JP6186150B2 - Proximity channel seal isolation dovetail - Google Patents

Proximity channel seal isolation dovetail Download PDF

Info

Publication number
JP6186150B2
JP6186150B2 JP2013065334A JP2013065334A JP6186150B2 JP 6186150 B2 JP6186150 B2 JP 6186150B2 JP 2013065334 A JP2013065334 A JP 2013065334A JP 2013065334 A JP2013065334 A JP 2013065334A JP 6186150 B2 JP6186150 B2 JP 6186150B2
Authority
JP
Japan
Prior art keywords
bucket
isolation element
turbine
dovetail
seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013065334A
Other languages
Japanese (ja)
Other versions
JP2013204595A5 (en
JP2013204595A (en
Inventor
マシュー・ロバート・ピアーソル
ブライアン・デンバー・ポッター
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2013204595A publication Critical patent/JP2013204595A/en
Publication of JP2013204595A5 publication Critical patent/JP2013204595A5/ja
Application granted granted Critical
Publication of JP6186150B2 publication Critical patent/JP6186150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • F01D5/3007Fixing blades to rotors; Blade roots ; Blade spacers of axial insertion type
    • F01D5/3015Fixing blades to rotors; Blade roots ; Blade spacers of axial insertion type with side plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • F01D11/006Sealing the gap between rotor blades or blades and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • Y10T29/49321Assembling individual fluid flow interacting members, e.g., blades, vanes, buckets, on rotary support member

Description

本発明は、全体的に、燃焼技術に関し、より具体的には、燃焼タービンの高温ガス経路内の回転構成要素と固定構成要素との間のシール構成に関する。   The present invention relates generally to combustion technology, and more specifically to a seal arrangement between a rotating component and a stationary component in a hot gas path of a combustion turbine.

通常、近接流路シールは、近隣のノズルの直ぐ下にあるバケットの隣接する段の間に位置付けられる。より具体的には、近接流路シールは、タービンバケットの周辺列を支持する隣接するホイール又はディスク間に軸方向に位置付けられたスペーサホイール又はディスクに装填される。近接流路シールは、スペーサホイールから反対方向で軸方向に延びて、ノズルの下方に流路を形成し、また、高温燃焼ガスを半径方向内側ホイールスペースの外に保持するアームを有する。但し、近接流路シールの軸方向アームは、自立型ではなく、各アームは、タービンが通常運転状態にあって且つタービンロータの回転に伴って作用する遠心方向の力に曝されたときに荷重面を必要とする。典型的な構成では、近接流路シールは、3つの箇所、すなわち、ダブテールを通る近隣ホイール間にあるスペーサホイール上及び2つの隣接するバケットの荷重表面(通常は、それぞれのバケット上の一体型カバープレートの表面)上にて装填される。   Typically, the proximity channel seal is positioned between adjacent stages of the bucket just below the neighboring nozzles. More specifically, the proximity flow path seals are loaded into spacer wheels or disks positioned axially between adjacent wheels or disks that support the peripheral rows of turbine buckets. The proximal flow path seal extends axially in the opposite direction from the spacer wheel to form a flow path below the nozzle and has an arm that holds the hot combustion gases out of the radially inner wheel space. However, the axial arm of the adjacent flow path seal is not self-supporting, and each arm is loaded when the turbine is in a normal operating state and exposed to centrifugal force acting as the turbine rotor rotates. Need a plane. In a typical configuration, the proximity flow path seals are located at three locations: on the spacer wheel between neighboring wheels through the dovetail and on the load surface of two adjacent buckets (usually an integral cover on each bucket). Loaded on the surface of the plate).

従って、隣接バケットへの荷重(例えば、遠心方向及び/又は軸方向で)を改善する近接流路シール設計に対する要求が依然としてある。   Thus, there is still a need for a proximity channel seal design that improves the load on adjacent buckets (eg, in the centrifugal and / or axial direction).

