JP5738735B2 - Twin roll cooling device for molten slag treatment - Google Patents

Twin roll cooling device for molten slag treatment Download PDF

Info

Publication number
JP5738735B2
JP5738735B2 JP2011223661A JP2011223661A JP5738735B2 JP 5738735 B2 JP5738735 B2 JP 5738735B2 JP 2011223661 A JP2011223661 A JP 2011223661A JP 2011223661 A JP2011223661 A JP 2011223661A JP 5738735 B2 JP5738735 B2 JP 5738735B2
Authority
JP
Japan
Prior art keywords
roll
cooling
cooling water
molten slag
water flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011223661A
Other languages
Japanese (ja)
Other versions
JP2013082582A (en
Inventor
勇樹 萩尾
勇樹 萩尾
博幸 當房
博幸 當房
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel Corp
Nippon Steel Nisshin Co Ltd
Nippon Steel Engineering Co Ltd
Original Assignee
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel Corp
Nippon Steel Nisshin Co Ltd
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kobe Steel Ltd, Nippon Steel Corp, Nippon Steel Nisshin Co Ltd, Nippon Steel Engineering Co Ltd filed Critical JFE Steel Corp
Priority to JP2011223661A priority Critical patent/JP5738735B2/en
Publication of JP2013082582A publication Critical patent/JP2013082582A/en
Application granted granted Critical
Publication of JP5738735B2 publication Critical patent/JP5738735B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Furnace Details (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、溶融スラグ処理用双ロール冷却装置に関する。   The present invention relates to a twin roll cooling device for treating molten slag.

溶融スラグを連続的に処理するプロセスとして、図2に示すように、水平にロール隙12を介して対向配置した1対の冷却ロール3,3を夫々ロール隙12から下方への向きに回転(内向き回転)させつつロール隙12上へ溶融スラグ10を注入し冷却固化させながらロール隙12から下方へ送出する双ロール冷却技術が知られている(例えば特許文献1〜3等)。これを内側送出型と仮称する。尚、1はスラグ鍋、2はスラグ樋、11は固化スラグである(以下同じ)。   As a process for continuously processing the molten slag, as shown in FIG. 2, a pair of cooling rolls 3, 3 horizontally arranged opposite to each other through the roll gap 12 are rotated downward from the roll gap 12 ( There is known a twin-roll cooling technique in which molten slag 10 is injected onto the roll gap 12 while being inwardly rotated) and cooled and solidified to be sent downward from the roll gap 12 (for example, Patent Documents 1 to 3). This is tentatively referred to as an inner delivery type. In addition, 1 is a slag pan, 2 is a slag bowl, 11 is a solidified slag (the same is true hereafter).

一方、図3に示すように、水平に相互接触させて対向配置した1対の冷却ロール3,3を夫々相互接触部13から上方への向きに回転(外向き回転)させつつ相互接触部13上へ溶融スラグを注入し冷却固化させながら冷却ロール対の上極側から対向面の反対側である両外側へ送出する双ロール冷却技術が知られている(非特許文献1)。これを両外側送出型と仮称する。この両外側送出型は、前記内側送出型に比べて、冷却ロール上でのスラグ滞留時間をより長く取ることができて、熱伝導率の低いスラグの冷却固化処理に、より適している。   On the other hand, as shown in FIG. 3, the pair of cooling rolls 3, 3 that are horizontally opposed to each other and arranged opposite to each other are rotated upward (rotated outward) from the mutual contact portion 13. There is known a twin-roll cooling technique in which molten slag is poured upward and cooled and solidified, and sent from the upper pole side of the cooling roll pair to both outer sides opposite to the opposing surfaces (Non-Patent Document 1). This is tentatively referred to as a double-side delivery type. This both-outside delivery type can take a longer slag residence time on the cooling roll than the inside delivery type, and is more suitable for cooling and solidifying a slag having a low thermal conductivity.

特開昭60−264349号公報JP 60-264349 A 特開2003−137617号公報JP 2003-137617 A 特開2008−308398号公報JP 2008-308398 A

明石、市川、鈴木:「双ロール式間接水冷による新スラグ冷却技術」、JFE技報No.19(2008年2月)p.61〜64Akashi, Ichikawa, Suzuki: “New slag cooling technology by twin roll indirect water cooling”, JFE Technical Report No. 19 (February 2008) p. 61-64

発明者らは、前記両外側送出型の双ロール冷却装置を、製造量的規模が大きく(60t/h)、スラグ塩基度が高く、固化スラグ(製品)の目標厚みが種々異なる製鋼スラグの処理に適用することを検討し、次のような課題があることが分った。
(イ)製造量的規模の大きい製鋼スラグを処理するためには、冷却ロール径を従来の1.0m以下から1.2m以上へとスケールアップする必要がある。
(ロ)上記スケールアップのために、冷却ロールの耐久性確保及び製作コスト低減の観点から、ロール内部構造として、図4(a)(b)に示す様な、ステンレス鋼製の中子(内筒)4に設けた単螺旋状の溝5を銅合金製のジャケット(外筒)6で被覆して冷却水流路7を構成するジャケット水冷構造を有する双ロール冷却装置を候補に暫定した。この暫定候補装置において、ジャケット材料としての銅合金は、クロム-ジルコニウム銅(質量%で、0.5〜1.5%Cr-0.08〜0.30%Zr-残部Cu及び不可避的不純物。以下、CCMBともいう)が好適である。中子材料としてのステンレス鋼は、SUS304等が好適である。尚、内筒4の内面側には、冷却水流路7への給水配管(図示しない)及び冷却ロール3の回転機構(図示しない)が配設される。
(ハ)然し、ジャケット水冷構造に関しては、次の様な問題が有ることが分った。即ち、暫定候補装置の単螺旋構造の冷却水流路では、稼働前は図4(b)のように溝5の溝壁上端部とジャケット6とは密着しているが、FEM(有限要素法)での水流計算及び伝熱計算によると、稼働中は、冷却ロール3に高温の溶融スラグが接触すると銅合金製のジャケット6が周方向に熱膨張し、その熱膨張量はこれと接触する中子4の材料であるステンレス鋼のそれを上回るため、図4(c)に示す様に、ジャケット6と、中子4の溝5を区画する溝壁の上端部との間に不可避的に隙間14が形成され、この隙間14から隣りの下流側の流路へ抜ける短絡流9が生じ、この短絡流9は、冷却能力に最も寄与する主流8である流路中央部を流れる螺旋流の流速を低下させて、双ロール冷却装置の冷却能力低下の原因となる問題がある事が分った。
(ニ)又、図3の様な従来の装置構成では、冷却ロールの回転数を加減することで、固化スラグ(製品)の厚み調整が可能である。即ち、冷却ロールの回転数を上げていくと製品の厚みは薄くなっていく。然し、モデル実験によると、目標厚みを厚くしていくと、双ロールの両外側へ送出される固化スラグに未凝固の自由表面が残存し、製品厚みのばらつきが大きくなることも分かった。
The inventors have processed the double-roll cooling device of the both-outside delivery type with a steelmaking slag having a large production scale (60 t / h), high slag basicity, and various target thicknesses of solidified slag (product). It was found that there are the following problems.
(B) In order to process steelmaking slag with a large production scale, it is necessary to scale up the cooling roll diameter from the conventional 1.0 m or less to 1.2 m or more.
(B) From the viewpoint of securing the durability of the cooling roll and reducing the manufacturing cost for the scale up, the inner structure of the roll as shown in FIGS. 4 (a) and 4 (b) A twin roll cooling device having a jacket water cooling structure in which a single spiral groove 5 provided in a cylinder (4) is covered with a copper alloy jacket (outer cylinder) 6 to form a cooling water flow path 7 is tentatively proposed. In this provisional candidate device, the copper alloy as the jacket material is chromium-zirconium copper (mass%, 0.5 to 1.5% Cr—0.08 to 0.30% Zr—remainder Cu and unavoidable impurities. Hereinafter, it is also referred to as CCMB). SUS304 etc. are suitable for the stainless steel as the core material. A water supply pipe (not shown) to the cooling water flow path 7 and a rotation mechanism (not shown) of the cooling roll 3 are disposed on the inner surface side of the inner cylinder 4.
(C) However, it has been found that the jacket water cooling structure has the following problems. That is, in the single helical structure cooling water flow path of the temporary candidate device, the groove wall upper end portion of the groove 5 and the jacket 6 are in close contact with each other as shown in FIG. 4 (b), but FEM (finite element method) is used. According to the water flow calculation and heat transfer calculation, the copper alloy jacket 6 thermally expands in the circumferential direction when the high-temperature molten slag contacts the cooling roll 3 during operation, and the amount of thermal expansion is in contact with this. Since it exceeds that of stainless steel, which is the material of the core 4, a gap is inevitably formed between the jacket 6 and the upper end of the groove wall that defines the groove 5 of the core 4, as shown in FIG. 14 is formed, and a short-circuit flow 9 is generated from the gap 14 to the adjacent downstream flow path. The short-circuit flow 9 is a flow velocity of the spiral flow that flows through the central portion of the flow path that is the main flow 8 that contributes most to the cooling capacity. It has been found that there is a problem that causes a decrease in the cooling capacity of the twin-roll cooling device. It was.
(D) In the conventional apparatus configuration as shown in FIG. 3, the thickness of the solidified slag (product) can be adjusted by adjusting the number of rotations of the cooling roll. That is, as the number of rotations of the cooling roll is increased, the thickness of the product becomes thinner. However, according to a model experiment, it was found that as the target thickness was increased, an unsolidified free surface remained in the solidified slag delivered to both outer sides of the twin rolls, resulting in a large variation in product thickness.

また、従来の両外側送出型の溶融スラグ処理用双ロール冷却装置では、冷却ロール径をスケールアップすると、ジャケット水冷構造の冷却能力が低下するという、未解決の課題があった。又、目標厚みを厚くすると製品厚みのばらつきが大きくなるという課題もあった。   Further, in the conventional double-roll cooling device for melting slag treatment of both outer side delivery types, there is an unsolved problem that when the cooling roll diameter is scaled up, the cooling capacity of the jacket water cooling structure is lowered. Further, when the target thickness is increased, there is a problem that the variation in product thickness increases.

発明者らは上記課題を解決するために鋭意検討を重ね、その結果、ジャケット水冷構造を工夫することで、前記隙間が生じても前記短絡流の流速が低減し、以て前記主流の流速が確保可能であるという知見を得、これに基いて本発明を成すに至った。
すなわち、本発明は、水平に相互接触させて対向配置した1対の冷却ロールを夫々外向き回転させつつ相互接触部上へ溶融スラグを注入し冷却固化させながら冷却ロール対の両外側へ送出する構成とされ、前記冷却ロールはステンレス鋼製の内筒である中子の外面側に形成した溝を銅合金製の外筒であるジャケットで被覆してなるジャケット水冷構造の冷却水流路を有する溶融スラグ処理用双ロール冷却装置であって、前記冷却水流路を、前記溝が相異なる2系統の螺旋を形成し且つ隣り合う異系統の螺旋溝同士で冷却水流の向きが同じである2重螺旋構造の冷却水流路としたことを特徴とする溶融スラグ処理用双ロール冷却装置である。
The inventors have made extensive studies to solve the above problems, and as a result, by devising a jacket water cooling structure, the flow rate of the short-circuit flow is reduced even if the gap occurs, and thus the flow rate of the main flow is reduced. Based on this finding, the present invention has been achieved.
That is, according to the present invention, a pair of cooling rolls arranged opposite to each other in horizontal contact with each other is rotated outwardly, and molten slag is injected onto the mutual contact portions to cool and solidify and are sent to both outer sides of the cooling roll pair. The cooling roll has a cooling water flow path with a jacket water cooling structure in which a groove formed on the outer surface side of a core that is an inner cylinder made of stainless steel is covered with a jacket that is an outer cylinder made of copper alloy. A twin-roll cooling device for slag treatment, wherein the cooling water flow path is formed by two spirals in which the grooves are different from each other and the direction of the cooling water flow is the same between adjacent spiral grooves in different systems. It is a twin-roll cooling device for molten slag treatment characterized by having a cooling water flow path having a structure.

本発明では、前記1対の冷却ロールの夫々に、該夫々のロール面上を通過中のスラグを該ロール面へ押付けて展延する形状制御ロールを付設した形態とする事が好ましい。   In the present invention, it is preferable that each of the pair of cooling rolls is provided with a shape control roll that presses and spreads the slag passing through the roll surface against the roll surface.

本発明によれば、冷却ロールの冷却水流路を、前記溝が相異なる2系統の螺旋を形成し且つ隣り合う異系統の螺旋溝同士で冷却水流の向きが同じである2重螺旋構造の冷却水流路としたから、ジャケット水冷構造におけるジャケットと中子との間の熱膨張差で不可避的に形成される隙間から隣りの下流側の流路へ抜ける短絡流が弱まり、冷却能力を稼ぐための冷却水の主流である螺旋流の流速低下が軽減されて、双ロール冷却装置の冷却能力低下を有効に防止できる。又、形状制御ロールを付設した形態とすることで、目標厚みが厚め側でも製品厚み精度を向上させることができる。   According to the present invention, the cooling water flow path of the cooling roll has a double spiral structure in which the grooves form two different spirals and the direction of the cooling water flow is the same between the adjacent different spiral grooves. Since the water flow path is used, the short-circuit flow that escapes from the gap inevitably formed by the difference in thermal expansion between the jacket and the core in the jacket water cooling structure to the adjacent downstream flow path is weakened, and the cooling capacity is increased. A decrease in the flow velocity of the spiral flow, which is the main flow of cooling water, is reduced, and a decrease in the cooling capacity of the twin roll cooling device can be effectively prevented. In addition, by adopting a configuration in which a shape control roll is provided, the product thickness accuracy can be improved even when the target thickness is larger.

本発明の実施形態を示すジャケット水冷構造(a)(b)及びその作用効果(c)を示す模式図である。FIG. 2 is a schematic diagram showing a jacket water cooling structure (a) and (b) and the function and effect (c) showing an embodiment of the present invention. 内側送出型の双ロール冷却技術を示す概略図である。It is the schematic which shows an inner delivery type twin roll cooling technique. 両外側送出型の双ロール冷却技術を示す概略図である。It is the schematic which shows the double roll cooling technique of both outer side delivery type | molds. 暫定候補装置(比較装置)のジャケット水冷構造(a)(b)及びその問題点(c)を示す模式図である。It is a schematic diagram which shows the jacket water cooling structure (a) and (b) of a temporary candidate apparatus (comparison apparatus), and its problem (c). 本発明に係る形状制御ロールを付設した実施形態を示す概略図である。It is the schematic which shows embodiment which attached the shape control roll which concerns on this invention. 図1の内筒外面に形成した溝の平面展開図である。FIG. 2 is a plan development view of a groove formed on the outer surface of the inner cylinder in FIG. 1.

本発明に係る双ロール冷却装置(以下、本発明装置ともいう)は、例えば図3の様に、水平に相互接触させて対向配置した1対の冷却ロール3,3を夫々外向き回転させつつ相互接触部13上へ溶融スラグ10を注入し冷却固化させながら冷却ロール対の両外側へ送出する構成とされた点、及び、例えば図4の様に、冷却ロール3の冷却水流路7が、ステンレス鋼製の中子(内筒)4の外面側に形成した溝5を銅合金製のジャケット(外筒)6で被覆してなるジャケット水冷構造である点では、上記暫定候補装置(以下、比較装置ともいう)と同様である。又、ジャケット材料である銅合金として前記CCMBが、中子材料であるステンレス鋼として前記SUS304等が、夫々好適である点でも比較装置と同様である。   The twin roll cooling device according to the present invention (hereinafter also referred to as the present device), for example, as shown in FIG. 3, rotates a pair of cooling rolls 3 and 3 that are horizontally opposed to each other while facing each other. The point where the molten slag 10 is injected onto the mutual contact portion 13 and cooled and solidified, and sent to both outer sides of the pair of cooling rolls, and the cooling water flow path 7 of the cooling roll 3 is, for example, as shown in FIG. In terms of the jacket water cooling structure in which the groove 5 formed on the outer surface side of the core (inner cylinder) 4 made of stainless steel is covered with a jacket (outer cylinder) 6 made of copper alloy, This is the same as the comparison device). Also, the CCMB is suitable as the copper alloy as the jacket material, and the SUS304 as the stainless steel as the core material, which is similar to the comparative device.

然し、比較装置においては図4(a)(b)に示される様に冷却水流路7が単螺旋構造であり、これに対し、本発明装置においては冷却水流路が前記2重螺旋構造であり、この点で本発明装置は比較装置とは一線を画する。
図1(a)(b)は本発明装置の実施形態を示す概略図、図6は図1(a)の内筒外面に形成した溝の平面展開図である。図1(a)(b)及び図6において、5A,5Bは相異なる2系統(例えばA系統とB系統)の螺旋を形成する溝(螺旋溝)であり、これら相異なる2系統の螺旋溝5A、5Bは、ロール軸方向に交互に配列しており、図6の様に、各螺旋溝5A,5Bには、ロール軸方向の一端部側に冷却水入口15A,15Bを設け、且つロール軸方向の他端部側に冷却水出口16A,16Bを設けて、隣り合う異系統の螺旋溝5A,5B同士で冷却水流の向きが同じとなるようにしてある。
However, in the comparative apparatus, the cooling water flow path 7 has a single spiral structure as shown in FIGS. 4 (a) and 4 (b), whereas in the apparatus of the present invention, the cooling water flow path has the double helical structure. In this respect, the device of the present invention is different from the comparison device.
1 (a) and 1 (b) are schematic views showing an embodiment of the apparatus of the present invention, and FIG. 6 is a plan development view of a groove formed on the outer surface of the inner cylinder of FIG. 1 (a). In FIGS. 1 (a), (b) and 6, 5A and 5B are grooves (spiral grooves) forming spirals of two different systems (for example, system A and system B). 5A and 5B are alternately arranged in the roll axis direction, and as shown in FIG. 6, each spiral groove 5A and 5B is provided with cooling water inlets 15A and 15B on one end side in the roll axis direction. Cooling water outlets 16A and 16B are provided on the other end side in the axial direction so that the direction of the cooling water flow is the same between the adjacent spiral grooves 5A and 5B of different systems.

図1において、これら溝5A,5Bをジャケット6で被覆してなるジャケット水冷構造の冷却水流路7A,7Bは、これ即ち、前記溝5A,5Bが相異なる2系統の螺旋を形成し且つ隣り合う異系統の螺旋溝5A,5B同士で冷却水流の向きが同じである2重螺旋構造の冷却水流路7A,7Bである。
図1(c)は、本発明装置の作用効果を示す概略図である。稼働中は、比較装置に係る図4(c)と同様、ジャケット6と、中子4の溝5を区画する溝壁の上端部との間に不可避的に隙間14が形成され、この隙間14から隣りの下流側の流路へ抜ける短絡流9Xが生じる。然しながら、比較装置の冷却水流路7は単螺旋構造であり、同系統の冷却水流路の隣り合う箇所では下流側が上流側に比べ冷却水入口からの距離にして螺旋の1ターン分だけ長くてその分だけ冷却水入口から前記隣り合う箇所までの流路抵抗が大きい。これに対して、本発明装置の冷却水流路7A,7Bは2重螺旋構造であり、異系統の冷却水流路7A,7Bの隣り合う箇所の下流側と上流側とは、冷却水入口からの螺旋に沿った距離が略等しいため冷却水入口から前記隣り合う箇所までの流路抵抗も略等しい。
In FIG. 1, the cooling water flow paths 7A and 7B having a jacket water cooling structure in which the grooves 5A and 5B are covered with a jacket 6 form two adjacent spirals, and the grooves 5A and 5B are adjacent to each other. The cooling water flow paths 7A and 7B have a double spiral structure in which the direction of the cooling water flow is the same between the spiral grooves 5A and 5B of different systems.
FIG. 1 (c) is a schematic view showing the function and effect of the device of the present invention. During operation, a gap 14 is inevitably formed between the jacket 6 and the upper end portion of the groove wall that defines the groove 5 of the core 4, as in FIG. A short-circuit flow 9X that flows from the first to the adjacent downstream flow path is generated. However, the cooling water flow path 7 of the comparison device has a single spiral structure, and in the adjacent portion of the cooling water flow path of the same system, the downstream side is longer than the upstream side by a distance of one turn of the spiral from the cooling water inlet. The flow path resistance from the cooling water inlet to the adjacent location is large by the amount. On the other hand, the cooling water flow paths 7A and 7B of the apparatus of the present invention have a double spiral structure, and the downstream side and the upstream side of the adjacent portions of the cooling water flow paths 7A and 7B of different systems are from the cooling water inlet. Since the distances along the spiral are substantially equal, the flow path resistance from the cooling water inlet to the adjacent location is also substantially equal.

従って、同じロール軸方向位置で隣り合う冷却水流路間の主流の流速差は、本発明装置のそれの方が比較装置のそれよりも小さく、それ故本発明装置における短絡流9Xの流速は、比較装置における短絡流9の流速よりも小さくなって、主流8A,8Bの流速低下が軽減され、以て、両外側送出型の双ロール冷却装置の冷却能力の低下を有効に防止できる。   Therefore, the flow velocity difference of the main flow between adjacent cooling water flow paths at the same roll axial direction position is smaller in the device of the present invention than that of the comparison device, and therefore the flow velocity of the short circuit flow 9X in the device of the present invention is It becomes smaller than the flow velocity of the short-circuit flow 9 in the comparison device, and the flow velocity decrease of the main flows 8A and 8B is reduced, so that it is possible to effectively prevent the decrease in the cooling capacity of the double-roll cooling device of the both-side delivery type.

次に、図5は、本発明に係る形状制御ロールを付設した実施形態を示す概略図である。同図において20は形状制御ロールであり、図3と同一又は相当部材には同じ符号を付し説明を省略する。図示の様に形状制御ロール20は1対の冷却ロール3,3の夫々に、該夫々のロール面上を通過中の固化スラグ11(若しくは表面側に未凝固部分を含む固化スラグ)を該ロール面へ押付けて展延する。これにより、目標厚みが厚め側で固化スラグ11に未凝固の自由表面が残存する場合であっても、製品厚みのばらつきを小さく抑えることができる。   Next, FIG. 5 is a schematic view showing an embodiment provided with a shape control roll according to the present invention. In the figure, reference numeral 20 denotes a shape control roll, and the same or corresponding members as those in FIG. As shown in the figure, the shape control roll 20 is provided with a solidified slag 11 (or a solidified slag including an unsolidified portion on the surface side) passing through the respective roll surfaces of the pair of cooling rolls 3 and 3. Press to the surface and spread. Thereby, even if it is a case where the target thickness is thicker and an unsolidified free surface remains in the solidified slag 11, variation in product thickness can be suppressed to a small value.

形状制御ロール20は、冷却ロール3との間のロールギャップを可変とするため、エアシリンダ等にて高さ方向位置可変に支持するのがよい。形状制御ロール20のロール材質は、SS400とし、そのロール径は、冷却ロール3のロール径に対する比にして1/3〜1/4程度が好ましい。また、形状制御ロール20は冷却ロール3と周速度を同調させて回転させると良い。さらに、形状制御ロール20も冷却ロール3と同様の内部構造とすると良い。   In order to make the roll gap between the shape control roll 20 and the cooling roll 3 variable, it is preferable to support the shape control roll 20 with an air cylinder or the like so that the position in the height direction is variable. The roll material of the shape control roll 20 is SS400, and the roll diameter is preferably about 1/3 to 1/4 as a ratio to the roll diameter of the cooling roll 3. The shape control roll 20 is preferably rotated in synchronism with the cooling roll 3 and the peripheral speed. Further, the shape control roll 20 may have the same internal structure as the cooling roll 3.

図1に示した本発明装置において表1のNo.2欄に示す与条件とした本発明例1と、図3に示した比較装置において表1のNo.1欄に示す与条件とした比較例1とについて、FLUENT(流体解析ソフトウエア)を用い、冷却ロール3のロール軸方向の中点から両側に夫々ロール全幅の1/4だけ離れた2点を両端とするロール幅中央域内の主流及び短絡流の流速を計算した。尚、隙間量は前もって熱膨張量計算で求めた値を与条件とした。   In the apparatus of the present invention shown in FIG. In Example 1 of the present invention having the given conditions shown in the column 2 and the comparison apparatus shown in FIG. For Comparative Example 1 with the given conditions shown in the first column, using FLUENT (fluid analysis software), two points separated from the midpoint in the roll axis direction of the cooling roll 3 by 1/4 of the full width of the roll on each side. The main flow and short circuit flow velocities in the central region of the roll width at both ends were calculated. In addition, the gap amount was set to a value obtained in advance by calculation of the amount of thermal expansion.

主流及び短絡流の流速の計算結果を表1に示す。尚、これら流速は、前記ロール幅中央域内の複数の位置で計算したが、表1にはそれら計算データの平均値を示した。
表1より、本発明例1は比較例1に比べ、短絡流の流速が小さく、主流の流速が比較例に対し約30%増となっており、稼働時にジャケット-中子間に隙間が生じても双ロール冷却装置の冷却能力低下を有効に防止できることが分る。
Table 1 shows the calculation results of the flow rates of the main flow and the short-circuit flow. These flow velocities were calculated at a plurality of positions in the roll width central region. Table 1 shows the average values of the calculated data.
According to Table 1, the first embodiment of the present invention has a smaller short-circuit flow velocity than the first comparative example, and the main flow velocity is about 30% higher than that of the comparative example, and a gap is generated between the jacket and the core during operation. However, it turns out that the cooling capacity fall of a twin roll cooling device can be prevented effectively.

Figure 0005738735
Figure 0005738735

又、本発明例1は、別途実行した、稼働状態に対応する伝熱解析計算結果によると、ジャケット外面温度が最高246℃であり、CCMBの許容応力上限に対応する330℃を下回るから過熱による耐力低下の問題はなく、又、ジャケット内面温度は最高155℃であり、冷却水供給圧力(6kgf/cm)下の飽和温度165℃を下回るから局所沸騰は起こらずそれによる流路損傷の問題もない。尚、冷却水供給圧力の好適範囲は6〜10kgf/cmである。 In addition, according to the heat transfer analysis calculation result corresponding to the operating state, Example 1 of the present invention has a maximum jacket outer surface temperature of 246 ° C., which is lower than 330 ° C. corresponding to the allowable upper limit of CCMB. There is no problem of proof stress reduction, and the jacket inner surface temperature is a maximum of 155 ° C., which is below the saturation temperature of 165 ° C. under the cooling water supply pressure (6 kgf / cm 2 ). Nor. In addition, the suitable range of a cooling water supply pressure is 6-10 kgf / cm < 2 >.

上記本発明例1の双ロール冷却装置を用い、冷却ロールのロール回転数を表2に示すとおり種々変えてCaO/SiO2=3.8の転炉スラグ(冷却ロールの相互接触部への注入温度:1500〜1600℃)を冷却固化させる実験を行い、本発明例2とした。一方、本発明例1の双ロール冷却装置に図5の形態で形状制御ロール20を付設してなる形状制御ロール付き双ロール冷却装置を用い、形状制御ロールと冷却ロールとの間のロールギャップを前記ロール回転数と共に表2に示すとおり変えて、本発明例2の場合と同じスラグを冷却固化させる実験を行い、本発明例3とした。形状制御ロールの材質はSS400、ロール径はΦ400mm、ロール幅は冷却ロール3のそれと同じとした。 Using the twin-roll cooling device of Example 1 of the present invention, the roll rotation speed of the cooling roll was variously changed as shown in Table 2, and the converter slag of CaO / SiO 2 = 3.8 (injection temperature to the mutual contact portion of the cooling roll: An experiment to cool and solidify (1500 ° C. to 1600 ° C.) was carried out, and the example 2 was obtained. On the other hand, using a twin roll cooling device with a shape control roll in which the shape control roll 20 is added to the twin roll cooling device of Example 1 of the present invention in the form of FIG. Experiments for cooling and solidifying the same slag as in Example 2 of the present invention were carried out as shown in Table 2 together with the number of roll rotations, and Example 3 was obtained. The material of the shape control roll was SS400, the roll diameter was Φ400 mm, and the roll width was the same as that of the cooling roll 3.

その結果、本発明例2,3とも、溶融スラグは冷却ロール表面で1,000〜1,300mm程度の幅に板状に広がり、冷却ロール3から離れた後、コンベア上に落下し、該コンベアにて搬送された。スラグは冷却ロール3上で、冷却ロールとの接触面側は凝固しているが、自由表面側は未凝固の場合もあり、溶融状態で流れてコンベアに達するものもあった。然しスラグはコンベア末端から落下する時点でほぼ全体が凝固しており、コンベアでの搬送中乃至コンベア末端から落下する際に割れて、20〜80mm程度の大きさの板状片となった。   As a result, in both inventive examples 2 and 3, the molten slag spreads in a plate shape with a width of about 1,000 to 1,300 mm on the surface of the cooling roll, and after falling away from the cooling roll 3, it falls onto the conveyor and is conveyed by the conveyor. It was done. Although the slag is solidified on the cooling roll 3 on the contact surface side with the cooling roll, the free surface side may be unsolidified and may flow in a molten state and reach the conveyor. However, the slag was almost completely solidified when it dropped from the end of the conveyor, and it was broken during transportation on the conveyor or when it dropped from the end of the conveyor to form a plate-like piece having a size of about 20 to 80 mm.

前記板状片をコンベア末端で各例のロール回転数の水準ごとに30個ずつ採取し、その厚み(製品スラグ厚という)を測定した。その測定データの平均値とバラツキ範囲を表2に示す。
表2より、本発明例2では冷却ロールの回転数を下げていくと製品スラグ厚は厚くなるので、ロール回転数により製品スラグ厚を制御できるが、厚めに制御しようとするとバラツキ範囲が急激に大きくなった。これに対し本発明例3では、ロール回転数と共にロールギャップを変更することにより、製品スラグ厚を厚めに制御したい場合でもバラツキ範囲を小さく抑えることができた。
Thirty pieces of the plate-like pieces were collected at the end of the conveyor for each roll rotation speed level, and the thickness (referred to as product slag thickness) was measured. Table 2 shows the average value and the variation range of the measurement data.
From Table 2, the product slag thickness becomes thicker as the cooling roll speed is lowered in Example 2 of the present invention. Therefore, the product slag thickness can be controlled by the roll speed, but if the control is made thicker, the variation range will be sharp. It became bigger. On the other hand, in Example 3 of the present invention, by changing the roll gap together with the roll rotation speed, it was possible to keep the variation range small even when it was desired to control the product slag thickness to be thick.

Figure 0005738735
Figure 0005738735

1 スラグ鍋
2 スラグ樋
3 冷却ロール
4 ステンレス鋼製の中子(内筒)
5 溝(AはA系統,BはB系統の意)
6 銅合金製のジャケット(外筒)
7 冷却水流路(AはA系統,BはB系統の意)
8 主流(流路中央部を流れる螺旋流; AはA系統,BはB系統の意)
9 短絡流(比較装置に係る)
9X 短絡流(本発明装置に係る)
10 溶融スラグ
11 固化スラグ
12 ロール隙
13 相互接触部
14 隙間(ジャケットと中子の間の隙間)
15 冷却水入口(AはA系統,BはB系統の意)
16 冷却水出口(AはA系統,BはB系統の意)
20 形状制御ロール
1 Slag pan 2 Slag bowl 3 Cooling roll 4 Stainless steel core (inner cylinder)
5 Groove (A means A line, B means B line)
6 Copper alloy jacket (outer cylinder)
7 Cooling water flow path (A is A system, B is B system)
8 Main flow (spiral flow in the center of the channel; A means A system, B means B system)
9 Short-circuit current (related to the comparison device)
9X Short-circuit current (according to the device of the present invention)
10 molten slag 11 solidified slag 12 roll gap 13 mutual contact portion 14 gap (gap between jacket and core)
15 Cooling water inlet (A is A system, B is B system)
16 Cooling water outlet (A is A system, B is B system)
20 Shape control roll

Claims (2)

水平に相互接触させて対向配置した1対の冷却ロールを夫々外向き回転させつつ相互接触部上へ溶融スラグを注入し冷却固化させながら冷却ロール対の両外側へ送出する構成とされ、前記冷却ロールはステンレス鋼製の内筒である中子の外面側に形成した溝を銅合金製の外筒であるジャケットで被覆してなるジャケット水冷構造の冷却水流路を有する溶融スラグ処理用双ロール冷却装置であって、前記冷却水流路を、前記溝が相異なる2系統の螺旋を形成し且つ隣り合う異系統の螺旋溝同士で冷却水流の向きが同じである2重螺旋構造の冷却水流路としたことを特徴とする溶融スラグ処理用双ロール冷却装置。   A pair of cooling rolls arranged opposite to each other in horizontal contact with each other is rotated outwardly, and molten slag is injected onto the mutual contact portion and cooled and solidified, and sent to both outer sides of the cooling roll pair. The roll is a twin roll cooling for molten slag treatment having a cooling water flow path with a jacket water cooling structure in which a groove formed on the outer surface side of a core which is an inner cylinder made of stainless steel is covered with a jacket which is an outer cylinder made of copper alloy. A cooling water flow path having a double helix structure in which the cooling water flow path is formed in two different spirals of the groove and the direction of the cooling water flow is the same between adjacent spiral grooves of different systems. A twin-roll cooling device for molten slag treatment characterized by the above. 前記1対の冷却ロールの夫々に、該夫々のロール面上を通過中のスラグを該ロール面へ押付けて展延する形状制御ロールを付設したことを特徴とする請求項1に記載の溶融スラグ処理用双ロール冷却装置。   2. The molten slag according to claim 1, wherein each of the pair of cooling rolls is provided with a shape control roll that presses and spreads the slag passing through the respective roll surfaces against the roll surface. Twin roll cooling device for processing.
JP2011223661A 2011-10-11 2011-10-11 Twin roll cooling device for molten slag treatment Active JP5738735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011223661A JP5738735B2 (en) 2011-10-11 2011-10-11 Twin roll cooling device for molten slag treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011223661A JP5738735B2 (en) 2011-10-11 2011-10-11 Twin roll cooling device for molten slag treatment

Publications (2)

Publication Number Publication Date
JP2013082582A JP2013082582A (en) 2013-05-09
JP5738735B2 true JP5738735B2 (en) 2015-06-24

Family

ID=48528190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011223661A Active JP5738735B2 (en) 2011-10-11 2011-10-11 Twin roll cooling device for molten slag treatment

Country Status (1)

Country Link
JP (1) JP5738735B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102098476B1 (en) * 2018-07-09 2020-04-07 주식회사 포스코 Apparatus for separating and cooling melt
CN111669949A (en) * 2020-07-02 2020-09-15 李启林 Cooling device is used in processing of high-efficient electronic product

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5872879A (en) * 1981-10-26 1983-04-30 日本鋼管株式会社 Device for manufacturing quenched coagulated slag
JP2001208483A (en) * 2000-01-26 2001-08-03 Nkk Corp Cooling and solidifying device for fused slag
JP2003305740A (en) * 2002-04-11 2003-10-28 Kanegafuchi Chem Ind Co Ltd Novel mold and manufacturing method for cylindrical body using the same
JP2005288482A (en) * 2004-03-31 2005-10-20 Daiwa Can Co Ltd Punch for forming resin-covered metallic seamless can
JP2009227499A (en) * 2008-03-20 2009-10-08 Jfe Steel Corp Apparatus for cooling molten slag
JP5229690B2 (en) * 2009-01-30 2013-07-03 Jfeエンジニアリング株式会社 Cooling and solidifying equipment for molten slag

Also Published As

Publication number Publication date
JP2013082582A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
CN101376164B (en) Control method of roll forming of twin-roll thin strip continuous casting cooling roll
CN104232918B (en) Electroslag smelting casting high efficiency and heat radiation crystallizer
JP5738735B2 (en) Twin roll cooling device for molten slag treatment
JP7284403B2 (en) Twin roll continuous casting apparatus and twin roll continuous casting method
CN100493774C (en) Method for controlling band shape of thin band continuously casting
RU2487946C2 (en) Method of making cooling element for pyrometallurgical reactor and cooling element
RU2553140C2 (en) Distributor, roller line and device for continuous casting
CN102335729A (en) Hyperbolic-type crystallizer copper pipe
CN203109189U (en) Novel crystallizer of slab continuous casting pouring square billet
JP6439663B2 (en) Steel continuous casting method
JP6515283B2 (en) Cooling roll of twin roll strip continuous casting machine
JP2003311377A (en) Tube-type mold for continuous casting
CN103551534A (en) Cast lip of cast-rolling mill
JP3417746B2 (en) Thin plate continuous casting method
KR101316403B1 (en) Roll and Twin Roll Strip Caster Comprising It
SE450554B (en) PROCEDURE FOR CASTING A BAR OF STEEL
JP2020075291A (en) Rolling method for steel piece with rectangular cross section, continuous casting rolling facility and rolling facility
CN202291316U (en) Hyperbolic-type crystallizer copper pipe
JP4232491B2 (en) Continuous casting mold
CN103406506A (en) Cooling roller device for optimizing amorphous metal wide strip production
EP2168700B1 (en) Twin-roll casting machine
JP6184223B2 (en) Cooling device and cooling system
JP2017221953A (en) Twin roll type vertical casting apparatus
JP2009034712A (en) Continuous casting method for steel
US4913221A (en) Liquid metal processing

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130906

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150422

R150 Certificate of patent or registration of utility model

Ref document number: 5738735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250