JP5742548B2 - 無線電力伝送装置および方法 - Google Patents

無線電力伝送装置および方法 Download PDF

Info

Publication number
JP5742548B2
JP5742548B2 JP2011164852A JP2011164852A JP5742548B2 JP 5742548 B2 JP5742548 B2 JP 5742548B2 JP 2011164852 A JP2011164852 A JP 2011164852A JP 2011164852 A JP2011164852 A JP 2011164852A JP 5742548 B2 JP5742548 B2 JP 5742548B2
Authority
JP
Japan
Prior art keywords
resonator
power
resonators
power transmission
power transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011164852A
Other languages
English (en)
Other versions
JP2013031272A (ja
Inventor
服部 渉
渉 服部
正芳 辻
正芳 辻
田能村 昌宏
昌宏 田能村
周平 吉田
周平 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2011164852A priority Critical patent/JP5742548B2/ja
Publication of JP2013031272A publication Critical patent/JP2013031272A/ja
Application granted granted Critical
Publication of JP5742548B2 publication Critical patent/JP5742548B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、無線電力伝送装置および方法に関し、特に、共振器間の共鳴現象を用いて電力を伝送する無線電力伝送装置および方法に関する。
2個の共振器を配置し、その間の電磁界結合による共鳴現象を用いて電力を伝送する無線電力伝送装置の研究が盛んに行われている。無線電力伝送装置の一例が、非特許文献1に記載されている。非特許文献1に記載されているように、回路的には共振器直結型帯域通過フィルタと同じであり、以下に述べる中継器は入出力両端の共振器を除き、その間に配置された共振器に対応する。
しかしながら、共振器直結型帯域通過フィルタにおいては、非特許文献2に記載されているように、小型化や、隣接共振器間以外の結合を防止するため、共振器の作る近接電磁界の広がりを抑制する方針で設計がなされてきた。一方、無線電力伝送装置においては、電力伝送距離を伸ばすことが応用上重要であり、共振器の作る近接電磁界分布を広げることが重要となっている。すなわち、同一の理論で説明できるが、課題は異なっており、無線電力伝送装置の開発には新たな考え方が必要とされている。
無線電力伝送装置においては、共振器間の距離が離れるほど、電力の伝送効率が低下する。この伝送効率の低下を抑制し、長距離の電力伝送を実現するための技術が、特許文献1(特開2010−219838号公報)、特許文献2(特開2010−148273号公報)、特許文献3(特開2010−158114号公報)、特許文献4(特開2010−246248号公報)に開示されている。上記公報開示の技術には、送電側共振器及び受電側共振器の間に中継器を挿入することが記載されている。
なお、特許文献5(特表2010−537496号公報)において無給電回路と呼ばれる中継器は短距離ホップとして動作し、実質的には多数の送信機となると記載があり、どちらかというと共振器を並列に並べたものであり、本発明に関わる共振器を直列に並べて長距離化を意図したものではない。また、特許文献6(特表2010−520716号公報)記載の中継器は送電側共振器及び受電側共振器の間に挿入するパッシブな共振器ではなく、無線通信における中継器同様、周波数変換等を行えるアクティブに動作する中継器であり、他の公報記載の中継器とは異なる。
特許文献1(特開2010−219838号公報)、特許文献2(特開2010−148273号公報)、特許文献3(特開2010−158114号公報)、特許文献4(特開2010−246248号公報)に記載の中継器の効果は以下の通りである。特許文献1(特開2010−219838号公報)には、送電効率を大幅に減衰させること無く、送電器と受電器間の距離を長くすることができると記載されている。また、特許文献2(特開2010−148273号公報)においては、送受電器間距離を一定に保ったまま伝送効率を向上できるか、あるいは段落[0024]に送電器と受電器間の距離を長くするように中継器を使用すると記載されている。
また、特許文献3(特開2010−158114号公報)においても、中継器の効果として、送電器と受電器間の距離を長くすることができると記載されている。また、特許文献4(特開2010−246248号公報)においても、パッシブリピータと呼ばれる中継器は段落[0015]と図15に記載の通り、アクセス距離、すなわち送電器と受電器間の距離を長くするために使用すると記載されている。以上述べた通り、特許文献1(特開2010−219838号公報)、特許文献2(特開2010−148273号公報)、特許文献3(特開2010−158114号公報)、特許文献4(特開2010−246248号公報)に記載の中継器、すなわち共振器の役割は、電力伝送効率の低下を抑制した状態で、送電器と受電器を含む装置全長を長くすることであった。
このように、上述した文献に記載の技術では、電力伝送効率の低下を抑制した状態で、中継器の設置により送電器と受電器を含む装置全長を長くすることができる。
特開2010−219838号公報 特開2010−148273号公報 特開2010−158114号公報 特開2010−246248号公報 特表2010−537496号公報 特表2010−520716号公報
粟井、外3名、「共鳴型ワイヤレス電力伝送に用いる共振器の比較検討」、信学技報WPT2010−01、社団法人 電子情報通信学会、2010年4月、p.1−7 馬、外2名、「6種類のマイクロストリップスパイラル共振器の特性の比較研究」、信学技報MW2002−70、社団法人 電子情報通信学会、2002年9月、p.1−5
上述した文献に記載の技術においては送電器と受電器の間に中継器が設置できなければならないという制約があったため、中継器が設置できず、無線だけで長距離伝送しなければならない場合ついては検討されていないという問題点があった。
本発明の目的は、上述した課題である中継器を設置できない場合に、電力伝送効率の低下を抑制しながら、無線電力伝送装置内の隣接共振器間距離、特に送電器と受電器の間の隣接共振器間距離の長距離化ができないという問題点を解決する無線電力伝送装置および方法を提供することにある。
本発明の無線電力伝送装置は、
送電器と、前記送電器から伝送された電力を取り出す受電器と、を備え、
前記送電器は、
共振周波数が略同一の少なくとも2個の共振器が当該共振器の発生する電界または磁界を通して共鳴し、直列の結合状態となる第1の共振器列と、
周波数が該共振周波数と略同一の周波数成分からなる電力を発生させて前記発生された電力を前記第1の共振器列の一端に供給する入力部と、を含み、
前記受電器は、
前記共振周波数と共振周波数が略同一の少なくとも2個の共振器が当該共振器の発生する電界または磁界を通して共鳴し、直列の結合状態となる第2の共振器列と、
前記送電器から伝送された前記電力を、前記第2の共振器列の一端から取り出す出力部と、を含み、
前記送電器の前記第1の共振器列の内、前記入力部と繋がる前記一端と異なる端部に位置する他端の共振器と、前記受電器の前記第2の共振器列の内、前記出力部と繋がる前記一端と異なる端部に位置する他端の共振器と、を電界または磁界を通して共鳴させ、直列の結合状態とし、
前記送電器の前記共振器の数と前記受電器の前記共振器の数が共に等しく、
前記送電器の前記第1の共振器列の、前記入力部側から順に数えた各々の結合係数が、
前記受電器の前記第2の共振器列の、前記出力部側から順に数えた結合係数と、
各々同じ順番の結合係数間で略同一の値を取る。
本発明の無線電力伝送方法は、
共振周波数が略同一の少なくとも2個の共振器を含む第1の共振器列と、前記第1の共振器列の一端に設けられた入力部とを含む送電器と、前記共振周波数と共振周波数が略同一の少なくとも2個の共振器を含む第2の共振器列と、前記送電器から伝送された電力を前記第2の共振器列の一端から取り出す出力部と、を含む受電器と、を設け、
前記送電器の前記第1の共振器列を、当該共振器の発生する電界または磁界を通して共鳴させ、直列の結合状態とし、
前記送電器の前記入力部が、周波数が該共振周波数と略同一の周波数成分からなる電力を発生させ、
前記送電器の前記入力部が前記発生した電力を前記第1の共振器列の一端に供給し、
前記送電器の前記第1の共振器列の内、前記入力部と繋がる前記一端と異なる端部に位置する他端の共振器と、前記受電器の前記第2の共振器列の内、前記出力部と繋がる前記一端と異なる端部に位置する他端の共振器と、を電界または磁界を通して共鳴させ、直列の結合状態とし、
前記受電器の前記出力部が、前記送電器から伝送された前記電力を、前記第2の共振器列の前記一端から取り出し、
前記送電器の前記共振器の数と前記受電器の前記共振器の数が共に等しく、
前記送電器の前記第1の共振器列の、前記入力部側から順に数えた各々の結合係数が、
前記受電器の前記第2の共振器列の、前記出力部側から順に数えた結合係数と、
各々同じ順番の結合係数間で略同一の値を取る
以上、本発明の構成について説明したが、本発明は、これに限られず様々な態様を含む。なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。
また、本発明の各種の構成要素は、必ずしも個々に独立した存在である必要はなく、複数の構成要素が一個の部材として形成されていること、一つの構成要素が複数の部材で形成されていること、ある構成要素が他の構成要素の一部であること、ある構成要素の一部と他の構成要素の一部とが重複していること、等でもよい。
また、本発明の方法には複数の手順を順番に記載してあるが、その記載の順番は複数の手順を実行する順番を限定するものではない。このため、本発明の方法を実施するときには、その複数の手順の順番は内容的に支障しない範囲で変更することができる。
さらに、本発明の方法の複数の手順は個々に相違するタイミングで実行されることに限定されない。このため、ある手順の実行中に他の手順が発生すること、ある手順の実行タイミングと他の手順の実行タイミングとの一部ないし全部が重複していること、等でもよい。
本発明によれば、装置の大型化を抑制するとともに、電力伝送効率の低下を抑制しながら、無線電力伝送装置内の隣接共振器間距離、特に送電器と受電器の間の隣接共振器間距離を長距離化できる無線電力伝送装置および方法が提供される。
本発明の実施の形態に係る無線電力伝送装置の構成を模式的に示すブロック図である。 本発明の実施の形態に係る無線電力伝送装置を伝達関数の計算により解析するためのパラメータの対応を模式的に示すブロック図である。 結合係数の共振器間距離依存性を示す図である。 比帯域1%のバターワース型を取る無線電力伝送装置の共振器数に対する結合係数の最小値を示す図である。 比帯域1%のバターワース型を取る無線電力伝送装置の共振器数に対する電力伝送効率の最大値を示す図である。 比帯域1%のバターワース型を取る無線電力伝送装置の共振器数に対する電力伝送効率を結合係数の最小値で除した値の関係を示す図である。 本発明の実施の形態に係る無線電力伝送装置を模式的に示すブロック図である。 比帯域1%のバターワース型を取る無線電力伝送装置において、無負荷Q値の異なる共振器の組み合わせに対する電力伝送効率の通過帯域内での最大値の関係を示す図である。 本発明の無線電力伝送装置の実施例において、4個の共振器の無負荷Q値の組合せに対する電力伝送効率の通過帯域内での最大値の関係を示す図である。
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
(第1の実施の形態)
図1は、本発明の実施の形態に係る無線電力伝送装置1の構成を模式的に示すブロック図である。
図1に示すように、本発明の実施の形態に係る無線電力伝送装置1は、送電器100と、送電器100から伝送された電力を取り出す受電器200と、を備え、送電器100は、共振周波数が略同一の少なくとも2個の共振器102(共振器RF、共振器RF、ここで、nは2以上の整数)が当該共振器102の発生する電界または磁界を通して共鳴し、直列の結合状態となる第1の共振器列110と、周波数が該共振周波数と略同一の周波数成分からなる電力Pを発生させて当該発生された電力Pを第1の共振器列110の一端112に供給する入力部120と、を少なくとも有し、受電器200は、共振器102の共振周波数と共振周波数が略同一の少なくとも2個の共振器202(共振器RFn+1、共振器RFn+m、ここで、mは2以上の整数)が当該共振器202の発生する電界または磁界を通して共鳴し、直列の結合状態となる第2の共振器列210と、送電器100から伝送された電力Pを、第2の共振器列210の一端212から取り出す出力部220と、を少なくとも有し、送電器100の第1の共振器列110の内、入力部120と繋がる一端112と異なる端部に位置する他端114の共振器102(共振器RF)と、受電器200の第2の共振器列210の内、出力部220と繋がる一端212と異なる端部に位置する他端214の共振器202(共振器RFn+1)とを電界または磁界を通して共鳴し、直列の結合状態とする。
また、本発明の実施の形態に係る無線電力伝送装置1は、送電器100の共振器102の数と受電器200の共振器202の数を共に等しくするのが好ましい。すなわち、n=mとすることができる。以下、共振器102または共振器202は、それぞれ個々の共振器を区別する必要がある場合は、共振器RF、共振器RF、共振器RFn+1、または共振器RFn+mなどと呼び、区別する必要がない場合は、共振器102または共振器202と呼ぶものとする。
なお、以下の各図において、本発明の本質に関わらない部分の構成については省略してあり、図示されていない。
共振器102および共振器202は、たとえば、コイルを用いて構成することができる。コイルの種類は、特に限定されないが、たとえば、スパイラルコイル、ソレノイダルコイルなどである。また、コイル形状以外にもミアンダライン形状であってもよい。
入力部120および出力部220は、たとえば、ループコイルを用いて構成することができる。また、ループ以外に、線路をタップしてもよい。
入力部120および出力部220のコイルの両端には、それぞれ入力端子122および出力端子222が設けられる。入力部120の入力端子122には、無線電力伝送装置1に電力Pを供給する電気回路(不図示)が電気的に接続される。出力部220の出力端子222には、無線電力伝送装置1から取り出した電力Pを受け取る電気回路(不図示)が電気的に接続される。
共振器間の共鳴現象を用いて電力を伝送する無線電力伝送装置1の電力伝送特性は、回路の伝達関数を計算することにより求まる。その際必要とされるパラメータは、図2に示す通り、本実施形態の共振器102および共振器202の共振周波数fおよび無負荷Q値Q、ならびに、隣接するi番目の共振器RFと(i+1)番目の共振器RFi+1の間のエネルギーの重なり積分の割合を表す結合係数ki,i+1、入力部120とその入力部120の繋がる共振器RFとの結合を表す外部Q値Qe−in、出力部220とその出力部220の繋がる共振器RFn+mとの結合を表す外部Q値Qe−outである。ここで、送電器100の共振器102の数n、受電器200の共振器202数mとすると、iは1からn+mの整数となる。
また、各共振器102および各共振器202の共振周波数fは、略同一の値を取るのが好ましい。その理由は、各共振器の共振周波数が異なると、結合が弱くなり、同一結合係数をとれば、伝送距離が短くなり、同一距離であれば、伝送効率が低下することとなるからである。また、共振周波数が異なると設計が複雑になるといった問題も生じるからである。
各共振器RFの無負荷Q値は、共振器毎に異なる値を取りうるが、詳細については後述し、ここでは、図2に示すように、すべてQとする。
また、図1に示すように、送電器100の入力部120側から受電器200の出力部220に向かって隣接している順に共振器102および共振器202に順番付けする。上述したように、送電器100の共振器102の数をn、受電器200の共振器202の数をmとすると、共振器RF、共振器RF、...、共振器RF、共振器RFn+1、...、共振器RFn+m−1、共振器RFn+mと順番付けされる。ここで、iとjは、1からn+mの間の値を取る整数で、i≠jとすると、ki,jは入力側からi番目の共振器RFとj番目の共振器RFとの間の結合係数を与える。
また、受動回路の相反性からki,j=kj,iとなる。
図2に示すように、本発明の実施の形態に係る無線電力伝送装置1は、送電器100の共振器列110の、入力部120側から順に数えた各々の結合係数ki,jが、受電器200の共振器列210の、出力部220側から順に数えた結合係数kj,iと、各々同じ順番の結合係数間で略同一の値を取る。
すなわち、送電器100の共振器列110と受電器200の共振器列210において、対称的な位置にある隣接共振器間結合係数が略同一の値を取る。
さらに、本発明においては、第1の共振器列110(図1)および第2の共振器列210(図1)はそれぞれ直列であるとするため、伝達関数の計算において、隣接共振器間の結合係数ki,i+1(=ki+1,i)しか考慮しないものとする。
ここで、「共振器が隣接する」とは、大抵の場合、空間的に隣接することと一致する。しかしながら、結合係数は磁界や電界に貯えられるエネルギーの重なり積分をもとに得られるため、共振器間の空間的相対的位置ズレと相対的角度ズレ、あるいは周辺の電磁環境に影響され、その大小は必ずしも空間的な距離の大小と一致しない。
従って、正確には、結合係数ki,j(1≦i<j≦n+m)において、ki,jが最大値となる場合に共振器RFと共振器RFは隣接しているとし、j=i+1とする。なお、特定の共振器間距離をとった場合、その距離で実現できる結合係数には最大値が存在する。その理由は、結合係数は磁界や電界に貯えられるエネルギーの重なり積分をもとに得られることと、均一な電磁環境下では共振器から距離が離れるほど共振器が形成する磁界や電界の強さが弱まるからである。あるいは特定の結合係数を実現する共振器間距離には最大値が存在する。この共振器間距離を本発明では、単に「共振器間距離」と表す。
上述のような構成において、本発明の無線電力伝送方法を以下に説明する。
本発明の無線電力伝送方法は、図1の無線電力伝送装置1に、共振周波数が略同一の少なくとも2個の共振器102(共振器RF、共振器RF)を含む第1の共振器列110と、第1の共振器列110の一端に設けられた入力部120とを含む送電器100と、共振器102の共振周波数と共振周波数が略同一の少なくとも2個の共振器202(共振器RFn+1、共振器RFn+m、)を含む第2の共振器列210と、送電器100から伝送された電力を第2の共振器列210の一端から取り出す出力部220と、を含む受電器200と、を設け、送電器100の第1の共振器列110が、当該共振器102の発生する電界または磁界を通して共鳴し、直列の結合状態とし、送電器100の入力部120が、周波数が該共振周波数と略同一の周波数成分からなる電力Pを発生させ、送電器100の入力部120が発生した電力Pを第1の共振器列110の一端に供給し、送電器100の第1の共振器列110の内、入力部120と繋がる一端112と異なる端部に位置する他端114の共振器102(共振器RF)と、受電器200の第2の共振器列210の内、出力部220と繋がる一端212と異なる端部に位置する他端214の共振器102(共振器RFn+1)と、を電界または磁界を通して共鳴させ、直列の結合状態とし、受電器200の出力部220が、送電器100から伝送された電力Pを、第2の共振器列210の一端212から取り出す。
図3は、本発明の効果を説明するための図であり、非特許文献1の図3に記載された結合係数の共振器間距離依存性を示す図である。横軸は共振器間距離を示し、縦軸は共振器間結合係数を示す。
電界による結合の強さと磁界による結合の強さの大小が反転する場合を除いて、図3に示すように、結合係数は共振器間距離に依存し、共振器間距離の増大と共に共振器間の結合係数は単調に低下する。
さらに、電界や磁界は空間的に分布し、無限遠で0になるため、図3に示すように、結合係数の共振器間距離依存性は、下に凸で、x=∞でy=0に漸近する曲線となる。また、共振器間距離が小さい場合、結合係数曲線の接線lの傾きは急峻であり、共振器間距離が大きい場合、結合係数曲線の接線lの傾きは緩やかである。接線lの△xの方が、接線lの△xより幅が狭く、接線lの△yの方が、接線lの△yより幅が広いことが分かる。
なお、磁界による結合の強さより、電界による結合の強さは共振器間距離の増大と共に急峻に低下することが考えられる。従って、共振器間距離をより伸ばすためには磁界による共鳴現象を用いることが望ましい。
さらに本発明において、「共振器の結合状態が直列である」とは、隣接していない共振器間結合係数ki,j(i+1<j、1≦i、j≦n+m)が、隣接共振器間結合係数ki,i+1より十分小さいことを意味する。ここでいう「十分小さい」とは、無線電力伝送装置1を帯域通過フィルタとみなした場合に、周波数特性の通過帯域内にノッチと呼ばれる急峻な落ち込みができない程度に、共振器間結合係数ki,j(i+1<j、1≦i、j≦n+m)が隣接共振器間結合係数ki,i+1より小さいことを意味する。
なお、本発明では、温度変動等に対する不安定性を除くため、少なくとも無線電力伝送装置1を帯域通過フィルタとみなした場合の周波数特性の通過帯域内にノッチと呼ばれる急峻な落ち込みが無いことが望ましい。あるいはそのような周波数特性が得られるように、フルヴィッツ多項式で表される伝達関数が零点を持たないことが望ましい。なぜなら、このような零点は、かならずしも共振器間結合係数ki,j(i+1<j、1≦i、j≦n+m)が隣接共振器間結合係数ki,i+1より小さくない場合に起こりえるからである。
通過帯域内にノッチを持つような零点が存在しない場合、少なくとも通過帯域内は共振器間結合係数ki,j(i+1<j、1≦i、j≦n+m)を0とした全極型帯域通過フィルタとして近似的に解析できることが帯域通過フィルタの設計論で知られている。従って、本発明においても隣接していない共振器間結合係数ki,j(i+1<j、1≦i、j≦n+m)を0とみなす場合がある。
全極型帯域通過フィルタのうち、最大平坦特性をもたらすバターワースフィルタは、一方で理想的には通過帯域の平坦部分で反射損失が0になる。この特性を無線電力伝送装置1(図1)に用いた場合、他のフィルタ特性を用いるより電力伝送効率を最大化することができる。ここで、通過帯域は、フィルタのタイプにより様々であるが、バターワースフィルタの場合、共振器の無負荷Q値を無限大とした場合に、共振器の共振周波数を中心に透過損失が3dB以下の周波数範囲を指す。
このバターワースフィルタ型無線電力伝送装置の結合係数の一例を算出した。その値を表1に示す。表1は、本発明の実施の形態に係る無線電力伝送装置において、比帯域1%の場合のバターワースフィルタ型無線電力伝送装置の共振器数と結合係数の関係を示す。
Figure 0005742548
表1に示した結合係数は、帯域幅が中心周波数の1%の場合(以下、この条件を比帯域1%と呼ぶ)の値である。さらに、表1の結合係数は、無線電力伝送装置で用いられる1000程度のQ値を有する共振器を使用した場合に、ほぼ臨界結合状態に近く、電力伝送効率の大幅な低下を生じる直前の値である。なおかつ、表1の例は、共振器間距離を最も伸ばせる条件の一例である。
本発明によれば、図1および図2に示す通り、送電器100と受電器200の共振器102および共振器202を合わせた数n+mが4個以上になり、送電器100と受電器200の間の隣接共振器間結合係数はki,i+1(2≦i≦n+m−2)となる。
また、表1に示されるように、図1の送電器100と受電器200の共振器102および共振器202を合わせた数n+mが3個以下の場合と、n+mが4個以上の場合のk1,2とkn+m−1,n+mと比較して、n+mが4個以上の場合の隣接共振器間結合係数ki,i+1(2≦i≦n+m−2)は20%ほど小さい値を取る場合が多い。
前述の通り、結合係数が小さいということは共振器間距離を伸ばすことができることを示しており、本実施形態の無線電力伝送装置1のように、送電器100と受電器200の共振器102および共振器202を合わせた数n+mが4個以上となるように構成することで、図1の無線電力伝送装置1内の隣接共振器間距離、特に送電器100と受電器200の間の隣接共振器間距離dを長距離化できる。
また、図3に示した通り、結合係数の共振器間距離依存性は、下に凸で、x=∞でy=0に漸近する曲線であるため、結合係数が小さい場合、曲線の緩やかな部分に当たる。従って、共振器間距離の変動に対して、結合係数の変動は小さくなり、通過帯域の特性が崩れにくく、ディップ等ができにくい。すなわち、本発明によれば、結合係数を小さくすることで、隣接共振器間距離dの変動に対して、電力伝送効率の変動が少ない無線電力伝送装置1を提供することができる。
また、本発明によれば、図1および図2に示すように、送電器100の共振器102の数と受電器200の共振器202の数が共に等しい場合、送電器100と受電器200の共振器102と共振器202を合わせた数n+mは偶数で、且つ送電器100と受電器200の間の隣接共振器間結合は、偶数個の共振器のちょうど真ん中に相当する。表1に示されるように、共振器数毎の各行で、結合係数の最小値は真ん中の結合係数である。たとえば、共振器数6の場合、真ん中の結合係数k3,4が最小値0.005176である。これは、真ん中に位置する2つの共振器が、外部Q値を通して電磁界結合している入力部120と出力部220からそれぞれ最も離れていることに起因している。
さらに共振器数が偶数の場合、無線電力伝送装置1の真ん中に共振器間結合が位置するため、共振器数が±1異なる奇数の場合より結合係数の最小値が小さくなる。たとえば、表1に示すように、共振器数が奇数の5の場合の結合係数の最小値は、0.005559であるのに対し、偶数の共振器数4の場合の結合係数の最小値は、0.005412であり、偶数の共振器数6の場合の結合係数の最小値は、0.005176である。
従って、本発明によれば、送電器100の共振器102と受電器200の共振器202を合わせた数n+mを偶数とすることで、送電器100と受電器200の間の隣接共振器間距離d(図1)を長距離化できる無線電力伝送装置1を提供することができる。
また、本発明の実施の形態に係る無線電力伝送装置1によれば、送電器100の共振器102の数と受電器200の共振器202の数が共に等しく、且つ、結合係数が真ん中から入力部120側と出力部220側で対称的に並んでいることになる。これは、表1にもあるとおりで、これはフィルタの種類に依らず、全極型帯域通過フィルタの伝達関数であるフルヴィッツ多項式の極配置の対称性や受動回路の相反性に起因する。
このように結合係数を構成することで、バターワースのみならず、チェビシェフ型といった様々なタイプの通過帯域特性を有する電力伝送特性が得られる。また、不用意に通過帯域内にディップを生じたりすることも避けられる。このようにディップを排除したりすることで電力伝送効率の低下を抑制しながら、送電器100と受電器200の間の隣接共振器間距離dを長距離化できる無線電力伝送装置1を提供することができる。
以上、説明したように、本発明によれば、装置の大型化を抑制するとともに、電力伝送効率の低下を抑制しながら、無線電力伝送装置1内の隣接共振器間距離、特に送電器100と受電器200の間の隣接共振器間距離dを長距離化することができるという優れた効果を奏し得る。さらに、本発明によれば、隣接共振器間距離の変動に対して、電力伝送効率の変動が少ない無線電力伝送装置を提供することができる。
(第2の実施の形態)
図7は、本発明の実施の形態に係る無線電力伝送装置2を模式的に示すブロック図である。
本実施形態の無線電力伝送装置2は、上記実施形態とは、送電器300の第1の共振器列310の共振器302の数と、受電器400の第2の共振器列410の共振器402の数が等しく2個である点で相違する。送電器300の共振器302は、図7の左から順に共振器RF、共振器RFとし、受電器400の共振器402は、図7の左から順に共振器RF、共振器RFと番号付けする。
本発明の実施の形態に係る無線電力伝送装置2は、送電器300の共振器302の数と受電器400の共振器402の数が共に等しく2個とする。
以下、本実施形態の無線電力伝送装置2の送電器300の共振器302の数と受電器400の共振器402の数を共に等しく2個とした場合の効果について説明する。
共振器数n+mを変数に比帯域1%のバターワース型を取る無線電力伝送装置の結合係数の最小値と電力伝送効率の最大値を計算し、図4と図5に示すと共に、電力伝送効率を結合係数の最小値で除した値を図6に図示する。ここで、共振器はすべて無負荷Q値Qが1000とする。
図4は、本発明の効果を説明するための計算結果を示す図であり、共振器数n+mを変数に比帯域1%のバターワース型を取る無線電力伝送装置の結合係数の最小値を示す。横軸は無線電力伝送装置に用いる共振器の数を、縦軸は複数ある隣接共振器間結合係数のうち最小の結合係数を示す。
図5は、本発明の効果を説明するための計算結果を示す図であり、共振器数n+mを変数に比帯域1%のバターワース型を取る無線電力伝送装置の電力伝送効率の最大値を示す。横軸は無線電力伝送装置に用いる共振器の数を、縦軸はその際に得られる電力伝送効率の通過帯域内での最大値を示す。
図6は、本発明の効果を説明するための計算結果を示す図である。横軸は無線電力伝送装置に用いる共振器数を示し、縦軸はその共振器数の際に得られる電力伝送効率を結合係数の最小値で除した値を示す。
ここで、電力伝送効率は高い方がよく、また、共振器間距離を伸ばせるため、結合係数は小さい方がよい。従って、電力伝送効率を結合係数の最小値で除した値は、本発明の電力伝送効率の低下を抑制しながら、送電器300と受電器400の間の隣接共振器間距離dを長距離化するための一つの指標となる。
なお、ここで結合係数の最小値とは、共振器数n+mを固定した場合の隣接共振器間結合係数ki,i+1(1≦i≦n+m−1)の最小値であり、表1では各行における結合係数の最小値を示し、本発明で送電器300と受電器400の間の隣接共振器間に用いる結合係数に相当する。図4によると、共振器数4個の場合に、3個の場合と比較して20%ほど結合係数が急激に低下する。
一方で、図5によると電力伝送効率は共振器数の増加に応じて緩やか、且つ滑らかに低下する。従って、共振器数4個とすることにより、電力伝送効率の低下を抑制しながら、送電器300と受電器400の間の隣接共振器間距離dを長距離化できる。また、共振器数4個の場合に、電力伝送効率を結合係数の最小値で除した値も最大値を取る。従って、本発明によれば、電力伝送効率の低下を抑制しながら、送電器300と受電器400の間の隣接共振器間距離dを長距離化できる無線電力伝送装置を提供することができる。
また、本発明の実施の形態に係る無線電力伝送装置2は、送電器300の第1の共振器列310の内、入力部320と繋がる一端と異なる端部に位置する他端の共振器RFに無負荷Q値が最大の共振器を用い、受電器400の第2の共振器列410の内、出力部420と繋がる一端と異なる端部に位置する他端の共振器RFに無負荷Q値が最大の共振器を用いることができる。
なお、図1に示した上記実施形態においても、上記構成を採用することができる。たとえば、図1の本発明の実施の形態に係る無線電力伝送装置1は、送電器100の第1の共振器列110の内、入力部120と繋がる一端と異なる端部に位置する他端の共振器RFに無負荷Q値が最大の共振器を用い、または、受電器200の第2の共振器列210の内、出力部220と繋がる一端と異なる端部に位置する他端の共振器RFn+1に無負荷Q値が最大の共振器を用いることができる。
また、無負荷Q値の高い共振器は大型化する傾向にある。従って、大型化を抑制するためには、限られた無負荷Q値の共振器の中で最適な無負荷Q値の配分を考慮する必要がある。
図7の本実施形態の無線電力伝送装置2において、送電器300の共振器302の数と受電器400の共振器402の数が共に等しく2個の場合に、共振器の無負荷Q値の組合せに依存する、周波数帯域内の電力伝送効率の最大値を図8に図示した。なお、比帯域1%のバターワース型で計算し、4つの共振器の無負荷Q値Qを1000または100で組み合わせ、(a)から(j)の場合分けを行った。
なお、この場合分けにおいて、受動回路の相反性を考慮して電力伝送効率が同じになる場合を予め取り除いた。たとえば、(QU1,QU2,QU3,QU4)=(100,1000,1000,1000)の場合は(b)の(QU1,QU2,QU3,QU4)=(1000,1000,1000,100)と同一の電力伝送効率となるために、図8には記載せず、省略してある。
(a)のように全ての共振器のQ値を高くすることができれば、最大の効率を得ることができるが、その場合装置の大型化を招いてしまう。
そこで、たとえば、Q値の小さい共振器を1個用いて大型化を抑制する(b)と(c)の場合や、さらに2個用いる(d)から(g)の場合、3個用いる(h)と(i)の場合を想定する。各々比較すると、4つの共振器のうち、2番目と3番目の共振器に無負荷Q値の高い共振器を配置した場合に、1番目と4番目の共振器に無負荷Q値の高い共振器を配置した場合に比較して、電力伝送効率が高くなることが分る。
従って、本発明によれば、送電器300の共振器302の数と、受電器400の共振器402の数が等しく2個であり、入力部320と繋がる一端と異なる端部に位置する他端の共振器RF、または、出力部220と繋がる一端と異なる端部に位置する他端の共振器RFに無負荷Q値が最大の共振器を用いることで、装置の大型化を抑制するとともに、電力伝送効率の低下を抑制しながら、送電器300と受電器400の間の隣接共振器間距離d(図7)を長距離化できる無線電力伝送装置1を提供することができる。さらに、本発明によれば、隣接共振器間距離の変動に対して、電力伝送効率の変動が少ない無線電力伝送装置を提供することができる。
以上説明したように、本発明によれば、上記実施形態と同様な効果を奏する無線電力伝送装置を提供することができる。
以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
たとえば、隣接共振器間結合係数の小さい順に、無負荷Q値の高い共振器を配置することが望ましい。さらに隣接共振器間結合係数の逆数に比例して隣接共振器の無負荷Q値を配分することが望ましい。
図7を用いて、本発明の無線電力伝送装置の実施例について以下に説明する。
まず、図7の左から入力された電力Pが、入力部320を通って、外部Q値Qe−inを通してインピーダンス整合して共振器RFを共振させる。共振器RFと共振器RFとの間は磁界を通して共鳴させ、その結合係数はk1,2とする。共振器RFが形成する磁界は、結合係数k2,3を通して共振器RFを共鳴させ、共振器RFが共振する。さらに共振器RFが形成する磁界は、結合係数k3,4を通して共振器RFを共鳴させ、共振器RFが共振する。
最後に、共振器RFと出力部420の間の外部Q値Qe−outを通して出力部に電力Pが伝送される。この際、入力部320と共振器RF、あるいは共振器RFと出力部420の電磁界結合には、ギャップ結合を用いてもよいし、タップ結合を用いてもよく、いずれの場合でもインピーダンス整合を取ることできる。共振器RFや共振器RFは、たとえば小型化のため、他の共振器RFおよび共振器RFより、少し小さい無負荷Q値の共振器を用いてもよい。
一方、上述したように、共振器RFと共振器RFは、その間の距離dをなるべく長くするため、できるだけ高い無負荷Q値の共振器を用いることが望ましい。なお、所望の結合係数を実現するため、予め結合係数の共振器間の相対位置依存性や相対角度依存性を測定しておく。この際、送電器300や受電器400を小型化するために、共振器RFと共振器RFの角度を意図的にずらすなど考えられるが、これらのアイディアは帯域通過フィルタの小型化のために以前から検討されており、そのアイディアを流用することができる。外部Q値Qe−inやQe−outも、予め入力部320と共振器RFの間や共振器RFと出力部420の間でその位置依存性などを測定しておき、所望の値を得ることができる。
一方で、所望の結合係数は、予め用いる共振器の無負荷Q値と必要な帯域幅、などから、相当するフィルタのタイプを決め、モード結合理論により、計算しておくことができる。さらに、伝達関数を計算して、所望の特性が得られることを確認しておくとよい。また、電力伝送で用いる周波数から、共振器の中心周波数や帯域幅は決定することができる。
たとえば、ISM帯(Industry Science Medical band)である周波数13.56MHzを、共振器302および共振器402の中心周波数、すなわち共振周波数に選ぶことができる。この際、共振器302および共振器402の中心周波数の精度は高ければ高いほどよいが、共振周波数の1/Qより十分小さい、1kHz以下の単位で揃っていれば大きな差異はでない。本明細書では、このような大きな差異のでない状況を「略同一」と称している。
本実施例において、共振器RFと共振器RFの無負荷Q値は785、共振器RFと共振器RFの無負荷Q値は1215とする。且つ、結合係数はk1,2=k3,4=0.008031、k2,3=0.005169を選択する。この場合、共振器の無負荷Q値を一律1000とした場合であって、比帯域1%(表1のk1,2=k3,4=0.008409、k2,3=0.005412)の場合の電力伝送効率59.46%(図8)と同じ電力伝送効率が、より小さいk2,3の値(0.005169)で得られる。すなわち、電力伝送効率の低下を抑制しながら、送電器300と受電器400の間の隣接共振器間距離dを長距離化できる。
結合係数k1,2およびk3,4を等しくするためには、共振器間距離、共振器間相対角度、共振器間の位置ずれを調整したり、共振器間に誘電体、磁性体、または金属を挿入することなどにより実現できる。
図9は、本発明の効果を説明するための計算結果を示す図である。横軸は無負荷Q値の和が4個で4000に決まっている場合の4個の共振器の無負荷Q値の組合せを示す。縦軸はその際に得られる電力伝送効率の通過帯域内での最大値を示す。
図9に示す通り、k1,2=k3,4=0.008031、k2,3=0.005169に固定した条件で、且つ共振器RFまたは共振器RFの無負荷Q値と、共振器RFまたは共振器RFの無負荷Q値との和を一定の2000とした場合に、無負荷Q値の組合せによる電力伝送効率の変化を示す。この図に示す通り、共振器RFまたは共振器RFの無負荷Q値が785、共振器RFまたは共振器RFの無負荷Q値が1215の場合に最大の電力伝送効率59.46%が得られる。この値は、共振器RFまたは共振器RFの無負荷Q値と、共振器RFまたは共振器RFの無負荷Q値とを和を一定の2000として、隣接共振器間結合係数の逆数の1/k1,2と1/k2,3の割合で配分した値である。
このように、隣接共振器間結合係数の小さい順に、無負荷Q値の高い共振器を配置することが望ましい。さらに、隣接共振器間結合係数の逆数に比例して隣接共振器の無負荷Q値を配分することが望ましい。
比較例として、非特許文献1の図3に示されるスパイラルコイル共振器の線間距離g=2cmの場合の結合係数と共振器間距離依存性を用いた場合、比帯域1.5%とすると、共振器数n+mが2個の場合、k1,2=0.0106となり、共振器間距離は52cmとなる。
一方、同じく比帯域1.5%で、本発明に従って、共振器数n+mを4個とした場合、k2,3=0.00812となり、共振器間距離は58.35cmとなり、比較例の場合より12%、隣接共振器間距離を伸ばすことができる。
なお、比帯域1.5%とした理由は非特許文献1の図3に示されるデータ範囲により決めたものである。上述の計算では12%長距離化したが、非特許文献2の図16に記載のように共振器形状を工夫し、より緩やかな傾斜の結合係数の共振器間距離依存性を実現すれば、さらに長距離化の効果は大きくなることは言うまでもない。
なお、本発明の実施例では磁界による共鳴の場合を記述したが、共振器が誘電体共振器であるような場合には電界による共鳴となり、本発明が適用されることは言うまでもない。
以上説明したように、本発明によれば、装置の大型化を抑制するとともに、電力伝送効率の低下を抑制しながら、無線電力伝送装置1内の隣接共振器間距離、特に送電器100と受電器200の間の隣接共振器間距離dを長距離化することができるとともに、隣接共振器間距離の変動に対して、電力伝送効率の変動が少ない無線電力伝送装置を提供することができる。
なお、隣接共振器間距離の変動に対して、電力伝送効率の変動が少ない無線電力伝送装置としては、共振器数n+mを奇数とすることも考えられる。この場合、周波数特性上、共振周波数、あるいは中心周波数において、必ず伝送効率の極大値を得ることができる。したがって、共振周波数において、電力を伝送する場合には、隣接共振器間距離が変動しても必ず伝送効率の極大値で電力伝送できるため、電力伝送効率の変動が少ない無線電力伝送装置を提供することができる。しかしながら、長距離化等の他の効果を得られなくなる。
以上、実施形態および実施例を参照して本願発明を説明したが、本願発明は上記実施形態および実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
以下、参考形態の例を付記する。
1. 送電器と、前記送電器から伝送された電力を取り出す受電器と、を備え、
前記送電器は、
共振周波数が略同一の少なくとも2個の共振器が当該共振器の発生する電界または磁界を通して共鳴し、直列の結合状態となる第1の共振器列と、
周波数が該共振周波数と略同一の周波数成分からなる電力を発生させて前記発生された電力を前記第1の共振器列の一端に供給する入力部と、を含み、
前記受電器は、
前記共振周波数と共振周波数が略同一の少なくとも2個の共振器が当該共振器の発生する電界または磁界を通して共鳴し、直列の結合状態となる第2の共振器列と、
前記送電器から伝送された前記電力を、前記第2の共振器列の一端から取り出す出力部と、を含み、
前記送電器の前記第1の共振器列の内、前記入力部と繋がる前記一端と異なる端部に位置する他端の共振器と、前記受電器の前記第2の共振器列の内、前記出力部と繋がる前記一端と異なる端部に位置する他端の共振器と、を電界または磁界を通して共鳴させ、直列の結合状態とする無線電力伝送装置。
2. 1.に記載の無線電力伝送装置において、
前記送電器の前記共振器の数と前記受電器の前記共振器の数が共に等しい無線電力伝送装置。
3. 2.に記載の無線電力伝送装置において、
前記送電器の前記第1の共振器列の、前記入力部側から順に数えた各々の結合係数が、
前記受電器の前記第2の共振器列の、前記出力部側から順に数えた結合係数と、
各々同じ順番の結合係数間で略同一の値を取る無線電力伝送装置。
4. 3.に記載の無線電力伝送装置において、
前記送電器の前記共振器の数と前記受電器の前記共振器の数が共に等しく2個である無線電力伝送装置。
5. 1.に記載の無線電力伝送装置において、
前記送電器の前記第1の共振器列の内、前記入力部と繋がる前記一端と異なる前記端部に位置する共振器に無負荷Q値が最大の共振器を用い、または、前記受電器の前記第2の共振器列の内、前記出力部と繋がる前記一端と異なる前記端部に位置する共振器に無負荷Q値が最大の共振器を用いる無線電力伝送装置。
6. 共振周波数が略同一の少なくとも2個の共振器を含む第1の共振器列と、前記第1の共振器列の一端に設けられた入力部とを含む送電器と、前記共振周波数と共振周波数が略同一の少なくとも2個の共振器を含む第2の共振器列と、前記送電器から伝送された電力を前記第2の共振器列の一端から取り出す出力部と、を含む受電器と、を設け、
前記送電器の前記第1の共振器列を、当該共振器の発生する電界または磁界を通して共鳴させ、直列の結合状態とし、
前記送電器の前記入力部が、周波数が該共振周波数と略同一の周波数成分からなる電力を発生させ、
前記送電器の前記入力部が前記発生した電力を前記第1の共振器列の一端に供給し、
前記送電器の前記第1の共振器列の内、前記入力部と繋がる前記一端と異なる端部に位置する他端の共振器と、前記受電器の前記第2の共振器列の内、前記出力部と繋がる前記一端と異なる端部に位置する他端の共振器と、を電界または磁界を通して共鳴させ、直列の結合状態とし、
前記受電器の前記出力部が、前記送電器から伝送された前記電力を、前記第2の共振器列の前記一端から取り出す無線電力伝送方法。
1 無線電力伝送装置
100 送電器
102、RF、・・・、RF 共振器
110 第1の共振器列
112 一端
114 他端
120 入力部
122 入力端子
200 受電器
202、RFn+1、・・・、RFn+m 共振器
210 第2の共振器列
212 一端
214 他端
220 出力部
222 出力端子
隣接共振器間距離
共振周波数
無負荷Q値
k 結合係数
e−in、Qe−out 外部Q値
2 無線電力伝送装置
300 送電器
302、RF、RF 共振器
310 第1の共振器列
320 入力部
400 受電器
402、RF、RF 共振器
410 第2の共振器列
420 出力部
隣接共振器間距離

Claims (4)

  1. 送電器と、前記送電器から伝送された電力を取り出す受電器と、を備え、
    前記送電器は、
    共振周波数が略同一の少なくとも2個の共振器が当該共振器の発生する電界または磁界を通して共鳴し、直列の結合状態となる第1の共振器列と、
    周波数が該共振周波数と略同一の周波数成分からなる電力を発生させて前記発生された電力を前記第1の共振器列の一端に供給する入力部と、を含み、
    前記受電器は、
    前記共振周波数と共振周波数が略同一の少なくとも2個の共振器が当該共振器の発生する電界または磁界を通して共鳴し、直列の結合状態となる第2の共振器列と、
    前記送電器から伝送された前記電力を、前記第2の共振器列の一端から取り出す出力部と、を含み、
    前記送電器の前記第1の共振器列の内、前記入力部と繋がる前記一端と異なる端部に位置する他端の共振器と、前記受電器の前記第2の共振器列の内、前記出力部と繋がる前記一端と異なる端部に位置する他端の共振器と、を電界または磁界を通して共鳴させ、直列の結合状態とし、
    前記送電器の前記共振器の数と前記受電器の前記共振器の数が共に等しく、
    前記送電器の前記第1の共振器列の、前記入力部側から順に数えた各々の結合係数が、
    前記受電器の前記第2の共振器列の、前記出力部側から順に数えた結合係数と、
    各々同じ順番の結合係数間で略同一の値を取る無線電力伝送装置。
  2. 請求項に記載の無線電力伝送装置において、
    前記送電器の前記共振器の数と前記受電器の前記共振器の数が共に等しく2個である無線電力伝送装置。
  3. 請求項1に記載の無線電力伝送装置において、
    前記送電器の前記第1の共振器列の内、前記入力部と繋がる前記一端と異なる前記端部に位置する共振器に無負荷Q値が最大の共振器を用い、または、前記受電器の前記第2の共振器列の内、前記出力部と繋がる前記一端と異なる前記端部に位置する共振器に無負荷Q値が最大の共振器を用いる無線電力伝送装置。
  4. 共振周波数が略同一の少なくとも2個の共振器を含む第1の共振器列と、前記第1の共振器列の一端に設けられた入力部とを含む送電器と、前記共振周波数と共振周波数が略同一の少なくとも2個の共振器を含む第2の共振器列と、前記送電器から伝送された電力を前記第2の共振器列の一端から取り出す出力部と、を含む受電器と、を設け、
    前記送電器の前記第1の共振器列を、当該共振器の発生する電界または磁界を通して共鳴させ、直列の結合状態とし、
    前記送電器の前記入力部が、周波数が該共振周波数と略同一の周波数成分からなる電力を発生させ、
    前記送電器の前記入力部が前記発生した電力を前記第1の共振器列の一端に供給し、
    前記送電器の前記第1の共振器列の内、前記入力部と繋がる前記一端と異なる端部に位置する他端の共振器と、前記受電器の前記第2の共振器列の内、前記出力部と繋がる前記一端と異なる端部に位置する他端の共振器と、を電界または磁界を通して共鳴させ、直列の結合状態とし、
    前記受電器の前記出力部が、前記送電器から伝送された前記電力を、前記第2の共振器列の前記一端から取り出し、
    前記送電器の前記共振器の数と前記受電器の前記共振器の数が共に等しく、
    前記送電器の前記第1の共振器列の、前記入力部側から順に数えた各々の結合係数が、
    前記受電器の前記第2の共振器列の、前記出力部側から順に数えた結合係数と、
    各々同じ順番の結合係数間で略同一の値を取る無線電力伝送方法。
JP2011164852A 2011-07-27 2011-07-27 無線電力伝送装置および方法 Active JP5742548B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011164852A JP5742548B2 (ja) 2011-07-27 2011-07-27 無線電力伝送装置および方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011164852A JP5742548B2 (ja) 2011-07-27 2011-07-27 無線電力伝送装置および方法

Publications (2)

Publication Number Publication Date
JP2013031272A JP2013031272A (ja) 2013-02-07
JP5742548B2 true JP5742548B2 (ja) 2015-07-01

Family

ID=47787772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011164852A Active JP5742548B2 (ja) 2011-07-27 2011-07-27 無線電力伝送装置および方法

Country Status (1)

Country Link
JP (1) JP5742548B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101730824B1 (ko) * 2009-11-30 2017-04-27 삼성전자주식회사 무선 전력 트랜시버 및 무선 전력 시스템
JP5526796B2 (ja) * 2010-01-15 2014-06-18 ソニー株式会社 ワイヤレス給電ラック
JP2011160634A (ja) * 2010-02-04 2011-08-18 Casio Computer Co Ltd 電力伝送システム及び送電装置

Also Published As

Publication number Publication date
JP2013031272A (ja) 2013-02-07

Similar Documents

Publication Publication Date Title
EP2610964A1 (en) Multi-antenna device and communication apparatus
CN103700922A (zh) 通讯装置及其天线元件的设计方法
Chu et al. ${\rm TE} _ {01\delta} $-Mode Dielectric-Resonator Filters With Controllable Transmission Zeros
US9306258B2 (en) Mixed-mode cavity filter
CN102509822A (zh) 双通带微带滤波器
JP2012105193A (ja) 方向性結合器
US20160126622A1 (en) Integrated multi-band bandpass filters based on dielectric resonators for mobile and other communication devices and applications
US8942774B2 (en) Radio-frequency filter comprising an even mode resonance of a same phase inside the bandwidth and an odd mode resonance of a reverse phase outside the bandwidth
JP5982493B2 (ja) 半同軸共振器
JP5625825B2 (ja) 信号伝送装置、フィルタ、ならびに基板間通信装置
JP5081284B2 (ja) 信号伝送装置、フィルタ、ならびに基板間通信装置
KR101616768B1 (ko) 너치가 형성된 유전체 도파관 필터
US20180159194A1 (en) Coupling window, dielectric waveguide filter, and resonator assembly
JP5742548B2 (ja) 無線電力伝送装置および方法
US10320077B2 (en) Broadband antenna
JP6262437B2 (ja) 有極型帯域通過フィルタ
JP5340016B2 (ja) 導波管バンドパスフィルタ
CN202434676U (zh) 双通带微带滤波器器件及其双通带微带滤波器
US11211678B2 (en) Dual-band resonator and dual-band bandpass filter using same
US9627733B2 (en) Millimeter waveband filter
JP5966238B2 (ja) マルチモード共振器、マルチモードフィルタ及び無線通信装置
EP2790266B1 (en) Filter and resonator
JP5858521B2 (ja) マルチモード共振器、マルチモードフィルタ及び無線通信装置
KR101221418B1 (ko) 메타물질구조를 포함하는 일체형 유전체 필터 및 이를 이용한 통신 중계 장치
WO2013047850A1 (ja) マルチモード共振器、マルチモードフィルタ及び無線通信装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150420

R150 Certificate of patent or registration of utility model

Ref document number: 5742548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150