JP5743096B2 - Membrane separation activated sludge equipment - Google Patents

Membrane separation activated sludge equipment Download PDF

Info

Publication number
JP5743096B2
JP5743096B2 JP2011270820A JP2011270820A JP5743096B2 JP 5743096 B2 JP5743096 B2 JP 5743096B2 JP 2011270820 A JP2011270820 A JP 2011270820A JP 2011270820 A JP2011270820 A JP 2011270820A JP 5743096 B2 JP5743096 B2 JP 5743096B2
Authority
JP
Japan
Prior art keywords
membrane
water flow
water
membrane separation
activated sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011270820A
Other languages
Japanese (ja)
Other versions
JP2013121570A (en
Inventor
洋平 冨田
洋平 冨田
渕上 浩司
浩司 渕上
辻 猛志
猛志 辻
秀明 野間
秀明 野間
山本 勝一郎
勝一郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2011270820A priority Critical patent/JP5743096B2/en
Publication of JP2013121570A publication Critical patent/JP2013121570A/en
Application granted granted Critical
Publication of JP5743096B2 publication Critical patent/JP5743096B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Description

本発明は、下水や工場排水の処理に用いられる膜分離活性汚泥装置に関する。   The present invention relates to a membrane separation activated sludge apparatus used for treatment of sewage and factory waste water.

活性汚泥装置は種々のものが知られているが、そのなかに曝気槽と浸透型膜分離装置を備えた膜浸漬槽よりなる装置が知られている(特許文献1)。この装置では、図8に示すように、曝気槽20と膜分離槽30からなっている。曝気槽20は散気管21とブロア22からなる散気装置を有している。膜分離槽30内には膜分離装置40が設置され、その下方には膜面洗浄気体を噴出する散気管41が配置されている。処理しようとする原水は原水供給系50から曝気槽20内に投入されて活性汚泥菌により処理されて活性汚泥とともに膜分離槽30に入る。そこで膜分離されて処理水を膜を透過させて取り出す。膜を透過しないで残った汚泥は一部が循環系60を通って曝気槽に返送され、一部は余剰汚泥排出系70から余剰汚泥として系外に取り出される。   Various activated sludge apparatuses are known, and among them, an apparatus comprising a membrane immersion tank equipped with an aeration tank and a permeation type membrane separation apparatus is known (Patent Document 1). As shown in FIG. 8, this apparatus includes an aeration tank 20 and a membrane separation tank 30. The aeration tank 20 has an air diffuser composed of an air diffuser 21 and a blower 22. A membrane separation device 40 is installed in the membrane separation tank 30, and an air diffuser 41 for ejecting a membrane surface cleaning gas is disposed below the membrane separation device 40. The raw water to be treated is introduced into the aeration tank 20 from the raw water supply system 50, treated with activated sludge bacteria, and enters the membrane separation tank 30 together with the activated sludge. Therefore, the membrane is separated and the treated water is taken out through the membrane. Part of the sludge remaining without passing through the membrane is returned to the aeration tank through the circulation system 60, and part is taken out of the system as excess sludge from the excess sludge discharge system 70.

特開2002−192182号公報(3頁、図1)JP 2002-192182 A (page 3, FIG. 1)

膜の洗浄は、通常、膜の真下からの散気によって行われており、そのため電力消費量が多い。   The cleaning of the membrane is usually performed by aeration from directly below the membrane, so that the power consumption is high.

本発明の目的は、膜の洗浄を効率よく行って、電力消費量を節減できる膜分離活性汚泥装置を提供することにある。   An object of the present invention is to provide a membrane separation activated sludge apparatus capable of efficiently cleaning a membrane and reducing power consumption.

本発明は、上記課題を解決するべくなされたものであり、機械力を用いて水流を形成し、これを膜面に当てることによって、膜面を効率よく洗浄できるようにして、このような目的を達成したものである。   The present invention has been made to solve the above-mentioned problems, and by forming a water flow using mechanical force and applying it to the membrane surface, the membrane surface can be efficiently cleaned, and such an object is achieved. Is achieved.

すなわち、本発明は、活性汚泥への酸素供給を行う散気装置を備えた好気槽と、浸透型膜分離装置と前記膜分離装置の膜面に向けた水流を形成する水流形成装置を備えた膜分離槽とを有する膜分離活性汚泥装置を提供するものである。   That is, the present invention includes an aerobic tank provided with an air diffuser for supplying oxygen to activated sludge, an osmotic membrane separator, and a water flow forming device for forming a water flow toward the membrane surface of the membrane separator. And a membrane separation activated sludge apparatus having a membrane separation tank.

本発明者らは、上記装置において、膜モジュールにおける水流速が0.5〜1.0m/sであることが好ましく、また、この流速を低動力で発生させるために、機械力として旋回機構付プロペラ式水中攪拌機又は水流ポンプの使用が有効であることも見出した。また、膜分離装置を複数の膜ユニットとして、それぞれに短時間水流を供給するだけでも充分な膜洗浄効果が得られることを見出した。   In the above apparatus, the present inventors preferably have a water flow rate in the membrane module of 0.5 to 1.0 m / s, and in order to generate this flow rate with low power, a turning mechanism is attached as mechanical force. It has also been found that the use of a propeller-type underwater stirrer or water pump is effective. Further, it has been found that a sufficient membrane cleaning effect can be obtained by simply using a membrane separator as a plurality of membrane units and supplying a water flow for a short time to each of them.

従って、本発明は、上記装置において、水流形成装置が旋回機構付プロペラ式水中攪拌機である装置、水流形成装置が水流ポンプである装置、これらの水流形成装置によって形成される水流速が膜モジュール内において0.5〜1.0m/sである装置をも提供するものである。   Therefore, the present invention provides a device in which the water flow forming device is a propeller type underwater agitator with a swivel mechanism, the water flow forming device is a water flow pump, and the water flow rate formed by these water flow forming devices is within the membrane module. The apparatus which is 0.5-1.0 m / s is also provided.

本発明は、また、水流ポンプを用いた上記装置において、浸透型膜分離装置が複数の膜ユニットからなり、かつ、前記膜ユニットが、各々の下部または上部に前記膜ユニットの膜面に向けた水流吐出口を備え、水流ポンプより前記水流吐出口への水供給配管に各膜ユニット毎の自動開閉弁が設けられ、1または複数の水流吐出口毎に順次切り替えて水供給を可能とされている装置をも提供するものである。   The present invention also provides the above apparatus using a water flow pump, wherein the osmotic membrane separation device comprises a plurality of membrane units, and the membrane units are directed to the membrane surface of the membrane unit at the lower part or the upper part thereof. An automatic on-off valve for each membrane unit is provided in the water supply pipe from the water flow pump to the water flow discharge port, and the water supply is made possible by sequentially switching one or more water flow discharge ports. A device is also provided.

本発明により、電力消費量を大きく節減して、活性汚泥処理コストを低下させることができる。   According to the present invention, the power consumption can be greatly reduced and the activated sludge treatment cost can be reduced.

本発明の装置の一例の概略構成を示す側面断面図である。It is side surface sectional drawing which shows schematic structure of an example of the apparatus of this invention. 本発明の装置の別の例の概略構成を示す側面断面図である。It is side surface sectional drawing which shows schematic structure of another example of the apparatus of this invention. 本発明の装置のさらに別の例の概略構成を示す側面断面図である。It is side surface sectional drawing which shows schematic structure of another example of the apparatus of this invention. 本発明の装置のさらに別の例の概略構成を示す側面断面図である。It is side surface sectional drawing which shows schematic structure of another example of the apparatus of this invention. 図4の装置を平面で示した図である。It is the figure which showed the apparatus of FIG. 4 in the plane. 膜面を洗浄できる流速を測定した装置の構成を示す図である。It is a figure which shows the structure of the apparatus which measured the flow rate which can wash | clean a membrane surface. 図6の装置で測定した膜間差圧の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the transmembrane differential pressure measured with the apparatus of FIG. 従来の装置の概略構成を示す側面断面図である。It is side surface sectional drawing which shows schematic structure of the conventional apparatus.

本発明の装置における好気槽は、活性汚泥を収容して働かせる槽であり、曝気槽とも呼ばれる。形状は、円筒形等種々の形態をとりうるが、通常は箱型である。   The aerobic tank in the apparatus of the present invention is a tank that accommodates and works activated sludge, and is also called an aeration tank. The shape may take various forms such as a cylindrical shape, but is usually a box shape.

散気装置は、気泡を噴出させて、活性汚泥への酸素供給を行うものである。構造は、基本的に通常の散気装置と同様でよく、箱や管などの形をしたマニホールドに多数の空気噴出口を設けたものである。空気噴出口は、微細孔でよく、ノズルを取付けてもよい。空気噴出口の口径は、酸素溶解効率を高くするために微細気泡を形成するように定められ、気泡の径は0.5〜4mm程度、特に0.5〜1.0mm程度とするのがよい。気泡径が過大では十分な酸素溶解効率が得られず、過小では散気装置の圧力損失が高く、安定した運転を行うことが困難である。0.5〜1.0mmの気泡径であれば、30〜40%の酸素溶解効率が得られるため、好適である。   The air diffuser jets bubbles to supply oxygen to activated sludge. The structure may be basically the same as that of a normal air diffuser, and a large number of air jets are provided in a manifold having a shape such as a box or a tube. The air outlet may be a fine hole, and a nozzle may be attached. The diameter of the air outlet is determined so as to form fine bubbles in order to increase the oxygen dissolution efficiency, and the diameter of the bubbles should be about 0.5 to 4 mm, particularly about 0.5 to 1.0 mm. . If the bubble diameter is too large, sufficient oxygen dissolution efficiency cannot be obtained, and if it is too small, the pressure loss of the air diffuser is high and it is difficult to perform stable operation. A bubble diameter of 0.5 to 1.0 mm is preferable because an oxygen dissolution efficiency of 30 to 40% can be obtained.

膜分離槽は、内部に浸透型膜分離装置を設けて、活性汚泥で処理された水を分離するところである。膜の孔径に関しては精密濾過膜あるいは限外濾過膜を適用することができる。膜の形状は、平膜タイプ、中空糸タイプ、チューブラータイプ等を用いることができ、膜の透過流束と処理水量を基に適切な面積の膜を設置する。膜の配置は、通常は水流を妨げないように互いに平行とする。   The membrane separation tank is a place where an osmotic membrane separation device is provided to separate water treated with activated sludge. Regarding the pore diameter of the membrane, a microfiltration membrane or an ultrafiltration membrane can be applied. As the shape of the membrane, a flat membrane type, a hollow fiber type, a tubular type or the like can be used, and a membrane having an appropriate area is installed based on the permeation flux of the membrane and the amount of treated water. The arrangement of the membranes is usually parallel to each other so as not to disturb the water flow.

膜分離槽には、さらに、この膜分離装置の膜面に向けた水流を形成する水流形成装置を設ける。この水流形成装置は、機械力によって水流を形成するものであり、攪拌機や水中ポンプを設置する方法があるが、旋回機構付プロペラ式水中攪拌機を用いると、攪拌機が旋回するため、膜の全面に均等に水流を当てることができるため好適である。膜面部の流速を0.5m/s以上とすることによって、洗浄効果が得られるが、好ましくは0.5〜1.0m/sである。   The membrane separation tank is further provided with a water flow forming device that forms a water flow toward the membrane surface of the membrane separation device. This water flow forming device forms a water flow by mechanical force, and there is a method of installing a stirrer and a submersible pump. It is preferable because the water flow can be applied evenly. Although the cleaning effect can be obtained by setting the flow rate of the film surface portion to 0.5 m / s or more, it is preferably 0.5 to 1.0 m / s.

膜面を洗浄できる流速を調べた装置の構成を図6に示す。この装置は、1本の中空糸を透明塩ビ筒内に筒長方向に設置した膜分離装置と、活性汚泥槽からなり、活性汚泥槽の底部からは透明塩ビ筒の下部へ液を送るチューブが接続され、透明塩ビ筒の上部からは活性汚泥層の上面に液を戻すチューブが接続されて、活性汚泥槽内液の循環ラインが形成されている。この循環ラインの途中には循環ポンプ、圧力計、流量計および流量調整弁が設けられている。中空系の下部は、透明塩ビ筒の下端を突き抜けており、そこには吸引ポンプと圧力計が取り付けられている。中空系の下端の下には中空糸で濾過された液を受けるビーカが配置されている。この装置を用いて流速を0.25m/s、0.4m/s、0.55m/sに変えて膜間差圧の経時変化を調べた結果を図7に示す。同図に示すように、流速が0.25m/sと0.4m/sでは膜間差圧が時間と共に上昇して目詰まりを生じているが、流速が0.55m/sでは膜間差圧がほぼ一定で充分に洗浄が行われていることを示している。その結果、膜面を流れる流速が0.5m/s以上であれば充分に洗浄効果があることが分った。   FIG. 6 shows the configuration of an apparatus for examining the flow rate at which the membrane surface can be cleaned. This device consists of a membrane separation device in which one hollow fiber is installed in a transparent PVC cylinder in the cylinder length direction and an activated sludge tank, and a tube for sending liquid from the bottom of the activated sludge tank to the lower part of the transparent PVC cylinder A tube for returning the liquid to the upper surface of the activated sludge layer is connected from the upper part of the transparent PVC cylinder, and a circulation line for the liquid in the activated sludge tank is formed. A circulation pump, a pressure gauge, a flow meter, and a flow rate adjusting valve are provided in the middle of the circulation line. The lower part of the hollow system penetrates the lower end of the transparent PVC cylinder, and a suction pump and a pressure gauge are attached to the lower part. A beaker for receiving the liquid filtered with the hollow fiber is disposed under the lower end of the hollow system. FIG. 7 shows the results of examining the time-dependent change in transmembrane pressure difference by changing the flow rate to 0.25 m / s, 0.4 m / s, and 0.55 m / s using this apparatus. As shown in the figure, when the flow rate is 0.25 m / s and 0.4 m / s, the transmembrane pressure difference increases with time, resulting in clogging. However, when the flow rate is 0.55 m / s, the transmembrane difference It shows that the pressure is almost constant and washing is performed sufficiently. As a result, it was found that if the flow velocity flowing on the membrane surface was 0.5 m / s or more, there was a sufficient cleaning effect.

水流を膜面に当てる角度はできるだけ浅いことが好ましく、0〜45度程度が適当である。膜分離槽に垂直に配置した膜において、槽全体に旋回流を生じさせると、効率的に膜面に平行な水流を生じることができる。 The angle at which the water flow is applied to the membrane surface is preferably as shallow as possible, and about 0 to 45 degrees is appropriate. When a swirl flow is generated in the entire tank in the membrane arranged perpendicular to the membrane separation tank, a water flow parallel to the membrane surface can be efficiently generated.

水流形成装置として、水流ポンプも本発明の装置に有効である。水流ポンプは、水流を膜面に当てることによって膜面を効率よく洗浄するものであり、水流の吐出口は膜の下部から垂直に上向きとして膜面と平行な水流を形成するようにしてもよく、あるいは、膜の上部から垂直に下向きとして膜面と平行な水流を形成してもよい。全ての膜の下あるいは上から水流を吐出させるようにすれば、部分的に水流の弱いところがなくなり、膜全体を効率よく水流洗浄することができる。水流ポンプの位置は槽内外を問わない。   As a water flow forming device, a water flow pump is also effective for the device of the present invention. The water flow pump efficiently cleans the membrane surface by applying the water flow to the membrane surface, and the water flow outlet may be directed vertically upward from the bottom of the membrane to form a water flow parallel to the membrane surface. Alternatively, a water flow parallel to the membrane surface may be formed vertically downward from the top of the membrane. If the water flow is discharged from below or above all the membranes, there is no part where the water flow is weak, and the entire membrane can be washed with water efficiently. The position of the water pump does not matter inside or outside the tank.

また、ポンプにタイマーを接続して水流ポンプの作動をコントロールできるようにすることができる。例えば、膜からの処理水の吸引を一定時間毎に停止させて、その停止期間中に水流ポンプを作動させて効率よく水流洗浄を行うこともできる。このタイムスケジュールは適宜定めることができるが、例えば、処理水の吸引を5〜60分行って30秒〜5分間吸引を停止し、その間に水流ポンプを作動させて水流洗浄を行う。   In addition, a timer can be connected to the pump so that the operation of the water pump can be controlled. For example, the suction of treated water from the membrane can be stopped at regular intervals, and the water flow can be efficiently washed by operating the water flow pump during the stop period. The time schedule can be determined as appropriate. For example, the suction of the treated water is performed for 5 to 60 minutes, the suction is stopped for 30 seconds to 5 minutes, and the water flow pump is operated during that time to perform water flow cleaning.

本発明の装置においては、一つの膜分離装置を1ユニットとして複数の膜ユニットを設けることができる。そして、各膜ユニットの下部に散気装置と上向きの水流吐出口を設け、水流ポンプより前記水流吐出口への水供給配管に各膜ユニット毎の自動開閉弁を、1または複数の水流吐出口毎に順次切り替えて水を供給できるようにする。これは、本発明者が、膜面の洗浄は、洗浄の全時間水流を流す必要はなく、短時間の水流供給を間欠的に行なっても充分な膜面洗浄を達成できることを見出したことによるものである。各膜分離装置毎に適切な運転条件が異なるので実験でこれを求めるのがよい。適切な運転条件は膜面差圧の経時変化を調べることで設定でき、電力費などの運転コストも考慮して定める。一般的には水流を長時間にわたって停止するのは好ましくなく、水流の停止時間は30秒〜5分間程度とし、それに対して各膜ユニット毎の適切な水流供給時間を定めるのがよい。   In the apparatus of the present invention, a plurality of membrane units can be provided with one membrane separator as one unit. An air diffuser and an upward water flow outlet are provided at the lower part of each membrane unit, and an automatic on-off valve for each membrane unit is provided in the water supply pipe from the water flow pump to the water flow outlet. It is possible to supply water by sequentially switching every time. This is because the present inventor found that it is not necessary to flow the water flow for the entire cleaning time, and sufficient film surface cleaning can be achieved even if intermittent supply of water flow is performed for a short time. Is. Since appropriate operating conditions differ for each membrane separation device, it is preferable to obtain this through experiments. Appropriate operating conditions can be set by investigating changes over time in the differential pressure on the membrane surface, and are determined in consideration of operating costs such as power costs. In general, it is not preferable to stop the water flow for a long time. The stop time of the water flow is about 30 seconds to 5 minutes, and an appropriate water flow supply time for each membrane unit should be determined.

こうして定めた1回の水流供給時間で各膜ユニットに順次水流を供給し、全膜ユニットについて水流供給が終了する時間を1サイクルとし、吸引ポンプの停止時間中に1〜5サイクル程度の水流洗浄を実施する。   The water flow is sequentially supplied to each membrane unit in the single water flow supply time determined in this way, and the time for completing the water flow supply for all the membrane units is defined as one cycle, and the water flow cleaning is performed for about 1 to 5 cycles during the suction pump stop time. To implement.

この方式により、1台のポンプで複数の膜ユニットの洗浄を担当させることができ、電力をさらに節減することができる。   By this method, it is possible to perform cleaning of a plurality of membrane units with one pump, and it is possible to further reduce power.

好気槽には、その外、溶存酸素濃度計、pH計、温度計などが適宜設けられる。   In addition, the aerobic tank is appropriately provided with a dissolved oxygen concentration meter, a pH meter, a thermometer, and the like.

本発明の一実施態様である膜分離活性汚泥装置の概略構成を図1に示す。   A schematic configuration of a membrane separation activated sludge apparatus according to an embodiment of the present invention is shown in FIG.

この装置の好気槽1と膜分離槽5はいずれも箱型である。   Both the aerobic tank 1 and the membrane separation tank 5 of this apparatus are box-shaped.

好気槽1の底部には散気装置2が設置されている。この散気装置2は、平板や直管形状であり、表面はゴムや金属板、あるいはセラミック焼結体等で構成され、気泡放出用の細孔が多数形成されている。この細孔から放出される気泡は散気面直上部で径が1.5mm程度である。各直管は連結管で連結され、槽外のブロワ3に接続されている。好気槽1内の活性汚泥で処理される原水は、槽外に設置された原水ポンプ4から好気槽1に上部から投入される、この好気槽1の上部に設けられて出口からは膜分離槽5の上部に処理水を送る配管が接続されている。   A diffuser 2 is installed at the bottom of the aerobic tank 1. The air diffuser 2 has a flat plate or straight pipe shape, and its surface is made of rubber, a metal plate, a ceramic sintered body, or the like, and has a large number of pores for releasing bubbles. The bubbles released from the pores have a diameter of about 1.5 mm immediately above the diffuser surface. Each straight pipe is connected by a connecting pipe and connected to the blower 3 outside the tank. Raw water treated with activated sludge in the aerobic tank 1 is introduced into the aerobic tank 1 from the raw water pump 4 installed outside the tank. A pipe for sending treated water is connected to the upper part of the membrane separation tank 5.

膜分離槽5には浸透型膜分離装置6と水流形成装置7が設置されている。   In the membrane separation tank 5, an osmotic membrane separation device 6 and a water flow forming device 7 are installed.

膜分離装置6は中空糸タイプの膜を垂直に多数配置したもので、上下端が集水部に接続されており、吸引ポンプ9によってろ液を得られる。膜の孔径は0.01〜1μm程度の範囲である場合が多く、特に0.02〜0.5μmの範囲にあるものが清澄な処理水質が得られて経済的な透過水流束が得られるために多く用いられる。   The membrane separation device 6 is a device in which a large number of hollow fiber type membranes are arranged vertically. The upper and lower ends are connected to a water collecting part, and a filtrate can be obtained by a suction pump 9. In many cases, the pore diameter of the membrane is in the range of about 0.01 to 1 μm, and particularly in the range of 0.02 to 0.5 μm, a clear treated water quality is obtained and an economical permeate flux is obtained. Often used in

水流形成装置7は、旋回機構付プロペラ式水中攪拌機が用いられている。この攪拌機は膜分離槽の上方に設置された駆動装置の動力を槽下部に設置されたプロペラに伝達する軸の回転に伴い、プロペラが左右に旋回する機構を備えた攪拌機である。この攪拌機によって形成される水流が膜分離槽5内で旋回流を形成するとともに、膜設置部では上昇流となるように、膜分離槽5の膜分離装置6と反対側の側面下部に取付けられている。8は整流板である。また、膜分離槽5には、そのなかの汚泥を好気槽1に返送するラインと余剰汚泥の引抜きラインが設けられている。本設備構成によって、膜表面の上向きの流速は最大値で0.5m/sとすることができた。 As the water flow forming device 7, a propeller type underwater stirrer with a turning mechanism is used. This stirrer is a stirrer provided with a mechanism in which the propeller turns left and right in accordance with the rotation of the shaft that transmits the power of the drive device installed above the membrane separation tank to the propeller installed at the bottom of the tank. The water flow formed by the agitator forms a swirl flow in the membrane separation tank 5 and is attached to the lower part of the side surface of the membrane separation tank 5 opposite to the membrane separation device 6 so as to be an upward flow in the membrane installation section. ing. Reference numeral 8 denotes a current plate. Further, the membrane separation tank 5 is provided with a line for returning sludge therein to the aerobic tank 1 and a drawing line for surplus sludge. With this equipment configuration, the upward flow velocity on the membrane surface could be 0.5 m / s at the maximum.

本発明の別の実施態様である膜分離活性汚泥装置の概略構成を図2に示す。   FIG. 2 shows a schematic configuration of a membrane separation activated sludge apparatus which is another embodiment of the present invention.

この装置は、水流形成装置7に水流ポンプを用いた以外は実施例1と同じである。ただし、整流板8は無いケースもある。整流板8を設置する目的は同じで、旋回流を作ることで、膜面に対し上向流を作る、または、上向流の流速を上げることである。   This apparatus is the same as that of Example 1 except that a water flow pump is used for the water flow forming device 7. However, there is a case where the current plate 8 is not provided. The purpose of installing the rectifying plate 8 is the same, and is to create a swirling flow to create an upward flow with respect to the membrane surface or to increase the flow velocity of the upward flow.

水流ポンプ10は膜分離槽5の槽外に取付けて、膜分離槽5の上部に引抜配管が接続され、一方、膜分離装置6の直下には水流を吹出する配管が設けられている。この配管は途中で多管に分岐され、それぞれに多数のノズル71が上方に向けて垂直に膜全体を水流洗浄できるように均等に配置されている。   The water flow pump 10 is attached outside the membrane separation tank 5, and a drawing pipe is connected to the upper part of the membrane separation tank 5. On the other hand, a pipe for blowing a water flow is provided directly below the membrane separation device 6. This pipe is branched into multiple pipes in the middle, and a large number of nozzles 71 are arranged uniformly so that the entire membrane can be washed with water vertically upwardly.

本発明の別の実施態様である膜分離活性汚泥装置の概略構成を図3に示す。   The schematic structure of the membrane separation activated sludge apparatus which is another embodiment of this invention is shown in FIG.

この装置は膜面に送る水流を下向流とした外は実施例2と同じである。   This apparatus is the same as Example 2 except that the water flow sent to the membrane surface is a downward flow.

本発明の別の実施態様である膜分離活性汚泥装置の概略構成を図4に側面断面図で、図5に平面図で示す。   A schematic configuration of a membrane separation activated sludge apparatus according to another embodiment of the present invention is shown in a side sectional view in FIG. 4 and in a plan view in FIG.

この装置は、膜ユニット61が8基配置され、各々の下部には上向きの水流吐出口71を有する水流形成装置7を設けられている。各水流形成装置7は、いずれも自動開閉弁12を介して水流洗浄ポンプ10に接続されている。各自動開閉弁12はコンピュータ(図示されていない)によってその開閉が自動制御されている。処理される原水は原水ポンプ4によって好気槽1に投入されて活性汚泥処理され、処理水は膜分離槽5に移って、吸引ポンプ9で吸引されてそれぞれが膜分離装置6である膜ユニット61の膜を通過して系外に出される。そして、各膜ユニット61はコンピュータの指令によって自動開閉弁12が開閉して洗浄水流の供給、停止を行う。この自動開閉弁12の開閉は、膜洗浄中は、いずれか1つのみの自動開閉弁12が開いており、水流は1基のポンプで供給されるようになっている。吸引ポンプ9にはタイマー11が接続されており、これにより、処理水の吸引を一定時間毎に停止させて、その停止期間中に水流ポンプを作動させて水流洗浄を効率よく行うことができる。   In this apparatus, eight membrane units 61 are arranged, and a water flow forming device 7 having an upward water discharge outlet 71 is provided at the lower part of each. Each of the water flow forming devices 7 is connected to the water flow cleaning pump 10 via the automatic opening / closing valve 12. Each automatic open / close valve 12 is automatically controlled to open and close by a computer (not shown). The raw water to be treated is fed into the aerobic tank 1 by the raw water pump 4 and treated with activated sludge, and the treated water is transferred to the membrane separation tank 5 and sucked by the suction pump 9, each of which is a membrane unit 6. 61 is passed out of the system. Each membrane unit 61 opens and closes the automatic opening / closing valve 12 according to a command from the computer to supply and stop the cleaning water flow. As for the opening / closing of the automatic opening / closing valve 12, only one of the automatic opening / closing valves 12 is open during membrane cleaning, and the water flow is supplied by a single pump. A timer 11 is connected to the suction pump 9, whereby the suction of the treated water is stopped at regular intervals, and the water flow pump can be operated during the stop period to efficiently perform the water flow cleaning.

図6に示す装置を用い、MF膜とUF膜について、洗浄水流量と洗浄水流の供給時間と停止時間を変えて膜間差圧の変化を測定した結果を表1、表2、に示す。   Tables 1 and 2 show the results of measuring the change in transmembrane pressure difference for the MF membrane and the UF membrane using the apparatus shown in FIG. 6 while changing the cleaning water flow rate, the cleaning water flow supply time, and the stop time.

Figure 0005743096
表1の結果から、1分運転−7分停止では膜間差圧が上昇し、2分運転−6分停止の条件から徐々に膜表面にケーキが堆積して洗浄が不十分になっていたことが分かる。0.8m/分で10秒運転−50秒停止が最も好ましかった。
Figure 0005743096
From the results in Table 1, the transmembrane pressure difference increased at 1 minute operation-7 minutes stop, and the cake gradually deposited on the film surface from the condition of 2 minute operation-6 minutes stop, resulting in insufficient cleaning. I understand that. A 10 second run at 0.8 m 3 / min-50 second stop was most preferred.

この経験から、水流量を0.8m/分とし、運転時間を10〜30秒とし、停止時間を105〜160秒にして膜間差圧の変化を調べた結果を表2に示す。 From this experience, Table 2 shows the results of examining the change in transmembrane pressure with the water flow rate set to 0.8 m 3 / min, the operation time set to 10 to 30 seconds, and the stop time set to 105 to 160 seconds.

Figure 0005743096
この結果、15秒運転−105秒停止で膜面を洗浄でき、これにより、1台のポンプで8基の膜ユニットの洗浄を担当させることができることが分かった。
Figure 0005743096
As a result, it was found that the membrane surface could be cleaned by running for 15 seconds-stopping for 105 seconds, thereby allowing the single membrane pump to be responsible for cleaning the eight membrane units.

本発明により、活性汚泥処理に使用する電力を大幅に節減することができるので、膜分離活性汚泥処理設備に広く利用できる。   According to the present invention, since the electric power used for the activated sludge treatment can be greatly reduced, it can be widely used in membrane separation activated sludge treatment equipment.

1 好気槽
2 散気装置
3 ブロワ
4 原水ポンプ
5 膜分離槽
6 膜分離装置
61 膜ユニット
7 水流形成装置
71 水流吐出口
8 整流板
9 吸引ポンプ
10 流水ポンプ
11 タイマー
12 自動開閉弁
20 曝気槽
21 散気管
22 ブロア
30 膜分離槽
40 膜分離装置
41 散気管
42 ブロア
50 原水供給系
60 循環系
70 余剰汚泥排出系
DESCRIPTION OF SYMBOLS 1 Aerobic tank 2 Aeration apparatus 3 Blower 4 Raw water pump 5 Membrane separation tank 6 Membrane separation apparatus 61 Membrane unit 7 Water flow formation apparatus 71 Water flow outlet 8 Current plate 9 Suction pump 10 Flow water pump 11 Timer 12 Automatic opening / closing valve 20 Aeration tank 21 Aeration pipe 22 Blower 30 Membrane separation tank 40 Membrane separation device 41 Aeration pipe 42 Blower 50 Raw water supply system 60 Circulation system 70 Excess sludge discharge system

Claims (3)

活性汚泥への酸素供給を行う散気装置を備えた好気槽と、浸透型膜分離装置と前記膜分離装置の膜面に向けた水流を形成する水流形成装置を備えた膜分離槽とを有する膜分離活性汚泥装置であって、前記水流形成装置が、前記膜分離槽を2つの領域に区分する整流板を挟んで前記浸透型膜分離装置と反対側の槽側面下部に取り付けられた旋回機構付プロペラ式水中攪拌機であることを特徴とする膜分離活性汚泥装置An aerobic tank equipped with an air diffuser for supplying oxygen to activated sludge, and a membrane separation tank equipped with a osmotic membrane separator and a water flow forming device for forming a water flow toward the membrane surface of the membrane separator. A membrane separation activated sludge apparatus , wherein the water flow forming device is attached to a lower part of the side surface of the tank opposite to the osmotic membrane separation apparatus with a rectifying plate dividing the membrane separation tank into two regions. A membrane-separated activated sludge apparatus characterized by being a propeller-type underwater agitator with a mechanism . 活性汚泥への酸素供給を行う散気装置を備えた好気槽と、浸透型膜分離装置と前記膜分離装置の膜面に向けた水流を形成する水流形成装置を備えた膜分離槽とを有する膜分離活性汚泥装置であって、前記浸透型膜分離装置が複数の膜ユニットからなり、前記水流形成装置が、前記膜ユニット各々の下部または上部に配置された前記膜ユニットの膜面に向けた水流吐出口それに水を送る水流ポンプであり、かつ、前記水流ポンプより前記水流吐出口への水供給配管に各膜ユニット毎の自動開閉弁が設けられ、1または複数の水流吐出口毎に順次切り替えて水供給を可能とされていることを特徴とする膜分離活性汚泥装置。 An aerobic tank equipped with an air diffuser for supplying oxygen to activated sludge, and a membrane separation tank equipped with a osmotic membrane separator and a water flow forming device for forming a water flow toward the membrane surface of the membrane separator. A membrane separation activated sludge device, wherein the osmotic membrane separation device comprises a plurality of membrane units, and the water flow forming device is disposed on a membrane surface of the membrane unit disposed at the lower or upper portion of each of the membrane units. a water discharge port toward, it is a water pump sends the water, and automatic opening and closing valves for each membrane unit is formed from the water pump to the water supply pipe to the water discharge port, one or more water-discharge membrane bioreactor device you characterized by sequentially switched every outlet and is capable of water supply. 前記水流形成装置によって形成される水の流速が膜モジュール内において0.5〜1.0m/sであることを特徴とする請求項1又は請求項2に記載の膜分離活性汚泥装置。 The membrane separation activated sludge device according to claim 1 or 2 , wherein a flow rate of water formed by the water flow forming device is 0.5 to 1.0 m / s in the membrane module.
JP2011270820A 2011-12-12 2011-12-12 Membrane separation activated sludge equipment Expired - Fee Related JP5743096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011270820A JP5743096B2 (en) 2011-12-12 2011-12-12 Membrane separation activated sludge equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011270820A JP5743096B2 (en) 2011-12-12 2011-12-12 Membrane separation activated sludge equipment

