JP5743265B2 - Atomizing spray equipment - Google Patents

Atomizing spray equipment Download PDF

Info

Publication number
JP5743265B2
JP5743265B2 JP2011135441A JP2011135441A JP5743265B2 JP 5743265 B2 JP5743265 B2 JP 5743265B2 JP 2011135441 A JP2011135441 A JP 2011135441A JP 2011135441 A JP2011135441 A JP 2011135441A JP 5743265 B2 JP5743265 B2 JP 5743265B2
Authority
JP
Japan
Prior art keywords
liquid
viscous liquid
viscosity
spray
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011135441A
Other languages
Japanese (ja)
Other versions
JP2013000679A (en
Inventor
精鎮 絹田
精鎮 絹田
克明 斎田
克明 斎田
将士 小林
将士 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optnics Precision Co Ltd
Original Assignee
Optnics Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optnics Precision Co Ltd filed Critical Optnics Precision Co Ltd
Priority to JP2011135441A priority Critical patent/JP5743265B2/en
Publication of JP2013000679A publication Critical patent/JP2013000679A/en
Application granted granted Critical
Publication of JP5743265B2 publication Critical patent/JP5743265B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、超音波振動を用いて微細なノズルから薬剤、化粧液、芳香剤、ワクチンおよび高濃度電解液などの液体を噴霧する霧化噴霧装置に関する。 The present invention relates to an atomizing spray device that sprays liquids such as drugs, cosmetic liquids, fragrances, vaccines, and high-concentration electrolytes from a fine nozzle using ultrasonic vibration.

微細な多数のノズルを有するノズル板を圧電振動子により振動させて、このノズル板に供給される液体をノズルから噴霧する装置、あるいは微細な多数のノズルを有するノズル板と近接する超音波振動体の間に供給される液体をノズルから噴霧する装置は、小型かつ省エネルギーの特徴を背景に、近年医療用ネブライザー(吸入器)、加湿器、アロマディフューザーや保湿化粧液の霧化器等に幅広く応用されている。 A device that vibrates a nozzle plate having a large number of fine nozzles with a piezoelectric vibrator and sprays the liquid supplied to the nozzle plate from the nozzle, or an ultrasonic vibrator close to the nozzle plate having a large number of fine nozzles In recent years, the device that sprays the liquid supplied from the nozzle through a nozzle is widely applied to medical nebulizers (humidifiers), humidifiers, aroma diffusers, and nebulizers for moisturizing cosmetic liquids. Has been.

これらの霧化噴霧装置として、ノズルから噴霧される微細粒子を拡散するために間欠的に拡散させる装置(特許文献1参照)や、振動子への省電力化又は電力制限のために振動子を間欠運転させる装置(特許文献2及び特許文献3参照)が開示されている。 As these atomization spray devices, a device for intermittently diffusing fine particles sprayed from the nozzle (see Patent Document 1), or a vibrator for power saving or power limitation to the vibrator. Devices for intermittent operation (see Patent Document 2 and Patent Document 3) are disclosed.

一方、高粘度液体をノズルから液滴として吐出する技術に関しては、吐出のための液滴せん断に必要な大きなせん断力を与える技術(特許文献4参照)や、温度等により高粘度液体の粘度を低下させてノズルからの吐出をしやすくする技術(特許文献5参照)が開示されている。 On the other hand, regarding the technology for ejecting high-viscosity liquid as droplets from a nozzle, the viscosity of the high-viscosity liquid is controlled by a technology (see Patent Document 4) that gives a large shearing force necessary for shearing droplets for ejection, or temperature. A technique (see Patent Document 5) that makes it easy to discharge from a nozzle by reducing the pressure is disclosed.

特表2002−536173号公報JP 2002-536173 A 特開2000−271517号公報JP 2000-271517 A 特表2005−511275号公報JP 2005-511275 Gazette 特開2010−142737号公報JP 2010-142737 A 特開2003−220702号公報JP 2003-220702 A

しかしながら、(1)高粘度溶液の継続的な霧化分散が困難である、(2)高粘度分散液滴の受容側での吸収拡散が困難である、という課題を有していた。
先ず、(1)霧化方法の課題として、霧化噴霧装置が発揮する噴霧性能においては、霧化液体の物性上、特に粘性による制約があり、10mPa・s(10cps)を超える高粘度液体の霧化が難しいことが、例えば、特許文献1にて開示されている。
ところが、薬剤、化粧液、アロマ液等においては、特に10mPa・s(10cps)を超える高粘度の液体の霧化が期待されており、この期待に副えないという課題があった。
(2)霧化液滴の吸収上の課題は、例えば小型EDLC製造における電解液のEDLC容器への電解液注入が困難な点である。超小型EDLCは、MSD(面実装)機能を要求され、ハンダリフロー条件(260℃*10秒)が要求されるためEMIBF4(Ethyle,Methyle,Imidazolium tetra Fuluoro Borate)のようなイオン液体は、粘度高く、表面張力が大で、電解液を滴下しても電極合剤に拡散、浸透しないので、液滴環境を昇温するか、減圧加圧を行い、電解液の供給を行っているのが現状であり、このような高粘度のイオン液体も高速で、電極合剤中に浸透拡散する技術が期待されていた。
However, (1) it is difficult to continuously atomize and disperse high-viscosity solutions, and (2) it is difficult to absorb and diffuse high-viscosity dispersed droplets on the receiving side.
First, (1) As a problem of the atomization method, the atomization performance exhibited by the atomization spray device is limited by the viscosity due to the physical properties of the atomization liquid, and a high-viscosity liquid exceeding 10 mPa · s (10 cps). For example, Patent Document 1 discloses that atomization is difficult.
However, in medicines, cosmetic liquids, aroma liquids and the like, atomization of high-viscosity liquids exceeding 10 mPa · s (10 cps) is particularly expected, and there is a problem that this expectation cannot be met.
(2) A problem in the absorption of atomized droplets is, for example, that it is difficult to inject electrolyte into an EDLC container in small EDLC manufacturing. Ultra-compact EDLC requires MSD (surface mount) function and requires solder reflow conditions (260 ° C * 10 seconds), so ionic liquids such as EMIBF4 (Ethyle, Methyle, Imidazolium tetra Fuluoro Borate) have high viscosity. The surface tension is large, and even if the electrolyte is dropped, it does not diffuse or penetrate into the electrode mixture, so the temperature of the droplet environment is increased or the pressure is reduced and the electrolyte is supplied. Thus, a technique for permeating and diffusing such a high-viscosity ionic liquid into the electrode mixture at high speed has been expected.

