How to create a tire model |
-
2010
- 2010-09-07 JP JP2010199998A patent/JP5743460B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012056392A (en) | 2012-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110362870B (en) | Hexahedron gridding-divided complex pattern tire finite element modeling method | |
US11307560B2 (en) | System, method and computer program for creating united cellular lattice structure | |
US8655627B2 (en) | Determining a distribution of multiple layers of a composite material within a structural volume | |
WO2010020701A1 (en) | Computer-assisted method for the advanced design of folded pieces of composite material | |
CN103631981B (en) | The modeling body that design is represented by depth elements | |
CN104915993A (en) | Three-dimensional stretching modeling method and device | |
JP5743460B2 (en) | How to create a tire model | |
Vatani et al. | An enhanced slicing algorithm using nearest distance analysis for layer manufacturing | |
EP3107018A2 (en) | Method for use in the analysis of a composite component and a design tool | |
Bingol et al. | An integrated framework for solid modeling and structural analysis of layered composites with defects | |
CN102663152B (en) | Finite element modeling method of special-shaped honeycomb skin structure | |
US8744823B2 (en) | Computer aided design method for creating a surface in a complex system | |
JP5211549B2 (en) | Tire model creation method, tire model performance prediction method, and tire design method | |
JP2011122279A (en) | Method for preparing twist structure model and computer program for preparing twist structure model | |
CN104732589A (en) | Rapid generation method of hybrid grid | |
JP2009083664A (en) | Method for forming tire model | |
RU2689803C1 (en) | Method for automatized construction of three-dimensional model of heterogeneous structure of composite material with fibers | |
JP4933924B2 (en) | Tire code analysis model creation method, apparatus, and program | |
Drach et al. | Finite element models of 3D woven composites based on numerically generated micro-geometry of reinforcement | |
CA2854724C (en) | Designing a folded sheet object | |
US20210334426A1 (en) | Section measurement system | |
JP2007323254A (en) | Mesh preparation method for numerical analyses, preparation device and recording medium | |
JP6569492B2 (en) | How to create a raw tire model | |
JP6813826B2 (en) | 3D object shape identification system, method and program | |
JP2014034332A (en) | Method and device for creating cord analysis model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130604 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131211 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131217 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140701 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20141111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150204 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20150216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150407 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150428 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5743460 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |