JP5736914B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5736914B2
JP5736914B2 JP2011081868A JP2011081868A JP5736914B2 JP 5736914 B2 JP5736914 B2 JP 5736914B2 JP 2011081868 A JP2011081868 A JP 2011081868A JP 2011081868 A JP2011081868 A JP 2011081868A JP 5736914 B2 JP5736914 B2 JP 5736914B2
Authority
JP
Japan
Prior art keywords
porosity
separator
positive electrode
negative electrode
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011081868A
Other languages
Japanese (ja)
Other versions
JP2012216459A (en
Inventor
稔 手嶋
手嶋  稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2011081868A priority Critical patent/JP5736914B2/en
Publication of JP2012216459A publication Critical patent/JP2012216459A/en
Application granted granted Critical
Publication of JP5736914B2 publication Critical patent/JP5736914B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

本発明は、リチウムイオン電池などの非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery such as a lithium ion battery.

リチウムイオン電池などの非水電解質二次電池は、正極と、負極と、これらの間に挟まれたセパレータとを積層して巻回した発電要素を容器内に収容し、正極と負極との間に電解質を保持させたものである。   A non-aqueous electrolyte secondary battery such as a lithium ion battery has a power generation element in which a positive electrode, a negative electrode, and a separator sandwiched between them are stacked and wound in a container, and is disposed between the positive electrode and the negative electrode. In which the electrolyte is held.

非水電解質二次電池の正極と負極の間に介在するセパレータは、正極と負極の接触による短絡を防止する機能のほか、電解質を保持する機能を有している。電解質がセパレータに保持されることにより、正極と負極の間のリチウムイオンの移動が容易となる。   The separator interposed between the positive electrode and the negative electrode of the nonaqueous electrolyte secondary battery has a function of holding the electrolyte in addition to a function of preventing a short circuit due to contact between the positive electrode and the negative electrode. When the electrolyte is held in the separator, the movement of lithium ions between the positive electrode and the negative electrode is facilitated.

このような構造の非水電解質二次電池では、高温放置時や充放電サイクルが繰り返されると、正極と負極の間に存在していた電解質が、容器と発電要素の間のデッドスペースに移動し、極間の電解質の絶対量が減少し、耐久性が低下するという問題があった。   In a non-aqueous electrolyte secondary battery with such a structure, when left at high temperatures or when charge and discharge cycles are repeated, the electrolyte present between the positive electrode and the negative electrode moves to the dead space between the container and the power generation element. There is a problem that the absolute amount of the electrolyte between the electrodes decreases and the durability decreases.

特許文献1には、容器から近い部位が遠い部位と比して空孔率が低い、すなわち巻回型で言えば、電極群の短手方向の外側に位置する部位が内側に位置する部位と比して空孔率が低いセパレータを具備した非水電解質二次電池が開示されている。以下、セパレータの空孔率をポロシティという。   Patent Document 1 discloses that a portion closer to the container has a lower porosity than a portion far from the container, that is, in a wound type, a portion located on the outer side in the short direction of the electrode group is located on the inner side. A non-aqueous electrolyte secondary battery including a separator having a lower porosity than the above is disclosed. Hereinafter, the porosity of the separator is referred to as porosity.

しかし、特許文献1の構造では、発電要素の幅方向の電解質の移動を抑制できるが、発電要素の長手方向すなわち巻回方向の電解質の移動を抑制できないため、電解質の保持能力が不十分で、高温放置時の容量保持率が低く、耐久性に劣るという問題があった。   However, in the structure of Patent Document 1, the movement of the electrolyte in the width direction of the power generation element can be suppressed, but since the movement of the electrolyte in the longitudinal direction of the power generation element, that is, the winding direction cannot be suppressed, the electrolyte holding capacity is insufficient. There was a problem that the capacity retention rate when left at high temperature was low and the durability was poor.

特開2005−353452号公報Japanese Patent Laid-Open No. 2005-35352

本発明は、前記従来の問題点に鑑みてなされたもので、発電要素内部における電解質の保持能力を向上し、高温放置時の容量保持率が高くして耐久性を向上することができる非水電解質二次電池を提供することを課題とする。   The present invention has been made in view of the above-described conventional problems, and improves the electrolyte retention capacity inside the power generation element, and increases the capacity retention rate when left at high temperatures, thereby improving durability. It is an object to provide an electrolyte secondary battery.

前記課題を解決するために、本願発明は、
正極と、負極と、前記正極と前記負極の間に挟まれたセパレータとを積層して巻回した発電要素を容器内に収容し、前記正極と前記負極との間に電解質を保持させた非水電解質二次電池において、前記発電要素の外周側に位置する前記セパレータの外周部に内周部よりもポロシティの小さい低ポロシティ領域を有するものである。
In order to solve the above problems, the present invention provides:
A power generation element in which a positive electrode, a negative electrode, and a separator sandwiched between the positive electrode and the negative electrode are stacked and wound is housed in a container, and an electrolyte is held between the positive electrode and the negative electrode. In the water electrolyte secondary battery, a low porosity region having a porosity smaller than that of the inner peripheral portion is provided on the outer peripheral portion of the separator located on the outer peripheral side of the power generating element.

前記低ポロシティ領域から内周部にかけてポロシティを段階的に変化させることができる。   The porosity can be changed stepwise from the low porosity region to the inner periphery.

前記低ポロシティ領域から内周部にかけてポロシティを連続的に変化させることもできる。   It is also possible to continuously change the porosity from the low porosity region to the inner periphery.

前記低ポロシティ領域は、前記負極と前記正極に挟まれていないセパレータの最外周部にあることが好ましい。   It is preferable that the low porosity region is in the outermost peripheral portion of the separator that is not sandwiched between the negative electrode and the positive electrode.

前記低ポロシティ領域の一部を他の領域に比べてポロシティを大きくすることが好ましい。   It is preferable to increase the porosity of a part of the low porosity region compared to other regions.

前記内周部における最大ポロシティと低ポロシティ領域Aにおける最小ポロシティの差の最大ポロシティに対する割合は、5%以上、35%以下であることが好ましい。さらに好ましくは、9〜31%である。   The ratio of the difference between the maximum porosity in the inner peripheral portion and the minimum porosity in the low porosity region A to the maximum porosity is preferably 5% or more and 35% or less. More preferably, it is 9 to 31%.

本発明によれば、発電要素の外周側に位置するセパレータの外周部に内周部よりもポロシティの小さい低ポロシティ領域を有するので、負極と正極の間のセパレータに保持された電解質がセパレータの巻回方向に移動して容器と発電要素の間の空間に流出するのが抑制される。この結果、発電要素内部における電解質の保持能力が向上し、発電要素の外側でかつ容器内に存在する電解質が大幅に減少する。そのため、高温放置時の容量保持率が高くなり、耐久性が向上する。   According to the present invention, since the outer peripheral portion of the separator located on the outer peripheral side of the power generation element has the low porosity region having a lower porosity than the inner peripheral portion, the electrolyte held in the separator between the negative electrode and the positive electrode is wound on the separator. It is suppressed that it moves to a rotation direction and flows into the space between a container and a power generation element. As a result, the electrolyte holding capacity inside the power generation element is improved, and the electrolyte existing outside the power generation element and in the container is greatly reduced. Therefore, the capacity retention rate when left at high temperature is increased, and the durability is improved.

本実施形態に係る電池の斜視図。The perspective view of the battery which concerns on this embodiment. 本実施形態に係る電池の要部斜視図。The principal part perspective view of the battery which concerns on this embodiment. 発電要素の拡大斜視図。The expansion perspective view of an electric power generation element. 図2のIV−IV線断面図。IV-IV sectional view taken on the line of FIG. セパレータのポロシティの変化を示す図。The figure which shows the change of the porosity of a separator. セパレータのポロシティを変化させる手段として、(a)はエレメントプレス、(b)は巻回時テンション、(c)はセパレータプレスによる方法を示す概略図。As a means for changing the porosity of the separator, (a) is an element press, (b) is a winding tension, and (c) is a schematic diagram showing a method using a separator press.

以下、本発明に係る実施形態を添付図面に従って説明する。なお、以下の説明では、必要に応じて特定の方向や位置を示す用語(例えば、「側」、「端」を含む用語)を用いるが、それらの用語の使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が限定されるものではない。また、以下の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Embodiments according to the present invention will be described below with reference to the accompanying drawings. In the following description, terms indicating specific directions and positions (for example, terms including “side” and “end”) are used as necessary, but the use of these terms is understood for the invention with reference to the drawings. The technical scope of the present invention is not limited by the meaning of these terms. Further, the following description is merely illustrative in nature, and is not intended to limit the present invention, its application, or its use.

図1は、非水電解質二次電池を示す。この非水電解質二次電池は、図2に示すように、電池容器1内に発電要素2を収容し、蓋体3で封止したものである。ここでは、電池容器1と蓋体3とで外装体を構成している。   FIG. 1 shows a non-aqueous electrolyte secondary battery. As shown in FIG. 2, the non-aqueous electrolyte secondary battery is one in which a power generation element 2 is accommodated in a battery container 1 and sealed with a lid 3. Here, the battery case 1 and the lid 3 constitute an exterior body.

電池容器1は、上面が開口する直方体形状で、アルミニウムやアルミニウム合金等で構成されている。   The battery case 1 has a rectangular parallelepiped shape whose upper surface is open, and is made of aluminum, an aluminum alloy, or the like.

発電要素2は、銅箔上に負極活物質層を設けた負極4と、アルミニウム箔上に正極活物質層を設けた正極5との間に、多孔性の樹脂フィルムからなるセパレータ6を配置したものである。図3に示すように、これらはいずれも帯状で、セパレータ6に対して負極4と正極5とを幅方向の反対側にそれぞれ位置をずらした状態で、前記電池容器1に収容可能となるように扁平状に巻回されている。負極4及び正極5は、幅方向の一端部に活物質層を設けない箔露出部が存在し、この箔露出部を束ねて、図示しないクリップを介して負極集電体8、正極集電体9にそれぞれ接続されている。   In the power generation element 2, a separator 6 made of a porous resin film is disposed between a negative electrode 4 having a negative electrode active material layer provided on a copper foil and a positive electrode 5 having a positive electrode active material layer provided on an aluminum foil. Is. As shown in FIG. 3, these are all belt-like, and can be accommodated in the battery container 1 with the negative electrode 4 and the positive electrode 5 being shifted to the opposite sides in the width direction with respect to the separator 6. It is wound in a flat shape. The negative electrode 4 and the positive electrode 5 have a foil exposed portion where an active material layer is not provided at one end in the width direction. The foil exposed portion is bundled, and the negative electrode current collector 8 and the positive electrode current collector are connected via a clip (not shown). 9 are connected to each other.

蓋体3は、金属製の板状で、中央部には安全弁10が設けられるとともに、端部に図示しない注液孔を閉鎖する栓体11が設けられている。また、蓋体3の両側には、負極外部端子12と正極外部端子13とがパッキン7を介してそれぞれ負極集電体8と正極集電体9に電気的に接続するように、取り付けられている。   The lid 3 is a metal plate, and a safety valve 10 is provided at the center, and a stopper 11 that closes a liquid injection hole (not shown) is provided at the end. Further, the negative electrode external terminal 12 and the positive electrode external terminal 13 are attached to both sides of the lid 3 so as to be electrically connected to the negative electrode current collector 8 and the positive electrode current collector 9 through the packing 7, respectively. Yes.

前記発電要素2のセパレータ6は、発電要素2の外周側に位置するセパレータ6の外周部に内周部よりもポロシティの小さい低ポロシティ領域Aを有する。   The separator 6 of the power generation element 2 has a low porosity region A having a lower porosity than the inner peripheral portion on the outer peripheral portion of the separator 6 positioned on the outer peripheral side of the power generation element 2.

例えば、図5(a)に示すように、外周端より1巻き目(1層目)までの領域を低ポロシティ領域Aとし、内周側に向かって領域B、領域Cの順に段階的にポロシティを大きくする。また、図5(b)に示すように、外周端より1巻き目(1層目)までの低ポロシティ領域Aより内周側の領域Bのポロシティを低ポロシティ領域Aより大きくし、領域Bより内周側の領域Cのポロシティを領域Bより小さくすることもできる。このような段階的なポロシティの変更は、後述する巻回時テンションにより容易に行うことができる。なお、低ポロシティ領域Aは外周端より1巻き以上あってもよい。   For example, as shown in FIG. 5A, the region from the outer peripheral edge to the first turn (first layer) is a low porosity region A, and the porosity gradually increases in the order of region B and region C toward the inner peripheral side. Increase In addition, as shown in FIG. 5B, the porosity of the region B on the inner peripheral side from the low porosity region A from the outer peripheral end to the first turn (first layer) is made larger than that of the low porosity region A, and from the region B. The porosity of the region C on the inner peripheral side can be made smaller than that of the region B. Such a stepwise change in porosity can be easily performed by a winding tension described later. The low porosity region A may be 1 turn or more from the outer peripheral end.

また、図5(c)に示すように、外周端より1巻き目(1層目)までの低ポロシティ領域Aを内周側に向かって連続的にポロシティを大きくし、さらに内周側に向かって領域B、領域Cも連続的にポロシティを大きくしてもよい。これによれば、セパレータ内での電解質の局部的な移動を全ての点で抑制することができる。   Further, as shown in FIG. 5 (c), the low porosity region A from the outer peripheral edge to the first turn (first layer) is continuously increased toward the inner peripheral side and further increased toward the inner peripheral side. Thus, the porosity of the regions B and C may be continuously increased. According to this, local movement of the electrolyte in the separator can be suppressed in all respects.

さらに、図5(d)に示すように、負極と正極に挟まれていない最外周側の領域Sを低ポロシティ領域Aとし、これより内周側の領域B、領域Cのポロシティを大きくしてもよい。この場合、図5(e)に示すように、領域Sの中間の一部のポロシティを他の領域のポロシティに比べて小さくしてもよい。これによれば、セパレータの最外周のみポロシティを変化させればよいので、ポロシティを変化させる手段が構造的に簡単となる。また、電解質の外部への流出を外周側の端部流域で確実に抑制できる。   Furthermore, as shown in FIG. 5 (d), the outermost peripheral region S not sandwiched between the negative electrode and the positive electrode is defined as a low porosity region A, and the inner peripheral region B and region C are increased in porosity. Also good. In this case, as shown in FIG.5 (e), you may make the porosity of the middle part of the area | region S small compared with the porosity of another area | region. According to this, since it is only necessary to change the porosity only at the outermost periphery of the separator, the means for changing the porosity is structurally simple. Further, the outflow of the electrolyte to the outside can be reliably suppressed in the end flow region on the outer peripheral side.

内周部の領域B,Cにおける最大ポロシティ(MAX(B,C))と低ポロシティ領域Aにおける最小ポロシティの差の最大ポロシティに対する割合:(MAX(B,C)−A)/MAX(B,C)×100(%)は、1%以上、35%以下であることが好ましい。この最大ポロシティと最小ポロシティの差の最大ポロシティに対する割合が、5%以下であると、ポロシティの差が少なく、電解質の保持能力の向上が見込まれず、35%以上であると、最外周部から内周部への毛細管現象による電解質の取り込みの機能が薄れる。好ましくは、2%以上、30%以下である。   The ratio of the difference between the maximum porosity (MAX (B, C)) in the inner peripheral areas B and C and the minimum porosity in the low porosity area A to the maximum porosity: (MAX (B, C) -A) / MAX (B, C) × 100 (%) is preferably 1% or more and 35% or less. When the ratio of the difference between the maximum porosity and the minimum porosity to the maximum porosity is 5% or less, the difference in porosity is small, and the improvement of the electrolyte holding capacity is not expected. The function of electrolyte uptake by capillary action to the periphery is diminished. Preferably, it is 2% or more and 30% or less.

このように、発電要素2の外周側に位置するセパレータ6の外周部に内周部よりもポロシティの小さい低ポロシティ領域Aを有することで、負極4と正極5の間のセパレータ6に保持された電解質がセパレータ6の巻回方向に移動して容器1と発電要素2の間の空間に流出するのが抑制される。この結果、発電要素2内部における電解質の保持能力が向上し、また発電要素2の外側でかつ容器1内に存在する電解質が大幅に減少する。そのため、高温放置時の容量保持率が高くなり、耐久性が向上する。   Thus, by having the low-porosity region A having a lower porosity than the inner peripheral portion on the outer peripheral portion of the separator 6 located on the outer peripheral side of the power generation element 2, the separator 6 between the negative electrode 4 and the positive electrode 5 was held. The electrolyte is prevented from moving in the winding direction of the separator 6 and flowing out into the space between the container 1 and the power generation element 2. As a result, the electrolyte holding capacity inside the power generation element 2 is improved, and the electrolyte existing outside the power generation element 2 and in the container 1 is greatly reduced. Therefore, the capacity retention rate when left at high temperature is increased, and the durability is improved.

セパレータ6のポロシティを変化させる手段としては、セパレータ6に加温状態で物理的な力を加えることで、本来備わっているポロシティを小さくすることができる。具体的には、エレメントプレス、巻回時テンション、セパレータプレスがある。以下、これらについて説明する。   As a means for changing the porosity of the separator 6, the inherent porosity can be reduced by applying a physical force to the separator 6 in a heated state. Specifically, there are an element press, a winding tension, and a separator press. Hereinafter, these will be described.

エレメントプレスは、図6(a)に示すように、負極、正極、セパレータを積層し巻回した発電要素2をプレス装置14a,14bにより積層方向にプレスする方法である。このエレメントプレスにより、プレス荷重が直接加わる外周側のセパレータのポロシティを内周側のポロシティよりも小さくすることができる。   As shown in FIG. 6A, the element press is a method of pressing the power generating element 2 in which a negative electrode, a positive electrode, and a separator are stacked and wound in a stacking direction by pressing devices 14a and 14b. By this element press, the porosity of the outer peripheral separator to which the press load is directly applied can be made smaller than the porosity of the inner peripheral side.

巻回時テンションは、図6(b)に示すように、芯体15に左巻きセパレータ6aと右巻きセパレータ6bを巻き付けながら負極4及び正極5を挟み込んで巻回する工程で、芯体15に供給する左巻きセパレータ6aと右巻きセパレータ6bを押さえローラ16a、16bで押さえて、それらの張力を調整する方法である。左巻きセパレータ6aと右巻きセパレータ6bの巻き始めから中間巻きを経て巻き終わりまで、押さえローラ16a,16bによるセパレータ6a,6bの張力を大きくすることで、セパレータの外周側のポロシティを内周側のポロシティよりも小さくすることができる。   As shown in FIG. 6 (b), the winding tension is supplied to the core 15 in a process in which the negative electrode 4 and the positive electrode 5 are sandwiched and wound while the left-handed separator 6a and the right-handed separator 6b are wound around the core 15. This is a method in which the left-handed separator 6a and the right-handed separator 6b are pressed by the pressing rollers 16a and 16b to adjust their tension. By increasing the tension of the separators 6a and 6b by the pressing rollers 16a and 16b from the start of winding of the left-handed separator 6a and the right-handed separator 6b through the intermediate winding to the end of winding, the porosity on the outer peripheral side of the separator is changed to the porosity on the inner peripheral side. Can be made smaller.

セパレータプレスは、図6(c)に示すように、負極4、正極5、セパレータ6を積層し巻回した発電要素2のセパレータ6を切断した後、セパレータ6をテープで止める前に、正極4及び負極5が存在していない最外周のセパレータ6のみを断面が三角や四角等の多角形状をした加熱ローラ17a,17bにより加温しつつプレスする方法である。なお、多角形の角部は面取りされていることが好ましい。最外周のセパレータ6をプレスすることで、セパレータ6の外周側のポロシティを内周側のポロシティよりも小さくすることができる。なお、セパレータプレスの時間や圧力、温度を適宜調整することにより、断面が円状のローラを用いることも可能である。   As shown in FIG. 6 (c), the separator press cuts the separator 6 of the power generating element 2 in which the negative electrode 4, the positive electrode 5, and the separator 6 are stacked and wound, and then before the separator 6 is stopped with tape, And only the outermost separator 6 in which the negative electrode 5 is not present is pressed while being heated by heating rollers 17a and 17b having a polygonal cross section such as a triangle or a square. In addition, it is preferable that the corner | angular part of a polygon is chamfered. By pressing the outermost separator 6, the porosity on the outer peripheral side of the separator 6 can be made smaller than the porosity on the inner peripheral side. In addition, it is also possible to use a roller having a circular cross section by appropriately adjusting the time, pressure, and temperature of the separator press.

本発明の効果を確認するため、外周側、中間、内周側でポロシティを変更した本発明の実施例と比較例の容量保持率を比較した。   In order to confirm the effect of the present invention, the capacity retention rates of the examples of the present invention in which the porosity was changed on the outer peripheral side, the middle, and the inner peripheral side and the comparative examples were compared.

<正極の作製>
正極活物質であるLiCo1/3Ni1/3Mn1/3を86質量%と、導電助剤であるアセチレンブラック6質量%と、結着剤であるポリフッ化ビニリデン(PVdF)8質量%と、溶媒であるN−メチルピロリドンとを含む正極合剤ペーストを調整した。この正極合剤ペーストを厚さ20μmのアルミニウム集電箔の両面に塗布して真空乾燥した後、ロールプレスで圧縮成型して、正極を得た。
<Preparation of positive electrode>
86% by mass of LiCo 1/3 Ni 1/3 Mn 1/3 O 2 as a positive electrode active material, 6% by mass of acetylene black as a conductive additive, and 8% by mass of polyvinylidene fluoride (PVdF) as a binder % And a positive electrode mixture paste containing N-methylpyrrolidone as a solvent was prepared. This positive electrode mixture paste was applied to both surfaces of an aluminum current collector foil having a thickness of 20 μm and vacuum-dried, and then compression molded with a roll press to obtain a positive electrode.

<正極の作製>
負極活物質として、層間距離d002=0.379nm、平均粒径d50=9μmのハードカーボンを用いた。この負極活物質であるハードカーボン95質量%と、PVdF5質量%と、溶媒であるN−メチルピロリドンとを含む負極合剤ペーストを調整した。この負極合剤ペーストを厚さ10μmの銅集電箔の両面に塗布して真空乾燥した後、ロールプレスで圧縮成型して、正極を得た。
<Preparation of positive electrode>
As the negative electrode active material, hard carbon having an interlayer distance d 002 = 0.379 nm and an average particle diameter d 50 = 9 μm was used. A negative electrode mixture paste containing 95% by mass of hard carbon as the negative electrode active material, 5% by mass of PVdF, and N-methylpyrrolidone as the solvent was prepared. This negative electrode mixture paste was applied to both sides of a 10 μm thick copper current collector foil and vacuum-dried, followed by compression molding with a roll press to obtain a positive electrode.

<電解液の作製>
エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、エチルメチルカーボネート(EMC)とを体積比30:20:50で混合した混合溶液に、六フッ化リン酸リチウム(LiPF)を0.8mol/lとなるように溶解し、1,3−プロペンスルトンを0.2質量%添加したものを用いた。
<Preparation of electrolyte>
0.8 mol of lithium hexafluorophosphate (LiPF 6 ) was added to a mixed solution in which ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 30:20:50. The solution was dissolved so as to be / l and 0.2 mass% of 1,3-propene sultone was added.

<セパレータの作製>
セパレータとして、幅150mm、厚さ0.025mmのポリオレフィン製微多孔膜を用いた。
<Preparation of separator>
As the separator, a polyolefin microporous film having a width of 150 mm and a thickness of 0.025 mm was used.

<電池の作製>
負極と正極をセパレータを介して扁平状に巻回して発電要素を作製した。この発電要素を予め集電体を組付けておいた蓋と溶接し、アルミニウム製の電池容器に収納した。電池容器と蓋とをレーザ溶接した後、電解液を注液孔から注入し、注液孔を封止溶接して、所定の電池容量を有する非水電解質二次電池を作製した。
<Production of battery>
The power generation element was produced by winding the negative electrode and the positive electrode in a flat shape with a separator interposed therebetween. This power generation element was welded to a lid on which a current collector was previously assembled, and stored in an aluminum battery container. After the battery container and the lid were laser welded, an electrolyte solution was injected from the injection hole, and the injection hole was sealed and welded to produce a nonaqueous electrolyte secondary battery having a predetermined battery capacity.

<ポロシティの変更>
発電要素の作製時に、セパレータのポロシティを種々変更して、実施例及び比較例を作製した。
実施例1〜5は、ポロシティ変更手段としてエレメントプレスを用いた。実施例1〜3は、エレメントプレス時の温度を60℃、70℃、80℃と変化させ、時間を10秒とした。実施例4、5は、エレメントプレス時の温度を70℃とし、時間を5秒、20秒と変化させた。エレメントプレス時の温度を高くすれば外周部のポロシティAを低くすることができ、また時間を長くしてもポロシティAを低くすることができる。
実施例6〜8は、ポロシティ変更手段として巻回時テンションを用いた。実施例6は、巻回時のセパレータの外周部、中間部、内周部のテンション(g)を800、600、400と変化させた。実施例7は、巻回時のセパレータの外周部、中間部、内周部のテンション(g)を1200、600、400と変化させた。実施例8は、巻回時のセパレータの外周部、中間部、内周部のテンション(g)を1200、800、400と変化させた。実施例9は、巻回時のセパレータの外周部、中間部、内周部のテンション(g)を1200、400、1200と変化させた。テンションを高くすると、外周部のポロシティAを低くすることができる。
実施例10〜12は、ポロシティ変更手段としてセパレータプレスを用いた。実施例10〜12は、セパレータプレス時の加圧力を一定(5Mpa)とし、温度を60℃、70℃、80℃と変化させ、時間をそれぞれ20秒、15秒、10秒とした。セパレータプレス時の温度を高くすると、外周部のポロシティAを低くすることができる。
比較例として、ポロシティ変更を行わない発電要素を作製した。
<Change of porosity>
When producing the power generation element, the porosity of the separator was variously changed to produce examples and comparative examples.
In Examples 1 to 5, an element press was used as the porosity changing means. In Examples 1 to 3, the temperature during element pressing was changed to 60 ° C., 70 ° C., and 80 ° C., and the time was set to 10 seconds. In Examples 4 and 5, the temperature during element pressing was 70 ° C., and the time was changed to 5 seconds and 20 seconds. If the temperature at the time of element pressing is increased, the porosity A at the outer peripheral portion can be lowered, and the porosity A can be lowered even if the time is lengthened.
In Examples 6 to 8, winding tension was used as the porosity changing means. In Example 6, the tension (g) of the outer peripheral portion, intermediate portion, and inner peripheral portion of the separator during winding was changed to 800, 600, and 400. In Example 7, the tension (g) of the outer peripheral portion, intermediate portion, and inner peripheral portion of the separator during winding was changed to 1200, 600, and 400. In Example 8, the tension (g) of the outer peripheral portion, intermediate portion, and inner peripheral portion of the separator during winding was changed to 1200, 800, and 400. In Example 9, the tension (g) of the outer peripheral portion, intermediate portion, and inner peripheral portion of the separator during winding was changed to 1200, 400, and 1200. When the tension is increased, the porosity A of the outer peripheral portion can be decreased.
In Examples 10 to 12, a separator press was used as the porosity changing means. In Examples 10 to 12, the pressing force during separator pressing was constant (5 Mpa), the temperature was changed to 60 ° C., 70 ° C., and 80 ° C., and the times were 20 seconds, 15 seconds, and 10 seconds, respectively. When the temperature at the time of the separator press is increased, the porosity A of the outer peripheral portion can be decreased.
As a comparative example, a power generation element that does not change porosity was produced.

<ポロシティの測定>
実施例1−12と比較例のポロシティは、前述のようにポロシティを変更した後、各領域を所定の寸法に裁断して、測定用試料を作製し、ASTM−D−1622に準拠した方法で測定した。なお、ポロシティは、セパレータの肉厚、幅、長さ及び比重から求めた重量に対する実際の重量の百分率で求めることもできる。
<Measurement of porosity>
The porosity of Example 1-12 and the comparative example was changed by changing the porosity as described above, and each region was cut into a predetermined size to prepare a measurement sample, which was a method based on ASTM-D-1622. It was measured. The porosity can also be obtained as a percentage of the actual weight with respect to the weight obtained from the thickness, width, length and specific gravity of the separator.

<容量保持率の測定>
前述のように作製した発電要素を、80%充電状態(SOC)にて60℃の高温で120日間保存した後の電池容量保持率を以下の方法より測定した。
具体的には、各実施例1−12及び比較例の電池を1CAの定電流にて4.2Vまで充電し、その後4.2Vにて総充電時間が3時間となるように定電圧充電した後、1CAの定電流にて2.4Vまで放電した。このときの放電容量を高温保存前の放電容量とした。なお、1CAとは、満充電時の電池を1時間で放電するときの電流値である。
次に、各実施例1−12及び比較例の電池を1CAの定電流にてSOC80%に相当する電圧まで充電し、その後、その電圧にて総充電時間が3時間となるように定電圧充電した後、60℃の恒温槽中で保存する試験を120日間行った。
その後、室温にて1CAの定電流にて4.2Vまで充電し、その後、4.2Vにて総充電量が3時間となるように定電圧充電した後、1CAの定電流にて2.4Vまで放電した。このときの放電容量を保存後の放電容量とした、保存後の放電容量を保存前の放電容量で除することにより、保存後の容量保持率を算出した。
<Measurement of capacity retention>
The battery capacity retention rate after the power generation element produced as described above was stored for 120 days at a high temperature of 60 ° C. in an 80% state of charge (SOC) was measured by the following method.
Specifically, the batteries of Examples 1-12 and Comparative Examples were charged to 4.2 V at a constant current of 1 CA, and then constant voltage charged at 4.2 V so that the total charging time was 3 hours. Thereafter, the battery was discharged to 2.4 V at a constant current of 1 CA. The discharge capacity at this time was defined as the discharge capacity before high-temperature storage. In addition, 1CA is a current value when discharging a fully charged battery in one hour.
Next, the batteries of Examples 1-12 and Comparative Examples were charged to a voltage corresponding to SOC 80% at a constant current of 1 CA, and then charged at a constant voltage such that the total charging time was 3 hours. Then, the test which preserve | saves in a 60 degreeC thermostat was performed for 120 days.
After that, the battery is charged to 4.2 V at a constant current of 1 CA at room temperature, and then charged at a constant voltage of 4.2 V so that the total charge amount is 3 hours. Discharged until. The storage capacity after storage was calculated by dividing the discharge capacity after storage by the discharge capacity before storage, which was defined as the discharge capacity after storage.

これらの実施例1−12と比較例のポロシティと容量保持率の測定結果を表1に示す。
Table 1 shows the measurement results of the porosity and capacity retention ratio of Examples 1-12 and Comparative Examples.

Figure 0005736914
Figure 0005736914

表1から明らかなように、最大ポロシティと最小ポロシティの差の最大ポロシティに対する割合は、9〜31%であった。
外周部のポロシティを内周部より小さくした実施例1−12の容量保持率は、全て80%以上であり、ポロシティが一定の比較例の保持率72%よりも大きくなっていることが確認された。
As apparent from Table 1, the ratio of the difference between the maximum porosity and the minimum porosity to the maximum porosity was 9 to 31%.
The capacity retention rates of Examples 1-12 in which the porosity of the outer peripheral portion was smaller than that of the inner peripheral portion were all 80% or more, and it was confirmed that the porosity was higher than the retention rate of 72% of the comparative example. It was.

なお、本発明は、前記実施形態に記載された構成に限定されるものではなく、種々の変更が可能である。例えば、前記実施例は巻回扁平型であるが、巻回円筒型、積層扁平型の非水電解質二次電池にも適用可能である。   In addition, this invention is not limited to the structure described in the said embodiment, A various change is possible. For example, the above embodiment is a wound flat type, but can also be applied to a wound cylindrical type and laminated flat type non-aqueous electrolyte secondary battery.

本発明は、リチウムイオン電池のほか、鉛蓄電池等、種々の電池に採用することができる。   The present invention can be applied to various batteries such as lead-acid batteries in addition to lithium ion batteries.

1 電池容器
2 発電要素
3 蓋
4 負極
5 正極
6 セパレータ
DESCRIPTION OF SYMBOLS 1 Battery container 2 Power generation element 3 Lid 4 Negative electrode 5 Positive electrode 6 Separator

Claims (2)

正極と、負極と、前記正極と前記負極の間に挟まれたセパレータとを積層して巻回した発電要素を容器内に収容し、前記正極と前記負極との間に電解質を保持させた非水電解質二次電池において、前記発電要素の外周側に位置する前記セパレータの外周部に内周部よりもポロシティの小さい低ポロシティ領域を有し、
前記低ポロシティ領域は、前記負極と前記正極に挟まれていないセパレータの最外周部にあり、
前記低ポロシティ領域の中間の一部のポロシティを他の領域に比べて小さくしたことを特徴とする非水電解質二次電池。
A power generation element in which a positive electrode, a negative electrode, and a separator sandwiched between the positive electrode and the negative electrode are stacked and wound is housed in a container, and an electrolyte is held between the positive electrode and the negative electrode. in aqueous electrolyte secondary batteries, it has a small low porosity region porosity than the inner periphery to the outer periphery of the separator positioned on the outer peripheral side of the power generating element,
The low porosity region is at the outermost peripheral portion of the separator not sandwiched between the negative electrode and the positive electrode,
A nonaqueous electrolyte secondary battery characterized in that a part of the porosity in the middle of the low porosity region is made smaller than in other regions .
前記内周部における最大ポロシティと低ポロシティ領域Aにおける最小ポロシティの差の最大ポロシティに対する割合は、5%以上、35%以下であることを特徴とする請求項1に記載の非水電解質二次電池。 2. The nonaqueous electrolyte secondary battery according to claim 1, wherein a ratio of a difference between the maximum porosity in the inner peripheral portion and the minimum porosity in the low porosity region A to the maximum porosity is 5% or more and 35% or less. .
JP2011081868A 2011-04-01 2011-04-01 Nonaqueous electrolyte secondary battery Active JP5736914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011081868A JP5736914B2 (en) 2011-04-01 2011-04-01 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011081868A JP5736914B2 (en) 2011-04-01 2011-04-01 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2012216459A JP2012216459A (en) 2012-11-08
JP5736914B2 true JP5736914B2 (en) 2015-06-17

Family

ID=47269060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011081868A Active JP5736914B2 (en) 2011-04-01 2011-04-01 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5736914B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115832194B (en) * 2022-10-14 2024-10-11 宁德时代新能源科技股份有限公司 Battery pack and power utilization device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4364066B2 (en) * 2004-06-11 2009-11-11 株式会社東芝 Non-aqueous electrolyte battery
JP5194531B2 (en) * 2007-04-11 2013-05-08 日産自動車株式会社 Lithium ion secondary battery
JP2011216360A (en) * 2010-03-31 2011-10-27 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2012216459A (en) 2012-11-08

Similar Documents

Publication Publication Date Title
JP5721334B2 (en) Nonaqueous electrolyte secondary battery
JP5311157B2 (en) Lithium secondary battery
JP6754768B2 (en) Non-aqueous electrolyte secondary battery
JP6054517B2 (en) Nonaqueous electrolyte secondary battery
JP2015072805A (en) Nonaqueous secondary battery
JP6359454B2 (en) Nonaqueous electrolyte secondary battery
JP2010073580A (en) Nonaqueous electrolyte battery
KR20180100526A (en) Non-aqueous electrolyte secondary battery
JP6120083B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2007172879A (en) Battery and its manufacturing method
JP2009158335A (en) Negative pole plate for non-aqueous electrolyte secondary cell, manufacturing method therefor, and non-aqueous electrolyte secondary cell
JP2009032408A (en) Secondary battery separator
JP5673307B2 (en) Nonaqueous electrolyte secondary battery
JP6457272B2 (en) Method for reducing uneven charging of secondary battery and method for manufacturing secondary battery
JP6694603B2 (en) Non-aqueous electrolyte secondary battery
JP2006244833A (en) Lithium secondary battery and manufacturing method of the same
JP5736914B2 (en) Nonaqueous electrolyte secondary battery
JP5708510B2 (en) Non-aqueous electrolyte secondary battery
JP2007172878A (en) Battery and its manufacturing method
WO2017051516A1 (en) Non-aqueous electrolyte secondary battery
JP2015210848A (en) Nonaqueous electrolyte secondary battery
JP2018106981A (en) Secondary battery
JP2007172881A (en) Battery and its manufacturing method
WO2015037522A1 (en) Nonaqueous secondary battery
JP4082103B2 (en) Method for producing non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150406

R150 Certificate of patent or registration of utility model

Ref document number: 5736914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150