米国特許第6,652,237号明細書US Pat. No. 6,652,237

例示的で非限定的な実施形態によれば、翼形部分と、翼形部分の半径方向内向きにあるプラットフォームと、プラットフォームの半径方向内向きにあるシャンク部と、シャンク部の半径方向内向きにある取り付け部と、を備えたタービンバケットが提供され、シャンク部が、少なくとも1つの軸方向に延びる近接流路シール係合面を有し、該近接流路シール係合面と取り付け部の一部がタービンバケットから分離可能な隔離要素を形成する。   According to an exemplary, non-limiting embodiment, an airfoil portion, a platform that is radially inward of the airfoil portion, a shank portion that is radially inward of the platform, and a radially inward direction of the shank portion And a shank portion having at least one axially extending proximal channel seal engaging surface, wherein the proximal channel seal engaging surface and one of the mounting portions are provided. The part forms an isolation element separable from the turbine bucket.

別の態様において、スペーサディスクが軸方向で間に位置付けられた少なくとも2つのロータディスクを備え、該各ロータディスクがバケットの環状列を備えている、タービンロータ組立体が提供され、該各バケットが、翼形部分と、翼形部分の半径方向内向きにあるプラットフォームと、プラットフォームの半径方向内向きにあるシャンク部と、シャンク部の半径方向内向きにある取り付け部と、を含み、シャンク部が少なくとも1つの近接流路シール係合面を有し、該近接流路シール係合面と取り付け部の一部が前記タービンバケットから分離可能な隔離要素を形成する。   In another aspect, a turbine rotor assembly is provided in which a spacer disk comprises at least two rotor disks positioned axially therebetween, each rotor disk comprising an annular row of buckets, each bucket comprising: An airfoil portion, a platform radially inward of the airfoil portion, a shank portion radially inward of the platform, and a mounting portion radially inward of the shank portion, the shank portion comprising: It has at least one proximity channel seal engagement surface, and the proximity channel seal engagement surface and a portion of the attachment form an isolation element separable from the turbine bucket.

更に別の態様において、タービンバケット上に形成される隣接する表面部分と近接流路シールとの係合によって引き起こされるタービンバケット上の遠心方向又は軸方向の荷重を低減する方法が提供され、該方法が、隣接表面部分を含む前記バケットから材料を除去して切り出し部を形成するステップと、切り出し部に一致し且つタービンの作動中に近接流路シールと係合可能な隔離要素で材料を置き換えるステップと、を含む。   In yet another aspect, a method is provided for reducing centrifugal or axial loads on a turbine bucket caused by engagement of adjacent surface portions formed on the turbine bucket with a proximity flow path seal. Removing material from the bucket including adjacent surface portions to form a cutout, and replacing the material with an isolating element that matches the cutout and engages the proximal flow path seal during operation of the turbine. And including.

ここで、以下に示された図面に関して本発明をより詳細に説明する。   The invention will now be described in more detail with reference to the drawings shown below.

従来構成におけるバケットの隣接列間に位置付けられた近接流路シールの簡易側面図。The simple side view of the proximity | contact channel | path seal | sticker located between the adjacent rows of the bucket in a conventional structure. 図1からの拡大詳細図。FIG. 2 is an enlarged detail view from FIG. 1. 図2に類似するが、本発明の例示的で非限定的な実施形態による近接流路シール構成を示した図。FIG. 3 is a view similar to FIG. 2 but illustrating a near flow path seal configuration according to an exemplary, non-limiting embodiment of the present invention. 例示的で非限定的な実施形態による、切り出し部を備えて形成されたバケットの半径方向内側端部の拡大詳細図。FIG. 4 is an enlarged detail view of a radially inner end of a bucket formed with a cutout, according to an exemplary, non-limiting embodiment. 図4に示すバケットの半径方向内側端部からの切り出し部、又は、図4に示すバケットの半径方向内側部分から除去した部分の形状に一致する別個に製造された部分(すなわち、隔離要素)の斜視図。4. A cutout from the radially inner end of the bucket shown in FIG. 4 or a separately manufactured portion (ie, an isolation element) that matches the shape of the portion removed from the radially inner portion of the bucket shown in FIG. Perspective view. 図4に類似するが、バケットの半径方向内側端部の切り出し部内に示した隔離要素の部分斜視図。FIG. 5 is a partial perspective view of the isolation element similar to FIG. 4 but shown in a cutout at the radially inner end of the bucket.

図1及び2は、公知の近接流路シール構成を示す。具体的には、近接流路シール10は、スペーサディスクと固定ノズル14との間に半径方向でスペーサディスク又はホイール12上に位置付けられる。近接流路シール10は、半径方向に延びる複数のシール歯15と、反対方向に突出して隣接するバケット24、26それぞれ上の近接流路シール係合面20、22と相互作用するようになる軸方向に延びるシールアーム16、18とを含むように図示されている。図2において最も分かるように、近接流路シール10のアーム16、18は、バケットシール係合面20、22の直ぐ下(又は半径方向内向き)に位置付けられる。近接流路シール10のアーム16、18は支持されておらず、タービンの通常運転中はシール係合面20、22それぞれの底面を係合し、これによりこれらの面が、例えば、タービンロータの回転及び熱的成長の差違に起因した軸方向及び遠心方向の力に曝されるようになる。   1 and 2 show a known proximity channel seal configuration. Specifically, the proximity flow path seal 10 is positioned on the spacer disk or wheel 12 in the radial direction between the spacer disk and the fixed nozzle 14. The adjacent flow path seal 10 has a plurality of radially extending seal teeth 15 and an axis that protrudes in the opposite direction and interacts with adjacent flow path seal engaging surfaces 20 and 22 on adjacent buckets 24 and 26, respectively. Illustrated to include directionally extending seal arms 16, 18. As best seen in FIG. 2, the arms 16, 18 of the proximity channel seal 10 are positioned just below (or radially inward) the bucket seal engagement surfaces 20, 22. The arms 16, 18 of the proximity channel seal 10 are not supported and engage the bottom surfaces of the seal engagement surfaces 20, 22 during normal operation of the turbine so that these surfaces, for example, of the turbine rotor Be exposed to axial and centrifugal forces due to differences in rotation and thermal growth.

近接流路シール係合面20、22は、バケットカバープレート又は半径方向に隣接するエンジェルウィングシールと独立した他の表面上に設けることができる。   Proximal flow path seal engagement surfaces 20, 22 may be provided on the bucket cover plate or other surface independent of the radially adjacent angel wing seal.

この公知の構成では、バケットカバープレート又は他のシール20、22上にアーム16、18によって作用する荷重は、バケット24、26に直接伝達され、従って、バケットに対する望ましくない応力又はロータシステムにおける剛性を生じる点は理解されるであろう。   In this known configuration, the load exerted by the arms 16, 18 on the bucket cover plate or other seals 20, 22 is transmitted directly to the buckets 24, 26, thus reducing undesirable stress on the buckets or stiffness in the rotor system. The point that will occur will be understood.

図3〜6を参照すると、本発明の例示的で非限定的な実施形態において、隣接バケット34、36に対する近接流路シール32の全体構成は、図2に示す構成と同様である。以下の説明では、近接流路シール38及び隣接バケット36に焦点を当てているが、バケット荷重問題に対する解決策は、シールアーム40及び隣接バケット34にも、並びに種々のタービン段間の他の何れかの近接流路シールにも同様に適用可能である点は理解されるであろう。例示的な実施形態において、バケット36は、破線46で輪郭が描かれたダブテール部分42及びシャンク部44の軸方向端部から材料を除去することにより修正され、結果として得られる切り出し部48は、図4において最もよく分かる。具体的には、切り出し部48は、エンジェルウィングシール50の下側部分、ダブテール取り付け部42及びシャンク部44の一部、並びに翼形部分52及びプラットフォーム54の半径方向内向きの部分を除去することによって形成される。隔離要素56は、エンジェルウィングシール50の最も低い又は半径方向内側の表面58を提供するように形成され、また、バケットのダブテール取り付け部42の輪郭に一致するダブテール取り付け部60を提供するように形成される。これにより、隔離要素56をバケットダブテール部分42と共にロータディスク内に形成されたダブテールスロットに装填できるようになる。換言すると、切り出し部48は、切り出し部48から除去された部分と実質的に同じ形状を有する隔離要素で充填されるが、隔離要素とバケットとの間にはギャップが存在してもよい点に留意されたい。   With reference to FIGS. 3-6, in an exemplary, non-limiting embodiment of the present invention, the overall configuration of the proximal flow path seal 32 relative to adjacent buckets 34, 36 is similar to the configuration shown in FIG. Although the following discussion focuses on the proximity flow path seal 38 and adjacent bucket 36, solutions to the bucket load problem also apply to the seal arm 40 and adjacent bucket 34 as well as any other between the various turbine stages. It will be appreciated that the proximity channel seal is equally applicable. In the exemplary embodiment, bucket 36 is modified by removing material from the axial end of dovetail portion 42 and shank portion 44 outlined by dashed line 46 and the resulting cutout 48 is: This is best seen in FIG. Specifically, the cutout 48 removes the lower portion of the angel wing seal 50, a portion of the dovetail attachment portion 42 and the shank portion 44, and the radially inward portion of the airfoil portion 52 and platform 54. Formed by. Isolation element 56 is formed to provide the lowest or radially inner surface 58 of angel wing seal 50 and is configured to provide a dovetail attachment 60 that matches the contour of bucket dovetail attachment 42. Is done. This allows the isolation element 56 to be loaded into the dovetail slot formed in the rotor disk along with the bucket dovetail portion 42. In other words, the cutout 48 is filled with a separating element having substantially the same shape as the portion removed from the cutout 48, but there may be a gap between the separating element and the bucket. Please keep in mind.

図6は、隔離要素56がダブテール取り付け部42及びエンジェルウィングシール50の底面の当初の輪郭と一致した様子を示している。隔離要素56が所定位置にあるときには、近接流路シールアーム38は下側縁部58と係合しており、隔離要素56はもはやバケット36から接続解除されているので、バケットは、作動中に近接流路シールアーム38によって作用される力から隔離される。   FIG. 6 shows how the isolation element 56 matches the original contours of the bottom surface of the dovetail attachment 42 and angel wing seal 50. When the isolation element 56 is in place, the proximal flow path seal arm 38 is engaged with the lower edge 58 and the isolation element 56 is no longer disconnected from the bucket 36 so that the bucket is in operation. Isolated from the force exerted by the proximal flow path seal arm 38.

隔離要素56は、バケット36から除去される部分だけから構成することができ、又は、除去した材料と一致するよう形成された新規製造の要素とすることができる点は理解されるであろう。また、本明細書で説明される隔離特徴要素は、既存のバケットに後付けするか、又は新規製造のバケットに組み込むことができる点は理解されるであろう。   It will be appreciated that the isolation element 56 can be composed of only the portion that is removed from the bucket 36 or can be a newly manufactured element that is shaped to match the removed material. It will also be appreciated that the isolation features described herein can be retrofitted to existing buckets or incorporated into newly manufactured buckets.

バケットシール構造体と近接流路シールアームとの係合により生じることになる遠心方向の力を実質的に排除することにより、バケット寿命の延長を実現することができる。   By substantially eliminating the centrifugal force that is generated by the engagement of the bucket seal structure and the adjacent flow path seal arm, the extension of the bucket life can be realized.

現時点で最も実用的且つ好ましい実施形態であると考えられるものに関して本発明を説明してきたが、本発明は、開示した実施形態に限定されるものではなく、逆に添付の請求項の技術的思想及び範囲内に含まれる様々な修正形態及び均等な構成を保護するものであることを理解されたい。   Although the present invention has been described with respect to what is considered to be the most practical and preferred embodiments at the present time, the invention is not limited to the disclosed embodiments, and conversely, the technical spirit of the appended claims It should also be understood that various modifications and equivalent arrangements included within the scope are protected.

10,32 近接流路シール
12 ディスク又はホイール
14 固定ノズル
15 シール歯
16,18 シールアーム
20,22 シール係合面
24,26,34,36 バケット
28,30 底面
38,40 シールアーム
42 ダブテール部分
44 シャンク部
46 破線
48 切り出し部
50 エンジェルウィングシール
52 バケット翼形部
54 プラットフォーム
56 隔離要素
58 最も低い縁部又は半径方向内側表面
10, 32 Proximity flow path seal 12 Disc or wheel 14 Fixed nozzle 15 Seal teeth 16, 18 Seal arm 20, 22 Seal engagement surface 24, 26, 34, 36 Bucket 28, 30 Bottom 38, 40 Seal arm 42 Dovetail portion 44 Shank 46 Dotted line 48 Cutout 50 Angel wing seal 52 Bucket airfoil 54 Platform 56 Isolation element 58 Lowest edge or radially inner surface

Claims (15)

タービンバケットを備える回転軸の周りに回転するタービンバケット組立体であって、前記タービンバケットが、
翼形部分と、
前記翼形部分の半径方向内にあるプラットフォームと、
前記プラットフォームの半径方向内にあるシャンク部と、
前記シャンク部の半径方向内側にあるダブテール部と、
前記シャンク部と前記ダブテール部に非接続で直に隣接する隔離要素と、
を備え、
前記シャンク部が、前記軸に面して軸方向に延びる接面を含む端部領域を有し、
前記ダブテール部の軸方向端部は径方向に延び、前記ダブテール部の前記軸方向端部と前記シャンク部の前記内接面との間に隅が形成され、
前記隔離要素が、前記シャンク部の前記内接面に直に隣接して平行に延びる軸方向延在面と、前記ダブテール部の軸方向端部に直に隣接して平行に延びる半径方向延在面とを有する、
タービンバケット組立体
A turbine bucket assembly that rotates about an axis of rotation comprising a turbine bucket, the turbine bucket comprising:
An airfoil part,
A platform located radially inward side of the airfoil portion,
A shank portion located radially inward side of the platform,
A dovetail portion radially inward of the shank portion;
An isolation element that is unconnected to the shank portion and the dovetail portion,
With
It said shank portion has an end region including the contact surface among which extends axially facing the shaft,
The axial end portion of the dovetail portion extending in the radius direction, a corner is formed between said inscribed surface of the shank portion and the axial end of the dovetail portion,
The isolation element, the axial extension plane extending parallel immediately adjacent to the inscribed surface of said shank portion, radially extending extending parallel immediately adjacent to the axial end of the dovetail portion Having a face,
Turbine bucket assembly .
前記隔離要素が、前記ダブテール部の対応する断面輪郭に実質的に一致する断面輪郭を有する、請求項1に記載のタービンバケット組立体。   The turbine bucket assembly of claim 1, wherein the isolation element has a cross-sectional profile that substantially matches a corresponding cross-sectional profile of the dovetail portion. 前記隔離要素が、前記バケット内に形成された切り出し部にて受けられる、請求項1に記載のタービンバケット組立体。   The turbine bucket assembly of claim 1, wherein the isolation element is received at a cutout formed in the bucket. 前記隔離要素が、前記シャンク部及び前記ダブテール部から切り出された要素を含む、請求項3に記載のタービンバケット組立体。 The turbine bucket assembly of claim 3, wherein the isolation element includes an element cut from the shank portion and the dovetail portion . 前記隔離要素が、タービンの作動中に近接流路シールと係合可能である、請求項1に記載のタービンバケット組立体。 The turbine bucket assembly of claim 1, wherein the isolation element is engageable with a proximity flow path seal during operation of the turbine. スペーサディスクが軸方向で間に位置付けられた少なくとも2つのロータディスクを備え、該各ロータディスクがバケットの環状列を備えている、タービンロータ組立体であって、
前記各バケットが、
翼形部分と、
前記翼形部分の半径方向内にあるプラットフォームと、
前記プラットフォームの半径方向内にあるシャンク部と、
前記シャンク部の半径方向内側にあるダブテール部と、
隔離要素と、
を備え、
前記シャンク部は、軸に面した径方向内面を有するエンジェルウィングシールであって前記タービンロータ組立体の前記軸の方向に延びるエンジェルウィングシールを有し、
記ダブテール部は、方向端部に半径方向延在面を有し、
前記隔離要素は、前記エンジェルウィングシール半径方向内面に直に隣接する半径方向外面と、前記ダブテール部の前記軸方向端部上で前記径方向延在面に直に隣接する半径方向延在面とを有し、
前記隔離要素は、前記シャンク部と前記ダブテール部に非接続で隔離されている、
タービンロータ組立体。
A turbine rotor assembly, wherein the spacer disk comprises at least two rotor disks positioned axially therebetween, each rotor disk comprising an annular row of buckets,
Each bucket is
An airfoil part,
A platform located radially inward side of the airfoil portion,
A shank portion located radially inward side of the platform,
A dovetail portion radially inward of the shank portion;
An isolation element,
With
It said shank portion has a angel wing seal a angel wing seal having a semi-radial inner surface facing the axis extending in the direction of the axis of the turbine rotor assembly,
Before SL dovetail portion includes a radial extending face in the axial end portion,
The isolation element includes a radially outer surface directly adjacent to the radially inner surface of the angel wing seals, radially extending immediately adjacent to the semi-radially extending surface on said axial end of the dovetail portion And having a surface,
The isolation element is isolated and disconnected from the shank portion and the dovetail portion;
Turbine rotor assembly.
前記隔離要素が、前記ダブテール部の対応する断面輪郭に実質的に一致する断面輪郭を有する、請求項に記載のタービンロータ組立体。 The turbine rotor assembly of claim 6 , wherein the isolation element has a cross-sectional profile that substantially matches a corresponding cross-sectional profile of the dovetail. 前記隔離要素が、前記バケット内に形成された切り出し部にて受けられる、請求項に記載のタービンロータ組立体。 The turbine rotor assembly of claim 6 , wherein the isolation element is received at a cutout formed in the bucket. 前記隔離要素が、前記タービンバケットのシャンク部及びダブテール部の一部ならびに前記エンジェルウィングシールの下部から切り出された要素を含む、請求項に記載のタービンロータ組立体。 The turbine rotor assembly of claim 8 , wherein the isolation element includes elements cut from a portion of the turbine bucket shank and dovetail and a lower portion of the angel wing seal. 前記隔離要素が、タービンの作動中に近接流路シールと係合可能である、請求項に記載のタービンロータ組立体。 The turbine rotor assembly of claim 6 , wherein the isolation element is engageable with a proximity flow path seal during operation of the turbine. タービンバケット上に形成される隣接する表面部分と近接流路シールとの係合によって引き起こされる前記タービンバケット上の遠心方向又は軸方向の荷重を低減する方法であって、
前記隣接表面部分を含む前記バケットから材料を除去して切り出し部を形成するステップ(a)と、
前記材料を、前記バケットのプラットフォームの半径方向内側にある前記切り出し部に一致する隔離要素に置き換えるステップ(b)と、
を含み、
前記隔離要素は、ダブテール部の軸方向端部上の半径方向延在部と近接流路シール係合面を有するエンジェルウィングシールの軸方向に延びる半径方向内側部分を有し、
前記隔離要素は、前記エンジェルウィングシールの軸方向に延びる半径方向内側表面および前記タービンバケットの前記ダブテール部上の半径方向延在面に非接続で直に隣接し、
前記隔離要素は、ービンの作動中に前記近接流路シールと係合可能である、
方法。
A method for reducing centrifugal or axial loads on said turbine bucket caused by engagement of adjacent surface portions formed on a turbine bucket with a proximity flow path seal, comprising:
Removing material from the bucket including the adjacent surface portion to form a cutout (a);
Replacing the material with an isolation element that coincides with the cutout radially inward of the platform of the bucket;
Including
The isolation element has a radially inner portion extending in the axial direction of an angel wing seal having a radially extending portion on the axial end of the dovetail portion and a proximal channel seal engaging surface;
The isolation element is unconnected and immediately adjacent to an axially extending radially inner surface of the angel wing seal and a radially extending surface on the dovetail portion of the turbine bucket;
The isolation element is engageable with said near-flow-path seal during operation of the turbines,
Method.
前記タービンバケットとは別に、前記隔離要素を製造するステップを含む、請求項11に記載の方法。 The method of claim 11 , comprising manufacturing the isolation element separately from the turbine bucket. 前記ステップ(a)が、前記バケットのシャンク部及びダブテール部の一部ならびに前記エンジェルウィングシールの下部から材料を除去するステップを含む、請求項12に記載の方法。 The method of claim 12 , wherein step (a) includes removing material from a portion of the bucket shank and dovetail portion and the bottom of the angel wing seal. 前記隔離要素が、前記バケットから除去された材料の断面輪郭に一致する、請求項13に記載の方法。 The method of claim 13 , wherein the isolation element matches a cross-sectional profile of the material removed from the bucket. 前記ステップ(b)が、前記バケットから除去された前記材料を前記隔離要素として利用するステップを含む、請求項11に記載の方法。
The method of claim 11 , wherein step (b) comprises utilizing the material removed from the bucket as the isolation element.
JP2013065334A 2012-03-29 2013-03-27 Proximity channel seal isolation dovetail Active JP6186150B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/433,969 2012-03-29
US13/433,969 US9151169B2 (en) 2012-03-29 2012-03-29 Near-flow-path seal isolation dovetail

Publications (3)

Publication Number Publication Date
JP2013204595A JP2013204595A (en) 2013-10-07
JP2013204595A5 JP2013204595A5 (en) 2016-05-19
JP6186150B2 true JP6186150B2 (en) 2017-08-23

Family

ID=48095547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013065334A Active JP6186150B2 (en) 2012-03-29 2013-03-27 Proximity channel seal isolation dovetail

Country Status (5)

Country Link
US (1) US9151169B2 (en)
EP (1) EP2644832B1 (en)
JP (1) JP6186150B2 (en)
CN (1) CN103362561B (en)
RU (1) RU2013113929A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9328622B2 (en) * 2012-06-12 2016-05-03 General Electric Company Blade attachment assembly
CN104153824B (en) * 2014-07-25 2016-05-04 江苏金通灵流体机械科技股份有限公司 The multistage air seal structure of turbine
US10662793B2 (en) 2014-12-01 2020-05-26 General Electric Company Turbine wheel cover-plate mounted gas turbine interstage seal
US10337345B2 (en) 2015-02-20 2019-07-02 General Electric Company Bucket mounted multi-stage turbine interstage seal and method of assembly
US10683765B2 (en) * 2017-02-14 2020-06-16 General Electric Company Turbine blades having shank features and methods of fabricating the same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL295165A (en) * 1962-07-11
US5318406A (en) * 1992-11-02 1994-06-07 General Electric Company Multipart gas turbine blade
US6190131B1 (en) 1999-08-31 2001-02-20 General Electric Co. Non-integral balanced coverplate and coverplate centering slot for a turbine
US6652237B2 (en) 2001-10-15 2003-11-25 General Electric Company Bucket and wheel dovetail design for turbine rotors
US6884028B2 (en) * 2002-09-30 2005-04-26 General Electric Company Turbomachinery blade retention system
US6984112B2 (en) 2003-10-31 2006-01-10 General Electric Company Methods and apparatus for cooling gas turbine rotor blades
JP4870754B2 (en) 2005-05-12 2012-02-08 ゼネラル・エレクトリック・カンパニイ Rotor blade / disc dovetail backcut to reduce stress on rotor blade / disk (7FA + e, 2nd stage)
US7922455B2 (en) 2005-09-19 2011-04-12 General Electric Company Steam-cooled gas turbine bucker for reduced tip leakage loss
US7736131B1 (en) * 2008-07-21 2010-06-15 Florida Turbine Technologies, Inc. Turbine blade with carbon nanotube shell
US8137072B2 (en) 2008-10-31 2012-03-20 Solar Turbines Inc. Turbine blade including a seal pocket
US8714932B2 (en) * 2008-12-31 2014-05-06 General Electric Company Ceramic matrix composite blade having integral platform structures and methods of fabrication
US8221062B2 (en) * 2009-01-14 2012-07-17 General Electric Company Device and system for reducing secondary air flow in a gas turbine
US8696320B2 (en) * 2009-03-12 2014-04-15 General Electric Company Gas turbine having seal assembly with coverplate and seal
US8348603B2 (en) 2009-04-02 2013-01-08 General Electric Company Gas turbine inner flowpath coverpiece
US20120045337A1 (en) 2010-08-20 2012-02-23 Michael James Fedor Turbine bucket assembly and methods for assembling same

Also Published As

Publication number Publication date
US20130259700A1 (en) 2013-10-03
RU2013113929A (en) 2014-10-10
US9151169B2 (en) 2015-10-06
EP2644832A1 (en) 2013-10-02
JP2013204595A (en) 2013-10-07
CN103362561A (en) 2013-10-23
CN103362561B (en) 2016-08-31
EP2644832B1 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
JP6186150B2 (en) Proximity channel seal isolation dovetail
JP6336437B2 (en) Turbine stage for turbine engine
US5257909A (en) Dovetail sealing device for axial dovetail rotor blades
US7540709B1 (en) Box rim cavity for a gas turbine engine
JP4856879B2 (en) Rotor disk balancing device, disk with such device attached, and rotor with such disk attached
JP4820321B2 (en) Fixing device for ring sector around turbine wheel of turbine engine
JP5152492B2 (en) Turbomachine casing with treatment, compressor and turbomachine including such casing
JP6043154B2 (en) Composite airfoil assembly
JP5920850B2 (en) Turbine blade and turbine with improved sealing
US8661641B2 (en) Rotor blade assembly tool for gas turbine engine
JP5726747B2 (en) Turbine wheel having an axial holding device for locking the blade to the disk
JP6212558B2 (en) Turbine rotor for turbomachine
JP5995958B2 (en) Sealing device for turbomachine turbine nozzle
EP2149674B1 (en) Bladed turbine rotor with vibration damper
JP6630295B2 (en) Rotor assembly for turbomachinery
JP5860683B2 (en) Gas turbine nozzle mounting method and removal / installation method
JP5427398B2 (en) Turbomachined sectorized nozzle
US8721293B2 (en) Turbine wheel with an axial retention system for vanes
EP2402561A2 (en) Apparatus and system for sealing a turbine rotor
JP6868005B2 (en) Turbine for gas turbine engine with labyrinth seal element
JP2009047165A (en) Fully bladed closure for tangential entry round skirt dovetail
US2743080A (en) Turbine rotors
JP2013204595A5 (en)
JP2013503289A (en) Cooling of gas turbine elements designed as rotor disks or turbine blades
JP6521273B2 (en) Steam turbine

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170731

R150 Certificate of patent or registration of utility model

Ref document number: 6186150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350