しかし、高粘度液体の霧化における従来の試みである大きなせん断力による技術では、霧化噴霧装置の給液構造が複雑化や、消費電力アップ、あるいは強いせん断力による液滴サイズのばらつきが拡大するなどの課題があった。
また、液体の粘度を下げて吐出しやすくする技術では、熱により液体の化学的変性や分解が起こるため医療用ネブライザー等の分野では使用できる薬液の選択範囲が狭くなるという課題があった。
However, with the technique using a large shear force, which is a conventional attempt in atomizing a high-viscosity liquid, the liquid supply structure of the atomization spray device is complicated, the power consumption is increased, or the variation in droplet size due to the strong shear force is increased. There were issues such as.
Further, in the technology for reducing the viscosity of the liquid and facilitating the discharge, there is a problem that the range of selection of the chemical solution that can be used in the field of medical nebulizers is narrowed because chemical modification and decomposition of the liquid occur due to heat.

本発明は、上記課題に着目し、給液構造や霧化噴霧構造を簡易な構造のままで、霧化困難な高粘度溶液においても液体の変性や分解を伴わずに、低粘度はもとより特に高粘度の液体をも霧化噴霧することができる、実用上、極めて有用な霧化噴霧装置を提供することを目的とする。 The present invention pays attention to the above-mentioned problems, and the liquid supply structure and the atomization spray structure remain simple, and even in a high-viscosity solution that is difficult to atomize, the liquid is not modified or decomposed. An object of the present invention is to provide an atomizing and spraying apparatus that is practically extremely useful and capable of atomizing and spraying high viscosity liquids.

請求項1に記載の発明は、多数のノズルを有し粘性液体が供給されるノズル板と、このノズル板または前記粘性液体を振動させる振動子と、この振動子の振動と停止とを間欠的に繰り返すための電気信号発生手段とを有し、前記粘性液体の連続霧化噴霧により前記ノズル板の噴霧出口側表面に前記粘性液体の液溜まりが生じて隣接する前記多数のノズルの噴霧出口側が塞がれる霧化噴霧装置であって、前記ノズルの噴霧出口側が前記連続霧化噴霧により前記ノズル板の噴霧出口側表面に前記粘性液体の液溜まりが生じて隣接する前記多数のノズルの噴霧出口側が塞がれる前に前記電気信号発生手段により前記振動子の振動を停止し、この停止した後に前記振動子を再び振動させる間欠運転をするようにしたものである。
According to the first aspect of the present invention, a nozzle plate having a large number of nozzles and supplied with viscous liquid, a vibrator that vibrates the nozzle plate or the viscous liquid, and vibration and stop of the vibrator are intermittently provided. It possesses an electrical signal generating means for repeating the spray outlet side of the plurality of nozzles, wherein the continuous atomization spraying of viscous liquid sump of the viscous liquid to a spray outlet surface of the nozzle plate adjacent occur a atomizing spray apparatus is closed, the spray of the plurality of nozzles spraying outlet of the nozzle plate adjacent said viscous liquid puddle occurs in the spray outlet surface of the nozzle plate by the continuous atomization spray Before the outlet side is blocked, the vibration of the vibrator is stopped by the electric signal generating means , and after the stop, the intermittent operation is performed to vibrate the vibrator again .

液体は超音波振動によりノズルから吐出され液滴となり、この液滴は振動子の振動毎に発生し多数の液滴が連続吐出されることで霧化噴霧となる。液体粘度が高くなると振動エネルギーを大きくしないと液滴としてノズル板から離脱しない。
発明者らは、10mPa・s(10cps)を超える高粘度液体では振動エネルギーを大きくしても液滴として分離する前にノズル板に引き戻されやすくなってノズル板に付着し、ノズル板に付着した液体は徐々に集まってノズルを塞ぎ、液滴の発生を阻害するという現象を確認した。
The liquid is ejected from the nozzle by ultrasonic vibration to form a droplet, and this droplet is generated every time the vibrator is vibrated, and becomes a nebulized spray by continuously ejecting a large number of droplets. If the viscosity of the liquid increases, the vibration energy does not increase and the liquid does not leave the nozzle plate as droplets.
The inventors of the present invention have a high-viscosity liquid exceeding 10 mPa · s (10 cps), and even if vibration energy is increased, the liquid tends to be pulled back to the nozzle plate before being separated as droplets and adheres to the nozzle plate. It was confirmed that the liquid gradually gathered and blocked the nozzles, preventing the generation of droplets.

この現象を解析した結果、隣接する多数のノズルの噴霧出口側が粘性液体で濡れ覆われことが、高粘度液体を霧化できなくなる原因であることを究明した。
このため、上述したように、振動子を間欠的に振動停止するタイミングとして、振動により隣接する多数のノズルの噴霧出口側が粘性液体で濡れ覆われる前に振動を停止するようにしたことにより、10mPa・s(10cps)を超える高粘度液体でも霧化噴霧できるようにしたのである。
Results of analysis of this phenomenon, spray outlet side of the plurality of nozzles adjacent that Ru covered wet viscous liquid, was investigated to be a cause of impossible atomize high viscosity liquid.
For this reason, as described above, as the timing for intermittently stopping the vibration of the vibrator, the vibration is stopped before the spray outlet side of many adjacent nozzles is wet-covered with the viscous liquid due to the vibration.・ Even with high viscosity liquids exceeding s (10 cps), atomization spray can be performed.

また、発明者らは、ノズルに付着した液が少量であれば、ノズルが静止状態の時に表面張力によりノズル内の液体にノズルに付着した液が吸収一体化される現象も確認した。振動の後の停止の間にこの吸収一体化をさせることで、次に始まる振動による液滴発生が再開できることを見出した。この吸収一体化の現象は、付着液体が同じ量でも高粘度であるほど時間を要するため、高粘度ほど休止する時間を短くしないことで霧化噴霧が可能となることも見出した。 The inventors have also confirmed that when the amount of liquid adhering to the nozzle is small, the liquid adhering to the nozzle is absorbed and integrated with the liquid in the nozzle by surface tension when the nozzle is stationary. It was found that the generation of droplets due to the next vibration can be resumed by this absorption integration during the stop after the vibration. It has also been found that this phenomenon of absorption integration requires more time for the same amount of the adhering liquid, so that the higher the viscosity, the longer the time required.

請求項2に記載の発明は、粘性液体の温度を検出する検出手段と、この検出した温度に応じて電気信号の長さを決定する決定手段とを有し、電気信号の長さによってノズルから霧化噴霧される粘性液体量を制御するようにしたものである。 The invention described in claim 2 has a detecting means for detecting the temperature of the viscous liquid, and a determining means for determining the length of the electric signal in accordance with the detected temperature. The amount of the viscous liquid to be atomized and sprayed is controlled.

請求項3に記載の発明は、粘性液体が、20℃で10〜40mPa・sの高粘度を有するようにしたものである。 The invention described in claim 3 is such that the viscous liquid has a high viscosity of 10 to 40 mPa · s at 20 ° C.

請求項4に記載の発明は、粘性液体の粘度が10mPa・s以上で、振動の時間を20ms以下と設定したものである。 According to a fourth aspect of the present invention, the viscosity of the viscous liquid is set to 10 mPa · s or more and the vibration time is set to 20 ms or less.

請求項5に記載の発明は、粘性液体の粘度が30mPa・s以上で、振動の時間を10ms以下と設定したものである。 According to the fifth aspect of the present invention, the viscosity of the viscous liquid is set to 30 mPa · s or more and the vibration time is set to 10 ms or less.

請求項6に記載の発明は、隣接する前記ノズル同士の間の距離が150μm以上としたものである。 In a sixth aspect of the invention, the distance between adjacent nozzles is 150 μm or more.

本発明に係る請求項1に記載の霧化噴霧装置によれば、高粘度液体でもノズルを塞ぐのを抑え、ノズルから液滴が発生するのを妨げることなく連続して霧化噴霧をすることができ、しかも、給液構造や霧化噴霧構造を簡易な構造のままで、液体の変性や分解を伴わずに、低粘度はもとより特に高粘度の液体をも霧化噴霧することができる、という優れた効果を得ることができる。 According to the atomizing spray device of the first aspect of the present invention, the high-viscosity liquid prevents the nozzle from being clogged and continuously atomizes and sprays the liquid without generating a droplet from the nozzle. In addition, the liquid supply structure and the atomization spray structure can be atomized and sprayed not only with a low viscosity but also with a particularly high viscosity liquid without any modification or decomposition of the liquid, with a simple structure. An excellent effect can be obtained.

本発明に係る請求項2に記載の霧化噴霧装置によれば、振動子の振動と停止の時間を液体の粘土に応じて的確に制御でき、高粘度液体でも霧化噴霧できる、という優れた効果を得ることができる。 According to the atomizing spray device of the second aspect of the present invention, the vibration and stopping time of the vibrator can be accurately controlled according to the liquid clay, and the atomizing spray can be performed even with a high viscosity liquid. An effect can be obtained.

本発明に係る請求項3に記載の霧化噴霧装置によれば、従来技術では得ることができなかった、20℃で10〜40mPa・sの高粘度を有する粘性液体を得ることができる、という優れた効果を得ることができる。 According to the atomization spray apparatus according to claim 3 of the present invention, it is possible to obtain a viscous liquid having a high viscosity of 10 to 40 mPa · s at 20 ° C., which could not be obtained by the prior art. An excellent effect can be obtained.

本発明に係る請求項4、5に記載の霧化噴霧装置によれば、液体が高粘度であるほど液滴になりにくいためノズル板に付着しやすく、また付着した液体は振動毎に徐々に増加するため、高粘度ほど振動の時間を短くしたので、高粘度液体でも霧化噴霧できなくなるのを回避できる、という優れた効果を得ることができる。 According to the atomizing and spraying apparatus according to claims 4 and 5 of the present invention, the higher the viscosity of the liquid, the less likely it becomes droplets, so that the liquid tends to adhere to the nozzle plate. As the viscosity increases, the vibration time is shortened as the viscosity becomes higher. Therefore, it is possible to obtain an excellent effect that it is possible to prevent the high-viscosity liquid from being unable to be atomized and sprayed.

本発明に係る請求項6に記載の霧化噴霧装置によれば、ノズルの間の距離が短すぎると噴霧出口側のノズル同士が液膜で繋がって霧化噴霧できなくなるのを防止できる、という優れた効果を得ることができる。 According to the atomizing spray device of the sixth aspect of the present invention, if the distance between the nozzles is too short, it is possible to prevent the nozzles on the spray outlet side from being connected by a liquid film and being unable to atomize and spray. An excellent effect can be obtained.

本発明の第一実施形態を示す霧化噴霧装置の断面図である。It is sectional drawing of the atomization spray apparatus which shows 1st embodiment of this invention. 本発明の第一実施形態に用いた振動子のインピーダンス特性を示す図である。It is a figure which shows the impedance characteristic of the vibrator | oscillator used for 1st embodiment of this invention. (A)、(B)、(C)は本発明の第一実施形態におけるパルス波形を示す図である。(A), (B), (C) is a figure which shows the pulse waveform in 1st embodiment of this invention. 本発明の第一実施形態における霧化噴霧動作を示す説明図である。It is explanatory drawing which shows the atomization spray operation | movement in 1st embodiment of this invention. 本発明の第一実施形態における霧化噴霧の異なる動作を示す拡大説明図である。It is expansion explanatory drawing which shows the operation | movement from which the atomization spray in 1st embodiment of this invention differs. 本発明の第一実施形態におけるパルス印加パターンを示す図である。It is a figure which shows the pulse application pattern in 1st embodiment of this invention. 本発明の第二実施形態を示す霧化噴霧装置の断面図である。It is sectional drawing of the atomization spray apparatus which shows 2nd embodiment of this invention. 本発明の第三実施形態におけるパルス印加パターンを示す図である。It is a figure which shows the pulse application pattern in 3rd embodiment of this invention. 本発明の第五実施形態を示す霧化噴霧装置の断面図である。It is sectional drawing of the atomization spray apparatus which shows 5th embodiment of this invention. 本発明の第六実施形態における特性図で、(A)は時間―ノズル近傍温度、(B)は温度―粘度、(C)は吐出時間―吐出量である。In the characteristic diagram in the sixth embodiment of the present invention, (A) is time-nozzle temperature, (B) is temperature-viscosity, and (C) is discharge time-discharge amount. 本発明の第六実施形態におけるパルス印加パターンを示す図である。It is a figure which shows the pulse application pattern in 6th embodiment of this invention.

以下、本発明を実施するための形態を図面に基いて説明する。
(第一実施形態)
本発明の好ましい第一実施形態にかかわるノズル式霧化噴霧装置10を図1に示している。ノズル板11は、電鋳技術により製作された配置ピッチ200μmで12μmの径(この径の範囲は1〜100μm)の多数のノズル12を有しており、圧電振動子13に接着されている。このノズル板11の一方の側に設けられた容器20には、霧化噴霧される20℃で10〜40mPa・s(10〜40cps)の高粘度を有する保湿用化粧液である粘性液体21がノズル12に接する状態で満たされている。この状態における圧電振動子13は、図2にインピーダンス特性を示すように共振周波数が約98kHzで、電気信号発生手段であるパルス発生駆動回路14に接続されている。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
(First embodiment)
A nozzle type atomizing spray apparatus 10 according to a preferred first embodiment of the present invention is shown in FIG. The nozzle plate 11 has a large number of nozzles 12 with an arrangement pitch of 200 μm and a diameter of 12 μm (the range of the diameter is 1 to 100 μm) manufactured by electroforming technology, and is bonded to the piezoelectric vibrator 13. In the container 20 provided on one side of the nozzle plate 11, a viscous liquid 21 which is a moisturizing cosmetic liquid having a high viscosity of 10 to 40 mPa · s (10 to 40 cps) at 20 ° C. which is atomized and sprayed. It is filled with the nozzle 12 in contact. The piezoelectric vibrator 13 in this state has a resonance frequency of about 98 kHz as shown in FIG. 2 and is connected to a pulse generation drive circuit 14 which is an electric signal generation means.

圧電振動子13を駆動する電圧パルスは、図3(A)に示す正弦波であり、周波数100kHzで電圧振幅は約40Vである。この電圧パルスは、Ton=3msの間、400パルスで連続発振した後に、1000パルス相当の時間Toff=10ms停止するというパルス印加パターンを単位としてこれを繰り返して圧電振動子13に印加される。電気信号におけるToffは、図3(B)に示すように振幅電圧を圧電素子が実質振動しない程度の電圧に低下させることでも以下に述べる作用を実現する。また、図3(C)におけるToffのように、Tonでの共振周波数から実質振動を起こさない周波数に変調することも、同様に以下の作用を実現することができる。 The voltage pulse for driving the piezoelectric vibrator 13 is a sine wave shown in FIG. 3A, and has a frequency of 100 kHz and a voltage amplitude of about 40V. This voltage pulse is applied to the piezoelectric vibrator 13 repeatedly in units of a pulse application pattern in which the pulse pulse is continuously oscillated at 400 pulses for Ton = 3 ms and then stopped for a time equivalent to 1000 pulses Toff = 10 ms. As shown in FIG. 3B, the Toff in the electric signal also realizes the following action by reducing the amplitude voltage to a voltage that does not cause the piezoelectric element to substantially vibrate. Further, as shown by Toff in FIG. 3C, the following operation can be similarly realized by modulating the resonance frequency at Ton to a frequency that does not cause substantial vibration.

圧電振動子13の電圧パルスによる振動により、図4に示すようにノズル12から液滴31が発生し、粘性液体21は霧化32を始める。400パルスの駆動パルスを印加している間、図5(A)に示すように、一部のノズル12Aの表面では液滴にならずに液溜り33となってノズル12Aの噴霧出口側15を塞ぎ、以降この液溜り33はノズル振動の度に容量を増し成長する。400パルスの駆動パルスの後、圧電振動子13の駆動パルスが停止すると、図5(B)に示すようにノズル12Aの噴霧出口側15に溜まった液溜り33はノズル12Aの背面の化粧液21に表面張力により吸い込まれ、図5(C)に示すように振動開始前の状態に戻る。 Due to the vibration caused by the voltage pulse of the piezoelectric vibrator 13, a droplet 31 is generated from the nozzle 12 as shown in FIG. 4, and the viscous liquid 21 starts to atomize 32. During the application of driving pulses of 400 pulses, FIG. 5 (A), the spray outlet 15 of the nozzle 12A becomes liquid reservoir 33 without becoming droplets on the surface of some of the nozzles 12 A Thereafter, the liquid reservoir 33 grows with increasing capacity each time the nozzle vibrates. When the driving pulse of the piezoelectric vibrator 13 is stopped after the driving pulse of 400 pulses, as shown in FIG. 5B, the liquid reservoir 33 collected on the spray outlet side 15 of the nozzle 12A is the cosmetic liquid 21 on the back surface of the nozzle 12A. Is sucked by the surface tension, and returns to the state before the start of vibration as shown in FIG.

この第一実施形態において、連続発振パルス数が5000パルス以上(Ton=50ms)では図5(A)に示すように液溜り33が大きくなりすぎて隣接する多数のノズル12を覆いノズル板11の広い面積を塞いでしまい、全く液滴が発生せず数単位のパルス印加パターンで霧化噴霧は停止した。 In the first embodiment, when the number of continuous oscillation pulses is 5000 pulses or more (Ton = 50 ms), the liquid reservoir 33 becomes too large as shown in FIG. The large area was blocked, no droplets were generated, and the atomization spray stopped with a pulse application pattern of several units.

また、300パルスの駆動パルスに続く停止時間Toffを300パルス相当分の3ms未満にした場合は、図5(B)に破線で示すように液溜り33の吸い込みが不完全なまま次の駆動パルス印加が起こり、液溜り33が成長してやはり数単位のパルス印加パターンで霧化噴霧は停止した。 Further, when the stop time Toff following the 300 drive pulses is set to less than 3 ms corresponding to 300 pulses, the next drive pulse remains incompletely sucked in the liquid reservoir 33 as shown by a broken line in FIG. Application occurred, the liquid reservoir 33 grew, and the atomization spray stopped with a pulse application pattern of several units.

図6は、上述の粘性液体21でのパルス印加パターンに関しTon、Toffの水準組み合わせを行った実験結果を示したものである。図6において、A領域は霧化噴霧不能、C領域は連続霧化噴霧可能、Bは霧化噴霧不安定な領域を示す。本実施形態では、Tonは最大でも20ms(2000パルス)以下でその時間範囲においてTonが長いほどToffも長くすることが必要である。 FIG. 6 shows the result of an experiment in which the level combination of Ton and Toff was performed with respect to the pulse application pattern in the viscous liquid 21 described above. In FIG. 6, the area A is an atomized spray impossible, the area C is a continuous atomized spray, and the area B is an unstable atomized spray area. In the present embodiment, Ton is 20 ms (2000 pulses) or less at the maximum, and Toff needs to be longer as Ton is longer in the time range.

(第二実施形態)
図7は第二実施形態を示したもので、ノズル11を有するノズル板12は圧電振動子14とは別体に対面する如く配置され、このノズル板12と圧電振動子14の端面との間の数十μmから数百μmの隙間に粘性液体21が供給され、圧電振動子14の端面の振動を受け化粧液21が振動する装置である。この装置においても、化粧液21とノズル11が相対的に振動するメカニズムは上述した第一実施形態と同様であり、作用は同じである。
(Second embodiment)
FIG. 7 shows the second embodiment. The nozzle plate 12 having the nozzles 11 is disposed so as to face a separate body from the piezoelectric vibrator 14, and is disposed between the nozzle plate 12 and the end face of the piezoelectric vibrator 14. In this apparatus, the viscous liquid 21 is supplied into a gap of several tens of μm to several hundreds of μm, and the cosmetic liquid 21 vibrates due to the vibration of the end face of the piezoelectric vibrator 14. Also in this apparatus, the mechanism in which the cosmetic liquid 21 and the nozzle 11 relatively vibrate is the same as that in the first embodiment described above, and the operation is the same.

(第三実施形態)
上述した第一実施形態におけるノズル11の噴霧出口側15表面にフッ素系撥水(撥油)処理を施した装置において、第一実施形態と同様の実験を行った。なお、第一実施形態の撥水未処理の場合の粘性液体21の接触角は約80度であったのに対し、この第三実施形態におけるノズル11の噴霧出口側15表面における粘性液体21の接触角は約100度である。
(Third embodiment)
The same experiment as that of the first embodiment was performed in an apparatus in which the surface of the spray outlet 15 of the nozzle 11 in the first embodiment described above was subjected to fluorine-based water repellent (oil repellent) treatment. Note that the contact angle of the viscous liquid 21 in the case of the untreated water repellent of the first embodiment was about 80 degrees, whereas the viscous liquid 21 on the spray outlet side 15 surface of the nozzle 11 in the third embodiment was The contact angle is about 100 degrees.

この第三実施形態におけるTon、Toffの水準組み合わせを行った実験結果を第一実施形態と同様に図示したのが、図8である。第一実施形態と比べると安定霧化噴霧可能なC領域のTonはより長く、且つToffはより短くなっている。このように撥水処理を施すことにより、連続パルス数を多くでき、停止をより短くできるパルス印加パターンを可能にしている。Tonは最大50msまで延びたことから、よりTonとToffで構成するパルス印加パターンの間欠駆動と撥水処理を組み合わせることで更に高粘度の液体を霧化噴霧することができることが判明した。 FIG. 8 shows experimental results obtained by combining the levels of Ton and Toff in the third embodiment in the same manner as in the first embodiment. Compared with the first embodiment, Ton of C region where stable atomization spraying is possible is longer and Toff is shorter. By performing the water repellent treatment in this way, a pulse application pattern that can increase the number of continuous pulses and shorten the stop can be realized. Since Ton extended to a maximum of 50 ms, it was found that a higher viscosity liquid can be atomized and sprayed by combining intermittent driving of a pulse application pattern composed of Ton and Toff and water repellent treatment.

(第四実施形態)
上述した第一実施形態におけるノズル12の配置ピッチ200μmを100μmから300μmの間で水準を振った各装置において、第一実施形態と同様の実験を行った。この第四実施形態におけるTon、Toffの水準組み合わせを第一実施形態と併記して図示したのが、表1である。
(Fourth embodiment)
The same experiment as that of the first embodiment was performed in each device in which the arrangement pitch of the nozzles 12 in the first embodiment described above was varied from 100 μm to 300 μm. Table 1 shows Ton and Toff level combinations in the fourth embodiment together with the first embodiment.

表1に示す結果からは、ノズル12の配置ピッチが長ければTon時間を延ばすことができるが、Tonが短い分にはノズル12の配置ピッチは影響しない。このことは、図5(A)に示す液溜り33がノズル12の配置ピッチが短ければ隣接するノズル12同士の間で繋がりやすく、繋がってしまうと図5(B)に示すような液溜り33がノズル12A内の液体に吸収一体化されにくくノズル12Aが塞がれたままになるものと分析された。 このことから、従来困難であった10mPa・s(10cps)以上の高粘度液体であれば、安定した霧化噴霧には最低150μmのノズル配置ピッチが望ましく、Ton50ms未満、望ましくはTon=20ms以下が必要であることが判明した。 From the results shown in Table 1, the Ton time can be extended if the arrangement pitch of the nozzles 12 is long, but the arrangement pitch of the nozzles 12 does not affect the amount of Ton that is short. This is because the liquid reservoir 33 shown in FIG. 5A is easily connected between the adjacent nozzles 12 if the arrangement pitch of the nozzles 12 is short, and if connected, the liquid reservoir 33 as shown in FIG. It was analyzed that the nozzle 12A remained blocked by the liquid in the nozzle 12A. For this reason, if it is a high-viscosity liquid of 10 mPa · s (10 cps) or more, which has been difficult in the past, a nozzle arrangement pitch of at least 150 μm is desirable for stable atomization spray, and less than Ton 50 ms, preferably Ton = 20 ms or less It turned out to be necessary.

(第四実施形態)
上述した第一実施形態においては、粘性液体21の粘度が40mPa・s(40csp)であったため、異なる粘度の液体における霧化噴霧の可能なパルス印加パターンを調べる実験を行った。従来より霧化可能と言われる5mPa・s(5cps)、困難と言われる粘度10mPa・s(10cps)とそれを超える40mPa・s(40csp)までの粘度に対する結果は表2に示すとおりであった。
(Fourth embodiment)
In the first embodiment described above, since the viscosity of the viscous liquid 21 was 40 mPa · s (40 csp), an experiment was conducted to examine a pulse application pattern capable of atomizing spraying in liquids having different viscosities. The results for viscosities of 5 mPa · s (5 cps), which is conventionally said to be atomizable, viscosity of 10 mPa · s (10 cps), which is said to be difficult, and 40 mPa · s (40 csp), which are said to be difficult, are as shown in Table 2. .

表2に示すように、10mPa・s(10cps)では、Toffのない連続パルスでは連続霧化が困難だが、Ton=50ms以下では連続霧化が可能となった。表2より、パルス印加パターンは粘度に大きな依存があり、連続噴霧の困難な10mPa・s(10cps)以上でのTon/(Ton+Toff)のデューティ比は、Tonが短いほど高い結果を得た。即ち、連続噴霧の困難な高粘度であればあるほど、短いTonのパターンでパルス印加することが噴霧レートを高め効率が良くなる。特に約30mPa・s(30cps)以上ではTon=10ms以下、実用的にはデューティ30%以上を得られる領域であるTon=5ms以下が望ましい。また、化粧液21の粘度が20mPa・s(20cps)では、Ton=20ms以下で霧化噴霧が可能であり、特にTon=10ms以下ではデューティ比を50%程度以上に高めることができることが判明した。 As shown in Table 2, at 10 mPa · s (10 cps), continuous atomization was difficult with a continuous pulse without Toff, but continuous atomization was possible at Ton = 50 ms or less. From Table 2, the pulse application pattern greatly depends on the viscosity, and the duty ratio of Ton / (Ton + Toff) at 10 mPa · s (10 cps) or more, which is difficult to spray continuously, was higher as Ton was shorter. That is, the higher the viscosity is, the more difficult it is for continuous spraying, and the pulse application with a short Ton pattern increases the spray rate and improves the efficiency. In particular, at about 30 mPa · s (30 cps) or more, Ton = 10 ms or less, and practically, Ton = 5 ms or less, which is a region where a duty of 30% or more can be obtained, is desirable. Further, it was found that when the viscosity of the cosmetic liquid 21 is 20 mPa · s (20 cps), atomization spraying is possible with Ton = 20 ms or less, and particularly when Ton = 10 ms or less, the duty ratio can be increased to about 50% or more. .

(第五実施形態)
図9は、霧化噴霧装置の第五実施形態を示したものである。この装置は、薬液注入装置であって、第一実施形態の霧化噴霧装置をベースとして霧化噴霧する粘性液体41は医療向け薬液で、ノズル板42は中心に1個のノズル44を有し、振動子43に接着されている。この振動子は電気信号発生手段である駆動回路52によって第一実施形態と同様に間欠的に振動と停止を繰り返す。ノズル44の下方向には、医薬用カプセル50が配置され、ノズル44から吐出する薬液の液滴46が5マイクロリットル(μL)の容量のカプセル50に注入される。液滴46はノズル板42が振動している間、連なるようにあたかも液柱の如く吐出され、振動が停止している間液滴の連なりは途切れる。
(Fifth embodiment)
FIG. 9 shows a fifth embodiment of the atomizing spray device. This device is a chemical solution injection device, and the viscous liquid 41 to be atomized and sprayed based on the atomization spray device of the first embodiment is a medical solution for medical use, and the nozzle plate 42 has one nozzle 44 in the center. It is bonded to the vibrator 43. This vibrator is repeatedly vibrated and stopped intermittently as in the first embodiment by a drive circuit 52 which is an electric signal generating means. A medical capsule 50 is disposed below the nozzle 44, and a liquid droplet 46 discharged from the nozzle 44 is injected into the capsule 50 having a capacity of 5 microliters (μL). The liquid droplets 46 are ejected as if they were liquid columns while the nozzle plate 42 vibrates, and the liquid droplets are interrupted while the vibration is stopped.

医薬分野ではカプセル1個の薬液量の精度が±10%程度に抑えるよう求められるが、薬液温度により粘度が変化し時間当たりの吐出量の変化を伴う。この第五実施形態は、ノズル板42近傍に粘性液体の温度検出手段である抵抗温度センサー45を配置し、この温度センサー抵抗をマイコン51のAD変換入力端子から読み込み、マイコン51が参照するROM53内に格納した薬液温度に応じた吐出レートの変換テーブルを参照して演算を行い、吐出時間を逐次決定する決定手段からなる構成となっており、この決定された吐出時間を電気信号の長さとして駆動回路52(電気信号発生手段)によって振動子を振動させ、その結果、粘性液体41の霧化噴霧量を制御するものである。 In the medical field, it is required that the accuracy of the chemical amount of one capsule be suppressed to about ± 10%, but the viscosity changes depending on the temperature of the chemical solution, which is accompanied by a change in the discharge amount per time. In the fifth embodiment, a resistance temperature sensor 45 which is a temperature detecting means for viscous liquid is disposed in the vicinity of the nozzle plate 42, and this temperature sensor resistance is read from the AD conversion input terminal of the microcomputer 51, and is stored in the ROM 53 referred to by the microcomputer 51. It is composed of a determining means that performs calculation with reference to the conversion table of the discharge rate corresponding to the chemical temperature stored in the table, and sequentially determines the discharge time. The determined discharge time is set as the length of the electric signal. The vibrator is vibrated by the drive circuit 52 (electric signal generating means), and as a result, the atomized spray amount of the viscous liquid 41 is controlled.

この第六実施形態の装置では、図10(A)に示すように室温または稼動初期の薬液温度から、装置の稼動(圧電振動子43の駆動)時間と共に圧電振動子43の近傍温度が15分後には約35℃近くに上昇して飽和する。第五実施形態で示したように、上記薬液の粘度に応じた吐出可能なまたは吐出安定な最大Ton(最大パルス数)、最小Toffの領域があり、粘度変化がある場合は、駆動すべき最高粘度で安定した吐出を基にしたパルス印加パターン設計が工業的には望ましい。即ち、薬液の相対的に粘度の高い最低温度での安定パルス印加パターンを選択し、このパルス印加パターンでの温度に応じた薬液注入時間を決定することが単純な装置実現を可能とする。ここで薬液注入時間とは、図11に示す電気信号の時間T1をいい、時間T1に含まれる電気信号は、前述の第一実施形態において第3図に示したTonとToffの繰り返しで構成されている。 In the apparatus of the sixth embodiment, as shown in FIG. 10A, the temperature near the piezoelectric vibrator 43 is changed from the room temperature or the chemical temperature at the beginning of operation to the vicinity of the piezoelectric vibrator 43 along with the operation time of the apparatus (drive of the piezoelectric vibrator 43). Later, it rises to about 35 ° C. and saturates. As shown in the fifth embodiment, there are areas of maximum Ton (maximum number of pulses) and minimum Toff that can be discharged or stably discharged according to the viscosity of the chemical solution, and when there is a change in viscosity, the highest to be driven Industrially, a pulse application pattern design based on viscosity-stable ejection is desirable. That is, it is possible to realize a simple device by selecting a stable pulse application pattern at a minimum temperature at which the chemical liquid has a relatively high viscosity and determining the chemical injection time according to the temperature in the pulse application pattern. Here, the chemical injection time refers to the time T1 of the electric signal shown in FIG. 11, and the electric signal included in the time T1 is composed of repetition of Ton and Toff shown in FIG. 3 in the first embodiment described above. ing.

従って、図11(B)に示す上記薬液の温度に対する粘度曲線における室温の粘度35cpsに基づいての表2を参照すれば、Ton=5ms程度、Toff=10ms程度としたパルス印加パターンを選択し、このパターンを薬液温度に応じた時間繰り返し印加するよう即ち温度に応じた時間T1の前記変換テーブルを作成して、圧電振動子43に選択したパターンの電圧パルスを印加する装置とすることが装置の単純化コストパフォーマンス上最適である。このパルス印加パターンで温度範囲25〜40℃に相当する25〜35mPa・s(25〜35cps)のときの吐出速度を図10(C)に示す。5μLの吐出時間を各温度でテーブル化することで吐出時間(薬液注入時間)制御が決定される。これにより、薬液注入時間T1は、カプセル1個あたり最長170msで行うことができ、注入のタクトタイムT2が220msで連続カプセル注入が可能となる。尚、ノズル板42を第三実施形態と同様に、撥水処理を行えば更に短時間での薬液注入作業が可能となる。 Therefore, referring to Table 2 based on the viscosity of 35 cps at room temperature in the viscosity curve with respect to the temperature of the chemical solution shown in FIG. 11 (B), a pulse application pattern with Ton = 5 ms and Toff = 10 ms is selected. It is an apparatus that applies the voltage pulse of the selected pattern to the piezoelectric vibrator 43 by creating the conversion table for the time T1 corresponding to the temperature so that this pattern is repeatedly applied for a time corresponding to the chemical temperature. Simplified cost performance is optimal. FIG. 10C shows the discharge speed when the pulse application pattern is 25 to 35 mPa · s (25 to 35 cps) corresponding to a temperature range of 25 to 40 ° C. The discharge time (chemical solution injection time) control is determined by tabulating the discharge time of 5 μL at each temperature. As a result, the chemical solution injection time T1 can be performed at a maximum of 170 ms per capsule, and continuous capsule injection is possible with an injection tact time T2 of 220 ms. In addition, if the nozzle plate 42 is subjected to water repellent treatment as in the third embodiment, it is possible to perform a chemical solution injection operation in a shorter time.

この第六実施形態の装置は、発明が解決しようとする課題で記述した小型EDLCへの電解液注入への応用が可能である。この応用では、カプセル50は小型EDLC容器となって内部に400〜700μmの肉厚の電極合剤が収められている。電解液EMIBF4は粘度30〜35mPa・s(30〜35cps)の粘性液体であるため、本発明の霧化噴霧装置によりノズルから吐出される。図9において、41は粘性液体である電解液で、ノズル44より液滴46となった電解液が、EDLC容器50内の合剤に着弾する。電解液は間隔をあけた粒径数十μmから100μmの液滴であり、従来容易でなかった合剤への吸収が進む。更に、ノズル数を増やし液滴粒径を小さくし時間間隔を長くすれば、より効率的に合剤への吸収進行が可能である。 The apparatus of the sixth embodiment can be applied to electrolyte injection into a small EDLC described in the problem to be solved by the invention. In this application, the capsule 50 is a small EDLC container and contains an electrode mixture having a thickness of 400 to 700 μm inside. Since the electrolytic solution EMIBF4 is a viscous liquid having a viscosity of 30 to 35 mPa · s (30 to 35 cps), it is discharged from the nozzle by the atomizing spray device of the present invention. In FIG. 9, reference numeral 41 denotes an electrolytic solution that is a viscous liquid, and the electrolytic solution that has become droplets 46 from the nozzle 44 lands on the mixture in the EDLC container 50. The electrolytic solution is a droplet having a particle size of several tens to 100 μm at intervals, and absorption into a mixture, which has not been easy in the past, proceeds. Furthermore, if the number of nozzles is increased, the particle size of the droplets is reduced, and the time interval is increased, the absorption into the mixture can be more efficiently proceeded.

11、42 ノズル板
12、44 ノズル
13、43 振動子
15 ノズルの噴霧出口側
21、41 粘性液体
14、52 パルス発生駆動回路(電気信号発生手段)
45 抵抗温度センサー(温度検出手段)
51 マイコン(決定手段)
52 駆動回路(電気信号発生手段)
11, 42 Nozzle plate 12, 44 Nozzle 13, 43 Vibrator 15 Nozzle outlet side 21, 41 Viscous liquid 14, 52 Pulse generation drive circuit (electric signal generating means)
45 Resistance temperature sensor (temperature detection means)
51 Microcomputer (Determination means)
52 Drive circuit (electrical signal generating means)

Claims (6)

多数のノズルを有し粘性液体が供給されるノズル板と、このノズル板または前記粘性液体を振動させる振動子と、この振動子の振動と停止とを間欠的に繰り返すための電気信号発生手段とを有し、前記粘性液体の連続霧化噴霧により前記ノズル板の噴霧出口側表面に前記粘性液体の液溜まりが生じて隣接する前記多数のノズルの噴霧出口側が塞がれる霧化噴霧装置であって、前記ノズルの噴霧出口側が前記連続霧化噴霧により前記ノズル板の噴霧出口側表面に前記粘性液体の液溜まりが生じて隣接する前記多数のノズルの噴霧出口側が塞がれる前に前記電気信号発生手段により前記振動子の振動を停止し、この停止した後に前記振動子を再び振動させる間欠運転をすることを特徴とする霧化噴霧装置。 A nozzle plate having a large number of nozzles to which viscous liquid is supplied; a vibrator for vibrating the nozzle plate or the viscous liquid; and an electric signal generating means for intermittently repeating vibration and stop of the vibrator. have a, a in the plurality of atomizing spray device the spray outlet is blocked nozzles liquid pool of the viscous liquid to a spray outlet surface of the nozzle plate adjacent caused by successive atomization spraying of the viscous liquid Te, the electrical before spraying outlet of said plurality of nozzles spraying outlet of the nozzle plate adjacent said viscous liquid puddle occurs in the spray outlet surface of the nozzle plate by the continuous atomization spray is blocked An atomizing and spraying apparatus characterized in that the vibration of the vibrator is stopped by the signal generating means, and the intermittent operation is performed to vibrate the vibrator again after the stop . 前記粘性液体の温度を検出する検出手段と、この検出した温度に応じて電気信号の長さを決定する決定手段とを有し、前記電気信号の長さによって前記ノズルから霧化噴霧される粘性液体量を制御する請求項1に記載の霧化噴霧装置。   Viscosity having atomizing and spraying from the nozzle according to the length of the electric signal, having detecting means for detecting the temperature of the viscous liquid and determining means for determining the length of the electric signal according to the detected temperature The atomization spray apparatus of Claim 1 which controls the liquid quantity. 前記粘性液体が、20℃で10〜40mPa・sの高粘度を有する請求項1又は請求項2に記載の霧化噴霧装置。   The atomizing spray apparatus according to claim 1 or 2, wherein the viscous liquid has a high viscosity of 10 to 40 mPa · s at 20 ° C. 前記粘性液体の粘度が10mPa・s以上で、前記振動の時間が20ms以下である請求項1〜3の何れか1項に記載の霧化噴霧装置。   The atomization spray apparatus according to any one of claims 1 to 3, wherein the viscosity of the viscous liquid is 10 mPa · s or more and the vibration time is 20 ms or less. 前記粘性液体の粘度が30mPa・s以上で、前記振動の時間が10ms以下である請求項1〜3の何れか1項に記載の霧化噴霧装置。   The atomization spray apparatus according to any one of claims 1 to 3, wherein the viscosity of the viscous liquid is 30 mPa · s or more and the vibration time is 10 ms or less. 前記ノズル板は隣接する前記ノズル同士の間の距離が150μm以上である請求項1〜5の何れか1項に記載の霧化噴霧装置。
The atomizing spray device according to claim 1, wherein the nozzle plate has a distance between adjacent nozzles of 150 μm or more.
JP2011135441A 2011-06-17 2011-06-17 Atomizing spray equipment Active JP5743265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011135441A JP5743265B2 (en) 2011-06-17 2011-06-17 Atomizing spray equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011135441A JP5743265B2 (en) 2011-06-17 2011-06-17 Atomizing spray equipment

Publications (2)

Publication Number Publication Date
JP2013000679A JP2013000679A (en) 2013-01-07
JP5743265B2 true JP5743265B2 (en) 2015-07-01

Family

ID=47669829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011135441A Active JP5743265B2 (en) 2011-06-17 2011-06-17 Atomizing spray equipment

Country Status (1)

Country Link
JP (1) JP5743265B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3042772B1 (en) 2014-12-22 2019-02-06 Ricoh Company, Ltd. Liquid droplet forming apparatus
GB201510166D0 (en) * 2015-06-11 2015-07-29 The Technology Partnership Plc Spray delivery device
EP3539779B1 (en) 2018-03-16 2020-08-12 Ricoh Company, Ltd. Liquid droplet forming device and liquid droplet forming method
JP2020151639A (en) * 2019-03-19 2020-09-24 株式会社フコク Ultrasonic atomizer driving method
CN113414049B (en) * 2021-06-04 2023-04-18 圣托马斯先进材料公司 Intelligent atomizer and using method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743108A (en) * 1980-08-28 1982-03-11 Matsushita Electric Ind Co Ltd Liquid fuel burner
JPS58122070A (en) * 1981-10-15 1983-07-20 Matsushita Electric Ind Co Ltd Atomizing device
WO1995015822A1 (en) * 1993-12-09 1995-06-15 The Technology Partnership Plc Liquid spray apparatus and method
JP2008049230A (en) * 2006-08-22 2008-03-06 Tamura Seisakusho Co Ltd Atomizer
US20080236577A1 (en) * 2007-03-28 2008-10-02 John Sylvester Power Humidification in Breathing Circuits
KR100958663B1 (en) * 2008-04-30 2010-05-20 주식회사 루프 Apparatus for Spraying Liquid Using Porous Thin Membrane
JP5395423B2 (en) * 2008-12-19 2014-01-22 花王株式会社 Ultrasonic atomizer

Also Published As

Publication number Publication date
JP2013000679A (en) 2013-01-07

Similar Documents

Publication Publication Date Title
JP5743265B2 (en) Atomizing spray equipment
Ramisetty et al. Investigations into ultrasound induced atomization
Kim et al. Electrohydrodynamic drop-on-demand patterning in pulsed cone-jet mode at various frequencies
CA2480290C (en) Method and apparatus for atomizing liquids having minimal droplet size
Barreras et al. Transient high-frequency ultrasonic water atomization
JP6067589B2 (en) Aerosol generator for atomizing liquid and method for temperature control of atomized liquid
Collins et al. Atomization off thin water films generated by high-frequency substrate wave vibrations
EP2162228B1 (en) An electrostatic spraying device and a method of electrostatic spraying
KR20170108057A (en) Ultrasonic evaporation element
KR20020003198A (en) Control system for atomizing liquids with a piezoelectric vibrator
JP5795200B2 (en) Electrochemical element manufacturing method and electrochemical element manufacturing apparatus
RU2349392C2 (en) Ultrasound sprayer of fluid various-viscosity preparations
JP2008173624A (en) Atomizer
Stachewicz et al. Single event electrospraying of water
Paine Transient electrospray behaviour following high voltage switching
CN206483629U (en) A kind of different refractivity list drop generating device
JP6488514B2 (en) Atomizer
TWI587925B (en) Spray granulation nozzle device with aided multiple excitation and electrostatic
JP5068563B2 (en) Atomizer
JP2023130567A (en) atomization device
JP2005052257A (en) Liquid perfume sprayer
JP3106462U (en) Fog generation control device
Jeng et al. Droplets ejection apparatus and methods
JP2006181496A (en) Piezoelectric atomizer
JP2015128743A (en) Atomizer, and method for sweeping frequency in atomizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150424

R150 Certificate of patent or registration of utility model

Ref document number: 5743265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250