Publications (2)

Publication Number Publication Date
JP2013121570A JP2013121570A (en) 2013-06-20
JP5743096B2 true JP5743096B2 (en) 2015-07-01

Family

ID=48773880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011270820A Expired - Fee Related JP5743096B2 (en) 2011-12-12 2011-12-12 Membrane separation activated sludge equipment

Country Status (1)

Country Link
JP (1) JP5743096B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2964891C (en) 2014-10-22 2021-11-09 Koch Membrane Systems, Inc. Membrane filter module with bundle-releasing gasification device
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3480049B2 (en) * 1994-07-14 2003-12-15 栗田工業株式会社 Immersion type membrane separation device
JP2002192182A (en) * 2000-12-26 2002-07-10 Kubota Corp Ultrahigh concentration membrane separation activated sludge method
JP4075332B2 (en) * 2001-02-16 2008-04-16 Jfeエンジニアリング株式会社 Sewage treatment tank
JP3831942B2 (en) * 2002-03-01 2006-10-11 栗田工業株式会社 Membrane separator
US7695624B2 (en) * 2008-06-09 2010-04-13 Otv Sa Method and system for treating water and utilizing a membrane filtering system
JP5581578B2 (en) * 2008-09-16 2014-09-03 三菱レイヨン株式会社 Membrane cleaning device, membrane separation device, and wastewater treatment device
JP5048637B2 (en) * 2008-11-26 2012-10-17 アタカ大機株式会社 Membrane separator

Also Published As

Publication number Publication date
JP2013121570A (en) 2013-06-20

Similar Documents

Publication Publication Date Title
AU2008101317A4 (en) Cleaning method for simple filtration systems
JP5308028B2 (en) Cleaning method for air diffuser
JP2004008981A (en) Membrane separation apparatus
KR20150052307A (en) Air diffusion device, air diffusion method, and water treatment device
JP2008194680A (en) Membrane separation unit
JP5743095B2 (en) Membrane separation activated sludge equipment
JP5743096B2 (en) Membrane separation activated sludge equipment
JP2012157849A (en) Membrane separation activated sludge apparatus
JP5238128B2 (en) Solid-liquid separation device for solid-liquid mixed processing liquid
JP2007209949A (en) Filtrate recovery device of solid-liquid mixed/processed liquid
JP5094022B2 (en) Aeration device and membrane filtration unit applied when collecting filtrate of solid-liquid mixed processing liquid
JP2017064574A (en) Water treatment apparatus
KR20120044594A (en) Air diffuser forming separated diffuser frame and air chamber
JP6172531B2 (en) Membrane separation activated sludge treatment equipment
JP2015226884A (en) Hollow fiber membrane module and cleaning method therefor
JP6411051B2 (en) Immersion membrane separator and method for operating the same
JP2011078940A (en) Air diffuser in immersion type membrane separation apparatus and method of cleaning pipe line continuing to the same
KR20110004942A (en) A water-treatment apparatus using membrane module, and method thereby
KR100340450B1 (en) Membrane for Water Treatment Using Hollow Fiber
JP7311242B2 (en) Air diffuser, air diffusion method, and water treatment device
CN209113543U (en) A kind of plate filter membrane sewage-treatment plant
JP6425067B2 (en) Membrane separation activated sludge treatment system
JP2019111461A (en) Air diffuser, air diffusion method, and water treatment apparatus
JP2017209618A (en) Air diffuser and air diffusing method
JP2016215165A (en) Water treatment method and water treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150421

R150 Certificate of patent or registration of utility model

Ref document number: 5743096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees