JP5743072B2 - Turbine blade fixed structure and turbine blade removal method - Google Patents

Turbine blade fixed structure and turbine blade removal method Download PDF

Info

Publication number
JP5743072B2
JP5743072B2 JP2011068645A JP2011068645A JP5743072B2 JP 5743072 B2 JP5743072 B2 JP 5743072B2 JP 2011068645 A JP2011068645 A JP 2011068645A JP 2011068645 A JP2011068645 A JP 2011068645A JP 5743072 B2 JP5743072 B2 JP 5743072B2
Authority
JP
Japan
Prior art keywords
blade
blade root
groove
turbine rotor
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011068645A
Other languages
Japanese (ja)
Other versions
JP2012202330A (en
Inventor
昌則 藤岡
昌則 藤岡
博彦 伊藤
博彦 伊藤
高彰 長川
高彰 長川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2011068645A priority Critical patent/JP5743072B2/en
Publication of JP2012202330A publication Critical patent/JP2012202330A/en
Application granted granted Critical
Publication of JP5743072B2 publication Critical patent/JP5743072B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/26Antivibration means not restricted to blade form or construction or to blade-to-blade connections or to the use of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • F01D5/32Locking, e.g. by final locking blades or keys
    • F01D5/323Locking of axial insertion type blades by means of a key or the like parallel to the axis of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • F01D5/32Locking, e.g. by final locking blades or keys
    • F01D5/326Locking of axial insertion type blades by other means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • F01D5/3092Protective layers between blade root and rotor disc surfaces, e.g. anti-friction layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/50Building or constructing in particular ways
    • F05D2230/51Building or constructing in particular ways in a modular way, e.g. using several identical or complementary parts or features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/184Two-dimensional patterned sinusoidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/23Three-dimensional prismatic
    • F05D2250/231Three-dimensional prismatic cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/24Three-dimensional ellipsoidal
    • F05D2250/241Three-dimensional ellipsoidal spherical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/25Three-dimensional helical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/38Retaining components in desired mutual position by a spring, i.e. spring loaded or biased towards a certain position

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は、タービン動翼の翼根部が嵌合される翼溝に当該翼根部を付勢して固定するタービン動翼の固定構造及び翼根バネの脱着方法に関する。   The present invention relates to a turbine blade fixing structure for urging and fixing a blade root portion in a blade groove into which a blade root portion of a turbine blade is fitted, and a blade root spring attaching / detaching method.

回転機械である蒸気タービンやガスタービンのタービン動翼は、ロータの翼溝にタービン動翼の翼根部を嵌め合わせることによりロータに固定されている。この嵌合構造では、翼溝と翼根部との間に、製造公差等による隙間が存在する。このような隙間があっても、ロータが高速で回転しているときには、タービン動翼に作用する遠心力によってタービン動翼がロータに固定されるので、タービン動翼が振動することはない。しかし、遠心力が低下するロータの低速回転時又は停止時にはタービン動翼が径方向に振動して、翼根部や翼溝の表面に傷をつけるおそれがある。また、この振動はタービン動翼の先端に取り付けられているシュラウドを介して伝達されて隣接するタービン動翼を損傷させる場合もある。そして、これらの損傷が著しい場合には、タービン動翼やロータの交換が必要となる場合もある。   A turbine blade of a steam turbine or a gas turbine, which is a rotating machine, is fixed to the rotor by fitting the blade root of the turbine blade into the blade groove of the rotor. In this fitting structure, there is a gap due to manufacturing tolerance or the like between the blade groove and the blade root. Even if there is such a gap, when the rotor is rotating at high speed, the turbine blade is not vibrated because the turbine blade is fixed to the rotor by the centrifugal force acting on the turbine blade. However, when the rotor is rotated at low speed or stopped when the centrifugal force is reduced, the turbine rotor blades may vibrate in the radial direction, which may damage the blade roots or the surfaces of the blade grooves. In addition, this vibration may be transmitted through a shroud attached to the tip of the turbine blade and damage adjacent turbine blades. And when these damages are remarkable, replacement | exchange of a turbine rotor blade or a rotor may be needed.

そこで、例えば、特許文献1には、タービン動翼の振動防止を目的として、複数の湾曲部を有する翼根バネが開示されている。図8は、翼根バネを、翼根部の翼溝側先端面と翼溝の底面との間の隙間(以下、溝隙間という)内に設置した状態を示す図である。
図8に示すように、翼根バネ31は、中間部33と、端部32A、32Bと、から構成されており、この中間部33が翼根部21に密着するように設けられている。そして、翼根バネ31の強力な押付力を利用して翼根部21を翼溝11に押し付けることによって、タービン動翼20をタービンロータ10に固定して振動を防止している。
Therefore, for example, Patent Document 1 discloses a blade root spring having a plurality of curved portions for the purpose of preventing vibration of the turbine rotor blade. FIG. 8 is a view showing a state in which the blade root spring is installed in a gap (hereinafter referred to as a groove gap) between the blade groove side tip surface of the blade root part and the bottom surface of the blade groove.
As shown in FIG. 8, the blade root spring 31 includes an intermediate portion 33 and end portions 32 </ b> A and 32 </ b> B. The intermediate portion 33 is provided so as to be in close contact with the blade root portion 21. Then, by using the strong pressing force of the blade root spring 31 to press the blade root portion 21 against the blade groove 11, the turbine rotor blade 20 is fixed to the turbine rotor 10 to prevent vibration.

また、タービン動翼の振動防止を目的とするものではないが、特許文献2には、球状のバネが開示されている。この球状のバネは枕や座布団の中に入れて使用される。   Further, although not intended to prevent the vibration of the turbine rotor blade, Patent Document 2 discloses a spherical spring. This spherical spring is used in a pillow or cushion.

特開2005−273646号公報JP 2005-273646 A 実開昭56−102840号公報Japanese Utility Model Publication No. 56-102840

しかしながら、特許文献1に記載の翼根バネは、繰り返し荷重によるへたりや経年的使用による変形によって押付力が低下するおそれがあるため、タービンの定期点検時に適宜交換される。
交換作業では、棒状の治具を溝隙間内に挿入して翼根バネの端面に当接し、そのまま治具を溝隙間の長手方向に沿って押し込むことにより、翼根バネを溝隙間の外へ押し出している。ところが、翼根バネの押付力は強力なので、翼根バネを治具で押し出すのに非常に大きな力が必要になり、時には、治具をハンマーで叩いたり、油圧ジャッキで押し出したりして翼根バネを溝隙間の外へ押し出すこともある。
また、点検後に、新たな翼根バネを溝隙間内に取り付ける際も、翼根バネの押付力が作用するので、取り外す際と同様に、翼根バネの端面に治具を当接し、治具をハンマーで叩いたり、油圧ジャッキで押したりしながら翼根バネを溝隙間内に挿入する場合がある。
したがって、翼根バネを脱着する作業は、手間がかかるうえに困難なので長い作業時間を要する。
また、翼根バネにハンマーで衝撃を加えたり、油圧ジャッキで強大な荷重を付与したりすると、翼根バネに接している翼根部や翼溝に傷をつけてしまうおそれがある。
However, the blade root spring described in Patent Document 1 may be appropriately replaced at the time of periodic inspection of the turbine because the pressing force may decrease due to sag due to repeated loads or deformation due to aging.
In the replacement work, a rod-shaped jig is inserted into the groove gap and brought into contact with the end face of the blade root spring, and the jig is pushed in the longitudinal direction of the groove gap to move the blade root spring out of the groove gap. Extruding. However, since the pressing force of the blade root spring is strong, a very large force is required to push out the blade root spring with a jig, and sometimes the blade root spring is struck with a hammer or pushed out with a hydraulic jack. The spring may be pushed out of the groove gap.
Also, when a new blade root spring is installed in the groove gap after inspection, the pressing force of the blade root spring acts, so that the jig is brought into contact with the end surface of the blade root spring as in the case of removal. The blade root spring may be inserted into the groove gap while hitting with a hammer or pushing with a hydraulic jack.
Therefore, since the work for removing and attaching the blade root spring is time-consuming and difficult, a long work time is required.
Further, if an impact is applied to the blade root spring with a hammer or a strong load is applied with a hydraulic jack, the blade root portion or blade groove in contact with the blade root spring may be damaged.

なお、特許文献2に記載の球状バネは、座布団等の中に用いる場合であっても横倒しになって上下の弾性力を失ってしまうことがないバネであって、そもそもタービン動翼の振動を防止するための、いわゆる翼根バネではない。   Note that the spherical spring described in Patent Document 2 is a spring that does not lose its upper and lower elastic force even if it is used in a cushion or the like. It is not a so-called blade root spring for prevention.

そこで、本発明は、タービン動翼の翼根部及びロータの翼溝を傷つけることなく、短時間で翼根バネを交換可能なタービン動翼の固定構造及び翼根バネの脱着方法を提供することを目的とするものである。   Accordingly, the present invention provides a turbine rotor blade fixing structure and a blade root spring attaching / detaching method capable of replacing the blade root spring in a short time without damaging the blade root of the turbine rotor blade and the blade groove of the rotor. It is the purpose.

上述した課題を解決する本発明に係るタービン動翼の固定構造は、タービン動翼の翼根部を翼溝に嵌合して固定するタービン動翼の固定構造であって、
前記翼根部の先端面と前記翼溝の底面との間の隙間内に設けられる複数の翼根バネを備え、
前記複数の翼根バネは、前記隙間の長手方向に沿って並ぶように配置され、各翼根バネの前記翼溝の長手方向に沿った断面形状が略円形である弾性体からなり、
各翼根バネの前記断面形状の径方向の自然長は、前記隙間の高さよりも大きいことを特徴とする。
上記タービン動翼の固定構造によれば、翼溝の長手方向に沿った断面形状が略円形である翼根バネを用いているので、翼根バネが隙間内に設けられた状態で、タービン動翼の翼根部を翼溝の長手方向に沿って移動させると、翼根バネがころとして働くため、タービン動翼を翼溝に対して脱着しても翼根部や翼溝に傷を付けない。そして、タービン動翼の翼根部が翼溝から取り外された状態で、翼根バネを翼溝に対して脱着するので、翼根部や翼溝に傷を付けない。
なお、本明細書では、翼根バネの径方向の自然長とは、荷重がかかっていないときの翼根バネの外径を意味する。
A turbine rotor blade fixing structure according to the present invention that solves the above-described problem is a turbine rotor blade fixing structure that fits and fixes a blade root portion of a turbine rotor blade into a blade groove,
A plurality of blade root springs provided in a gap between the tip surface of the blade root portion and the bottom surface of the blade groove;
The plurality of blade root springs are arranged so as to be arranged along the longitudinal direction of the gap, and each of the blade root springs is made of an elastic body having a substantially circular cross-sectional shape along the longitudinal direction of the blade groove,
The radial natural length of the cross-sectional shape of each blade root spring is larger than the height of the gap.
According to the above turbine blade fixing structure, the blade root spring having a substantially circular cross-sectional shape along the longitudinal direction of the blade groove is used. When the blade root part is moved along the longitudinal direction of the blade groove, the blade root spring acts as a roller, so that the blade root part and the blade groove are not damaged even if the turbine rotor blade is detached from the blade groove. Since the blade root spring is detached from the blade groove with the blade root portion of the turbine blade removed from the blade groove, the blade root portion and the blade groove are not damaged.
In the present specification, the radial natural length of the blade root spring means the outer diameter of the blade root spring when no load is applied.

また、前記翼根バネは球状であってもよい。
上記翼根バネは球状なので、翼根部の移動にともなって回転する際に、翼根部及び翼溝に傷を付けない。
The blade root spring may be spherical.
Since the blade root spring is spherical, the blade root portion and the blade groove are not damaged when rotating with the movement of the blade root portion.

また、前記弾性体は、線状部材を螺旋状に巻いて形成されたバネであってもよい。
上記弾性体は、線状部材を螺旋状に巻くだけなので安価に製作することができる。
The elastic body may be a spring formed by spirally winding a linear member.
The elastic body can be manufactured at low cost because the linear member is simply wound spirally.

また、前記弾性体は、カーボンナノチューブを主成分とする粘弾性材料であってもよい。
上記弾性体は、カーボンナノチューブを主成分とする粘弾性材料なので、優れた耐熱性を有し、高温下で使用されるガスタービンや蒸気タービンにも適用することができる。
The elastic body may be a viscoelastic material mainly composed of carbon nanotubes.
Since the elastic body is a viscoelastic material mainly composed of carbon nanotubes, it has excellent heat resistance and can be applied to gas turbines and steam turbines used at high temperatures.

また、本発明に係る翼根バネの脱着方法は、タービン動翼の翼根部と該翼根部が嵌合される翼溝との間に形成された隙間に設けられ、前記翼根部を付勢して前記翼溝に押し付ける翼根バネの脱着方法であって、
前記タービン動翼が前記翼溝から取り外された状態で、前記翼溝の長手方向に沿った断面形状が略円形の弾性体からなる複数の翼根バネを前記翼溝に対して脱着するとともに、
各翼根バネの径方向の自然長は、前記隙間の高さよりも大きいことを特徴とする。
上記翼根バネの脱着方法によれば、翼溝の長手方向に沿った断面形状が略円形である翼根バネを用いているので、翼根バネが隙間内に設けられた状態で、タービン動翼の翼根部を翼溝の長手方向に沿って移動させると翼根バネがころとして働くため、タービン動翼を翼溝に対して脱着する際に、翼根部や翼溝に傷を付けない。
そして、タービン動翼の翼根部を翼溝から引き抜いた後に、翼根バネを翼溝に対して脱着するので、翼根部や翼溝に傷を付けない。
The blade root spring attaching / detaching method according to the present invention is provided in a gap formed between a blade root portion of a turbine blade and a blade groove into which the blade root portion is fitted, and biases the blade root portion. A method of removing and attaching the blade root spring pressed against the blade groove,
With the turbine rotor blade removed from the blade groove, a plurality of blade root springs made of an elastic body having a substantially circular cross-sectional shape along the longitudinal direction of the blade groove are attached to and detached from the blade groove.
The natural length of each blade root spring in the radial direction is larger than the height of the gap.
According to the above-described method for attaching and detaching the blade root spring, since the blade root spring having a substantially circular cross-sectional shape along the longitudinal direction of the blade groove is used, the turbine operation is performed with the blade root spring provided in the gap. When the blade root part of the blade is moved along the longitudinal direction of the blade groove, the blade root spring acts as a roller, so that the blade root part and the blade groove are not damaged when the turbine rotor blade is detached from the blade groove.
Since the blade root spring is detached from the blade groove after the blade root portion of the turbine blade is pulled out from the blade groove, the blade root portion and the blade groove are not damaged.

本発明によれば、タービン動翼の翼根部や翼溝を傷つけることなく翼根バネを短時間で脱着することができる。   According to the present invention, the blade root spring can be detached in a short time without damaging the blade root portion or blade groove of the turbine rotor blade.

タービン動翼をタービンロータに接続した状態を示す斜視図である。It is a perspective view which shows the state which connected the turbine rotor blade to the turbine rotor. 翼根バネの側面図である。It is a side view of a blade root spring. 翼根部の翼溝側先端面と翼溝の底面との間の溝隙間に翼根バネを設けた状態を示す拡大断面図である。FIG. 6 is an enlarged cross-sectional view showing a state in which a blade root spring is provided in a groove gap between the blade groove tip end surface of the blade root portion and the bottom surface of the blade groove. タービン動翼の翼根部を翼溝外へ移動させている状態を示す概略図である。It is the schematic which shows the state which is moving the blade root part of a turbine rotor blade out of a blade groove | channel. タービン動翼の翼根部を翼溝内に挿入している状態を示す概略図である。It is the schematic which shows the state which has inserted the blade root part of the turbine rotor blade in the blade groove. 翼溝内に翼根バネを設けた状態を示す拡大断面図である。It is an expanded sectional view which shows the state which provided the blade root spring in the blade groove. 図6のA−A断面図である。It is AA sectional drawing of FIG. タービンロータの翼溝とタービン動翼の翼根部との溝隙間に従来の翼根バネを設けた状態を示す断面図である。It is sectional drawing which shows the state which provided the conventional blade root spring in the groove clearance of the blade groove | channel of a turbine rotor, and the blade root part of a turbine rotor blade.

以下、本発明に係るタービン動翼の固定構造について図面を用いて詳細に説明する。なお、以下の説明では、タービン動翼の固定構造をガスタービンに適用した場合について説明するが、これに限定されるものではなく、蒸気タービンやジェットエンジン等のタービンにも適用することができる。加えて、ガスタービンやジェットエンジンの空気圧縮機等にも適用することができる。
また、以下の実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。
Hereinafter, a turbine rotor blade fixing structure according to the present invention will be described in detail with reference to the drawings. In the following description, a case where the turbine rotor blade fixing structure is applied to a gas turbine will be described. However, the present invention is not limited to this and can be applied to a turbine such as a steam turbine or a jet engine. In addition, it can be applied to an air compressor of a gas turbine or a jet engine.
Further, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the following examples are not intended to limit the scope of the present invention unless otherwise specified, and are merely explanations. It is just an example.

図1は、本発明の第一実施形態に係るタービン動翼をタービンロータに接続した状態を示す斜視図である。
図1に示すように、ガスタービン1のタービン動翼20は、翼根部21がタービンロータ10に形成された翼溝11に嵌合することにより、タービンロータ10に固定されている。
タービンロータ10の外周部には、周方向に所定の間隔で複数の翼溝11が設けられている。各翼溝11は、タービンロータ10の軸方向に沿って開口されている。加えて、各翼溝11には、タービンロータ10の径方向に沿って凸部12及び凹部13が交互に複数設けられている。また、タービン動翼20の翼根部21には、凹部13と係合する凸部22と、凸部12と係合する凹部23とが交互に複数設けられている。
そして、翼溝11の凸部12に翼根部21の凹部23が嵌合するとともに、翼溝11の凹部13に翼根部21の凸部22が嵌合してタービン動翼20がタービンロータ10に接続される。
また、翼根部21の翼溝側先端面24と翼溝11の底面14との間の溝隙間には複数の翼根バネが設けられており、これらの翼根バネによって翼根部21は翼溝11に押し付けられている。
FIG. 1 is a perspective view showing a state in which the turbine rotor blade according to the first embodiment of the present invention is connected to a turbine rotor.
As shown in FIG. 1, the turbine rotor blade 20 of the gas turbine 1 is fixed to the turbine rotor 10 by fitting a blade root portion 21 into a blade groove 11 formed in the turbine rotor 10.
A plurality of blade grooves 11 are provided on the outer peripheral portion of the turbine rotor 10 at predetermined intervals in the circumferential direction. Each blade groove 11 is opened along the axial direction of the turbine rotor 10. In addition, a plurality of convex portions 12 and concave portions 13 are alternately provided in each blade groove 11 along the radial direction of the turbine rotor 10. Further, the blade root portion 21 of the turbine rotor blade 20 is provided with a plurality of convex portions 22 that engage with the concave portions 13 and a plurality of concave portions 23 that engage with the convex portions 12.
Then, the concave portion 23 of the blade root portion 21 is fitted to the convex portion 12 of the blade groove 11, and the convex portion 22 of the blade root portion 21 is fitted to the concave portion 13 of the blade groove 11, so that the turbine rotor blade 20 is attached to the turbine rotor 10. Connected.
Further, a plurality of blade root springs are provided in the groove gap between the blade groove side tip surface 24 of the blade root portion 21 and the bottom surface 14 of the blade groove 11, and the blade root portion 21 causes the blade groove 21 to be in the blade groove. 11 is pressed.

図2は、翼根バネの側面図である。
図2に示すように、翼根バネ3は、線状部材を螺旋状に巻いて球状に形成されている。また、翼根バネ3は、その径方向の自然長Dが翼根部21の翼溝側先端面24と翼溝11の底面14との間の溝隙間の高さよりも長くなるように形成されている。
翼根バネ3に用いられる線状部材は、耐摩耗性及び耐熱性を有する材料であれば特に限定されないが、例えば、鋼線、銅線、チタン線等を用いることができる。
FIG. 2 is a side view of the blade root spring.
As shown in FIG. 2, the blade root spring 3 is formed in a spherical shape by winding a linear member in a spiral shape. The blade root spring 3 is formed such that the natural length D 0 in the radial direction is longer than the height of the groove gap between the blade groove side tip surface 24 of the blade root portion 21 and the bottom surface 14 of the blade groove 11. ing.
The linear member used for the blade root spring 3 is not particularly limited as long as it is a material having wear resistance and heat resistance. For example, a steel wire, a copper wire, a titanium wire, or the like can be used.

図3は、翼根部21の翼溝側先端面24と翼溝11の底面14との間の溝隙間に翼根バネ3を設けた状態を示す拡大断面図である。
図3に示すように、複数の翼根バネ3が溝隙間2内の長手方向に沿って設けられている。
翼根バネ3の径方向の自然長Dは溝隙間の高さHよりも長いので、翼根バネ3は翼根部21の翼溝側先端面24及び翼溝11の底面14に密着している。このとき、翼根バネ3の押付力によって、翼根部21はタービンロータ10の径方向外方に付勢され、翼溝11に押し付けられている。
溝隙間2の両端には、翼根バネ3の飛び出しを防止するためのキャップ4A、4Bがそれぞれ設けられている。
FIG. 3 is an enlarged cross-sectional view showing a state in which the blade root spring 3 is provided in the groove gap between the blade groove side tip surface 24 of the blade root portion 21 and the bottom surface 14 of the blade groove 11.
As shown in FIG. 3, a plurality of blade root springs 3 are provided along the longitudinal direction in the groove gap 2.
Since the radial natural length D 0 of the blade root spring 3 is longer than the height H of the groove gap, the blade root spring 3 is in close contact with the blade groove side tip surface 24 of the blade root portion 21 and the bottom surface 14 of the blade groove 11. Yes. At this time, the blade root portion 21 is urged radially outward of the turbine rotor 10 by the pressing force of the blade root spring 3 and pressed against the blade groove 11.
Caps 4A and 4B for preventing the blade root spring 3 from popping out are provided at both ends of the groove gap 2, respectively.

次に、翼根バネ3を溝隙間2内から取り外す方法について説明する。   Next, a method for removing the blade root spring 3 from the groove gap 2 will be described.

図4は、タービン動翼20の翼根部21を翼溝11外へ移動させている状態を示す概略図である。
図4に示すように、まず、タービン動翼20を移動させる方向(図4中の矢印方向)側のキャップ4Bを取り外す。
次に、タービン動翼20の翼根部21を溝隙間2の長手方向へ向かって移動させる。翼根部21が移動すると、翼根部21の翼溝側先端面24に接している翼根バネ3は、翼根部21の進行方向に回転して、ころとして働く。これによって、翼根部21及び翼溝11を傷つけることなく、翼根部21を移動させることができる。
そして、そのまま翼根部21を移動させることにより、翼根部21を翼溝11内から取り外すことができる。翼根部21の移動にともなって翼根バネ3も進行方向に回転するため、進行方向側の翼根バネ3の幾つかは、翼根部21の取り外しとともに、翼溝11外へ転がり出る。
次に、タービン動翼20が翼溝11から取り外された状態で、翼溝11内に残っている翼根バネ3を取り外す。
これによって、翼根部21及び翼溝11を傷つけることなく、翼根バネ3を容易に取り外すことができる。
FIG. 4 is a schematic diagram illustrating a state in which the blade root portion 21 of the turbine blade 20 is moved out of the blade groove 11.
As shown in FIG. 4, first, the cap 4 </ b> B on the side in which the turbine rotor blade 20 is moved (the arrow direction in FIG. 4) is removed.
Next, the blade root portion 21 of the turbine rotor blade 20 is moved in the longitudinal direction of the groove gap 2. When the blade root portion 21 moves, the blade root spring 3 in contact with the blade groove side tip surface 24 of the blade root portion 21 rotates in the traveling direction of the blade root portion 21 and acts as a roller. As a result, the blade root 21 can be moved without damaging the blade root 21 and the blade groove 11.
Then, the blade root portion 21 can be removed from the blade groove 11 by moving the blade root portion 21 as it is. As the blade root portion 21 moves, the blade root spring 3 also rotates in the traveling direction, so that some of the blade root springs 3 on the traveling direction side roll out of the blade groove 11 as the blade root portion 21 is removed.
Next, the blade root spring 3 remaining in the blade groove 11 is removed in a state where the turbine blade 20 is removed from the blade groove 11.
Thereby, the blade root spring 3 can be easily removed without damaging the blade root portion 21 and the blade groove 11.

次に、翼根バネ3を翼溝11内に取り付ける方法について説明する。   Next, a method for mounting the blade root spring 3 in the blade groove 11 will be described.

図5は、タービン動翼20の翼根部21を翼溝11内に挿入している状態を示す概略図である。
図5に示すように、まず、タービン動翼20を移動させる方向(図5中の矢印方向)側のキャップ4Aを取り付ける。
次に、翼溝11内に所定数の翼根バネ3を設ける。
その後、タービン動翼20の翼根部21を図5中の矢印方向へ移動させながら翼溝11内に挿入する。このとき、翼根部21の翼溝側先端面24で翼根バネ3を下方へ押し付けながら移動させる。
翼根部21を移動させると、翼根部21の翼溝側先端面24に接している翼根バネ3は、翼根部21の進行方向に回転して、ころとして働く。これによって、翼根部21及び翼溝11を傷つけることなく、翼根部21を移動させることができる。
続いて、そのまま翼根部21を所定の位置まで移動させることにより、翼根部21を翼溝11内に取り付けることができる。
そして最後に、溝隙間2にキャップ4Bを取り付ける。
これによって、翼根部21及び翼溝11を傷つけることなく、翼根バネ3を容易に取り付けることができる。
FIG. 5 is a schematic view showing a state where the blade root portion 21 of the turbine rotor blade 20 is inserted into the blade groove 11.
As shown in FIG. 5, first, a cap 4A on the side (in the direction of the arrow in FIG. 5) in which the turbine rotor blade 20 is moved is attached.
Next, a predetermined number of blade root springs 3 are provided in the blade groove 11.
Thereafter, the blade root portion 21 of the turbine rotor blade 20 is inserted into the blade groove 11 while being moved in the direction of the arrow in FIG. At this time, the blade root spring 3 is moved while being pressed downward at the blade groove side tip surface 24 of the blade root portion 21.
When the blade root portion 21 is moved, the blade root spring 3 in contact with the blade groove side tip surface 24 of the blade root portion 21 rotates in the traveling direction of the blade root portion 21 and acts as a roller. As a result, the blade root 21 can be moved without damaging the blade root 21 and the blade groove 11.
Subsequently, the blade root 21 can be mounted in the blade groove 11 by moving the blade root 21 to a predetermined position as it is.
Finally, the cap 4B is attached to the groove gap 2.
Thereby, the blade root spring 3 can be easily attached without damaging the blade root portion 21 and the blade groove 11.

上述したように、本実施形態における翼根バネ3の脱着方法によれば、球状の翼根バネ3が溝隙間2内に設けられているので、タービン動翼20の翼根部21を溝隙間2の長手方向に沿って移動させることで翼根バネ3がころとして働くため、タービン動翼20を翼溝11に対して脱着する際に翼根部21や翼溝11に傷を付けない。
また、タービン動翼20の翼根部21が翼溝11から取り外された状態で、翼根バネ3を翼溝11に対して脱着するので、翼根部21や翼溝11に傷を付けない。
さらに、翼根バネ3は、線状部材を螺旋状に巻くだけなので安価に製作することができる。
As described above, according to the method for attaching and detaching the blade root spring 3 in the present embodiment, since the spherical blade root spring 3 is provided in the groove gap 2, the blade root portion 21 of the turbine rotor blade 20 is connected to the groove gap 2. Since the blade root spring 3 works as a roller by being moved along the longitudinal direction, the blade root portion 21 and the blade groove 11 are not damaged when the turbine rotor blade 20 is detached from the blade groove 11.
Further, since the blade root spring 3 is detached from the blade groove 11 in a state where the blade root portion 21 of the turbine rotor blade 20 is removed from the blade groove 11, the blade root portion 21 and the blade groove 11 are not damaged.
Further, the blade root spring 3 can be manufactured at a low cost since it simply winds the linear member.

なお、本実施形態では、線状部材を螺旋状に巻いて球状に形成した翼根バネ3を用いた場合について説明したが、これに限定されるものではなく、カーボンナノチューブを主成分とする粘弾性材料を球状に形成したものを用いてもよい。
カーボンナノチューブを主成分とする粘弾性材料からなる翼根バネは、耐熱性に優れ、1000℃程度まで粘弾性を維持できるので、高温下で使用される蒸気タービンやガスタービンにも適用できる。
なお、カーボンナノチューブ(CNT)を主成分とする粘弾性材料は、例えば、スパッタリングによりシリコン基板上に鉄触媒を付着させ、アルゴンイオンによる反応性イオンエッチングにより触媒を調製した後、この基板上にスーパーグロース法によってCNTを合成して得たCNT構造体を圧縮することで作製できる。なお、CNTを主成分とする粘弾性材料は、参考文献「Ming Xu, Don N. Futaba, Takao Yamada, Motoo Yumura and Kenji Hata, "Carbon Nanotubes with Temperature-Invariant Viscoelasticity from -196℃ to 1000℃," Science, Vol. 330, No. 6009, pp.1364-1368 (2010), Published online 3 December 2010. DOI:10.1126/science.1194865」に記載された手法により作製してもよい。
In the present embodiment, the case where the blade root spring 3 formed by spirally winding a linear member is used has been described. However, the present invention is not limited to this, and the viscosity is mainly composed of carbon nanotubes. You may use what formed the elastic material in spherical shape.
A blade root spring made of a viscoelastic material containing carbon nanotubes as a main component has excellent heat resistance and can maintain viscoelasticity up to about 1000 ° C., so that it can be applied to steam turbines and gas turbines used at high temperatures.
Note that a viscoelastic material mainly composed of carbon nanotubes (CNT) is prepared by, for example, depositing an iron catalyst on a silicon substrate by sputtering, preparing the catalyst by reactive ion etching with argon ions, and then superposing the catalyst on the substrate. It can be produced by compressing a CNT structure obtained by synthesizing CNTs by the growth method. In addition, the viscoelastic material mainly composed of CNT is described in the reference "Ming Xu, Don N. Futaba, Takao Yamada, Motoo Yumura and Kenji Hata," Carbon Nanotubes with Temperature-Invariant Viscoelasticity from -196 ° C to 1000 ° C, " Science, Vol. 330, No. 6009, pp. 1364-1368 (2010), Published online 3 December 2010. DOI: 10.1126 / science.1194865 ”.

次に、本発明の他の実施形態について説明する。以下の説明において、上記の実施形態に対応する部分には同一の符号を付して説明を省略し、主に相違点について説明する。   Next, another embodiment of the present invention will be described. In the following description, portions corresponding to the above-described embodiment are denoted by the same reference numerals, description thereof is omitted, and differences are mainly described.

本発明の第二実施形態に係る翼根バネは、筒状の形状を有しており、その直径が溝隙間2の高さHよりも長くなるように形成されている。   The blade root spring according to the second embodiment of the present invention has a cylindrical shape and is formed such that its diameter is longer than the height H of the groove gap 2.

図6は、翼溝11内に翼根バネを設けた状態を示す拡大断面図である。図7は、図6のA−A断面図である。
図6及び図7に示すように、複数の翼根バネ43が溝隙間2内の長手方向に沿って設けられている。翼根バネ43の径方向の自然長Dは溝隙間の高さHよりも長いので、翼根バネ43は翼根部21の翼溝側先端面24及び翼溝11の底面14に密着している。
タービン動翼20の脱着時において、翼根部21が翼溝11の長手方向へ移動すると、翼根部21の翼溝側先端面24に接している翼根バネ43は翼根部21の進行方向に回転して、ころとして働く。これにより、翼根部21及び翼溝11を傷つけることなく、タービン動翼20を翼溝11に対して脱着することができる。また、第一実施形態と同様に、タービン動翼20が翼溝11から取り外された状態で、翼根バネ43を翼溝11に対して脱着するので、翼根部21や翼溝11に傷を付けない。
FIG. 6 is an enlarged cross-sectional view showing a state in which a blade root spring is provided in the blade groove 11. FIG. 7 is a cross-sectional view taken along the line AA of FIG.
As shown in FIGS. 6 and 7, a plurality of blade root springs 43 are provided along the longitudinal direction in the groove gap 2. Since the radial natural length D 0 of the blade root spring 43 is longer than the height H of the groove gap, the blade root spring 43 is in close contact with the blade groove side tip surface 24 of the blade root portion 21 and the bottom surface 14 of the blade groove 11. Yes.
When the blade root portion 21 moves in the longitudinal direction of the blade groove 11 when the turbine rotor blade 20 is attached or detached, the blade root spring 43 in contact with the blade groove side tip surface 24 of the blade root portion 21 rotates in the traveling direction of the blade root portion 21. And work as a roller. Thereby, the turbine rotor blade 20 can be detached from the blade groove 11 without damaging the blade root portion 21 and the blade groove 11. Similarly to the first embodiment, since the blade root spring 43 is detached from the blade groove 11 in a state where the turbine rotor blade 20 is removed from the blade groove 11, the blade root portion 21 and the blade groove 11 are damaged. Don't put it on.

なお、上述した各実施形態では、溝隙間2の長手方向に沿った断面形状が円形の翼根バネ3及び環状の翼根バネ43を用いた場合について説明したが、この形状に限定されるものではなく、楕円の翼根バネを用いてもよい。要は、翼根部21の移動とともに、溝隙間2の長手方向に沿って回転可能な形状であればよい。   In each of the above-described embodiments, the case where the cross-sectional shape along the longitudinal direction of the groove gap 2 uses the circular blade root spring 3 and the annular blade root spring 43 is described. However, the embodiment is limited to this shape. Instead, an elliptical blade root spring may be used. In short, any shape that can rotate along the longitudinal direction of the groove gap 2 along with the movement of the blade root 21 may be used.

1 ガスタービン
2 溝隙間
3 翼根バネ
4A、4B キャップ
10 タービンロータ
11 翼溝
12 凸部
13 凹部
14 底面
20 タービン動翼
21 翼根部
22 凸部
23 凹部
24 翼溝側先端面
31 翼根バネ
32A 端部
32B 端部
33 中間部
43 翼根バネ
H 溝隙間の高さ
自然長
DESCRIPTION OF SYMBOLS 1 Gas turbine 2 Groove clearance 3 Blade root spring 4A, 4B Cap 10 Turbine rotor 11 Blade groove 12 Convex part 13 Concave part 14 Bottom face 20 Turbine blade 21 Blade root part 22 Convex part 23 Concave part 24 Blade groove side front end face 31 Blade root spring 32A End portion 32B End portion 33 Intermediate portion 43 Blade root spring H Groove gap height D 0 Natural length

Claims (4)

タービン動翼の翼根部を翼溝に嵌合して固定するタービン動翼の固定構造であって、
前記翼根部の先端面と前記翼溝の底面との間の隙間内に設けられる複数の翼根バネを備え、
前記複数の翼根バネは、前記隙間の長手方向に沿って並ぶように配置され、各翼根バネの前記翼溝の長手方向に沿った断面形状が略円形である弾性体からなり、
各翼根バネの前記断面形状の径方向の自然長は、前記隙間の高さよりも大きく、
前記翼根バネは球状である
ことを特徴とするタービン動翼の固定構造。
A turbine rotor blade fixing structure for fitting and fixing a blade root portion of a turbine rotor blade into a blade groove,
A plurality of blade root springs provided in a gap between the tip surface of the blade root portion and the bottom surface of the blade groove;
The plurality of blade root springs are arranged so as to be arranged along the longitudinal direction of the gap, and each of the blade root springs is made of an elastic body having a substantially circular cross-sectional shape along the longitudinal direction of the blade groove,
The radial natural length of the cross-sectional shape of each blade root spring is greater than the height of the gap,
The blade root spring has a spherical shape, and has a spherical structure.
タービン動翼の翼根部を翼溝に嵌合して固定するタービン動翼の固定構造であって、
前記翼根部の先端面と前記翼溝の底面との間の隙間内に設けられる複数の翼根バネを備え、
前記複数の翼根バネは、前記隙間の長手方向に沿って並ぶように配置され、各翼根バネの前記翼溝の長手方向に沿った断面形状が略円形である弾性体からなり、
各翼根バネの前記断面形状の径方向の自然長は、前記隙間の高さよりも大きく、
前記弾性体は、線状部材を螺旋状に巻いて形成されたバネであることを特徴とするタービン動翼の固定構造。
A turbine rotor blade fixing structure for fitting and fixing a blade root portion of a turbine rotor blade into a blade groove,
A plurality of blade root springs provided in a gap between the tip surface of the blade root portion and the bottom surface of the blade groove;
The plurality of blade root springs are arranged so as to be arranged along the longitudinal direction of the gap, and each of the blade root springs is made of an elastic body having a substantially circular cross-sectional shape along the longitudinal direction of the blade groove,
The radial natural length of the cross-sectional shape of each blade root spring is greater than the height of the gap,
The turbine rotor blade fixing structure according to claim 1, wherein the elastic body is a spring formed by spirally winding a linear member.
前記弾性体は、カーボンナノチューブを主成分とする粘弾性材料からなることを特徴とする請求項1又は2に記載のタービン動翼の固定構造。 The elastic body is a turbine blade fixing structure according to claim 1 or 2, characterized in that it consists of a viscoelastic material mainly composed of carbon nanotubes. 翼溝に対しタービン動翼を脱着するタービン動翼の脱着方法であって、
前記タービン動翼の翼根部と前記翼溝との間に形成される隙間に前記翼溝の長手方向に沿った断面形状が略円形の弾性体からなる複数の翼根バネが配置された状態で、前記翼根バネをころとして機能させながら前記タービン動翼の翼根部を前記翼溝の長手方向に沿って移動させる
ことを特徴とするタービン動翼の脱着方法。
A method for desorbing a turbine rotor blade, wherein the turbine rotor blade is desorbed from a blade groove,
In a state where a plurality of blade root springs made of an elastic body having a substantially circular cross-sectional shape along the longitudinal direction of the blade groove is disposed in a gap formed between the blade root portion of the turbine blade and the blade groove A method for attaching and detaching a turbine rotor blade, wherein the blade root portion of the turbine rotor blade is moved along the longitudinal direction of the blade groove while the blade root spring functions as a roller.
JP2011068645A 2011-03-25 2011-03-25 Turbine blade fixed structure and turbine blade removal method Expired - Fee Related JP5743072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011068645A JP5743072B2 (en) 2011-03-25 2011-03-25 Turbine blade fixed structure and turbine blade removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011068645A JP5743072B2 (en) 2011-03-25 2011-03-25 Turbine blade fixed structure and turbine blade removal method

Publications (2)

Publication Number Publication Date
JP2012202330A JP2012202330A (en) 2012-10-22
JP5743072B2 true JP5743072B2 (en) 2015-07-01

Family

ID=47183585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011068645A Expired - Fee Related JP5743072B2 (en) 2011-03-25 2011-03-25 Turbine blade fixed structure and turbine blade removal method

Country Status (1)

Country Link
JP (1) JP5743072B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9194238B2 (en) * 2012-11-28 2015-11-24 General Electric Company System for damping vibrations in a turbine
JP2014203521A (en) * 2013-04-01 2014-10-27 富士通コンポーネント株式会社 Key switch device and input device
KR102040960B1 (en) * 2017-10-30 2019-11-05 두산중공업 주식회사 Mounting structure of bucket and steam turbine having the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881844A (en) * 1974-05-28 1975-05-06 Gen Electric Blade platform vibration dampers
JPS56102840U (en) * 1979-12-31 1981-08-12
US4725200A (en) * 1987-02-24 1988-02-16 Westinghouse Electric Corp. Apparatus and method for reducing relative motion between blade and rotor in steam turbine
JPH01237304A (en) * 1988-03-15 1989-09-21 Toshiba Corp Steam turbine bucket pushing-up device
US6761538B2 (en) * 2002-10-31 2004-07-13 General Electric Company Continual radial loading device for steam turbine reaction type buckets and related method
JP2009079185A (en) * 2007-09-27 2009-04-16 Nissin Kogyo Co Ltd Carbon fiber composite material and method for producing the same

Also Published As

Publication number Publication date
JP2012202330A (en) 2012-10-22

Similar Documents

Publication Publication Date Title
US11073021B2 (en) Mistuned airfoil assemblies
JP4446710B2 (en) Shroud segment and assembly with circumferential seal on planar segment surface
JP5336864B2 (en) Centering the parts inside the shaft
JP5743072B2 (en) Turbine blade fixed structure and turbine blade removal method
JP2013525689A5 (en)
CN104400391B (en) Uninstalling device for shaft end bearing
EP2873884B1 (en) Rolling bearing with a cage formed of unconnected members
JP5289704B2 (en) High pressure turbine disk hub and method with curved hub surface
JP2013525689A (en) Lightweight shroud for rotor blades
CN101796279A (en) Variable nozzle mechanism
CN101169049B (en) Blade/disk dovetail backcut for blade/disk stress reduction
JP2010038165A5 (en)
US10047615B2 (en) Method of mounting rotor blades on a rotor disk, and clamping device for performing such a method
JP6186150B2 (en) Proximity channel seal isolation dovetail
JP2016540917A (en) Outer vane support ring with a rigid back plate in the compressor section of a gas turbine engine
JP5579112B2 (en) Turbine blade fixed structure and blade root spring removal method
JP2010203504A (en) Squeeze film damper bearing
EP2520808B1 (en) Gas turbine engine rotor construction
US20130074338A1 (en) Pre-compressed seal including removable pre-compression member
JP6086698B2 (en) In-pipe insertion device
CN204221716U (en) The accessory of the little bearing of quick-detachment
CN209189938U (en) A kind of cutter shaft applied to lithium ion battery cutting machine
FR3052182A1 (en) TURBOMACHINE AUBAGEE WHEEL WITH IMPROVED VIBRATORY BEHAVIOR
JP4131739B2 (en) Steam turbine divider
JP5611096B2 (en) Detaching method of blade root spring and blade root spring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141024

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150421

R150 Certificate of patent or registration of utility model

Ref document number: 5743072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees