JP5735886B2 - Rubber composition for rubber bearing coating and rubber for rubber bearing coating using the same - Google Patents
Rubber composition for rubber bearing coating and rubber for rubber bearing coating using the same Download PDFInfo
- Publication number
- JP5735886B2 JP5735886B2 JP2011173267A JP2011173267A JP5735886B2 JP 5735886 B2 JP5735886 B2 JP 5735886B2 JP 2011173267 A JP2011173267 A JP 2011173267A JP 2011173267 A JP2011173267 A JP 2011173267A JP 5735886 B2 JP5735886 B2 JP 5735886B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- rubber
- copolymer
- conjugated diene
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Bridges Or Land Bridges (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、ゴム支承被覆用ゴム組成物及びそれを用いたゴム支承被覆用ゴムに関し、特に、ゴム支承被覆用ゴムの亀裂成長性、耐候性、及び耐破壊性を向上させ、且つ十分な減衰性を得ることができるゴム支承被覆用ゴム組成物及びそれを用いたゴム支承被覆用ゴムに関する。 The present invention relates to a rubber composition for rubber bearing coating and a rubber for rubber bearing coating using the rubber composition, and more particularly, to improve the crack growth property, weather resistance and fracture resistance of the rubber for rubber bearing coating, and to sufficiently attenuate the rubber composition. The present invention relates to a rubber composition for covering a rubber bearing and a rubber for covering the rubber bearing using the rubber composition.
近年、ビルや橋梁等の建造物を建設する際、地震等により引き起こされる震動による破損を防ぐために、ゴム支承等を用いて免震構造を構成することが行われている。
ゴム支承とは、ビルや橋梁等の建造物の上部構造の荷重を支え、かつ前記建造物の上部構造体と下部構造体との接点に設置される部材であり、地震等により引き起こされる震動によって生じる上部構造及び下部構造の変位をこのゴム支承で吸収するためのものである。これは一般に複数個の鋼板等の硬質板と粘弾性的性質を有するゴム材料からなる軟質板とを交互に積層し、両者を強固に接着させることで耐荷重性の向上を図ると共に、水平力に対してゴムの弾力性で対応できるようにしたものである。
In recent years, when a building such as a building or a bridge is constructed, a seismic isolation structure is formed using a rubber bearing or the like in order to prevent damage due to vibration caused by an earthquake or the like.
A rubber bearing is a member that supports the load of the upper structure of a building such as a building or bridge, and is installed at the contact point between the upper structure and the lower structure of the building. This is to absorb the generated displacement of the upper structure and the lower structure with this rubber bearing. In general, a plurality of hard plates such as steel plates and a soft plate made of a rubber material having viscoelastic properties are alternately laminated, and the two are firmly bonded to improve load resistance and horizontal force. Can be handled by the elasticity of rubber.
しかしながら、近年の地震に対する防災意識の高まりや耐震性基準の厳格化に伴い、せん断弾性率Gが0.3N/mm2〜0.5N/mm2程度の低弾性率で高性能なゴム支承が求められるようになった。
この要求に対し、ゴム支承体の軟質板として用いられる内部ゴムに特定の樹脂を添加することで、優れた弾性・減衰特性を得る検討が行われたが(例えば、特許文献1参照)、外観・耐久性・耐候性等の向上のためにゴム支承体外周に形成される被覆層のゴムについては、耐久性や成形加工時の作業性を考慮し、未だにせん断弾性率Gが0.6N/mm2相当以上のゴムを使用していることが多い。その結果、ゴム支承には、高性能化に伴う厳しいバネ精度の要求を満たすために低弾性率のゴムが軟質板として用いられるようになったが、被覆材の高い弾性率がゴム支承全体としてのゴム弾性率を引き上げて、ゴム支承全体の性能を低下させるおそれがある。この問題は、ゴム支承体の軟質板と同レベルのせん断弾性率を有するゴムを被覆材に適用することで解消できるが、現状では成形時の加工性や、加硫硬化後の破壊強度等において課題が残され、実用化が遅れているのが実情である。即ち、被覆層には、外観・耐久性・耐候性等の向上に加えて、ゴム支承体に使用されるゴム組成物(内部ゴム)との接着性やゴム支承体に使用されるゴム組成物(内部ゴム)との接着性やゴム支承体の特性(剛性、減衰)を損なわないような物性が求められる。
However, with the tightening of increasing and seismic criteria disaster awareness recent earthquake, shear modulus G is high-performance rubber bearing in 0.3N / mm 2 ~0.5N / mm 2 as low modulus It came to be demanded.
In response to this requirement, studies have been made to obtain excellent elasticity and damping characteristics by adding a specific resin to the internal rubber used as the soft plate of the rubber bearing (see, for example, Patent Document 1). -For the rubber of the coating layer formed on the outer periphery of the rubber support body in order to improve the durability and weather resistance, the shear modulus G is still 0.6 N / in consideration of durability and workability during molding. In many cases, rubber with a size of mm 2 or more is used. As a result, low elastic modulus rubber has come to be used as a soft plate for rubber bearings in order to meet stringent spring accuracy requirements associated with higher performance. There is a possibility that the rubber elastic modulus of the rubber will be raised and the performance of the entire rubber bearing will be lowered. This problem can be solved by applying a rubber having the same level of shear modulus as that of the soft plate of the rubber support body to the coating material. The actual situation is that there are still problems and the practical application is delayed. In other words, in addition to improving the appearance, durability, weather resistance, etc., the coating layer has an adhesive property with a rubber composition (internal rubber) used for the rubber support and a rubber composition used for the rubber support. Physical properties that do not impair the adhesiveness to (internal rubber) and the properties (rigidity and damping) of the rubber support are required.
一般的にゴムの低弾性率化を図るには、カーボン配合部数の低減、低級カーボンの使用、可塑剤及び石油樹脂の増量等の方法が有効であるが、いずれの方法も未加硫ゴムが軟らかくなるばかりでなく、粘着性も大幅に増大してしまうため、加工性が著しく低下してしまう結果となった。また、上記の方法により低弾性率の被覆材を作製した場合、十分な破壊強度が得られない場合があるため、被覆材としての耐久性が不十分となるおそれがあり、ゴム支承の製造における大きな課題となっている。
従って、加硫前の加工性に優れると共に、加硫後には、優れた破壊強度と、低い弾性率とを兼ね備えたゴム支承用被覆材を得ることができるゴム支承被覆用ゴムシートの開発が望まれていた。
In general, reducing the elastic modulus of rubber is effective by reducing the number of carbon components, using lower carbon, and increasing the amount of plasticizer and petroleum resin. Not only was it softened, but the tackiness was also greatly increased, resulting in a significant decrease in workability. In addition, when a coating material having a low elastic modulus is produced by the above method, there is a possibility that sufficient breaking strength may not be obtained, so that durability as a coating material may be insufficient. It has become a big issue.
Accordingly, it is desired to develop a rubber sheet for covering a rubber bearing that is excellent in workability before vulcanization and can provide a coating material for rubber bearing that has excellent fracture strength and low elastic modulus after vulcanization. It was rare.
そこで、耐久性及び温度依存性の観点から、被覆層に用いられるゴム成分として、天然ゴム及び非共役ジエン化合物−非共役オレフィン共重合体(EPDM)を用いることが検討されている(例えば、特許文献2参照)。しかしながら、天然ゴムと非共役ジエン化合物−非共役オレフィン共重合体(EPDM)との相溶性が十分でないために、耐破壊性及び耐亀裂成長性には未だ改善の余地があった。 Therefore, from the viewpoint of durability and temperature dependency, use of natural rubber and a non-conjugated diene compound-non-conjugated olefin copolymer (EPDM) as a rubber component used in the coating layer has been studied (for example, patents). Reference 2). However, since the compatibility between the natural rubber and the non-conjugated diene compound-non-conjugated olefin copolymer (EPDM) is insufficient, there is still room for improvement in fracture resistance and crack growth resistance.
そこで、本発明の目的は、ゴム支承被覆用ゴムの亀裂成長性、耐候性、及び耐破壊性を向上させ、且つ十分な減衰性を得ることができるゴム支承被覆用ゴム組成物及びそれを用いたゴム支承被覆用ゴムを提供することにある。 Accordingly, an object of the present invention is to improve the crack growth property, weather resistance, and fracture resistance of rubber for rubber bearing coating, and to provide a rubber composition for rubber bearing coating that can provide sufficient damping. It is to provide a rubber for covering a rubber bearing.
本発明者らは、共役ジエン系重合体(A)、共役ジエン化合物−非共役オレフィン共重合体(B)、及び、エチレン−プロピレン−ジエンゴムを含有する非共役ジエン化合物−非共役オレフィン共重合体(C)を含むゴム成分と、樹脂(D)とを含むゴム支承被覆用ゴム組成物であって、前記ゴム成分100質量部に対し、前記樹脂を5質量部〜60質量部含むことにより、ゴム支承被覆用ゴムの亀裂成長性、耐候性、及び耐破壊性を向上させ、且つ十分な減衰性を得ることができることを見出し、本発明を完成させるに至った。 The present inventors provide a conjugated diene polymer (A), a conjugated diene compound-nonconjugated olefin copolymer (B), and a nonconjugated diene compound-nonconjugated olefin copolymer containing ethylene-propylene-diene rubber. A rubber composition for rubber bearing coating containing a rubber component containing (C) and a resin (D), and containing 5 to 60 parts by mass of the resin with respect to 100 parts by mass of the rubber component, It has been found that the crack growth property, weather resistance, and fracture resistance of the rubber for covering a rubber support can be improved and sufficient damping properties can be obtained, and the present invention has been completed.
即ち、本発明のゴム支承被覆用ゴム組成物は、共役ジエン系重合体(A)、共役ジエン化合物−非共役オレフィン共重合体(B)、及び、エチレン−プロピレン−ジエンゴムを含有する非共役ジエン化合物−非共役オレフィン共重合体(C)を含むゴム成分と、樹脂(D)とを含むゴム支承被覆用ゴム組成物であって、前記ゴム成分100質量部に対し、前記樹脂を5質量部〜60質量部含み、前記共役ジエン化合物−非共役オレフィン共重合体(B)が、プロピレン−ブタジエン共重合体であることを特徴とする。 That is, the rubber composition for covering a rubber support of the present invention comprises a conjugated diene polymer (A), a conjugated diene compound-nonconjugated olefin copolymer (B), and a nonconjugated diene containing ethylene-propylene-diene rubber. A rubber composition for covering a rubber bearing, comprising a rubber component containing a compound-non-conjugated olefin copolymer (C) and a resin (D), wherein 5 parts by mass of the resin with respect to 100 parts by mass of the rubber component The conjugated diene compound-nonconjugated olefin copolymer (B) is a propylene-butadiene copolymer, containing ~ 60 parts by mass.
本発明のゴム支承被覆用ゴム組成物は、前記共重合体(B)において、前記非共役オレフィン由来部分の割合が60mol%以下であることが好ましい。 In the rubber composition for covering a rubber support of the present invention, the proportion of the non-conjugated olefin-derived portion in the copolymer (B) is preferably 60 mol% or less.
本発明のゴム支承被覆用ゴム組成物は、前記非共役ジエン化合物−非共役オレフィン共重合体(C)におけるエチレン−プロピレン−ジエンゴムの含有量が、10質量%以上であることが好ましい。 In the rubber composition for covering a rubber support of the present invention, the content of ethylene-propylene-diene rubber in the non-conjugated diene compound-non-conjugated olefin copolymer (C) is preferably 10% by mass or more.
本発明のゴム支承被覆用ゴム組成物は、前記共重合体(B)のポリスチレン換算重量平均分子量が10,000〜10,000,000であることが好ましい。 In the rubber composition for covering a rubber support according to the present invention, the copolymer (B) preferably has a polystyrene equivalent weight average molecular weight of 10,000 to 10,000,000.
本発明のゴム支承被覆用ゴム組成物は、前記共重合体(B)の分子量分布(Mw/Mn)が10以下であることが好ましい。 In the rubber composition for covering a rubber support of the present invention, the copolymer (B) preferably has a molecular weight distribution (Mw / Mn) of 10 or less.
本発明のゴム支承被覆用ゴム組成物は、前記共重合体(B)における非共役オレフィンがエチレンであることが好ましい。 In the rubber composition for covering a rubber support of the present invention, the non-conjugated olefin in the copolymer (B) is preferably ethylene.
本発明のゴム支承被覆用ゴム組成物は、前記樹脂(D)が、ポリエステルポリオール樹脂、ジシクロペンタジエン樹脂、ロジン樹脂、フェノール樹脂、キシレン樹脂、脂肪・脂環族C5系石油樹脂、C5/C9系石油樹脂、C9系石油樹脂、テルペン樹脂、並びにこれらの共重合体及び変性品からなる群から選択される少なくとも1種であることが好ましい。 In the rubber composition for covering a rubber support of the present invention, the resin (D) is a polyester polyol resin, dicyclopentadiene resin, rosin resin, phenol resin, xylene resin, aliphatic / alicyclic C5 petroleum resin, C5 / C9. It is preferably at least one selected from the group consisting of petroleum petroleum resins, C9 petroleum resins, terpene resins, and copolymers and modified products thereof.
本発明のゴム支承被覆用ゴムは、本発明のゴム支承被覆用ゴム組成物を用いたことを特徴とする。 The rubber for covering a rubber bearing of the present invention is characterized by using the rubber composition for covering a rubber bearing of the present invention.
本発明によれば、ゴム支承被覆用ゴムの亀裂成長性、耐候性、及び耐破壊性を向上させ、且つ十分な減衰性を得ることができるゴム支承被覆用ゴム組成物及びそれを用いたゴム支承被覆用ゴムを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the rubber composition for rubber | gum support coating which can improve the crack growth property of the rubber | gum for rubber | gum support coating, a weather resistance, and fracture resistance, and can acquire sufficient damping property, and rubber | gum using the same Rubber for covering can be provided.
(ゴム支承被覆用ゴム組成物)
本発明のゴム支承被覆用ゴム組成物は、少なくとも、共役ジエン系重合体(A)、共役ジエン化合物−非共役オレフィン共重合体(B)、及び非共役ジエン化合物−非共役オレフィン共重合体(C)を含むゴム成分と、樹脂(D)とを含んでなり、さらに必要に応じて、カーボンブラック、シリカ、ワックス、アマイド化合物、その他の成分を含んでなる。
(Rubber composition for rubber bearing coating)
The rubber composition for covering a rubber support of the present invention comprises at least a conjugated diene polymer (A), a conjugated diene compound-nonconjugated olefin copolymer (B), and a nonconjugated diene compound-nonconjugated olefin copolymer ( It comprises a rubber component containing C) and a resin (D), and further comprises carbon black, silica, wax, amide compound and other components as required.
<ゴム成分>
前記ゴム成分は、少なくとも、共役ジエン系重合体(A)と、共役ジエン化合物−非共役オレフィン共重合体(B)、及び非共役ジエン化合物−非共役オレフィン共重合体(C)を含んでなり、さらに必要に応じて、その他のゴム成分を含んでなる。
<Rubber component>
The rubber component comprises at least a conjugated diene polymer (A), a conjugated diene compound-nonconjugated olefin copolymer (B), and a nonconjugated diene compound-nonconjugated olefin copolymer (C). If necessary, it further comprises other rubber components.
−共役ジエン系重合体(A)−
前記共役ジエン系重合体は、モノマー単位成分(共重合体の一部)として非共役オレフィンを含まない重合体(ポリマー)を意味する。なお、スチレンは、非共役オレフィンに含まれないものとする。
前記共役ジエン系重合体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、天然ゴム(NR)、各種ポリブタジエンゴム(BR)、合成ポリイソプレンゴム(IR)、各種スチレン−ブタジエン共重合体ゴム(SBR)、エチレン−プロピレンゴム(EPR)、スチレン−イソプレン共重合体ゴム、スチレン−イソプレン−ブタジエン共重合体ゴム、イソプレン−ブタジエン共重合体ゴム、アクリロニトリル−ブタジエン共重合体ゴム(NBR)、クロロプレンゴムなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、天然ゴム(NR)、合成ポリイソプレンゴム(IR)、各種ポリブタジエンゴム(BR)、及びスチレン−ブタジエン共重合体ゴム(SBR)が、後述するエチレン−プロピレン−ジエンゴムを含有する非共役ジエン化合物−非共役オレフィン共重合体(C)との相溶性がよく、耐破壊性及び耐亀裂成長性を向上できる点で好適である。
-Conjugated diene polymer (A)-
The conjugated diene polymer means a polymer (polymer) containing no non-conjugated olefin as a monomer unit component (part of copolymer). Styrene is not included in the non-conjugated olefin.
The conjugated diene polymer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include natural rubber (NR), various polybutadiene rubbers (BR), synthetic polyisoprene rubber (IR), and various styrenes. -Butadiene copolymer rubber (SBR), ethylene-propylene rubber (EPR), styrene-isoprene copolymer rubber, styrene-isoprene-butadiene copolymer rubber, isoprene-butadiene copolymer rubber, acrylonitrile-butadiene copolymer Examples thereof include rubber (NBR) and chloroprene rubber. These may be used individually by 1 type and may use 2 or more types together.
Among these, natural rubber (NR), synthetic polyisoprene rubber (IR), various polybutadiene rubbers (BR), and styrene-butadiene copolymer rubber (SBR) are non-conjugated containing ethylene-propylene-diene rubber described later. The compatibility with the diene compound-nonconjugated olefin copolymer (C) is good, and this is preferable in that the fracture resistance and crack growth resistance can be improved.
前記ゴム成分100質量部中における前記共役ジエン系重合体(A)の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、90質量部〜10質量部が好ましく、75質量部〜25質量部であることがより好ましい。
前記ゴム成分100質量部中における前記共役ジエン系重合体(A)の含有量が、10質量部未満であると、耐破壊性や加工性が悪化することがあり、90質量部を超えると、耐候性が悪化することがある。一方、前記ゴム成分100質量部中における前記共役ジエン系重合体(A)の含有量が、前記より好ましい範囲内であると、各性能のバランスの点で有利である。
The content of the conjugated diene polymer (A) in 100 parts by mass of the rubber component is not particularly limited and may be appropriately selected depending on the purpose, but is preferably 90 parts by mass to 10 parts by mass, It is more preferable that it is 75 mass parts-25 mass parts.
When the content of the conjugated diene polymer (A) in 100 parts by mass of the rubber component is less than 10 parts by mass, the fracture resistance and workability may deteriorate, and when it exceeds 90 parts by mass, Weather resistance may deteriorate. On the other hand, when the content of the conjugated diene polymer (A) in 100 parts by mass of the rubber component is within the more preferable range, it is advantageous in terms of balance of performances.
−共役ジエン化合物−非共役オレフィン共重合体(B)−
本発明のゴム組成物が、該共役ジエン化合物−非共役オレフィン共重合体(B)を含むことで、共役ジエン化合物−非共役オレフィン共重合体(B)成分の共役ジエン部分が共役ジエン系重合体(A)成分との相溶性を向上させ、(B)成分の非共役オレフィン部分が非共役ジエン化合物−非共役オレフィン共重合体(C)との相溶性を向上させることによって、耐破壊性及び耐亀裂成長性に優れた共役ジエン系重合体(A)と、耐候性に優れたエチレン−プロピレン−ジエンゴムを含有する非共役ジエン化合物−非共役オレフィン共重合体(C)との相溶性を向上させることができる結果、ゴム組成物の耐候性、耐破壊性及び耐亀裂成長性を高いレベルで両立できる。なお、前記共役ジエン化合物−非共役オレフィン共重合体(B)とは、共役ジエン化合物と非共役オレフィンとの共重合体であり、共重合体におけるモノマー単位成分として非共役オレフィンを含むものである。
-Conjugated diene compound-Non-conjugated olefin copolymer (B)-
The rubber composition of the present invention contains the conjugated diene compound-nonconjugated olefin copolymer (B), so that the conjugated diene portion of the conjugated diene compound-nonconjugated olefin copolymer (B) component is conjugated diene-based heavy. By improving the compatibility with the combined (A) component, and the non-conjugated olefin part of the (B) component improving the compatibility with the non-conjugated diene compound-non-conjugated olefin copolymer (C), fracture resistance And compatibility between the conjugated diene polymer (A) excellent in crack growth resistance and the nonconjugated diene compound-nonconjugated olefin copolymer (C) containing ethylene-propylene-diene rubber excellent in weather resistance. As a result of improvement, the weather resistance, fracture resistance and crack growth resistance of the rubber composition can be compatible at a high level. The conjugated diene compound-nonconjugated olefin copolymer (B) is a copolymer of a conjugated diene compound and a nonconjugated olefin, and contains a nonconjugated olefin as a monomer unit component in the copolymer.
前記共役ジエン化合物−非共役オレフィン共重合体における前記共役ジエン化合物由来部分の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、40mol%以上が好ましい。
前記共役ジエン化合物由来部分の含有量が40mol%未満であると、プラスチックに近いためエラストマーとしての特性が低く、十分な耐破壊性及び耐亀裂性が得られないことがあり、また、共役ジエン系重合体(A)と、エチレン−プロピレン−ジエンゴムを含有する非共役ジエン化合物−非共役オレフィン共重合体(C)との相溶性が低下して、所望の耐候性、耐破壊性及び耐亀裂成長性を得ることができないことがあるからである。より良好な耐候性、耐破壊性及び耐亀裂成長性を得る点からは、共役ジエン化合物由来部分の含有量が60mol%以上であることが加工性及び屈曲疲労性の点から好ましい。なお、前記共役ジエン化合物由来部分とは、前記共役ジエン化合物−非共役オレフィン共重合体(A)の中で、モノマーとして用いられた共役ジエン化合物に該当する部分のことをいう。
また、前記非共役オレフィン由来部分の含有量としては、加工性の点から、60mol%以下であることがより好ましく、40mol%以下であることがさらに好ましい。
There is no restriction | limiting in particular as content of the said conjugated diene compound origin part in the said conjugated diene compound-nonconjugated olefin copolymer, Although it can select suitably according to the objective, 40 mol% or more is preferable.
When the content of the conjugated diene compound-derived portion is less than 40 mol%, the properties as an elastomer are low because it is close to plastic, and sufficient fracture resistance and crack resistance may not be obtained. Compatibility between the polymer (A) and the non-conjugated diene compound-non-conjugated olefin copolymer (C) containing ethylene-propylene-diene rubber is lowered, and the desired weather resistance, fracture resistance and crack growth resistance are reduced. This is because sex may not be obtained. From the viewpoint of obtaining better weather resistance, fracture resistance and crack growth resistance, the content of the conjugated diene compound-derived portion is preferably 60 mol% or more from the viewpoint of workability and bending fatigue. In addition, the said conjugated diene compound origin part means the part applicable to the conjugated diene compound used as a monomer in the said conjugated diene compound-nonconjugated olefin copolymer (A).
Moreover, as content of the said nonconjugated olefin origin part, it is more preferable that it is 60 mol% or less from the point of workability, and it is further more preferable that it is 40 mol% or less.
前記共役ジエン化合物−非共役オレフィン共重合体(B)において、重量平均分子量(Mw)は、低分子量化の問題が起こることも無く、その重量平均分子量(Mw)は特に限定されるものでもないが、高分子構造材料への適用の観点から、該共重合体のポリスチレン換算重量平均分子量(Mw)は10,000〜10,000,000が好ましく、10,000〜1,000,000がより好ましく、50,000〜600,000が更に好ましい。また、重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、10以下が好ましく、6以下が更に好ましい。分子量分布が10を超えると物性が均質でなくなるためである。ここで、平均分子量及び分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレンを標準物質として求めることができる。 In the conjugated diene compound-nonconjugated olefin copolymer (B), the weight average molecular weight (Mw) does not cause a problem of lowering the molecular weight, and the weight average molecular weight (Mw) is not particularly limited. However, from the viewpoint of application to a polymer structural material, the polystyrene-equivalent weight average molecular weight (Mw) of the copolymer is preferably 10,000 to 10,000,000, more preferably 10,000 to 1,000,000. Preferably, 50,000-600,000 is more preferable. Further, the molecular weight distribution (Mw / Mn) represented by the ratio of the weight average molecular weight (Mw) and the number average molecular weight (Mn) is preferably 10 or less, and more preferably 6 or less. This is because if the molecular weight distribution exceeds 10, the physical properties are not uniform. Here, the average molecular weight and the molecular weight distribution can be determined using polystyrene as a standard substance by gel permeation chromatography (GPC).
なお、前記共役ジエン化合物−非共役オレフィン共重合体(B)において、モノマーとして用いる共役ジエン化合物は、炭素数が4〜12であることが好ましい。該共役ジエン化合物として、具体的には、1,3−ブタジエン、イソプレン、1,3−ペンタジエン、2,3−ジメチルブタジエン等が挙げられ、これらの中でも、1,3−ブタジエン及びイソプレンが好ましい。また、これら共役ジエン化合物は、単独で用いてもよく、二種以上を組み合わせて用いてもよい。
上述した共役ジエン化合物の具体例のいずれを用いても、同様のメカニズムで前記ブロック共重合体と前記ランダム共重合体とを調製することができる。
In the conjugated diene compound-nonconjugated olefin copolymer (B), the conjugated diene compound used as a monomer preferably has 4 to 12 carbon atoms. Specific examples of the conjugated diene compound include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethylbutadiene, and among these, 1,3-butadiene and isoprene are preferable. Moreover, these conjugated diene compounds may be used independently and may be used in combination of 2 or more type.
Using any of the specific examples of the conjugated diene compound described above, the block copolymer and the random copolymer can be prepared by the same mechanism.
一方、前記共役ジエン化合物−非共役オレフィン共重合体(B)において、モノマーとして用いる非共役オレフィンは、共役ジエン化合物以外の非共役オレフィンであり、優れた耐熱性や、共重合体の主鎖中に占める二重結合の割合を減らし、結晶性を低下させることでエラストマーとしての設計自由度を高めることが可能となる。非共役オレフィンの種類としては、非環状オレフィンであることが好ましく、また、該非共役オレフィンの炭素数は2〜10であることが好ましい。従って、上記非共役オレフィンとしては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン等のα−オレフィンが好適に挙げられ、これらの中でも、エチレン、プロピレン及び1−ブテンが好ましく、エチレンが特に好ましい。α−オレフィンはオレフィンのα位に二重結合を有するため、共役ジエンとの共重合を効率よく行うことができる。これら非共役オレフィンは、単独で用いてもよく、二種以上を組み合わせて用いてもよい。なお、オレフィンは、脂肪族不飽和炭化水素で、炭素−炭素二重結合を1個以上有する化合物を指す。 On the other hand, in the conjugated diene compound-nonconjugated olefin copolymer (B), the nonconjugated olefin used as a monomer is a nonconjugated olefin other than the conjugated diene compound, and has excellent heat resistance and the main chain of the copolymer. It is possible to increase the degree of design freedom as an elastomer by reducing the proportion of double bonds in the resin and reducing the crystallinity. As a kind of nonconjugated olefin, it is preferable that it is an acyclic olefin, and it is preferable that carbon number of this nonconjugated olefin is 2-10. Accordingly, preferred examples of the non-conjugated olefin include α-olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene and 1-octene. Among these, ethylene, propylene And 1-butene are preferred, with ethylene being particularly preferred. Since the α-olefin has a double bond at the α-position of the olefin, copolymerization with the conjugated diene can be performed efficiently. These non-conjugated olefins may be used alone or in combination of two or more. In addition, an olefin refers to the compound which is an aliphatic unsaturated hydrocarbon and has one or more carbon-carbon double bonds.
また、非共役オレフィンのモノマー単位からなるブロック部分を備える場合には、静的結晶性を示すため、破断強度等の機械的性質に優れることができる。 In addition, when a block portion composed of a monomer unit of a non-conjugated olefin is provided, it exhibits excellent crystal properties such as breaking strength because it exhibits static crystallinity.
前記共役ジエン化合物−非共役オレフィン共重合体(B)における共役ジエン化合物由来部分のシス−1,4結合量としては、特に制限はなく、目的に応じて適宜選択することができるが、25%以上が好ましく、50%以上がより好ましく、92%超が特に好ましく、95%以上が最も好ましい。
前記共役ジエン化合物由来部分のシス1,4−結合量が、25%以上であれば、低いガラス転移点(Tg)を保持することができ、これにより、耐亀裂成長性や耐摩耗性等の物性が改良される。
一方、前記共役ジエン化合物由来部分のシス1,4−結合量を92%超とすることにより、耐亀裂成長性、耐候性、耐熱性を向上させることが可能となる。また、前記共役ジエン化合物由来部分のシス1,4−結合量を95%以上とすることにより、耐亀裂成長性、耐候性、耐熱性を一層向上させることが可能となる。
なお、前記シス−1,4結合量は、前記共役ジエン化合物由来部分中の量であって、共重合体全体に対する割合ではない。
The amount of cis-1,4 bonds in the conjugated diene compound-derived moiety in the conjugated diene compound-nonconjugated olefin copolymer (B) is not particularly limited and may be appropriately selected depending on the intended purpose. The above is preferable, 50% or more is more preferable, more than 92% is particularly preferable, and 95% or more is most preferable.
If the amount of cis 1,4-bond in the conjugated diene compound-derived portion is 25% or more, a low glass transition point (Tg) can be maintained, thereby improving crack growth resistance, wear resistance, etc. Physical properties are improved.
On the other hand, the crack growth resistance, weather resistance, and heat resistance can be improved by setting the cis 1,4-bond amount of the conjugated diene compound-derived portion to more than 92%. Further, by making the cis 1,4-bond amount of the conjugated diene compound-derived portion 95% or more, the crack growth resistance, weather resistance, and heat resistance can be further improved.
The cis-1,4 bond amount is an amount in the conjugated diene compound-derived portion, and is not a ratio to the entire copolymer.
前記共役ジエン化合物−非共役オレフィン共重合体(B)の共役ジエン化合物由来部分における共役ジエン化合物の1,2付加体部分(3,4付加体部分を含む)含量としては、特に制限はなく、目的に応じて適宜選択することができるが、5%以下が好ましく、3%以下がより好ましく、2.5%以下が特に好ましい。
前記共役ジエン化合物−非共役オレフィン共重合体(B)の共役ジエン化合物由来部分における共役ジエン化合物の1,2付加体部分(3,4付加体部分を含む)含量が、5%以下であると、共重合体の耐候性や耐オゾン性をさらに向上させることができる。
一方、前記共役ジエン化合物−非共役オレフィン共重合体の共役ジエン化合物由来部分における共役ジエン化合物の1,2付加体部分(3,4付加体部分を含む)含量が、2.5%以下であると、共重合体の耐候性や耐オゾン性をさらに向上させることができる。
前記1,2付加体部分(3,4付加体部分を含む)含量は、前記共役ジエン化合物由来部分中の量であって、共重合体全体に対する割合ではない。
なお、前記共役ジエン化合物由来部分における共役ジエン化合物の1,2付加体部分(3,4付加体部分を含む)含量は、共役ジエン化合物がブタジエンの場合、1,2−ビニル結合量と同じ意味である。
The content of the conjugated diene compound-containing non-conjugated olefin copolymer (B) in the conjugated diene compound-derived portion is not particularly limited as the content of the 1,2-adduct portion (including the 3,4-adduct portion) of the conjugated diene compound, Although it can select suitably according to the objective, 5% or less is preferable, 3% or less is more preferable, and 2.5% or less is especially preferable.
The conjugated diene compound-nonconjugated olefin copolymer (B) has a 1,2 adduct portion (including a 3,4 adduct portion) content of the conjugated diene compound in a portion derived from the conjugated diene compound of 5% or less. The weather resistance and ozone resistance of the copolymer can be further improved.
On the other hand, the content of 1,2 adducts (including 3,4 adducts) of the conjugated diene compound in the conjugated diene compound-derived part of the conjugated diene compound-nonconjugated olefin copolymer is 2.5% or less. And the weather resistance and ozone resistance of the copolymer can be further improved.
The content of the 1,2-adduct portion (including the 3,4-adduct portion) is an amount in the portion derived from the conjugated diene compound, and is not a ratio to the whole copolymer.
The 1,2-adduct portion (including 3,4-adduct portion) content of the conjugated diene compound in the conjugated diene compound-derived portion has the same meaning as the 1,2-vinyl bond amount when the conjugated diene compound is butadiene. It is.
前記共役ジエン化合物−非共役オレフィン共重合体(B)の連鎖構造としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ブロック共重合体、ランダム共重合体、テーパー共重合体、交互共重合体などが挙げられる。 There is no restriction | limiting in particular as a chain structure of the said conjugated diene compound-nonconjugated olefin copolymer (B), According to the objective, it can select suitably, For example, a block copolymer, a random copolymer, a taper copolymer. A polymer, an alternating copolymer, etc. are mentioned.
−−ブロック共重合体−−
前記ブロック共重合体の構造は、(A−B)x、A−(B−A)x及びB−(A−B)x(ここで、Aは、非共役オレフィンの単量体単位からなるブロック部分であり、Bは、共役ジエン化合物の単量体単位からなるブロック部分であり、xは1以上の整数である)のいずれかである。なお、(A−B)又は(B−A)の構造を複数備えるブロック共重合体をマルチブロック共重合体と称する。
共役ジエン化合物−非共役オレフィン共重合体(B)がブロック共重合体である場合は、非共役オレフィンの単量体からなるブロック部分が静的結晶性を示すため、破断強度等の機械的性質に優れる。結晶性を示すブロック部分によって、貯蔵弾性率(G´)の低下を抑制することができる。
--Block copolymer--
The block copolymer has a structure of (AB) x , A- (BA) x and B- (AB) x (where A is a monomer unit of a non-conjugated olefin. It is a block part, B is a block part consisting of monomer units of a conjugated diene compound, and x is an integer of 1 or more. In addition, the block copolymer provided with two or more structures of (AB) or (BA) is called a multi-block copolymer.
When the conjugated diene compound-nonconjugated olefin copolymer (B) is a block copolymer, the block portion composed of the monomer of the nonconjugated olefin exhibits static crystallinity, and therefore mechanical properties such as breaking strength. Excellent. The block portion showing crystallinity can suppress a decrease in storage elastic modulus (G ′).
−−ランダム共重合体−−
共役ジエン化合物−非共役オレフィン共重合体(B)がランダム共重合体である場合は、非共役オレフィンの単量体単位の配列が不規則であるため、共重合体が相分離を起こすことなく、ブロック部分に由来する結晶化温度が観測されない。すなわち、耐熱性などの性質を有する非共役オレフィンを共重合体の主鎖中に導入することが可能になるため、耐熱性が向上する。
--Random copolymer--
When the conjugated diene compound-nonconjugated olefin copolymer (B) is a random copolymer, the arrangement of the monomer units of the nonconjugated olefin is irregular, so that the copolymer does not cause phase separation. The crystallization temperature derived from the block part is not observed. That is, since it becomes possible to introduce a non-conjugated olefin having properties such as heat resistance into the main chain of the copolymer, the heat resistance is improved.
−−テーパー共重合体−−
前記テーパー共重合体とは、ランダム共重合体とブロック共重合体とが混在してなる共重合体であり、共役ジエン化合物の単量体単位からなるブロック部分及び非共役オレフィンの単量体単位からなるブロック部分のうち少なくとも一方のブロック部分(ブロック構造ともいう)と、共役ジエン化合物及び非共役オレフィンの単量体単位が不規則に配列してなるランダム部分(ランダム構造という)とから構成される共重合体である。
前記テーパー共重合体の構造は、共役ジエン化合物成分と非共役オレフィン成分との組成が連続的又は不連続的に分布があることを示す。ここで、非共役オレフィン成分の連鎖構造としては、長鎖(高分子量)の非共役オレフィンブロック成分を多く含まず、短鎖(低分子量)の非共役オレフィンブロック成分を多く含むことが好ましい。
--Tapered copolymer--
The taper copolymer is a copolymer in which a random copolymer and a block copolymer are mixed, a block portion composed of monomer units of a conjugated diene compound and a monomer unit of non-conjugated olefins. The block part is composed of at least one block part (also referred to as a block structure) and a random part (referred to as a random structure) in which monomer units of a conjugated diene compound and a nonconjugated olefin are irregularly arranged. It is a copolymer.
The structure of the taper copolymer indicates that the composition of the conjugated diene compound component and the non-conjugated olefin component is distributed continuously or discontinuously. Here, it is preferable that the chain structure of the non-conjugated olefin component does not contain many long-chain (high molecular weight) non-conjugated olefin block components but contains many short-chain (low molecular weight) non-conjugated olefin block components.
−−交互共重合体−−
前記交互共重合体は、共役ジエン化合物と非共役オレフィンとが交互に配列する構造(非共役オレフィンをAと、共役ジエン化合物をBとした場合の、−ABABABAB−の分子鎖構造)を有する重合体である。前記交互共重合体である場合は、柔軟性と接着性の両立が可能となる。
--Alternate copolymer--
The alternating copolymer has a structure in which a conjugated diene compound and a non-conjugated olefin are alternately arranged (a molecular chain structure of -ABABABAB-, where A is a non-conjugated olefin and B is a conjugated diene compound). It is a coalescence. In the case of the alternating copolymer, both flexibility and adhesiveness can be achieved.
本発明においては、共役ジエン化合物−非共役オレフィン共重合体(B)がブロック共重合体である場合は、非共役オレフィンの単量体からなるブロック部分が静的結晶性を示すため、破断強度等の機械的性質に優れるので、共重合体は、ブロック共重合体及びテーパー共重合体から選ばれる少なくとも1種であることが好ましい。 In the present invention, when the conjugated diene compound-nonconjugated olefin copolymer (B) is a block copolymer, the block portion composed of the monomer of the nonconjugated olefin exhibits static crystallinity. Therefore, the copolymer is preferably at least one selected from a block copolymer and a tapered copolymer.
また、前記ゴム成分100質量部中における前記共役ジエン化合物−非共役オレフィン共重合体(B)の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、10質量部〜90質量部であることが好ましく、25質量部〜75質量部であることがより好ましい。
前記ゴム成分100質量部中における前記共役ジエン化合物−非共役オレフィン共重合体(B)の含有量が、10質量部未満であると、耐候性が悪化することがあり、90質量部を超えると、耐破壊性や加工性が悪化することがある。
一方、前記ゴム成分100質量部中における前記共役ジエン化合物−非共役オレフィン共重合体(B)の含有量が、前記より好ましい範囲内であると、各性能のバランスの点で有利である。
Moreover, there is no restriction | limiting in particular as content of the said conjugated diene compound-nonconjugated olefin copolymer (B) in 100 mass parts of said rubber components, Although it can select suitably according to the objective, 10 mass parts It is preferable that it is -90 mass parts, and it is more preferable that it is 25 mass parts -75 mass parts.
When the content of the conjugated diene compound-nonconjugated olefin copolymer (B) in 100 parts by mass of the rubber component is less than 10 parts by mass, the weather resistance may deteriorate, and when the content exceeds 90 parts by mass. The fracture resistance and workability may deteriorate.
On the other hand, when the content of the conjugated diene compound-nonconjugated olefin copolymer (B) in 100 parts by mass of the rubber component is in the more preferable range, it is advantageous in terms of balance of performances.
−−共役ジエン化合物−非共役オレフィン共重合体の製造方法−−
次に、前記共役ジエン化合物−非共役オレフィン共重合体を製造することができる製造方法を詳細に説明する。但し、以下に詳述する製造方法は、あくまで例示に過ぎない。
前記共役ジエン化合物−非共役オレフィン共重合体は、下記に示す重合触媒または重合触媒組成物の存在下、共役ジエン化合物と非共役オレフィンとを重合させる工程を含む。
なお、重合方法としては、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の方法を用いることができる。また、重合反応に溶媒を用いる場合、用いられる溶媒は重合反応において不活性であればよく、例えば、トルエン、シクロヘキサン、ノルマルヘキサン、またそれらの混合物等が挙げられる。
--Conjugated diene compound-Method for producing non-conjugated olefin copolymer--
Next, a production method capable of producing the conjugated diene compound-nonconjugated olefin copolymer will be described in detail. However, the manufacturing method described in detail below is merely an example.
The conjugated diene compound-nonconjugated olefin copolymer includes a step of polymerizing a conjugated diene compound and a nonconjugated olefin in the presence of the polymerization catalyst or polymerization catalyst composition shown below.
As a polymerization method, any method such as a solution polymerization method, a suspension polymerization method, a liquid phase bulk polymerization method, an emulsion polymerization method, a gas phase polymerization method, and a solid phase polymerization method can be used. Moreover, when using a solvent for a polymerization reaction, the solvent used should just be inactive in a polymerization reaction, For example, toluene, cyclohexane, normal hexane, mixtures thereof etc. are mentioned.
上記製造方法によれば、上記重合触媒または重合触媒組成物を用いること以外は、通常の配位イオン重合触媒による重合体の製造方法と同様にして、モノマーである共役ジエン化合物と非共役オレフィンを共重合させることができる。 According to the above production method, except that the polymerization catalyst or the polymerization catalyst composition is used, the monomer conjugated diene compound and the non-conjugated olefin are produced in the same manner as in the production method of the polymer using the normal coordination ion polymerization catalyst. It can be copolymerized.
<第一の重合触媒組成物>
上記重合触媒組成物としては、下記一般式(I):
The polymerization catalyst composition includes the following general formula (I):
上記一般式(I)及び式(II)で表されるメタロセン錯体において、式中のCpRは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpRは、C9H7-XRX又はC9H11-XRXで示され得る。ここで、Xは0〜7又は0〜11の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。置換インデニルとして、具体的には、2−フェニルインデニル、2−メチルインデニル等が挙げられる。なお、一般式(I)及び式(II)における二つのCpRは、それぞれ互いに同一でも異なっていてもよい。 In the metallocene complexes represented by the above general formulas (I) and (II), Cp R in the formula is unsubstituted indenyl or substituted indenyl. Cp R having an indenyl ring as a basic skeleton can be represented by C 9 H 7-X R X or C 9 H 11-X R X. Here, X is an integer of 0-7 or 0-11. In addition, each R is preferably independently a hydrocarbyl group or a metalloid group. The hydrocarbyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 8 carbon atoms. Specific examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group, and a benzyl group. On the other hand, examples of metalloid group metalloids include germyl Ge, stannyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group that the metalloid group has is the same as the above hydrocarbyl group. is there. Specific examples of the metalloid group include a trimethylsilyl group. Specific examples of the substituted indenyl include 2-phenylindenyl and 2-methylindenyl. Note that the two Cp Rs in the general formulas (I) and (II) may be the same as or different from each other.
上記一般式(III)で表されるハーフメタロセンカチオン錯体において、式中のCpR’は、無置換もしくは置換のシクロペンタジエニル、インデニル又はフルオレニルであり、これらの中でも、無置換もしくは置換のインデニルであることが好ましい。シクロペンタジエニル環を基本骨格とするCpR’は、C5H5-XRXで示される。ここで、Xは0〜5の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。シクロペンタジエニル環を基本骨格とするCpR’として、具体的には、以下のものが例示される。
一般式(III)において、上記インデニル環を基本骨格とするCpR’は、一般式(I)のCpRと同様に定義され、好ましい例も同様である。 In the general formula (III), Cp R ′ having the indenyl ring as a basic skeleton is defined in the same manner as Cp R in the general formula (I), and preferred examples thereof are also the same.
一般式(III)において、上記フルオレニル環を基本骨格とするCpR’は、C13H9-XRX又はC13H17-XRXで示され得る。ここで、Xは0〜9又は0〜17の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。 In the general formula (III), Cp R ′ having the fluorenyl ring as a basic skeleton can be represented by C 13 H 9-X R X or C 13 H 17-X R X. Here, X is an integer of 0-9 or 0-17. In addition, each R is preferably independently a hydrocarbyl group or a metalloid group. The hydrocarbyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 8 carbon atoms. Specific examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group, and a benzyl group. On the other hand, examples of metalloid group metalloids include germyl Ge, stannyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group that the metalloid group has is the same as the above hydrocarbyl group. is there. Specific examples of the metalloid group include a trimethylsilyl group.
一般式(I)、式(II)及び式(III)における中心金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。中心金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。 The central metal M in the general formulas (I), (II) and (III) is a lanthanoid element, scandium or yttrium. The lanthanoid elements include 15 elements having atomic numbers 57 to 71, and any of these may be used. Preferred examples of the central metal M include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, holmium Ho, scandium Sc, and yttrium Y.
一般式(I)で表されるメタロセン錯体は、シリルアミド配位子[−N(SiR3)2]を含む。シリルアミド配位子に含まれるR基(一般式(I)におけるRa〜Rf)は、それぞれ独立して炭素数1〜3のアルキル基又は水素原子である。また、Ra〜Rfのうち少なくとも一つが水素原子であることが好ましい。Ra〜Rfのうち少なくとも一つを水素原子にすることで、触媒の合成が容易になり、また、ケイ素まわりのかさ高さが低くなるため、非共役オレフィンが導入され易くなる。同様の観点から、Ra〜Rcのうち少なくとも一つが水素原子であり、Rd〜Rfのうち少なくとも一つが水素原子であることが更に好ましい。更に、アルキル基としては、メチル基が好ましい。 The metallocene complex represented by the general formula (I) contains a silylamide ligand [—N (SiR 3 ) 2 ]. The R groups contained in the silylamide ligand (R a to R f in the general formula (I)) are each independently an alkyl group having 1 to 3 carbon atoms or a hydrogen atom. Moreover, it is preferable that at least one of R a to R f is a hydrogen atom. By making at least one of R a to R f a hydrogen atom, the synthesis of the catalyst is facilitated, and the bulk height around silicon is reduced, so that non-conjugated olefin is easily introduced. From the same viewpoint, it is more preferable that at least one of R a to R c is a hydrogen atom and at least one of R d to R f is a hydrogen atom. Furthermore, a methyl group is preferable as the alkyl group.
一般式(II)で表されるメタロセン錯体は、シリル配位子[−SiX’3]を含む。シリル配位子[−SiX’3]に含まれるX’は、下記で説明される一般式(III)のXと同様に定義される基であり、好ましい基も同様である。 The metallocene complex represented by the general formula (II) includes a silyl ligand [—SiX ′ 3 ]. X ′ contained in the silyl ligand [—SiX ′ 3 ] is a group defined in the same manner as X in the general formula (III) described below, and preferred groups are also the same.
一般式(III)において、Xは水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基及び炭素数1〜20の炭化水素基からなる群より選択される基である。ここで、上記アルコキシド基としては、メトキシ基、エトキシ基、プロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、2,6−ジイソプロピルフェノキシ基、2,6−ジネオペンチルフェノキシ基、2−tert−ブチル−6−イソプロピルフェノキシ基、2−tert−ブチル−6−ネオペンチルフェノキシ基、2−イソプロピル−6−ネオペンチルフェノキシ基等のアリールオキシド基が挙げられ、これらの中でも、2,6−ジ−tert−ブチルフェノキシ基が好ましい。 In the general formula (III), X is a group selected from the group consisting of a hydrogen atom, a halogen atom, an alkoxide group, a thiolate group, an amide group, a silyl group, and a hydrocarbon group having 1 to 20 carbon atoms. Here, examples of the alkoxide group include aliphatic alkoxy groups such as a methoxy group, an ethoxy group, a propoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, and a tert-butoxy group; a phenoxy group and 2,6-dioxy -Tert-butylphenoxy group, 2,6-diisopropylphenoxy group, 2,6-dinepentylphenoxy group, 2-tert-butyl-6-isopropylphenoxy group, 2-tert-butyl-6-neopentylphenoxy group, Examples include aryloxide groups such as 2-isopropyl-6-neopentylphenoxy group, and among these, 2,6-di-tert-butylphenoxy group is preferable.
一般式(III)において、Xが表すチオラート基としては、チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn−ブトキシ基、チオイソブトキシ基、チオsec−ブトキシ基、チオtert−ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6−ジ−tert−ブチルチオフェノキシ基、2,6−ジイソプロピルチオフェノキシ基、2,6−ジネオペンチルチオフェノキシ基、2−tert−ブチル−6−イソプロピルチオフェノキシ基、2−tert−ブチル−6−チオネオペンチルフェノキシ基、2−イソプロピル−6−チオネオペンチルフェノキシ基、2,4,6−トリイソプロピルチオフェノキシ基等のアリールチオラート基が挙げられ、これらの中でも、2,4,6−トリイソプロピルチオフェノキシ基が好ましい。 In the general formula (III), the thiolate group represented by X includes a thiomethoxy group, a thioethoxy group, a thiopropoxy group, a thio n-butoxy group, a thioisobutoxy group, a thiosec-butoxy group, a thiotert-butoxy group and the like Group thiolate group; thiophenoxy group, 2,6-di-tert-butylthiophenoxy group, 2,6-diisopropylthiophenoxy group, 2,6-dineopentylthiophenoxy group, 2-tert-butyl-6-isopropyl Arylthiolate groups such as thiophenoxy group, 2-tert-butyl-6-thioneopentylphenoxy group, 2-isopropyl-6-thioneopentylphenoxy group, 2,4,6-triisopropylthiophenoxy group, etc. Among these, 2,4,6-triisopropylthiophenoxy group Preferred.
一般式(III)において、Xが表すアミド基としては、ジメチルアミド基、ジエチルアミド基、ジイソプロピルアミド基等の脂肪族アミド基;フェニルアミド基、2,6−ジ−tert−ブチルフェニルアミド基、2,6−ジイソプロピルフェニルアミド基、2,6−ジネオペンチルフェニルアミド基、2−tert−ブチル−6−イソプロピルフェニルアミド基、2−tert−ブチル−6−ネオペンチルフェニルアミド基、2−イソプロピル−6−ネオペンチルフェニルアミド基、2,4,6−トリ−tert−ブチルフェニルアミド基等のアリールアミド基;ビストリメチルシリルアミド基等のビストリアルキルシリルアミド基が挙げられ、これらの中でも、ビストリメチルシリルアミド基が好ましい。 In the general formula (III), examples of the amide group represented by X include aliphatic amide groups such as a dimethylamide group, a diethylamide group, and a diisopropylamide group; a phenylamide group, a 2,6-di-tert-butylphenylamide group, 2 , 6-diisopropylphenylamide group, 2,6-dineopentylphenylamide group, 2-tert-butyl-6-isopropylphenylamide group, 2-tert-butyl-6-neopentylphenylamide group, 2-isopropyl- Arylamide groups such as 6-neopentylphenylamide group and 2,4,6-tri-tert-butylphenylamide group; and bistrialkylsilylamide groups such as bistrimethylsilylamide group. Among these, bistrimethylsilylamide Groups are preferred.
一般式(III)において、Xが表すシリル基としては、トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等が挙げられ、これらの中でも、トリス(トリメチルシリル)シリル基が好ましい。 In the general formula (III), examples of the silyl group represented by X include trimethylsilyl group, tris (trimethylsilyl) silyl group, bis (trimethylsilyl) methylsilyl group, trimethylsilyl (dimethyl) silyl group, triisopropylsilyl (bistrimethylsilyl) silyl group, and the like. Among these, a tris (trimethylsilyl) silyl group is preferable.
一般式(III)において、Xが表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子のいずれでもよいが、塩素原子又は臭素原子が好ましい。また、Xが表す炭素数1〜20の炭化水素基として、具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ネオペンチル基、ヘキシル基、オクチル基等の直鎖又は分枝鎖の脂肪族炭化水素基;フェニル基、トリル基、ナフチル基等の芳香族炭化水素基;ベンジル基等のアラルキル基等の他;トリメチルシリルメチル基、ビストリメチルシリルメチル基等のケイ素原子を含有する炭化水素基等が挙げられ、これらの中でも、メチル基、エチル基、イソブチル基、トリメチルシリルメチル基等が好ましい。 In the general formula (III), the halogen atom represented by X may be any of a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, but a chlorine atom or a bromine atom is preferred. Moreover, as a C1-C20 hydrocarbon group which X represents, specifically, a methyl group, an ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert- Linear or branched aliphatic hydrocarbon groups such as butyl group, neopentyl group, hexyl group, octyl group; aromatic hydrocarbon groups such as phenyl group, tolyl group, naphthyl group; aralkyl groups such as benzyl group, etc. Others: Examples include hydrocarbon groups containing silicon atoms such as trimethylsilylmethyl group and bistrimethylsilylmethyl group. Among these, methyl group, ethyl group, isobutyl group, trimethylsilylmethyl group and the like are preferable.
一般式(III)において、Xとしては、ビストリメチルシリルアミド基又は炭素数1〜20の炭化水素基が好ましい。 In the general formula (III), X is preferably a bistrimethylsilylamide group or a hydrocarbon group having 1 to 20 carbon atoms.
一般式(III)において、[B]-で示される非配位性アニオンとしては、例えば、4価のホウ素アニオンが挙げられる。該4価のホウ素アニオンとして、具体的には、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。 In the general formula (III), [B] - The non-coordinating anion represented by, for example, a tetravalent boron anion. Specific examples of the tetravalent boron anion include tetraphenyl borate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis ( Pentafluorophenyl) borate, tetrakis (tetrafluoromethylphenyl) borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tri Decahydride-7,8-dicarbaoundecaborate and the like can be mentioned, and among these, tetrakis (pentafluorophenyl) borate is preferable.
上記一般式(I)及び式(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体は、更に0〜3個、好ましくは0〜1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。 The metallocene complex represented by the general formulas (I) and (II) and the half metallocene cation complex represented by the general formula (III) are further 0 to 3, preferably 0 to 1 neutral. Contains Lewis base L. Here, examples of the neutral Lewis base L include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, neutral diolefins, and the like. Here, when the complex includes a plurality of neutral Lewis bases L, the neutral Lewis bases L may be the same or different.
また、上記一般式(I)及び式(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体は、モノマーとして存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。 Moreover, the metallocene complex represented by the general formula (I) and the formula (II) and the half metallocene cation complex represented by the general formula (III) may exist as a monomer, a dimer or It may be present as a higher multimer.
上記一般式(I)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えばカリウム塩やリチウム塩)及びビス(トリアルキルシリル)アミドの塩(例えばカリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、一般式(I)で表されるメタロセン錯体を得るための反応例を示す。
上記一般式(II)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えばカリウム塩やリチウム塩)及びシリルの塩(例えばカリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、一般式(II)で表されるメタロセン錯体を得るための反応例を示す。
上記一般式(III)で表されるハーフメタロセンカチオン錯体は、例えば、次の反応により得ることができる。
ここで、一般式(IV)で表される化合物において、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR’は、それぞれ独立して無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1〜20の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す。また、一般式[A]+[B]-で表されるイオン性化合物において、[A]+は、カチオンを示し、[B]-は、非配位性アニオンを示す。 Here, in the compound represented by the general formula (IV), M represents a lanthanoid element, scandium or yttrium, and Cp R ′ represents each independently an unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl. , X represents a hydrogen atom, a halogen atom, an alkoxide group, a thiolate group, an amide group, a silyl group, or a hydrocarbon group having 1 to 20 carbon atoms, L represents a neutral Lewis base, and w represents 0 to 3 Indicates an integer. In the ionic compound represented by the general formula [A] + [B] − , [A] + represents a cation, and [B] − represents a non-coordinating anion.
[A]+で表されるカチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N−ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N−ジアルキルアニリニウムカチオンが特に好ましい。 Examples of the cation represented by [A] + include a carbonium cation, an oxonium cation, an amine cation, a phosphonium cation, a cycloheptatrienyl cation, and a ferrocenium cation having a transition metal. Examples of the carbonium cation include trisubstituted carbonium cations such as a triphenylcarbonium cation and a tri (substituted phenyl) carbonium cation. The tri (substituted phenyl) carbonyl cation is specifically exemplified by tri (methylphenyl). ) Carbonium cation and the like. Examples of amine cations include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation; N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N- N, N-dialkylanilinium cations such as 2,4,6-pentamethylanilinium cation; dialkylammonium cations such as diisopropylammonium cation and dicyclohexylammonium cation. Examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation. Among these cations, N, N-dialkylanilinium cation or carbonium cation is preferable, and N, N-dialkylanilinium cation is particularly preferable.
上記反応に用いる一般式[A]+[B]-で表されるイオン性化合物としては、上記の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物であって、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、一般式[A]+[B]-で表されるイオン性化合物は、メタロセン錯体に対して0.1〜10倍モル加えることが好ましく、約1倍モル加えることが更に好ましい。なお、一般式(III)で表されるハーフメタロセンカチオン錯体を重合反応に用いる場合、一般式(III)で表されるハーフメタロセンカチオン錯体をそのまま重合反応系中に提供してもよいし、上記反応に用いる一般式(IV)で表される化合物と一般式[A]+[B]-で表されるイオン性化合物を別個に重合反応系中に提供し、反応系中で一般式(III)で表されるハーフメタロセンカチオン錯体を形成させてもよい。また、一般式(I)又は式(II)で表されるメタロセン錯体と一般式[A]+[B]-で表されるイオン性化合物とを組み合わせて使用することにより、反応系中で一般式(III)で表されるハーフメタロセンカチオン錯体を形成させることもできる。 The ionic compound represented by the general formula [A] + [B] − used for the above reaction is a compound selected and combined from the above non-coordinating anions and cations, which is N, N-dimethylaniline. Preference is given to nium tetrakis (pentafluorophenyl) borate, triphenylcarbonium tetrakis (pentafluorophenyl) borate and the like. In general formula [A] + [B] - ionic compounds represented by is preferably added from 0.1 to 10 mol per mol of the metallocene complex, more preferably it added about 1 molar. When the half metallocene cation complex represented by the general formula (III) is used for the polymerization reaction, the half metallocene cation complex represented by the general formula (III) may be provided as it is in the polymerization reaction system, or the compound represented by the general formula (IV) and the general formula used in the reaction [a] + [B] - provides an ionic compound represented separately into the polymerization reaction system, the general formula in the reaction system (III You may form the half metallocene cation complex represented by this. Further, by using a combination of the metallocene complex represented by the general formula (I) or the formula (II) and the ionic compound represented by the general formula [A] + [B] − , A half metallocene cation complex represented by the formula (III) can also be formed.
一般式(I)及び式(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体の構造は、X線構造解析により決定することが好ましい。 The structures of the metallocene complexes represented by the general formulas (I) and (II) and the half metallocene cation complex represented by the general formula (III) are preferably determined by X-ray structural analysis.
上記第一重合触媒組成物に用いることができる助触媒は、通常のメタロセン錯体を含む重合触媒組成物の助触媒として用いられる成分から任意に選択され得る。該助触媒としては、例えば、アルミノキサン、有機アルミニウム化合物、上記のイオン性化合物等が好適に挙げられる。これら助触媒は、1種単独で用いてもよく、二種以上を組み合わせて用いてもよい。 The co-catalyst that can be used in the first polymerization catalyst composition can be arbitrarily selected from components used as a co-catalyst for a polymerization catalyst composition containing a normal metallocene complex. Suitable examples of the cocatalyst include aluminoxanes, organoaluminum compounds, and the above ionic compounds. These promoters may be used alone or in combination of two or more.
上記アルミノキサンとしては、アルキルアミノキサンが好ましく、例えば、メチルアルミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチルアルミノキサンとしては、MMAO−3A(東ソーファインケム社製)等が好ましい。なお、上記第一重合触媒組成物におけるアルミノキサンの含有量は、メタロセン錯体の中心金属Mと、アルミノキサンのアルミニウム元素Alとの元素比率Al/Mが、10〜1000程度、好ましくは100程度となるようにすることが好ましい。 The aluminoxane is preferably an alkylaminoxan, and examples thereof include methylaluminoxane (MAO) and modified methylaluminoxane. As the modified methylaluminoxane, MMAO-3A (manufactured by Tosoh Finechem Co., Ltd.) and the like are preferable. The content of aluminoxane in the first polymerization catalyst composition is such that the element ratio Al / M between the central metal M of the metallocene complex and the aluminum element Al of the aluminoxane is about 10 to 1000, preferably about 100. It is preferable to make it.
一方、上記有機アルミニウム化合物としては、一般式AlRR’R’’(式中、R及びR’はそれぞれ独立してC1〜C10の炭化水素基又は水素原子であり、R’’はC1〜C10の炭化水素基である)で表される有機アルミニウム化合物が好ましい。上記有機アルミニウム化合物としては、例えば、トリアルキルアルミニウム、ジアルキルアルミニウムクロライド、アルキルアルミニウムジクロライド、ジアルキルアルミニウムハイドライド等が挙げられ、これらの中でも、トリアルキルアルミニウムが好ましい。また、トリアルキルアルミニウムとしては、例えば、トリエチルアルミニウム、トリイソブチルアルミニウム等が挙げられる。なお、上記重合触媒組成物における有機アルミニウム化合物の含有量は、メタロセン錯体に対して1〜50倍モルであることが好ましく、約10倍モルであることが更に好ましい。 On the other hand, as the organoaluminum compound, the general formula AlRR′R ″ (wherein R and R ′ are each independently a C1-C10 hydrocarbon group or a hydrogen atom, and R ″ is a C1-C10 An organoaluminum compound represented by (a hydrocarbon group) is preferable. Examples of the organoaluminum compound include trialkylaluminum, dialkylaluminum chloride, alkylaluminum dichloride, and dialkylaluminum hydride. Among these, trialkylaluminum is preferable. Examples of the trialkylaluminum include triethylaluminum and triisobutylaluminum. In addition, it is preferable that it is 1-50 times mole with respect to a metallocene complex, and, as for content of the organoaluminum compound in the said polymerization catalyst composition, it is still more preferable that it is about 10 times mole.
更に、上記重合触媒組成物においては、一般式(I)及び式(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体をそれぞれ、適切な助触媒と組み合わせることで、シス−1,4結合量や得られる共重合体の分子量を増大できる。 Further, in the above polymerization catalyst composition, the metallocene complex represented by the general formula (I) and the formula (II) and the half metallocene cation complex represented by the above general formula (III) are each used as an appropriate promoter. By combining, the amount of cis-1,4 bonds and the molecular weight of the resulting copolymer can be increased.
<第二の重合触媒組成物>
また、上記重合触媒組成物としては、
(a)成分:希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であって、希土類元素と炭素との結合を有さない該希土類元素化合物又は反応物と、
(b)成分:非配位性アニオンとカチオンとからなるイオン性化合物(b−1)、アルミノキサン(b−2)、並びにルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも1種のハロゲン化合物(b−3)よりなる群から選択される少なくとも1種とを含む重合触媒組成物(以下、第二重合触媒組成物ともいう)を好適に挙げることができ、
該第二重合触媒組成物が、イオン性化合物(b−1)及びハロゲン化合物(b−3)の少なくとも1種を含む場合、該重合触媒組成物は、更に、
(c)成分:下記一般式(X):
YR1 aR2 bR3 c ・・・ (X)
[式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R1及びR2は、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、R3は炭素数1〜10の炭化水素基であり、但し、R3は上記R1又はR2と同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a,b及びcは1である]で表される有機金属化合物を含むことを特徴とする。
<Second polymerization catalyst composition>
In addition, as the polymerization catalyst composition,
Component (a): a rare earth element compound or a reaction product of the rare earth element compound and a Lewis base, the rare earth element compound or the reaction product having no bond between the rare earth element and carbon,
Component (b): includes ionic compound (b-1) composed of non-coordinating anion and cation, aluminoxane (b-2), Lewis acid, complex compound of metal halide and Lewis base, and active halogen Preferable examples include a polymerization catalyst composition (hereinafter also referred to as a second polymerization catalyst composition) containing at least one selected from the group consisting of at least one halogen compound (b-3) among organic compounds. Can
When the second polymerization catalyst composition contains at least one of an ionic compound (b-1) and a halogen compound (b-3), the polymerization catalyst composition further comprises:
(C) Component: The following general formula (X):
YR 1 a R 2 b R 3 c (X)
[Wherein Y is a metal selected from
前記共重合体の製造方法に用いる第二重合触媒組成物は、上記(a)成分及び(b)成分を含むことを要し、ここで、該重合触媒組成物が、上記イオン性化合物(b−1)及び上記ハロゲン化合物(b−3)の少なくとも1種を含む場合には、更に、
(c)成分:下記一般式(X):
YR1 aR2 bR3 c ・・・ (X)
[式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R1及びR2は、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、R3は炭素数1〜10の炭化水素基であり、但し、R3は上記R1又はR2と同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a,b及びcは1である]で表される有機金属化合物を含むことを要する。
上記イオン性化合物(b−1)及び上記ハロゲン化合物(b−3)は、(a)成分へ供給するための炭素原子が存在しないため、該(a)成分への炭素供給源として、上記(C)成分が必要となる。なお、上記重合触媒組成物が上記アルミノキサン(b−2)を含む場合であっても、該重合触媒組成物は、上記(c)成分を含むことができる。また、上記第二重合触媒組成物は、通常の希土類元素化合物系の重合触媒組成物に含有される他の成分、例えば助触媒等を含んでいてもよい。なお、重合反応系において、第二重合触媒組成物に含まれる(a)成分の濃度は0.1〜0.0001mol/lの範囲であることが好ましい。
The second polymerization catalyst composition used in the method for producing the copolymer needs to contain the component (a) and the component (b), where the polymerization catalyst composition is the ionic compound (b). -1) and at least one of the above halogen compounds (b-3),
(C) Component: The following general formula (X):
YR 1 a R 2 b R 3 c (X)
[Wherein Y is a metal selected from
Since the ionic compound (b-1) and the halogen compound (b-3) have no carbon atom to be supplied to the component (a), the carbon source for the component (a) is the above ( Component C) is required. In addition, even if the said polymerization catalyst composition is a case where the said aluminoxane (b-2) is included, this polymerization catalyst composition can contain the said (c) component. The second polymerization catalyst composition may contain other components, such as a promoter, contained in a normal rare earth element compound-based polymerization catalyst composition. In the polymerization reaction system, the concentration of the component (a) contained in the second polymerization catalyst composition is preferably in the range of 0.1 to 0.0001 mol / l.
上記第二重合触媒組成物に用いる(a)成分は、希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であり、ここで、希土類元素化合物及び該希土類元素化合物とルイス塩基との反応物は、希土類元素と炭素との結合を有さない。該希土類元素化合物及び反応物が希土類元素−炭素結合を有さない場合、化合物が安定であり、取り扱いやすい。ここで、希土類元素化合物とは、周期律表中の原子番号57〜71の元素から構成されるランタノイド元素又はスカンジウムもしくはイットリウムを含有する化合物である。
なお、ランタノイド元素の具体例としては、ランタニウム、セリウム、プラセオジム、ネオジウム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミニウム、エルビウム、ツリウム、イッテルビウム、ルテチウムを挙げることができる。なお、上記(a)成分は、1種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
The component (a) used in the second polymerization catalyst composition is a rare earth element compound or a reaction product of the rare earth element compound and a Lewis base. Here, the reaction of the rare earth element compound and the rare earth element compound with a Lewis base is performed. The object does not have a bond between rare earth element and carbon. When the rare earth element compound and the reactant do not have a rare earth element-carbon bond, the compound is stable and easy to handle. Here, the rare earth element compound is a compound containing a lanthanoid element or scandium or yttrium composed of the elements of atomic numbers 57 to 71 in the periodic table.
Specific examples of the lanthanoid element include lanthanium, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. In addition, the said (a) component may be used individually by 1 type, and may be used in combination of 2 or more type.
また、上記希土類元素化合物は、希土類金属が2価もしくは3価の塩又は錯体化合物であることが好ましく、水素原子、ハロゲン原子及び有機化合物残基から選択される1種又は2種以上の配位子を含有する希土類元素化合物であることが更に好ましい。更に、上記希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物は、下記一般式(XI)又は(XII):
M11X11 2・L11w ・・・ (XI)
M11X11 3・L11w ・・・ (XII)
[式中、M11は、ランタノイド元素、スカンジウム又はイットリウムを示し、X11は、それぞれ独立して、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基、アルデヒド残基、ケトン残基、カルボン酸残基、チオカルボン酸残基又はリン化合物残基を示し、L11は、ルイス塩基を示し、wは、0〜3を示す]で表されることができる。
The rare earth element compound is preferably a divalent or trivalent salt or complex compound of a rare earth metal, and one or more coordinations selected from a hydrogen atom, a halogen atom and an organic compound residue. More preferably, the rare earth element compound contains a child. Furthermore, the reaction product of the rare earth element compound or the rare earth element compound and a Lewis base is represented by the following general formula (XI) or (XII):
M 11 X 11 2 · L 11 w (XI)
M 11 X 11 3 · L 11 w (XII)
[Wherein, M 11 represents a lanthanoid element, scandium or yttrium, and X 11 independently represents a hydrogen atom, a halogen atom, an alkoxide group, a thiolate group, an amide group, a silyl group, an aldehyde residue, a ketone residue. A group, a carboxylic acid residue, a thiocarboxylic acid residue or a phosphorus compound residue, L 11 represents a Lewis base, and w represents 0 to 3].
上記希土類元素化合物の希土類元素に結合する基(配位子)として、具体的には、水素原子;メトキシ基、エトキシ基、プロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、2,6−ジイソプロピルフェノキシ基、2,6−ジネオペンチルフェノキシ基、2−tert−ブチル−6−イソプロピルフェノキシ基、2−tert−ブチル−6−ネオペンチルフェノキシ基、2−イソプロピル−6−ネオペンチルフェノキシ基;チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn−ブトキシ基、チオイソブトキシ基、チオsec−ブトキシ基、チオtert−ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6−ジ−tert−ブチルチオフェノキシ基、2,6−ジイソプロピルチオフェノキシ基、2,6−ジネオペンチルチオフェノキシ基、2−tert−ブチル−6−イソプロピルチオフェノキシ基、2−tert−ブチル−6−チオネオペンチルフェノキシ基、2−イソプロピル−6−チオネオペンチルフェノキシ基、2,4,6−トリイソプロピルチオフェノキシ基等のアリールチオラート基;ジメチルアミド基、ジエチルアミド基、ジイソプロピルアミド基等の脂肪族アミド基;フェニルアミド基、2,6−ジ−tert−ブチルフェニルアミド基、2,6−ジイソプロピルフェニルアミド基、2,6−ジネオペンチルフェニルアミド基、2−tert−ブチル−6−イソプロピルフェニルアミド基、2−tert−ブチル−6−ネオペンチルフェニルアミド基、2−イソプロピル−6−ネオペンチルフェニルアミド基、2,4,6−tert−ブチルフェニルアミド基等のアリールアミド基;ビストリメチルシリルアミド基等のビストリアルキルシリルアミド基;トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等のシリル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子等が挙げられる。更には、サリチルアルデヒド、2−ヒドロキシ−1−ナフトアルデヒド、2−ヒドロキシ−3−ナフトアルデヒド等のアルデヒドの残基;2’−ヒドロキシアセトフェノン、2’−ヒドロキシブチロフェノン、2’−ヒドロキシプロピオフェノン等のヒドロキシフェノンの残基;アセチルアセトン、ベンゾイルアセトン、プロピオニルアセトン、イソブチルアセトン、バレリルアセトン、エチルアセチルアセトン等のジケトンの残基;イソ吉草酸、カプリル酸、オクタン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、オレイン酸、リノール酸、シクロペンタンカルボン酸、ナフテン酸、エチルヘキサン酸、ビバール酸、バーサチック酸[シェル化学(株)製の商品名、C10モノカルボン酸の異性体の混合物から構成される合成酸]、フェニル酢酸、安息香酸、2−ナフトエ酸、マレイン酸、コハク酸等のカルボン酸の残基;ヘキサンチオ酸、2,2−ジメチルブタンチオ酸、デカンチオ酸、チオ安息香酸等のチオカルボン酸の残基、リン酸ジブチル、リン酸ジペンチル、リン酸ジヘキシル、リン酸ジヘプチル、リン酸ジオクチル、リン酸ビス(2−エチルヘキシル)、リン酸ビス(1−メチルヘプチル)、リン酸ジラウリル、リン酸ジオレイル、リン酸ジフェニル、リン酸ビス(p−ノニルフェニル)、リン酸ビス(ポリエチレングリコール−p−ノニルフェニル)、リン酸(ブチル)(2−エチルヘキシル)、リン酸(1−メチルヘプチル)(2−エチルヘキシル)、リン酸(2−エチルヘキシル)(p−ノニルフェニル)等のリン酸エステルの残基;2−エチルヘキシルホスホン酸モノブチル、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル、フェニルホスホン酸モノ−2−エチルヘキシル、2−エチルヘキシルホスホン酸モノ−p−ノニルフェニル、ホスホン酸モノ−2−エチルヘキシル、ホスホン酸モノ−1−メチルヘプチル、ホスホン酸モノ−p−ノニルフェニル等のホスホン酸エステルの残基、ジブチルホスフィン酸、ビス(2−エチルヘキシル)ホスフィン酸、ビス(1−メチルヘプチル)ホスフィン酸、ジラウリルホスフィン酸、ジオレイルホスフィン酸、ジフェニルホスフィン酸、ビス(p−ノニルフェニル)ホスフィン酸、ブチル(2−エチルヘキシル)ホスフィン酸、(2−エチルヘキシル)(1−メチルヘプチル)ホスフィン酸、(2−エチルヘキシル)(p−ノニルフェニル)ホスフィン酸、ブチルホスフィン酸、2−エチルヘキシルホスフィン酸、1−メチルヘプチルホスフィン酸、オレイルホスフィン酸、ラウリルホスフィン酸、フェニルホスフィン酸、p−ノニルフェニルホスフィン酸等のホスフィン酸の残基を挙げることもできる。なお、これらの配位子は、1種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。 Specific examples of the group (ligand) bonded to the rare earth element of the rare earth element compound include a hydrogen atom; a methoxy group, an ethoxy group, a propoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, a tert- Aliphatic alkoxy groups such as butoxy group; phenoxy group, 2,6-di-tert-butylphenoxy group, 2,6-diisopropylphenoxy group, 2,6-dineopentylphenoxy group, 2-tert-butyl-6- Isopropylphenoxy group, 2-tert-butyl-6-neopentylphenoxy group, 2-isopropyl-6-neopentylphenoxy group; thiomethoxy group, thioethoxy group, thiopropoxy group, thio n-butoxy group, thioisobutoxy group, thio aliphatic thiolate groups such as sec-butoxy group and thio-tert-butoxy group; Noxy group, 2,6-di-tert-butylthiophenoxy group, 2,6-diisopropylthiophenoxy group, 2,6-dineopentylthiophenoxy group, 2-tert-butyl-6-isopropylthiophenoxy group, 2 Arylthiolate groups such as -tert-butyl-6-thioneopentylphenoxy, 2-isopropyl-6-thioneopentylphenoxy, 2,4,6-triisopropylthiophenoxy; dimethylamide, diethylamide, diisopropyl Aliphatic amide group such as amide group; phenylamide group, 2,6-di-tert-butylphenylamide group, 2,6-diisopropylphenylamide group, 2,6-dineopentylphenylamide group, 2-tert- Butyl-6-isopropylphenylamide group, 2-tert-butyl Arylamide groups such as ru-6-neopentylphenylamide group, 2-isopropyl-6-neopentylphenylamide group, 2,4,6-tert-butylphenylamide group; bistrialkylsilylamides such as bistrimethylsilylamide group Groups: silyl groups such as trimethylsilyl group, tris (trimethylsilyl) silyl group, bis (trimethylsilyl) methylsilyl group, trimethylsilyl (dimethyl) silyl group, triisopropylsilyl (bistrimethylsilyl) silyl group; fluorine atom, chlorine atom, bromine atom, iodine And halogen atoms such as atoms. Furthermore, residues of aldehydes such as salicylaldehyde, 2-hydroxy-1-naphthaldehyde, 2-hydroxy-3-naphthaldehyde; 2′-hydroxyacetophenone, 2′-hydroxybutyrophenone, 2′-hydroxypropiophenone, etc. Hydroxyphenone residues of: acetylacetone, benzoylacetone, propionylacetone, isobutylacetone, valerylacetone, ethylacetylacetone, etc. diketone residues; isovaleric acid, caprylic acid, octanoic acid, lauric acid, myristic acid, palmitic acid, Stearic acid, isostearic acid, oleic acid, linoleic acid, cyclopentanecarboxylic acid, naphthenic acid, ethylhexanoic acid, bivaric acid, versatic acid [trade names made by Shell Chemical Co., Ltd., a mixture of isomers of C10 monocarboxylic acid Synthetic acids composed of products], residues of carboxylic acids such as phenylacetic acid, benzoic acid, 2-naphthoic acid, maleic acid, succinic acid; hexanethioic acid, 2,2-dimethylbutanethioic acid, decanethioic acid, thiobenzoic acid Residues of thiocarboxylic acids such as acids, dibutyl phosphate, dipentyl phosphate, dihexyl phosphate, diheptyl phosphate, dioctyl phosphate, bis (2-ethylhexyl) phosphate, bis (1-methylheptyl) phosphate, phosphoric acid Dilauryl, dioleyl phosphate, diphenyl phosphate, bis (p-nonylphenyl) phosphate, bis (polyethylene glycol-p-nonylphenyl) phosphate, (butyl) phosphate (2-ethylhexyl), phosphate (1-methyl) Phosphoric acid ester such as heptyl) (2-ethylhexyl), phosphoric acid (2-ethylhexyl) (p-nonylphenyl) 2-ethylhexylphosphonate monobutyl, 2-ethylhexylphosphonate mono-2-ethylhexyl, phenylphosphonate mono-2-ethylhexyl, 2-ethylhexylphosphonate mono-p-nonylphenyl, phosphonate mono-2- Residues of phosphonates such as ethylhexyl, mono-1-methylheptyl phosphonate, mono-p-nonylphenyl phosphonate, dibutylphosphinic acid, bis (2-ethylhexyl) phosphinic acid, bis (1-methylheptyl) phosphinic acid , Dilaurylphosphinic acid, dioleylphosphinic acid, diphenylphosphinic acid, bis (p-nonylphenyl) phosphinic acid, butyl (2-ethylhexyl) phosphinic acid, (2-ethylhexyl) (1-methylheptyl) phosphinic acid, (2 -Ethylhe Xylyl) (p-nonylphenyl) phosphinic acid, butylphosphinic acid, 2-ethylhexylphosphinic acid, 1-methylheptylphosphinic acid, oleylphosphinic acid, laurylphosphinic acid, phenylphosphinic acid, p-nonylphenylphosphinic acid, etc. Can also be mentioned. These ligands may be used alone or in combination of two or more.
上記第二重合触媒組成物に用いる(a)成分において、上記希土類元素化合物と反応するルイス塩基としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記希土類元素化合物が複数のルイス塩基と反応する場合(式(XI)及び(XII)においては、wが2又は3である場合)、ルイス塩基L11は、同一であっても異なっていてもよい。 In the component (a) used in the second polymerization catalyst composition, examples of the Lewis base that reacts with the rare earth element compound include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, Diolefins and the like. Here, when the rare earth element compound reacts with a plurality of Lewis bases (in the formulas (XI) and (XII), when w is 2 or 3), the Lewis base L 11 is the same or different. It may be.
上記第二重合触媒組成物に用いる(b)成分は、イオン性化合物(b−1)、アルミノキサン(b−2)及びハロゲン化合物(b−3)よりなる群から選択される少なくとも一種の化合物である。なお、上記第二重合触媒組成物における(b)成分の合計の含有量は、(a)成分に対して0.1〜50倍モルであることが好ましい。 The component (b) used in the second polymerization catalyst composition is at least one compound selected from the group consisting of an ionic compound (b-1), an aluminoxane (b-2) and a halogen compound (b-3). is there. In addition, it is preferable that content of the sum total of (b) component in said 2nd polymerization catalyst composition is 0.1-50 times mole with respect to (a) component.
上記(b−1)で表されるイオン性化合物は、非配位性アニオンとカチオンとからなり、上記(a)成分である希土類元素化合物又はそのルイス塩基との反応物と反応してカチオン性遷移金属化合物を生成できるイオン性化合物等を挙げることができる。ここで、非配位性アニオンとしては、例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられる。一方、カチオンとしては、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等を挙げることができる。カルボニウムカチオンの具体例としては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、より具体的には、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオン等が挙げられる。アンモニウムカチオンの具体例としては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン(例えば、トリ(n−ブチル)アンモニウムカチオン)等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンの具体例としては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。従って、イオン性化合物としては、上述の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物が好ましく、具体的には、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、これらのイオン性化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記第二重合触媒組成物におけるイオン性化合物の含有量は、(a)成分に対して0.1〜10倍モルであることが好ましく、約1倍モルであることが更に好ましい。 The ionic compound represented by the above (b-1) is composed of a non-coordinating anion and a cation, and reacts with a reaction product of the rare earth element compound or its Lewis base as the component (a) to be cationic. Examples thereof include ionic compounds capable of generating a transition metal compound. Here, as the non-coordinating anion, for example, tetraphenyl borate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis ( Pentafluorophenyl) borate, tetrakis (tetrafluoromethylphenyl) borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tri Decahydride-7,8-dicarboundecaborate and the like can be mentioned. On the other hand, examples of the cation include a carbonium cation, an oxonium cation, an ammonium cation, a phosphonium cation, a cycloheptatrienyl cation, and a ferrocenium cation having a transition metal. Specific examples of the carbonium cation include trisubstituted carbonium cations such as triphenylcarbonium cation and tri (substituted phenyl) carbonium cation, and more specifically, as tri (substituted phenyl) carbonyl cation, Examples include tri (methylphenyl) carbonium cation, tri (dimethylphenyl) carbonium cation, and the like. Specific examples of ammonium cations include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation (for example, tri (n-butyl) ammonium cation); N, N-dimethylanilinium N, N-dialkylanilinium cation such as cation, N, N-diethylanilinium cation, N, N-2,4,6-pentamethylanilinium cation; dialkylammonium cation such as diisopropylammonium cation and dicyclohexylammonium cation Is mentioned. Specific examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation. Accordingly, the ionic compound is preferably a compound selected and combined from the above-mentioned non-coordinating anions and cations, specifically, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, triphenylcarbohydrate. Preferred is nitrotetrakis (pentafluorophenyl) borate. Moreover, these ionic compounds can be used individually by 1 type, or 2 or more types can be mixed and used for them. In addition, it is preferable that it is 0.1-10 times mole with respect to (a) component, and, as for content of the ionic compound in the said 2nd polymerization catalyst composition, it is still more preferable that it is about 1 time mole.
上記(b−2)で表されるアルミノキサンは、有機アルミニウム化合物と縮合剤とを接触させることによって得られる化合物であり、例えば、一般式:(−Al(R’)O−)で示される繰り返し単位を有する鎖状アルミノキサン又は環状アルミノキサン(式中、R’は炭素数1〜10の炭化水素基であり、一部の炭化水素基はハロゲン原子及び/又はアルコキシ基で置換されてもよく、繰り返し単位の重合度は、5以上が好ましく、10以上が更に好ましい)を挙げることができる。ここで、R’として、具体的には、メチル基、エチル基、プロピル基、イソブチル基等が挙げられ、これらの中でも、メチル基が好ましい。また、アルミノキサンの原料として用いられる有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム及びその混合物等が挙げられ、トリメチルアルミニウムが特に好ましい。例えば、トリメチルアルミニウムとトリブチルアルミニウムとの混合物を原料として用いたアルミノキサンを好適に用いることができる。なお、上記第二重合触媒組成物におけるアルミノキサンの含有量は、(a)成分を構成する希土類元素Mと、アルミノキサンのアルミニウム元素Alとの元素比率Al/Mが、10〜1000程度となるようにすることが好ましい。 The aluminoxane represented by the above (b-2) is a compound obtained by bringing an organoaluminum compound and a condensing agent into contact with each other. For example, the aluminoxane represented by the general formula: (—Al (R ′) O—) A chain aluminoxane or cyclic aluminoxane having a unit (wherein R ′ is a hydrocarbon group having 1 to 10 carbon atoms, and some of the hydrocarbon groups may be substituted with a halogen atom and / or an alkoxy group) The degree of polymerization of the unit is preferably 5 or more, and more preferably 10 or more. Here, specific examples of R ′ include a methyl group, an ethyl group, a propyl group, and an isobutyl group, and among these, a methyl group is preferable. Examples of the organoaluminum compound used as an aluminoxane raw material include trialkylaluminums such as trimethylaluminum, triethylaluminum, and triisobutylaluminum, and mixtures thereof, and trimethylaluminum is particularly preferable. For example, an aluminoxane using a mixture of trimethylaluminum and tributylaluminum as a raw material can be preferably used. The content of the aluminoxane in the second polymerization catalyst composition is such that the element ratio Al / M of the rare earth element M constituting the component (a) and the aluminum element Al of the aluminoxane is about 10 to 1000. It is preferable to do.
上記(b−3)で表されるハロゲン化合物は、ルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも1種からなり、例えば、上記(a)成分である希土類元素化合物又はそのルイス塩基との反応物と反応して、カチオン性遷移金属化合物やハロゲン化遷移金属化合物や遷移金属中心が電荷不足の化合物を生成することができる。なお、上記第二重合触媒組成物におけるハロゲン化合物の合計の含有量は、(a)成分に対して1〜5倍モルであることが好ましい。 The halogen compound represented by (b-3) is composed of at least one of a Lewis acid, a complex compound of a metal halide and a Lewis base, and an organic compound containing an active halogen. By reacting with a certain rare earth element compound or a reaction product thereof with a Lewis base, a cationic transition metal compound, a halogenated transition metal compound, or a compound in which the transition metal center is deficient in charge can be generated. In addition, it is preferable that content of the sum total of the halogen compound in the said 2nd polymerization catalyst composition is 1-5 times mole with respect to (a) component.
上記ルイス酸としては、B(C6F5)3等のホウ素含有ハロゲン化合物、Al(C6F5)3等のアルミニウム含有ハロゲン化合物を使用できる他、周期律表中の第III,IV,V,VI又はVIII族に属する元素を含有するハロゲン化合物を用いることもできる。好ましくはアルミニウムハロゲン化物又は有機金属ハロゲン化物が挙げられる。また、ハロゲン元素としては、塩素又は臭素が好ましい。上記ルイス酸として、具体的には、メチルアルミニウムジブロマイド、メチルアルミニウムジクロライド、エチルアルミニウムジブロマイド、エチルアルミニウムジクロライド、ブチルアルミニウムジブロマイド、ブチルアルミニウムジクロライド、ジメチルアルミニウムブロマイド、ジメチルアルミニウムクロライド、ジエチルアルミニウムブロマイド、ジエチルアルミニウムクロライド、ジブチルアルミニウムブロマイド、ジブチルアルミニウムクロライド、メチルアルミニウムセスキブロマイド、メチルアルミニウムセスキクロライド、エチルアルミニウムセスキブロマイド、エチルアルミニウムセスキクロライド、ジブチル錫ジクロライド、アルミニウムトリブロマイド、三塩化アンチモン、五塩化アンチモン、三塩化リン、五塩化リン、四塩化錫、四塩化チタン、六塩化タングステン等が挙げられ、これらの中でも、ジエチルアルミニウムクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライド、ジエチルアルミニウムブロマイド、エチルアルミニウムセスキブロマイド、エチルアルミニウムジブロマイドが特に好ましい。 As the Lewis acid, boron-containing halogen compounds such as B (C 6 F 5 ) 3 and aluminum-containing halogen compounds such as Al (C 6 F 5 ) 3 can be used. A halogen compound containing an element belonging to the group V, VI or VIII can also be used. Preferably, aluminum halide or organometallic halide is used. Moreover, as a halogen element, chlorine or bromine is preferable. Specific examples of the Lewis acid include methyl aluminum dibromide, methyl aluminum dichloride, ethyl aluminum dibromide, ethyl aluminum dichloride, butyl aluminum dibromide, butyl aluminum dichloride, dimethyl aluminum bromide, dimethyl aluminum chloride, diethyl aluminum bromide, diethyl Aluminum chloride, dibutylaluminum bromide, dibutylaluminum chloride, methylaluminum sesquibromide, methylaluminum sesquichloride, ethylaluminum sesquibromide, ethylaluminum sesquichloride, dibutyltin dichloride, aluminum tribromide, antimony trichloride, antimony pentachloride, phosphorus trichloride , Pentachloride , Tin tetrachloride, titanium tetrachloride, tungsten hexachloride, etc., among which diethylaluminum chloride, ethylaluminum sesquichloride, ethylaluminum dichloride, diethylaluminum bromide, ethylaluminum sesquibromide, ethylaluminum dibromide preferable.
上記金属ハロゲン化物とルイス塩基との錯化合物を構成する金属ハロゲン化物としては、塩化ベリリウム、臭化ベリリウム、ヨウ化ベリリウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、塩化カドミウム、臭化カドミウム、ヨウ化カドミウム、塩化水銀、臭化水銀、ヨウ化水銀、塩化マンガン、臭化マンガン、ヨウ化マンガン、塩化レニウム、臭化レニウム、ヨウ化レニウム、塩化銅、ヨウ化銅、塩化銀、臭化銀、ヨウ化銀、塩化金、ヨウ化金、臭化金等が挙げられ、これらの中でも、塩化マグネシウム、塩化カルシウム、塩化バリウム、塩化マンガン、塩化亜鉛、塩化銅が好ましく、塩化マグネシウム、塩化マンガン、塩化亜鉛、塩化銅が特に好ましい。 The metal halide constituting the complex compound of the above metal halide and Lewis base includes beryllium chloride, beryllium bromide, beryllium iodide, magnesium chloride, magnesium bromide, magnesium iodide, calcium chloride, calcium bromide, iodine. Calcium chloride, barium chloride, barium bromide, barium iodide, zinc chloride, zinc bromide, zinc iodide, cadmium chloride, cadmium bromide, cadmium iodide, mercury chloride, mercury bromide, mercury iodide, manganese chloride, Manganese bromide, manganese iodide, rhenium chloride, rhenium bromide, rhenium iodide, copper chloride, copper iodide, silver chloride, silver bromide, silver iodide, gold chloride, gold iodide, gold bromide, etc. Of these, magnesium chloride, calcium chloride, barium chloride, manganese chloride, zinc chloride, and copper chloride are preferred. , Magnesium chloride, manganese chloride, zinc chloride, copper chloride being particularly preferred.
また、上記金属ハロゲン化物とルイス塩基との錯化合物を構成するルイス塩基としては、リン化合物、カルボニル化合物、窒素化合物、エーテル化合物、アルコール等が好ましい。具体的には、リン酸トリブチル、リン酸トリ−2−エチルヘキシル、リン酸トリフェニル、リン酸トリクレジル、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、ジエチルホスフィノエタン、ジフェニルホスフィノエタン、アセチルアセトン、ベンゾイルアセトン、プロピオニトリルアセトン、バレリルアセトン、エチルアセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸フェニル、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジフェニル、酢酸、オクタン酸、2−エチル−ヘキサン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸、トリエチルアミン、N,N−ジメチルアセトアミド、テトラヒドロフラン、ジフェニルエーテル、2−エチル−ヘキシルアルコール、オレイルアルコール、ステアリルアルコール、フェノール、ベンジルアルコール、1−デカノール、ラウリルアルコール等が挙げられ、これらの中でも、リン酸トリ−2−エチルヘキシル、リン酸トリクレジル、アセチルアセトン、2−エチルヘキサン酸、バーサチック酸、2−エチルヘキシルアルコール、1−デカノール、ラウリルアルコールが好ましい。 Moreover, as a Lewis base which comprises the complex compound of the said metal halide and a Lewis base, a phosphorus compound, a carbonyl compound, a nitrogen compound, an ether compound, alcohol, etc. are preferable. Specifically, tributyl phosphate, tri-2-ethylhexyl phosphate, triphenyl phosphate, tricresyl phosphate, triethylphosphine, tributylphosphine, triphenylphosphine, diethylphosphinoethane, diphenylphosphinoethane, acetylacetone, benzoylacetone , Propionitrile acetone, valeryl acetone, ethyl acetylacetone, methyl acetoacetate, ethyl acetoacetate, phenyl acetoacetate, dimethyl malonate, diethyl malonate, diphenyl malonate, acetic acid, octanoic acid, 2-ethyl-hexanoic acid, olein Acid, stearic acid, benzoic acid, naphthenic acid, versatic acid, triethylamine, N, N-dimethylacetamide, tetrahydrofuran, diphenyl ether, 2-ethyl-hexyl alcohol Examples include oleyl alcohol, stearyl alcohol, phenol, benzyl alcohol, 1-decanol, and lauryl alcohol. Among these, tri-2-ethylhexyl phosphate, tricresyl phosphate, acetylacetone, 2-ethylhexanoic acid, versatic acid, 2 -Ethylhexyl alcohol, 1-decanol and lauryl alcohol are preferred.
上記ルイス塩基は、上記金属ハロゲン化物1モル当り、0.01〜30モル、好ましくは0.5〜10モルの割合で反応させる。このルイス塩基との反応物を使用すると、ポリマー中に残存する金属を低減することができる。
上記活性ハロゲンを含む有機化合物としては、ベンジルクロライド等が挙げられる。
The Lewis base is reacted at a ratio of 0.01 to 30 mol, preferably 0.5 to 10 mol, per mol of the metal halide. When the reaction product with the Lewis base is used, the metal remaining in the polymer can be reduced.
Examples of the organic compound containing the active halogen include benzyl chloride.
上記第二重合触媒組成物に用いる(c)成分は、下記一般式(X):
YR1 aR2 bR3 c ・・・ (X)
[式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R1及びR2は、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、R3は炭素数1〜10の炭化水素基であり、但し、R3は上記R1又はR2と同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a,b及びcは1である]で表される有機金属化合物であり、下記一般式(Xa):
AlR1R2R3 ・・・ (Xa)
[式中、R1及びR2は、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、R3は炭素数1〜10の炭化水素基であり、但し、R3は上記R1又はR2と同一又は異なっていてもよい]で表される有機アルミニウム化合物であることが好ましい。式(X)の有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリイソプロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−t−ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ−n−プロピルアルミニウム、水素化ジ−n−ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n−プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。以上に述べた(c)成分としての有機アルミニウム化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記第二重合触媒組成物における有機アルミニウム化合物の含有量は、(a)成分に対して1〜50倍モルであることが好ましく、約10倍モルであることが更に好ましい。
The component (c) used in the second polymerization catalyst composition is represented by the following general formula (X):
YR 1 a R 2 b R 3 c (X)
[Wherein Y is a metal selected from
AlR 1 R 2 R 3 (Xa)
[Wherein, R 1 and R 2 are the same or different and each represents a hydrocarbon group having 1 to 10 carbon atoms or a hydrogen atom, and R 3 is a hydrocarbon group having 1 to 10 carbon atoms, provided that R 3 represents the above It may be the same as or different from R 1 or R 2 ]. Examples of the organoaluminum compound of the formula (X) include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, tripentylaluminum, Trihexyl aluminum, tricyclohexyl aluminum, trioctyl aluminum; diethyl aluminum hydride, di-n-propyl aluminum hydride, di-n-butyl aluminum hydride, diisobutyl aluminum hydride, dihexyl aluminum hydride, diisohexyl hydride Aluminum, dioctyl aluminum hydride, diisooctyl aluminum hydride; ethyl aluminum dihydride, n-propyl aluminum Hydride, include isobutyl aluminum dihydride and the like, among these, triethylaluminum, triisobutylaluminum, hydrogenated diethylaluminum, hydrogenated diisobutylaluminum are preferred. The organoaluminum compound as the component (c) described above can be used singly or in combination of two or more. In addition, it is preferable that it is 1-50 times mole with respect to (a) component, and, as for content of the organoaluminum compound in the said 2nd polymerization catalyst composition, it is still more preferable that it is about 10 times mole.
<重合触媒および第三の重合触媒組成物>
上記重合触媒としては、共役ジエン化合物と非共役オレフィンとの重合用であり、下記式(A):
RaMXbQYb ・・・ (A)
[式中、Rはそれぞれ独立して無置換もしくは置換インデニルを示し、該RはMに配位しており、Mはランタノイド元素、スカンジウム又はイットリウムを示し、Xはそれぞれ独立して炭素数1〜20の炭化水素基を示し、該XはM及びQにμ配位しており、Qは周期律表第13族元素を示し、Yはそれぞれ独立して炭素数1〜20の炭化水素基又は水素原子を示し、該YはQに配位しており、a及びbは2である]で表されるメタロセン系複合触媒が挙げられる。
<Polymerization catalyst and third polymerization catalyst composition>
The polymerization catalyst is for polymerization of a conjugated diene compound and a non-conjugated olefin, and has the following formula (A):
R a MX b QY b (A)
[In the formula, each R independently represents an unsubstituted or substituted indenyl, the R is coordinated to M, M represents a lanthanoid element, scandium or yttrium; 20 represents a hydrocarbon group, X is μ-coordinated to M and Q, Q represents a
上記メタロセン系複合触媒の好適例においては、下記式(XV):
また、上記第三の重合触媒組成物は、上記のメタロセン系複合触媒と、ホウ素アニオンとを含むことを特徴とする。 The third polymerization catalyst composition includes the metallocene composite catalyst and a boron anion.
<メタロセン系複合触媒>
以下に、上記メタロセン系複合触媒を詳細に説明する。上記メタロセン系複合触媒は、ランタノイド元素、スカンジウム又はイットリウムの希土類元素と周期律表第13族元素とを有し、下記式(A):
RaMXbQYb ・・・ (A)
[式中、Rはそれぞれ独立して無置換もしくは置換インデニルを示し、該RはMに配位しており、Mはランタノイド元素、スカンジウム又はイットリウムを示し、Xはそれぞれ独立して炭素数1〜20の炭化水素基を示し、該XはM及びQにμ配位しており、Qは周期律表第13族元素を示し、Yはそれぞれ独立して炭素数1〜20の炭化水素基又は水素原子を示し、該YはQに配位しており、a及びbは2である]で表されることを特徴とする。上記メタロセン系重合触媒を用いることで、共役ジエン化合物と非共役オレフィンとの共重合体を製造することができる。また、上記メタロセン系複合触媒、例えば予めアルミニウム触媒と複合させてなる触媒を用いることで、共重合体合成時に使用されるアルキルアルミニウムの量を低減したり、無くしたりすることが可能となる。なお、従来の触媒系を用いると、共重合体合成時に大量のアルキルアルミニウムを用いる必要がある。例えば、従来の触媒系では、金属触媒に対して10当量以上のアルキルアルミニウムを用いる必要があるところ、上記メタロセン系複合触媒であれば、5当量程度のアルキルアルミニウムを加えることで、優れた触媒作用が発揮される。
<Metalocene composite catalyst>
Hereinafter, the metallocene composite catalyst will be described in detail. The metallocene composite catalyst includes a lanthanoid element, a rare earth element of scandium or yttrium, and a
R a MX b QY b (A)
[In the formula, each R independently represents an unsubstituted or substituted indenyl, the R is coordinated to M, M represents a lanthanoid element, scandium or yttrium; 20 represents a hydrocarbon group, X is μ-coordinated to M and Q, Q represents a
上記メタロセン系複合触媒において、上記式(A)中の金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。 In the metallocene composite catalyst, the metal M in the formula (A) is a lanthanoid element, scandium, or yttrium. The lanthanoid elements include 15 elements having atomic numbers 57 to 71, and any of these may be used. Preferred examples of the metal M include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, holmium Ho, scandium Sc, and yttrium Y.
上記式(A)において、Rは、それぞれ独立して無置換インデニル又は置換インデニルであり、該Rは上記金属Mに配位している。なお、置換インデニル基の具体例としては、例えば、1,2,3−トリメチルインデニル基、ヘプタメチルインデニル基、1,2,4,5,6,7−ヘキサメチルインデニル基等が挙げられる。 In the formula (A), each R is independently an unsubstituted indenyl or a substituted indenyl, and the R is coordinated to the metal M. Specific examples of the substituted indenyl group include 1,2,3-trimethylindenyl group, heptamethylindenyl group, 1,2,4,5,6,7-hexamethylindenyl group, and the like. It is done.
上記式(A)において、Qは、周期律表第13族元素を示し、具体的には、ホウ素、アルミニウム、ガリウム、インジウム、タリウム等が挙げられる。
In the above formula (A), Q represents a
上記式(A)において、Xはそれぞれ独立して炭素数1〜20の炭化水素基を示し、該XはM及びQにμ配位している。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。なお、μ配位とは、架橋構造をとる配位様式のことである。 In the above formula (A), each X independently represents a hydrocarbon group having 1 to 20 carbon atoms, and X is μ-coordinated to M and Q. Here, as a C1-C20 hydrocarbon group, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group , Pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like. Note that the μ coordination is a coordination mode having a crosslinked structure.
上記式(A)において、Yはそれぞれ独立して炭素数1〜20の炭化水素基又は水素原子を示し、該YはQに配位している。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。 In the formula (A), each Y independently represents a hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom, and the Y is coordinated to Q. Here, as a C1-C20 hydrocarbon group, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group , Pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.
上記式(XV)において、金属M1は、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。金属M1としては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。 In the above formula (XV), the metal M 1 is a lanthanoid element, scandium or yttrium. The lanthanoid elements include 15 elements having atomic numbers 57 to 71, and any of these may be used. Preferred examples of the metal M 1 include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, holmium Ho, scandium Sc, and yttrium Y.
上記式(XV)において、CpRは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpRは、C9H7-XRX又はC9H11-XRXで示され得る。ここで、Xは0〜7又は0〜11の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。置換インデニルとして、具体的には、2−フェニルインデニル、2−メチルインデニル等が挙げられる。なお、式(XV)における二つのCpRは、それぞれ互いに同一でも異なっていてもよい。 In the above formula (XV), Cp R is unsubstituted indenyl or substituted indenyl. Cp R having an indenyl ring as a basic skeleton can be represented by C 9 H 7-X R X or C 9 H 11-X R X. Here, X is an integer of 0-7 or 0-11. In addition, each R is preferably independently a hydrocarbyl group or a metalloid group. The hydrocarbyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 8 carbon atoms. Specific examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group, and a benzyl group. On the other hand, examples of metalloid group metalloids include germyl Ge, stannyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group that the metalloid group has is the same as the above hydrocarbyl group. is there. Specific examples of the metalloid group include a trimethylsilyl group. Specific examples of the substituted indenyl include 2-phenylindenyl and 2-methylindenyl. Incidentally, the two Cp R in the formula (XV) may each be the same or different from each other.
上記式(XV)において、RA及びRBは、それぞれ独立して炭素数1〜20の炭化水素基を示し、該RA及びRは、M1及Alにμ配位している。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。なお、μ配位とは、架橋構造をとる配位様式のことである。 In the above formula (XV), R A and R B each independently represent a hydrocarbon group having 1 to 20 carbon atoms, said R A and R are coordinated μ to M 1及A l. Here, as a C1-C20 hydrocarbon group, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group , Pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like. Note that the μ coordination is a coordination mode having a crosslinked structure.
上記式(XV)において、RC及びRDは、それぞれ独立して炭素数1〜20の炭化水素基又は水素原子である。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。 In the above formula (XV), R C and R D are each independently a hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom. Here, as a C1-C20 hydrocarbon group, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group , Pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.
なお、上記メタロセン系複合触媒は、例えば、溶媒中で、下記式(XVI):
上記式(XVI)で表されるメタロセン錯体において、CpRは、無置換インデニル又は置換インデニルであり、上記式(XV)中のCpRと同義である。また、上記式(XVI)において、金属M2は、ランタノイド元素、スカンジウム又はイットリウムであり、上記式(XV)中の金属M1と同義である。 In the metallocene complex represented by the above formula (XVI), Cp R is unsubstituted indenyl or substituted indenyl, and has the same meaning as Cp R in the above formula (XV). In the above formula (XVI), the metal M 2 is a lanthanoid element, scandium or yttrium, and has the same meaning as the metal M 1 in the above formula (XV).
上記式(XVI)で表されるメタロセン錯体は、シリルアミド配位子[−N(SiR3)2]を含む。シリルアミド配位子に含まれるR基(RE〜RJ基)は、それぞれ独立して炭素数1〜3のアルキル基又は水素原子である。また、RE〜RJのうち少なくとも一つが水素原子であることが好ましい。RE〜RJのうち少なくとも一つを水素原子にすることで、触媒の合成が容易になる。更に、アルキル基としては、メチル基が好ましい。 The metallocene complex represented by the above formula (XVI) contains a silylamide ligand [—N (SiR 3 ) 2 ]. The R groups (R E to R J groups) contained in the silylamide ligand are each independently an alkyl group having 1 to 3 carbon atoms or a hydrogen atom. Moreover, it is preferable that at least one of R E to R J is a hydrogen atom. By making at least one of R E to R J a hydrogen atom, the catalyst can be easily synthesized. Furthermore, a methyl group is preferable as the alkyl group.
上記式(XVI)で表されるメタロセン錯体は、更に0〜3個、好ましくは0〜1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。 The metallocene complex represented by the above formula (XVI) further contains 0 to 3, preferably 0 to 1, neutral Lewis bases L. Here, examples of the neutral Lewis base L include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, neutral diolefins, and the like. Here, when the complex includes a plurality of neutral Lewis bases L, the neutral Lewis bases L may be the same or different.
また、上記式(XVI)で表されるメタロセン錯体は、モノマーとして存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。 Moreover, the metallocene complex represented by the above formula (XVI) may exist as a monomer, or may exist as a dimer or a multimer higher than that.
一方、上記メタロセン系複合触媒の生成に用いる有機アルミニウム化合物は、AlRKRLRMで表され、ここで、RK及びRLは、それぞれ独立して炭素数1〜20の1価の炭化水素基又は水素原子で、RMは炭素数1〜20の1価の炭化水素基であり、但し、RMは上記RK又はRLと同一でも異なっていてもよい。炭素数1〜20の1価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。 On the other hand, the organoaluminum compound used for the production of the metallocene composite catalyst is represented by AlR K R L R M , where R K and R L are each independently a monovalent carbon atom having 1 to 20 carbon atoms. R M is a hydrogen group or a hydrogen atom, and R M is a monovalent hydrocarbon group having 1 to 20 carbon atoms, provided that R M may be the same as or different from R K or R L described above. Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group and tetradecyl group. , Pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.
上記有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリイソプロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−t−ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ−n−プロピルアルミニウム、水素化ジ−n−ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n−プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。また、これら有機アルミニウム化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記メタロセン系複合触媒の生成に用いる有機アルミニウム化合物の量は、メタロセン錯体に対して1〜50倍モルであることが好ましく、約10倍モルであることが更に好ましい。 Specific examples of the organoaluminum compound include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, tripentylaluminum, Hexyl aluminum, tricyclohexyl aluminum, trioctyl aluminum; diethyl aluminum hydride, di-n-propyl aluminum hydride, di-n-butyl aluminum hydride, diisobutyl aluminum hydride, dihexyl aluminum hydride, diisohexyl aluminum hydride , Dioctylaluminum hydride, diisooctylaluminum hydride; ethylaluminum dihydride, n-propylaluminium Dihydride, isobutyl aluminum dihydride and the like. Among these, triethylaluminum, triisobutylaluminum, hydrogenated diethylaluminum, hydrogenated diisobutylaluminum are preferred. Moreover, these organoaluminum compounds can be used individually by 1 type, or 2 or more types can be mixed and used for them. In addition, the amount of the organoaluminum compound used for the production of the metallocene composite catalyst is preferably 1 to 50 times mole, more preferably about 10 times mole relative to the metallocene complex.
<第三の重合触媒組成物>
また、上記重合触媒組成物は、上記メタロセン系複合触媒と、ホウ素アニオンとを含むことを特徴とし、更に、通常のメタロセン系触媒を含む重合触媒組成物に含有される他の成分、例えば助触媒等を含むことが好ましい。なお、上記メタロセン系複合触媒とホウ素アニオンとを合わせて2成分触媒ともいう。上記第三重合触媒組成物によれば、上記メタロセン系複合触媒と同様に、更にホウ素アニオンを含有するため、各モノマー成分の共重合体中での含有量を任意に制御することが可能となる。
<Third polymerization catalyst composition>
The polymerization catalyst composition contains the metallocene composite catalyst and a boron anion, and further contains other components such as a cocatalyst contained in the polymerization catalyst composition containing a normal metallocene catalyst. Etc. are preferably included. The metallocene composite catalyst and boron anion are also referred to as a two-component catalyst. According to the third polymerization catalyst composition, since the boron anion is further contained in the same manner as the metallocene composite catalyst, the content of each monomer component in the copolymer can be arbitrarily controlled. Become.
上記第三重合触媒組成物において、2成分触媒を構成するホウ素アニオンとして、具体的には、4価のホウ素アニオンが挙げられる。例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。 In the third polymerization catalyst composition, specific examples of the boron anion constituting the two-component catalyst include a tetravalent boron anion. For example, tetraphenylborate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis (pentafluorophenyl) borate, tetrakis (tetrafluoromethyl) Phenyl) borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tridecahydride-7,8-dicarboundecaborate Among these, tetrakis (pentafluorophenyl) borate is preferable.
なお、上記ホウ素アニオンは、カチオンと組み合わされたイオン性化合物として使用することができる。上記カチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N−ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N−ジアルキルアニリニウムカチオンが特に好ましい。従って、上記イオン性化合物としては、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。なお、ホウ素アニオンとカチオンとからなるイオン性化合物は、上記メタロセン系複合触媒に対して0.1〜10倍モル加えることが好ましく、約1倍モル加えることが更に好ましい。 In addition, the said boron anion can be used as an ionic compound combined with the cation. Examples of the cation include a carbonium cation, an oxonium cation, an amine cation, a phosphonium cation, a cycloheptatrienyl cation, and a ferrocenium cation having a transition metal. Examples of the carbonium cation include trisubstituted carbonium cations such as a triphenylcarbonium cation and a tri (substituted phenyl) carbonium cation. The tri (substituted phenyl) carbonyl cation is specifically exemplified by tri (methylphenyl). ) Carbonium cation and the like. Examples of amine cations include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation; N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N- N, N-dialkylanilinium cations such as 2,4,6-pentamethylanilinium cation; dialkylammonium cations such as diisopropylammonium cation and dicyclohexylammonium cation. Examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation. Among these cations, N, N-dialkylanilinium cation or carbonium cation is preferable, and N, N-dialkylanilinium cation is particularly preferable. Therefore, as the ionic compound, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, triphenylcarbonium tetrakis (pentafluorophenyl) borate and the like are preferable. The ionic compound composed of a boron anion and a cation is preferably added in an amount of 0.1 to 10 times, more preferably about 1 time, with respect to the metallocene composite catalyst.
なお、上記第三重合触媒組成物においては、上記メタロセン系複合触媒と上記ホウ素アニオンとを用いる必要があるが、上記式(XVI)で表されるメタロセン触媒と有機アルミニウム化合物を反応させる反応系に、ホウ素アニオンが存在していると、上記式(XV)のメタロセン系複合触媒を合成することができない。従って、上記第三重合触媒組成物の調製には、該メタロセン系複合触媒を予め合成し、該メタロセン系複合触媒を単離精製してからホウ素アニオンと組み合わせる必要がある。 In the third polymerization catalyst composition, it is necessary to use the metallocene composite catalyst and the boron anion, but a reaction system for reacting the metallocene catalyst represented by the formula (XVI) with an organoaluminum compound. If a boron anion is present, the metallocene composite catalyst of the above formula (XV) cannot be synthesized. Therefore, for the preparation of the third polymerization catalyst composition, it is necessary to synthesize the metallocene composite catalyst in advance, isolate and purify the metallocene composite catalyst, and then combine with the boron anion.
上記第三重合触媒組成物に用いることができる助触媒としては、例えば、上述のAlRKRLRMで表される有機アルミニウム化合物の他、アルミノキサン等が好適に挙げられる。上記アルミノキサンとしては、アルキルアミノキサンが好ましく、例えば、メチルアルミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチルアルミノキサンとしては、MMAO−3A(東ソーファインケム社製)等が好ましい。なお、これらアルミノキサンは、1種単独で用いてもよく、二種以上を組み合わせて用いてもよい。 Examples of the third polymerization catalyst co-catalyst which can be used in the compositions, for example, other organic aluminum compound represented by AlR K R L R M described above, aluminoxane can be preferably used. The aluminoxane is preferably an alkylaminoxan, and examples thereof include methylaluminoxane (MAO) and modified methylaluminoxane. As the modified methylaluminoxane, MMAO-3A (manufactured by Tosoh Finechem Co., Ltd.) and the like are preferable. In addition, these aluminoxanes may be used individually by 1 type, and may be used in combination of 2 or more type.
なお、共重合体の製造方法においては、上述の通り、上記重合触媒または重合触媒組成物を用いること以外は、通常の配位イオン重合触媒による重合体の製造方法と同様にして、重合を行うことができる。ここで、共重合体の製造方法は、例えば、(1)モノマーとして共役ジエン化合物及び該共役ジエン化合物以外の非共役オレフィンを含む重合反応系中に、重合触媒組成物の構成成分を別個に提供し、該反応系中において重合触媒組成物としてもよいし、(2)予め調製された重合触媒組成物を重合反応系中に提供してもよい。また、(2)においては、助触媒によって活性化されたメタロセン錯体(活性種)を提供することも含まれる。なお、重合触媒組成物に含まれるメタロセン錯体の使用量は、共役ジエン化合物及び該共役ジエン化合物以外の非共役オレフィンの合計に対して、0.0001〜0.01倍モルの範囲が好ましい。 In the method for producing a copolymer, as described above, polymerization is carried out in the same manner as in the method for producing a polymer using a normal coordination ion polymerization catalyst, except that the polymerization catalyst or the polymerization catalyst composition is used. be able to. Here, in the copolymer production method, for example, (1) a component of the polymerization catalyst composition is separately provided in a polymerization reaction system including a conjugated diene compound as a monomer and a non-conjugated olefin other than the conjugated diene compound. The polymerization catalyst composition may be used in the reaction system, or (2) a polymerization catalyst composition prepared in advance may be provided in the polymerization reaction system. Moreover, (2) includes providing a metallocene complex (active species) activated by a cocatalyst. In addition, the usage-amount of the metallocene complex contained in a polymerization catalyst composition has the preferable range of 0.0001-0.01 times mole with respect to the sum total of nonconjugated olefins other than a conjugated diene compound and this conjugated diene compound.
また、共重合体の製造方法においては、メタノール、エタノール、イソプロパノール等の重合停止剤を用いて、重合を停止させてもよい。 In the method for producing a copolymer, the polymerization may be stopped using a polymerization terminator such as methanol, ethanol, or isopropanol.
共重合体の製造方法において、共役ジエン化合物及び非共役オレフィンの重合反応は、不活性ガス、好ましくは窒素ガスやアルゴンガスの雰囲気下において行われることが好ましい。上記重合反応の重合温度は、特に制限されないが、例えば−100℃〜200℃の範囲が好ましく、室温程度とすることもできる。なお、重合温度を上げると、重合反応のシス−1,4選択性が低下することがある。また、上記重合反応の圧力は、共役ジエン化合物及び非共役オレフィンを十分に重合反応系中に取り込むため、0.1〜10.0MPaの範囲が好ましい。また、上記重合反応の反応時間も特に制限されず、例えば1秒〜10日の範囲が好ましいが、重合されるモノマーの種類、触媒の種類、重合温度等の条件によって適宜選択することができる。 In the method for producing a copolymer, the polymerization reaction of the conjugated diene compound and the non-conjugated olefin is preferably performed in an atmosphere of an inert gas, preferably nitrogen gas or argon gas. The polymerization temperature of the polymerization reaction is not particularly limited, but is preferably in the range of −100 ° C. to 200 ° C., for example, and can be about room temperature. If the polymerization temperature is raised, the cis-1,4 selectivity of the polymerization reaction may be lowered. Moreover, since the pressure of the said polymerization reaction fully takes in a conjugated diene compound and a nonconjugated olefin in a polymerization reaction system, the range of 0.1-10.0 MPa is preferable. The reaction time of the polymerization reaction is not particularly limited and is preferably in the range of 1 second to 10 days, for example, but can be appropriately selected depending on conditions such as the type of monomer to be polymerized, the type of catalyst, and the polymerization temperature.
前記共重合体の製造方法において、上記共役ジエン化合物と該共役ジエン化合物以外の非共役オレフィンとの重合の際、該非共役オレフィンの圧力は、0.1MPa〜10MPaであることが好ましい。該非共役オレフィンの圧力が0.1MPa以上であれば、反応混合物中に非共役オレフィンを効率的に導入することができる。また、非共役オレフィンの圧力を高くし過ぎても、非共役オレフィンを効率的に導入する効果が頭打ちとなるため、非共役オレフィンの圧力を10MPa以下とするのが好ましい。 In the method for producing the copolymer, when the conjugated diene compound is polymerized with a non-conjugated olefin other than the conjugated diene compound, the pressure of the non-conjugated olefin is preferably 0.1 MPa to 10 MPa. When the pressure of the non-conjugated olefin is 0.1 MPa or more, the non-conjugated olefin can be efficiently introduced into the reaction mixture. Moreover, even if the pressure of the non-conjugated olefin is increased too much, the effect of efficiently introducing the non-conjugated olefin reaches a peak, and therefore the pressure of the non-conjugated olefin is preferably 10 MPa or less.
前記共重合体の製造方法において、上記共役ジエン化合物と該共役ジエン化合物以外の非共役オレフィンとの重合の際、重合開始時における該共役ジエン化合物の濃度(mol/l)と該非共役オレフィンの濃度(mol/l)とは、下記式:
非共役オレフィンの濃度/共役ジエン化合物の濃度≧1.0
の関係を満たすことが好ましく、更に好ましくは下記式:
非共役オレフィンの濃度/共役ジエン化合物の濃度≧1.3
の関係を満たし、一層好ましくは下記式:
非共役オレフィンの濃度/共役ジエン化合物の濃度≧1.7
の関係を満たす。非共役オレフィンの濃度/共役ジエン化合物の濃度の値を1以上とすることで、反応混合物中に非共役オレフィンを効率的に導入することができる。
In the method for producing the copolymer, when the conjugated diene compound is polymerized with a non-conjugated olefin other than the conjugated diene compound, the concentration of the conjugated diene compound at the start of polymerization (mol / l) and the concentration of the non-conjugated olefin (Mol / l) means the following formula:
Non-conjugated olefin concentration / conjugated diene compound concentration ≧ 1.0
It is preferable to satisfy the relationship:
Non-conjugated olefin concentration / conjugated diene compound concentration ≧ 1.3
And more preferably the following formula:
Non-conjugated olefin concentration / conjugated diene compound concentration ≧ 1.7
Satisfy the relationship. By setting the value of the concentration of the non-conjugated olefin / the concentration of the conjugated diene compound to 1 or more, the non-conjugated olefin can be efficiently introduced into the reaction mixture.
また、上記第一重合触媒組成物又は第二重合触媒組成物を使用しなくても、即ち、通常の配位イオン重合触媒を使用する場合であっても、重合反応系中への単量体の仕込み方を調整することで、前記共重合体を製造することができる。即ち、前記共重合体の第二の製造方法は、非共役オレフィンの存在下において、共役ジエン化合物の投入を制御することで、共重合体の連鎖構造を制御することを特徴とし、これによって、共重合体中の単量体単位の配列を制御することができる。なお、本発明において、重合反応系とは、共役ジエン化合物と非共役オレフィンとの重合が行われる場所を意味し、具体例としては、反応容器等が挙げられる。 Further, even if the first polymerization catalyst composition or the second polymerization catalyst composition is not used, that is, when a normal coordination ion polymerization catalyst is used, the monomer into the polymerization reaction system The copolymer can be produced by adjusting the charging method. That is, the second production method of the copolymer is characterized by controlling the chain structure of the copolymer by controlling the introduction of the conjugated diene compound in the presence of the non-conjugated olefin, The arrangement of the monomer units in the copolymer can be controlled. In addition, in this invention, a polymerization reaction system means the place where superposition | polymerization with a conjugated diene compound and a nonconjugated olefin is performed, A reaction container etc. are mentioned as a specific example.
ここで、共役ジエン化合物の投入方法は、連続投入、分割投入のいずれであってもよく、更には、連続投入及び分割投入を組み合わせてもよい。また、連続投入とは、例えば、一定の添加速度で一定の時間添加することをいう。 Here, the charging method of the conjugated diene compound may be either continuous charging or split charging, and further, continuous charging and split charging may be combined. Moreover, continuous injection means adding for a fixed time at a fixed addition rate, for example.
具体的には、共役ジエン化合物と非共役オレフィンとを重合させる重合反応系に共役ジエン化合物を分割又は連続投入することで、該重合反応系内の単量体の濃度比を制御することが可能となり、その結果、得られる共重合体中の連鎖構造(即ち、単量体単位の配列)を特徴づけることが可能となる。また、共役ジエン化合物の投入の際に、非共役オレフィンが重合反応系中に存在することで、共役ジエン化合物単独重合体の生成を抑制することができる。なお、共役ジエン化合物の投入は、非共役オレフィンの重合を開始した後に行ってもよい。 Specifically, the concentration ratio of monomers in the polymerization reaction system can be controlled by dividing or continuously adding the conjugated diene compound to the polymerization reaction system for polymerizing the conjugated diene compound and the non-conjugated olefin. As a result, it is possible to characterize the chain structure (that is, the arrangement of monomer units) in the resulting copolymer. Further, when the conjugated diene compound is added, the presence of the non-conjugated olefin in the polymerization reaction system can suppress the formation of a conjugated diene compound homopolymer. The addition of the conjugated diene compound may be performed after the polymerization of the nonconjugated olefin is started.
例えば、上記第二製造方法によって前記共重合体を製造する場合には、あらかじめ非共役オレフィンの重合を開始した重合反応系に、非共役オレフィンの存在下で共役ジエン化合物を連続投入することが有効となる。特に、上記第二製造方法によってマルチブロック共重合体を製造する場合には、「非共役オレフィンを重合反応系中で重合させ、次に、非共役オレフィンの存在下で共役ジエン化合物を該重合反応系中に連続投入する」という操作を2回以上繰り返すことが有効となる。 For example, when the copolymer is produced by the second production method, it is effective to continuously add a conjugated diene compound in the presence of the non-conjugated olefin to the polymerization reaction system in which the polymerization of the non-conjugated olefin has been started in advance. It becomes. In particular, when a multi-block copolymer is produced by the second production method, “a non-conjugated olefin is polymerized in a polymerization reaction system, and then the conjugated diene compound is reacted in the presence of the non-conjugated olefin. It is effective to repeat the operation of “continuous charging into the system” twice or more.
上記第二製造方法は、上述のように重合反応系中への単量体の仕込み方を特定する以外は特に限定されず、例えば、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の重合方法を用いることができる。また、上記第二製造方法は、上述のように重合反応系中への単量体の仕込み方を特定する以外は、上記第一製造方法と同様にして、単量体である共役ジエン化合物と非共役オレフィンを共重合させることができる。 The second production method is not particularly limited as described above, except that the method of charging the monomer into the polymerization reaction system as described above. For example, the solution polymerization method, the suspension polymerization method, the liquid phase bulk polymerization method, Any polymerization method such as an emulsion polymerization method, a gas phase polymerization method, and a solid phase polymerization method can be used. In addition, the second production method is the same as the first production method, except that the method of charging the monomer into the polymerization reaction system as described above, and the conjugated diene compound as a monomer Non-conjugated olefins can be copolymerized.
なお、上記第二製造方法においては、共役ジエン化合物の投入を制御する必要があるが、具体的には、共役ジエン化合物の投入量や共役ジエン化合物の投入回数を制御することが好ましい。また、共役ジエン化合物の投入の制御方法は、例えば、コンピュータ等のプログラムで制御する方法や、タイマー等を用いてアナログで制御する方法が挙げられるが、これらに限定されるものではない。また、上述のように、共役ジエン化合物の投入方法は、特に限定されず、連続投入、分割投入等が挙げられる。ここで、共役ジエン化合物を分割投入する場合、該共役ジエン化合物の投入回数は、特に限定されないが、1〜5回の範囲が好ましい。共役ジエン化合物の投入回数が大きくなり過ぎると、ブロック共重合体とランダム共重合体との区別が困難になる場合がある。 In the second production method, it is necessary to control the input of the conjugated diene compound. Specifically, it is preferable to control the input amount of the conjugated diene compound and the input frequency of the conjugated diene compound. Examples of the method for controlling the introduction of the conjugated diene compound include a method of controlling by a program such as a computer and a method of controlling by analog using a timer or the like, but are not limited thereto. In addition, as described above, the method for charging the conjugated diene compound is not particularly limited, and examples thereof include continuous charging and divided charging. Here, when the conjugated diene compound is dividedly added, the number of times the conjugated diene compound is added is not particularly limited, but is preferably in the range of 1 to 5 times. If the conjugated diene compound is charged too many times, it may be difficult to distinguish between a block copolymer and a random copolymer.
また、上記第二製造方法においては、共役ジエン化合物の投入時に、非共役オレフィンが重合反応系に存在していることが必要であるため、非共役オレフィンを重合反応系へ連続的に供給することが好ましい。また、非共役オレフィンの供給方法は、特に限定されるものではない。 In the second production method, since it is necessary that the non-conjugated olefin is present in the polymerization reaction system when the conjugated diene compound is charged, the non-conjugated olefin is continuously supplied to the polymerization reaction system. Is preferred. Moreover, the supply method of a nonconjugated olefin is not specifically limited.
<非共役ジエン化合物−非共役オレフィン共重合体(C)>
本発明のゴム組成物は、エチレン−プロピレン−ジエンゴム(EPDM)を含有する非共役ジエン化合物−非共役オレフィン共重合体(C)を含む。該非共役ジエン化合物−非共役オレフィン共重合体(C)に含有されるEPDMによって、優れた耐候性を実現できる。
<Non-conjugated diene compound-non-conjugated olefin copolymer (C)>
The rubber composition of the present invention contains a non-conjugated diene compound-non-conjugated olefin copolymer (C) containing ethylene-propylene-diene rubber (EPDM). Excellent weather resistance can be realized by EPDM contained in the non-conjugated diene compound-non-conjugated olefin copolymer (C).
前記非共役ジエン化合物−非共役オレフィン共重合体(C)とは、非共役ジエン化合物と非共役オレフィンとの共重合体であり、共重合体におけるモノマー単位成分として非共役オレフィンを含むものである。さらに、非共役ジエン化合物−非共役オレフィン共重合体(C)のジエン含有量は10%以下である。 The non-conjugated diene compound-non-conjugated olefin copolymer (C) is a copolymer of a non-conjugated diene compound and a non-conjugated olefin, and includes a non-conjugated olefin as a monomer unit component in the copolymer. Furthermore, the diene content of the nonconjugated diene compound-nonconjugated olefin copolymer (C) is 10% or less.
ここで、前記非共役ジエン化合物−非共役オレフィン共重合体(C)に含有されるEPDMについては、エチレンとプロピレンとの共重合体であるエチレンプロピレンゴム(EPM)に、少量の第3成分を導入し、主鎖中に二重結合をもたせたものである。第3成分の種類や量の違いにより様々な合成ゴムがあり、代表的な第3成分としては、エチリデンノルボルネン(ENB)、1,4−ヘキサジエン(1,4−HD)、ジシクロペンタジエン(DCP)等が挙げられる。前記EPDMの特性については、上記耐候性の他、耐老化性、耐寒性、耐溶剤性等に優れている。 Here, regarding the EPDM contained in the non-conjugated diene compound-non-conjugated olefin copolymer (C), a small amount of the third component is added to the ethylene propylene rubber (EPM) which is a copolymer of ethylene and propylene. Introduced and provided with a double bond in the main chain. There are various synthetic rubbers depending on the type and amount of the third component, and typical third components include ethylidene norbornene (ENB), 1,4-hexadiene (1,4-HD), dicyclopentadiene (DCP). ) And the like. Regarding the properties of the EPDM, in addition to the above weather resistance, it is excellent in aging resistance, cold resistance, solvent resistance and the like.
また、前記非共役ジエン化合物−非共役オレフィン共重合体(C)におけるEPDMの含有量は、10質量%以上であることが好ましい。10質量%未満の場合、EPDMの含有量が少なすぎるため、十分な耐候性を確保できないおそれがあるからである。 Moreover, it is preferable that content of EPDM in the said nonconjugated diene compound-nonconjugated olefin copolymer (C) is 10 mass% or more. This is because if the content is less than 10% by mass, the EPDM content is too small, and sufficient weather resistance may not be ensured.
なお、前記非共役ジエン化合物−非共役オレフィン共重合体(C)のその他の条件(共
役ジエン化合物、EPDM以外の非共役オレフィン共重合体、製造方法など)については
、前記共役ジエン化合物−非共役オレフィン共重合体(A)と同様である。
In addition, about the other conditions (a conjugated diene compound, nonconjugated olefin copolymers other than EPDM, a manufacturing method, etc.) of the said nonconjugated diene compound-nonconjugated olefin copolymer (C), the said conjugated diene compound-nonconjugated. It is the same as that of the olefin copolymer (A).
前記ゴム成分100質量部中における前記非共役ジエン化合物−非共役オレフィン共重合体(C)の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、10質量部〜30質量部であることが好ましい。
前記ゴム成分100質量部中における記非共役ジエン化合物−非共役オレフィン共重合体(C)の含有量が、10質量部未満であると、十分な耐候性が得られないことがあり、30質量部を超えると、十分な耐亀裂成長性が得られないことがある。一方、前記ゴム成分100質量部中における前記非共役ジエン化合物−非共役オレフィン共重合体(C)の含有量が、より好ましい範囲内の場合、耐候性の点で有利である。
There is no restriction | limiting in particular as content of the said nonconjugated diene compound-nonconjugated olefin copolymer (C) in 100 mass parts of said rubber components, Although it can select suitably according to the objective, 10 mass parts- It is preferable that it is 30 mass parts.
When the content of the non-conjugated diene compound-non-conjugated olefin copolymer (C) in 100 parts by mass of the rubber component is less than 10 parts by mass, sufficient weather resistance may not be obtained. If it exceeds the part, sufficient crack growth resistance may not be obtained. On the other hand, when the content of the non-conjugated diene compound-non-conjugated olefin copolymer (C) in 100 parts by mass of the rubber component is within a more preferable range, it is advantageous in terms of weather resistance.
<(A)、(B)及び(C)の質量比>
前記共役ジエン系重合体(A)と、前記共役ジエン化合物−非共役オレフィン共重合体(B)と、前記非共役ジエン化合物−非共役オレフィン共重合体(C)との質量比は、特に制限はなく、目的に応じて適宜選択することができるが、耐候性、耐破壊性及び加工性をバランスよく発揮できる点からは、80:10:10〜10:60:30であることが好ましい。
前記共役ジエン化合物−非共役オレフィン共重合体(B)の質量比が10%未満の場合、相溶化の効果を十分に得られないおそれがあり、前記非共役ジエン化合物−非共役オレフィン共重合体(C)の質量比が10%未満だと耐候性の効果を十分に得られないおそれがあり、前記非共役ジエン化合物−非共役オレフィン共重合体(C)の質量比が30%を超えると耐亀裂成長性の効果を十分に得られないおそれがある。
<Mass ratio of (A), (B) and (C)>
The mass ratio of the conjugated diene polymer (A), the conjugated diene compound-nonconjugated olefin copolymer (B), and the nonconjugated diene compound-nonconjugated olefin copolymer (C) is particularly limited. However, it is preferably 80:10:10 to 10:60:30 from the viewpoint that the weather resistance, fracture resistance and workability can be exhibited in a balanced manner.
When the mass ratio of the conjugated diene compound-nonconjugated olefin copolymer (B) is less than 10%, the compatibilizing effect may not be sufficiently obtained, and the nonconjugated diene compound-nonconjugated olefin copolymer If the mass ratio of (C) is less than 10%, the weather resistance effect may not be sufficiently obtained, and if the mass ratio of the non-conjugated diene compound-non-conjugated olefin copolymer (C) exceeds 30%. There is a possibility that the effect of crack growth resistance cannot be sufficiently obtained.
−その他のゴム成分−
前記その他のゴムとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム、などが挙げられる。その他のゴム成分については、1種単独で使用してもよいし、2種以上を併用してもよい。
-Other rubber components-
There is no restriction | limiting in particular as said other rubber | gum, According to the objective, it can select suitably, For example, polysulfide rubber, silicone rubber, fluororubber, urethane rubber etc. are mentioned. About another rubber component, it may be used individually by 1 type and may use 2 or more types together.
<樹脂(D)>
本発明で使用するゴム組成物には、前述のゴム成分と共に、減衰特性付与のため、種々の樹脂(D)を含有することができる。
この樹脂(D)としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリエステルポリオール樹脂、ジシクロペンタジエン樹脂、ロジン樹脂、フェノール樹脂、キシレン樹脂、脂肪・脂環族C5系石油樹脂、C5/C9系石油樹脂、C9系石油樹脂、テルペン樹脂、並びにこれらの共重合体及び変性品、などが挙げられる。前記樹脂(D)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<Resin (D)>
The rubber composition used in the present invention may contain various resins (D) for imparting damping characteristics together with the rubber component described above.
The resin (D) is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include polyester polyol resin, dicyclopentadiene resin, rosin resin, phenol resin, xylene resin, and aliphatic / alicyclic C5. -Based petroleum resin, C5 / C9-based petroleum resin, C9-based petroleum resin, terpene resin, and copolymers and modified products thereof. The said resin (D) may be used individually by 1 type, and may be used in combination of 2 or more type.
−ポリエステルポリオール樹脂−
前記ポリエステルポリオール樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、多価カルボン酸と多価アルコールとの重縮合物であって、1分子内に水酸基を2個以上有する樹脂、などが挙げられる。
前記多価カルボン酸と多価アルコールとの重縮合物であって、1分子内に水酸基を2個以上有する樹脂の具体例としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、セバシン酸、アジピン酸、アゼライン酸、フタル酸等の二塩基酸と、モノ、ジ、トリエチレングリコールやモノ、ジプロピレングリコール等の二価アルコールとを縮合させて得られた両末端に水酸基を有するポリエステルジオール、などが挙げられる。
-Polyester polyol resin-
There is no restriction | limiting in particular as said polyester polyol resin, According to the objective, it can select suitably, For example, it is a polycondensate of polyhydric carboxylic acid and polyhydric alcohol, Comprising: Two hydroxyl groups in 1 molecule Examples thereof include the resins described above.
A specific example of the polycondensate of the polyvalent carboxylic acid and the polyhydric alcohol having two or more hydroxyl groups in one molecule is not particularly limited and may be appropriately selected depending on the purpose. For example, both ends obtained by condensing dibasic acids such as sebacic acid, adipic acid, azelaic acid, and phthalic acid and dihydric alcohols such as mono, di, triethylene glycol, mono, and dipropylene glycol And polyester diol having a hydroxyl group.
−ジシクロペンタジエン樹脂−
前記ジシクロペンタジエン樹脂は、ジシクロペンタジエンをAlCl3やBF3等のフリーデルクラフト触媒等を用いて重合させた樹脂である。
前記ジシクロペンタジエン樹脂の市販品の具体例としては、クイントン1920(日本ゼオン製、分子量大)、マルカレッツM−890A(丸善石油化学製、分子量小)、などが挙げられる。
-Dicyclopentadiene resin-
The dicyclopentadiene resin is a resin obtained by polymerizing dicyclopentadiene using a Friedel-Craft catalyst such as AlCl 3 or BF 3 .
Specific examples of commercial products of the dicyclopentadiene resin include Quinton 1920 (manufactured by Zeon Corporation, high molecular weight), Marcaretz M-890A (manufactured by Maruzen Petrochemical Co., Ltd., low molecular weight), and the like.
−ロジン樹脂−
前記ロジン樹脂は、生松やに、トール油等に含有されている樹脂であって、ガムロジン、トール油ロジン、ウッドロジンの3種が知られている。
前記ロジン樹脂の変性品としては、特に制限はなく、目的に応じて適宜選択することができ、重合ロジン;グリセリンエステルロジン、その部分水添ロジン、完全水添ロジン、重合ロジン;ペンタエリスリトールエステルロジン、その部分水添ロジン、重合ロジン;などが挙げられる。
-Rosin resin-
The rosin resin is a resin contained in raw pine or tall oil or the like, and three types of gum rosin, tall oil rosin and wood rosin are known.
The modified product of the rosin resin is not particularly limited and may be appropriately selected depending on the intended purpose. Polymerized rosin; glycerin ester rosin, partially hydrogenated rosin, fully hydrogenated rosin, polymerized rosin; pentaerythritol ester rosin , Partially hydrogenated rosin, polymerized rosin; and the like.
−フェノール樹脂−
前記フェノール樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、p−tert−ブチルフェノール・アセチレン樹脂、フェノール・ホルムアルデヒド樹脂、などが挙げられる。
-Phenolic resin-
There is no restriction | limiting in particular as said phenol resin, According to the objective, it can select suitably, For example, p-tert- butylphenol acetylene resin, phenol-formaldehyde resin, etc. are mentioned.
−キシレン樹脂−
前記キシレン樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、m−キシレンとホルムアルデヒドを酸性触媒の存在下に反応させて得られた樹脂、などが挙げられる。
-Xylene resin-
There is no restriction | limiting in particular as said xylene resin, According to the objective, it can select suitably, For example, the resin obtained by making m-xylene and formaldehyde react in presence of an acidic catalyst, etc. are mentioned.
−脂肪・脂環族C5系石油樹脂−
前記脂肪・脂環族C5系石油樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シクロペンタジエン、ジシクロペンタジエン(シクロペンタジエンの二量体でC10であるが、C5系留分に包含される。)、イソプレン、1,3−ペンタジエン、1−ペンテン、2−ペンテン等のC5系留分を原料とする共重合樹脂が挙げられる。
-Aliphatic and alicyclic C5 petroleum resin-
The aliphatic / alicyclic C5-based petroleum resin is not particularly limited and may be appropriately selected depending on the intended purpose. For example, cyclopentadiene, dicyclopentadiene (cyclopentadiene dimer is C10, C5 fractions), and copolymer resins made from C5 fractions such as isoprene, 1,3-pentadiene, 1-pentene, and 2-pentene.
−C5/C9系石油樹脂−
前記C5/C9系石油樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、上記C5系留分と、インデン、スチレン、メチルインデン、α−メチルスチレン等のC9系留分との混合物を原料とする共重合樹脂、などが挙げられる。
-C5 / C9 petroleum resin-
There is no restriction | limiting in particular as said C5 / C9 type petroleum resin, According to the objective, it can select suitably, For example, C9 type | system | groups, such as said C5 type | system | group fraction, indene, styrene, methylindene, (alpha) -methylstyrene, etc. Examples thereof include a copolymer resin made from a mixture with a fraction.
−C9系石油樹脂−
前記C9系石油樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、上記C9系留分を原料とする共重合樹脂、などが挙げられる。
-C9 petroleum resin-
There is no restriction | limiting in particular as said C9 type petroleum resin, According to the objective, it can select suitably, For example, the copolymer resin etc. which use the said C9 type fraction as a raw material etc. are mentioned.
−テルペン樹脂−
前記テルペン樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、β−ピネン樹脂、α−ピネン樹脂、テルペンフェノール樹脂、などを挙げることができる。
-Terpene resin-
There is no restriction | limiting in particular as said terpene resin, According to the objective, it can select suitably, For example, (beta) -pinene resin, (alpha) -pinene resin, terpene phenol resin etc. can be mentioned.
また、前記の脂肪・脂環族C5系石油樹脂、C5/C9系石油樹脂、C9系石油樹脂、及びこれらの水素添加樹脂を変性してなる極性基が導入された石油樹脂も用いることができる。
前記導入される極性基としては、特に制限はなく、目的に応じて適宜選択することができ、フェノール性水酸基、アルコール性水酸基、カルボキシ基等が挙げられる。
前記導入される極性基の量としては、特に制限はなく、目的に応じて適宜選択することができるが、水酸基価(mgKOH/g)として、2〜400が好ましく、10〜300がより好ましい。前記石油樹脂中に存在する極性基の量は、JIS K0070に記載の方法により測定することができる。
In addition, the above aliphatic / alicyclic C5 petroleum resins, C5 / C9 petroleum resins, C9 petroleum resins, and petroleum resins into which polar groups formed by modifying these hydrogenated resins are introduced can also be used. .
There is no restriction | limiting in particular as said polar group introduce | transduced, According to the objective, it can select suitably, A phenolic hydroxyl group, alcoholic hydroxyl group, a carboxy group, etc. are mentioned.
The amount of the polar group introduced is not particularly limited and may be appropriately selected depending on the intended purpose. However, the hydroxyl value (mgKOH / g) is preferably 2 to 400, more preferably 10 to 300. The amount of polar groups present in the petroleum resin can be measured by the method described in JIS K0070.
本発明で使用するゴム組成物において、ゴム成分と併用される樹脂(D)の重量平均分子量(Mw)としては、特に制限はなく、目的に応じて適宜選択することができるが、300〜4000が好ましく、500〜3000がより好ましい。前記重量平均分子量がこの範囲において、十分な減衰性を得ることができる。 In the rubber composition used in the present invention, the weight average molecular weight (Mw) of the resin (D) used in combination with the rubber component is not particularly limited and may be appropriately selected depending on the intended purpose. Is preferable, and 500 to 3000 is more preferable. When the weight average molecular weight is within this range, sufficient attenuation can be obtained.
前記樹脂(D)の含有量としては、ゴム成分100質量部に対して、5質量部〜60質量部である限り、特に制限はなく、目的に応じて適宜選択することができるが、5質量部〜40質量部が好ましい。
前記ゴム成分100質量部中における前記樹脂(D)の含有量が、5質量部〜60質量であると、十分な減衰が得られ、力学物性及び作業性の低下を防止することができる。
The content of the resin (D) is not particularly limited as long as it is 5 to 60 parts by mass with respect to 100 parts by mass of the rubber component, and can be appropriately selected according to the purpose. Part-40 mass parts is preferable.
When the content of the resin (D) in 100 parts by mass of the rubber component is 5 parts by mass to 60 parts by mass, sufficient attenuation can be obtained, and deterioration of mechanical properties and workability can be prevented.
<カーボンブラック>
前記カーボンブラックとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、FEF、GPF、SRF、HAF、N339、IISAF、ISAF、SAF、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記カーボンブラックの窒素吸着比表面積(N2SA、JIS K 6217−2:2
001に準拠する)としては、特に制限はなく、目的に応じて適宜選択することができる
が、20m2/g〜100m2/gが好ましく、35m2/g〜80m2/gがより好ましい
。前記カーボンブラックの窒素吸着比表面積(N2SA)が20m2/g未満であると、得
られたゴムの耐久性が低く、十分な耐亀裂成長性が得られないことがあり、100m2/
gを超えると、低ロス性が低下し、また、作業性が悪いことがある。
なお、前記窒素吸着比表面積(N2SA)は、例えば、JIS K 6217−2:2
001に準拠して、測定することができる。
前記ゴム成分100質量部に対するカーボンブラックの含有量としては、特に制限はな
く、目的に応じて適宜選択することができるが、10質量部〜70質量部が好ましく、2
0質量部〜60質量部がより好ましい。前記カーボンブラックの含有量が、10質量部未
満であると、補強性が不十分で耐破壊性が悪化することがあり、70質量部を超えると、
加工性および低ロス性が悪化することがある。一方、前記カーボンブラックの含有量が、
前記より好ましい範囲内であると、各性能のバランスの点で有利である。
<Carbon black>
There is no restriction | limiting in particular as said carbon black, According to the objective, it can select suitably, For example, FEF, GPF, SRF, HAF, N339, IISAF, ISAF, SAF etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together.
Nitrogen adsorption specific surface area of the carbon black (N 2 SA, JIS K 6217-2: 2
As it conforms to 001) is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 20m 2 / g~100m 2 / g, 35m 2 / g~80m 2 / g is more preferable. Wherein the carbon black nitrogen adsorption specific surface area (N 2 SA) is less than 20 m 2 / g, low durability of the resulting rubber, may not sufficiently crack growth resistance is obtained, 100 m 2 /
When it exceeds g, low loss property falls and workability | operativity may be bad.
The nitrogen adsorption specific surface area (N 2 SA) is, for example, JIS K 6217-2: 2.
It can be measured according to 001.
There is no restriction | limiting in particular as content of carbon black with respect to 100 mass parts of said rubber components, Although it can select suitably according to the objective, 10 mass parts-70 mass parts are preferable, 2
0 to 60 parts by mass is more preferable. When the carbon black content is less than 10 parts by mass, the reinforcing property may be insufficient and the fracture resistance may deteriorate, and when it exceeds 70 parts by mass,
Workability and low loss property may be deteriorated. Meanwhile, the carbon black content is
Within the more preferable range, it is advantageous in terms of the balance of each performance.
<シリカ>
前記シリカを上記カーボンブラックと併用することで、ゴムの破壊特性を維持しながら、弾性率の上昇を抑えることができる。
前記シリカとしては、特に制限はなく、この分野において通常使用されているものを使用することができるが、疎水化処理シリカが好ましい。
前記疎水化処理シリカとしては、特に制限はなく、目的に応じて適宜選択することができるが、窒素吸着比表面積(BET法)が150m2/g〜500m2/g(好ましくは150〜350m2/g)の範囲の湿式シリカ100質量部に対して、動粘度が10-6m2/s〜1m2/sの範囲のシリコーンオイル0.1質量部〜50質量部を配合して表面処理して得られるものが好ましい。
前記湿式シリカの比表面積が150m2/g未満では、所望の破壊特性が得られないことがあり、500m2/gを超えると、ゴム成分への分散性が低下することがある。なお、前記シリカのDBP吸収量としては、特に制限はなく、目的に応じて適宜選択することができるが、150ml/100g〜350ml/100gが好ましい。
<Silica>
By using the silica in combination with the carbon black, an increase in elastic modulus can be suppressed while maintaining the fracture characteristics of rubber.
There is no restriction | limiting in particular as said silica, Although what is normally used in this field | area can be used, Hydrophobized silica is preferable.
As the hydrophobic treated silica is not particularly limited and may be appropriately selected depending on the purpose, the nitrogen adsorption specific surface area (BET method) is 150m 2 / g~500m 2 / g (preferably 150~350M 2 / g with respect to wet silica 100 parts by weight in the range of), kinematic viscosity 10 -6 m 2 / s~1m 2 / s silicone oil 0.1 part by weight to 50 parts by mass to surface treatment in the range of What is obtained is preferable.
If the specific surface area of the wet silica is less than 150 m 2 / g, desired fracture characteristics may not be obtained, and if it exceeds 500 m 2 / g, dispersibility in the rubber component may be reduced. In addition, there is no restriction | limiting in particular as DBP absorption amount of the said silica, Although it can select suitably according to the objective, 150 ml / 100g-350 ml / 100g are preferable.
前記シリカの添加量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分100質量部に対して、1質量部〜10質量部が好ましく、5質量部〜10質量部がより好ましい。
前記シリカの添加量が10質量部を超えると、所期のせん断弾性率Gを得難くなることがあり、1質量部未満では、破壊特性に対する効果が得られないことがある。
なお、本発明においては、上記シランをゴム成分と混練する際、公知のシランカップリング剤を適宜添加することもでき、これによりゴム成分への分散性を向上させることが可能である。
There is no restriction | limiting in particular as addition amount of the said silica, Although it can select suitably according to the objective, 1 mass part-10 mass parts are preferable with respect to 100 mass parts of rubber components, and 5 mass parts-10 masses. Part is more preferred.
If the amount of silica added exceeds 10 parts by mass, it may be difficult to obtain the desired shear modulus G, and if it is less than 1 part by mass, the effect on fracture characteristics may not be obtained.
In the present invention, when the silane is kneaded with the rubber component, a known silane coupling agent may be added as appropriate, thereby improving the dispersibility in the rubber component.
<ワックス、アマイド化合物>
前記ワックス、アマイド化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、パラフィンワックス、ミクロクリスタリンワックス等のワックス;ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド等のアマイド化合物;などが挙げられる。前記樹脂ワックス、アマイド化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
これらの中でも、ミクロクリスタリンワックス、エルカ酸アミドが、ゴムシートの粘着性を低減させることができ、ゴム支承体を被覆する際の成形作業性を向上させることができる点で、好ましい。
前記ワックス、アマイド化合物の添加量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記ゴム成分100質量部に対して、0.5質量部〜2質量部が好ましく、0.5質量部〜1質量部がより好ましい。
前記ワックス、アマイド化合物の添加量が、0.5質量部未満であると、所望する加工性の改善効果が得られないことがあり、2質量部を超えると、外観の悪化を招くおそれがある。
<Wax, Amide Compound>
The wax or amide compound is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include waxes such as paraffin wax and microcrystalline wax; amides such as stearic acid amide, oleic acid amide and erucic acid amide. Compound; and the like. The said resin wax and an amide compound may be used individually by 1 type, and may be used in combination of 2 or more type.
Among these, microcrystalline wax and erucic acid amide are preferable in that the adhesiveness of the rubber sheet can be reduced and the molding workability when covering the rubber support can be improved.
The addition amount of the wax and amide compound is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.5 parts by mass to 2 parts by mass with respect to 100 parts by mass of the rubber component. 0.5 mass part-1 mass part are more preferable.
If the added amount of the wax or amide compound is less than 0.5 parts by mass, the desired processability improving effect may not be obtained. If the amount exceeds 2 parts by mass, the appearance may be deteriorated. .
<その他の成分>
前記その他の成分として、本発明の目的を損なわない範囲で、公知の加硫剤、加硫促進剤、老化防止剤、亜鉛華(ZnO)、ワックス類、酸化防止剤、充填剤、発泡剤、可塑剤、滑剤、粘着付与剤、紫外線吸収剤、脂肪酸、老化防止剤、軟化剤、リターダー等の添加剤を、適宜配合することができる。
<Other ingredients>
As other components, as long as the object of the present invention is not impaired, known vulcanizing agents, vulcanization accelerators, anti-aging agents, zinc white (ZnO), waxes, antioxidants, fillers, foaming agents, Additives such as plasticizers, lubricants, tackifiers, ultraviolet absorbers, fatty acids, anti-aging agents, softeners, and retarders can be appropriately blended.
−可塑剤−
前記可塑剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アロマティック油、ナフテニック油、パラフィン油等のプロセスオイル;やし油等の植物油;アルキルベンゼンオイル等の合成油;などが挙げられる。
これらの中でも、プロセスオイルが好ましく、特に、パラフィン系オイルが好ましい。
前記可塑剤の添加量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分100質量部に対し、20質量部〜50質量部が好ましい。
-Plasticizer-
The plasticizer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include process oils such as aromatic oils, naphthenic oils and paraffin oils; vegetable oils such as palm oils; synthesis of alkylbenzene oils and the like Oil; and the like.
Among these, process oil is preferable, and paraffin oil is particularly preferable.
There is no restriction | limiting in particular as addition amount of the said plasticizer, Although it can select suitably according to the objective, 20 mass parts-50 mass parts are preferable with respect to 100 mass parts of rubber components.
−加硫剤−
前記加硫剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硫黄、などが挙げられる。
前記加硫剤の添加量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記ゴム成分100質量部に対し、0.5質量部〜3質量部が好ましい。
前記加硫剤の添加量が、0.5質量部未満であると、ゴム組成物の破壊特性が低下することがあり、3質量部を超えると、所望の弾性率が得られないことがある。
-Vulcanizing agent-
There is no restriction | limiting in particular as said vulcanizing agent, According to the objective, it can select suitably, For example, sulfur etc. are mentioned.
There is no restriction | limiting in particular as addition amount of the said vulcanizing agent, Although it can select suitably according to the objective, 0.5 mass part-3 mass parts are preferable with respect to 100 mass parts of said rubber components.
When the addition amount of the vulcanizing agent is less than 0.5 parts by mass, the fracture characteristics of the rubber composition may be deteriorated, and when it exceeds 3 parts by mass, a desired elastic modulus may not be obtained. .
−加硫促進剤−
前記加硫促進剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、CBS(N−シクロヘキシル−2−ベンゾチアジルスルフェンアミド)、TBBS(N−t−ブチル−2−ベンゾチアジルスルフェンアミド)、TBSI(N−t−ブチル−2−ベンゾチアジルスルフェンイミド)等のスルフェンアミド系の加硫促進剤;DPG(ジフェニルグアニジン)等のグアニジン系の加硫促進剤;テトラオクチルチウラムジスルフィド、テトラベンジルチウラムジスルフィド等のチウラム系加硫促進剤;ジアルキルジチオリン酸亜鉛等の加硫促進剤;などが挙げられる。
前記加硫促進剤の添加量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分100質量部に対し、1.5質量部〜3.5質量部が好ましい。
-Vulcanization accelerator-
The vulcanization accelerator is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include CBS (N-cyclohexyl-2-benzothiazylsulfenamide) and TBBS (Nt-butyl- 2-benzothiazylsulfenamide), sulfenamide-based vulcanization accelerators such as TBSI (Nt-butyl-2-benzothiazylsulfenimide); guanidine-based additions such as DPG (diphenylguanidine) And sulfur accelerators; thiuram vulcanization accelerators such as tetraoctyl thiuram disulfide and tetrabenzyl thiuram disulfide; vulcanization accelerators such as zinc dialkyldithiophosphate; and the like.
There is no restriction | limiting in particular as addition amount of the said vulcanization accelerator, Although it can select suitably according to the objective, 1.5 mass parts-3.5 mass parts are preferable with respect to 100 mass parts of rubber components.
−充填剤−
前記充填剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ホワイトカーボン、微粒子ケイ酸マグネシウム、重質炭酸カルシウム、炭酸マグネシウム、クレー、タルク等の無機充填剤、ハイスチレン樹脂、クマロンインデン樹脂、フェノール樹脂、リグニン、変性メラミン樹脂、ロジン誘導体等の有機充填剤、が挙げられる。前記充填剤の添加量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分100質量部に対し、10質量部〜50質量部が好ましい。
-Filler-
The filler is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include inorganic fillers such as white carbon, fine particle magnesium silicate, heavy calcium carbonate, magnesium carbonate, clay and talc, Examples thereof include organic fillers such as styrene resin, coumarone indene resin, phenol resin, lignin, modified melamine resin, and rosin derivative. There is no restriction | limiting in particular as addition amount of the said filler, Although it can select suitably according to the objective, 10 mass parts-50 mass parts are preferable with respect to 100 mass parts of rubber components.
−老化防止剤−
前記老化防止剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、N−フェニル−N’−(1,3−ジメチルブチル)−p−フェニレンジアミン(6C)、N−フェニル−N’−イソプロピル−p−フェニレンジアミン(3C)、2,2,4−トリメチル−1,2−ジヒドロキノリン重合物(RD)、などの公知のアミン系又はフェノール系の老化防止剤が挙げられる。
前記老化防止剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分100質量部に対して、0.5質量部〜10質量部が好ましく、1質量部〜10質量部がより好ましい。
-Anti-aging agent-
There is no restriction | limiting in particular as said anti-aging agent, According to the objective, it can select suitably, For example, N-phenyl-N '-(1,3-dimethylbutyl) -p-phenylenediamine (6C), N Known amine-based or phenol-based anti-aging agents such as -phenyl-N'-isopropyl-p-phenylenediamine (3C) and 2,2,4-trimethyl-1,2-dihydroquinoline polymer (RD) Can be mentioned.
There is no restriction | limiting in particular as content of the said anti-aging agent, Although it can select suitably according to the objective, 0.5 mass part-10 mass parts are preferable with respect to 100 mass parts of rubber components, and 1 mass. Part to 10 parts by mass is more preferable.
−軟化剤−
前記軟化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、芳香族変性テルペン炭化水素樹脂等の炭化水素樹脂、などが挙げられる。
前記脂肪酸の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分100質量部に対して、1質量部〜15質量部が好ましい。
-Softener-
There is no restriction | limiting in particular as said softener, According to the objective, it can select suitably, For example, hydrocarbon resins, such as an aromatic modified terpene hydrocarbon resin, etc. are mentioned.
There is no restriction | limiting in particular as content of the said fatty acid, Although it can select suitably according to the objective, 1 mass part-15 mass parts are preferable with respect to 100 mass parts of rubber components.
−脂肪酸−
前記脂肪酸としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ステアリン酸、などが挙げられる。
前記脂肪酸の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分100質量部に対して、0.5質量部〜10質量部が好ましく、1質量部〜5質量部がより好ましい。
-Fatty acid-
There is no restriction | limiting in particular as said fatty acid, According to the objective, it can select suitably, For example, a stearic acid etc. are mentioned.
There is no restriction | limiting in particular as content of the said fatty acid, Although it can select suitably according to the objective, 0.5 mass part-10 mass parts are preferable with respect to 100 mass parts of rubber components, and 1 mass part- 5 parts by mass is more preferable.
−リターダー−
前記リターダーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、N−(シクロヘキシルチオ)−フタルイミド(PVI)、などが挙げられる。
前記リターダーの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分100質量部に対して、0.1質量部〜0.5質量部が好ましい。
-Retarder-
There is no restriction | limiting in particular as said retarder, According to the objective, it can select suitably, For example, N- (cyclohexylthio) phthalimide (PVI) etc. are mentioned.
There is no restriction | limiting in particular as content of the said retarder, Although it can select suitably according to the objective, 0.1 mass part-0.5 mass part are preferable with respect to 100 mass parts of rubber components.
−酸化亜鉛−
前記酸化亜鉛の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分100質量部に対して、0.5質量部〜10質量部が好ましく、1質量部〜5質量部がより好ましい。
-Zinc oxide-
There is no restriction | limiting in particular as content of the said zinc oxide, Although it can select suitably according to the objective, 0.5 mass part-10 mass parts are preferable with respect to 100 mass parts of rubber components, 1 mass part -5 mass parts is more preferable.
<ゴム支承被覆用ゴム組成物の製造方法>
本発明のゴム支承被覆用ゴム組成物の製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、全ての成分原料を一度に配合して混練しても良いし、2段階あるいは3段階に分けて各成分を配合して混練を行ってもよい。
前記混練に際しては、ロール、インターナルミキサー、バンバリーローター等の混練機を用いることができる。
<Method for Producing Rubber Composition for Covering Rubber Bearing>
The method for producing the rubber composition for covering a rubber support according to the present invention is not particularly limited and can be appropriately selected according to the purpose. You may mix and knead | mix each component in a stage or 3 steps.
In the kneading, a kneader such as a roll, an internal mixer, a Banbury rotor, or the like can be used.
(ゴム支承被覆用ゴム)
本発明のゴム支承被覆用ゴムは、本発明のゴム支承被覆用ゴム組成物を用いたことを特徴とする。
前記ゴム支承被覆用ゴムの加硫後におけるせん断弾性率Gとしては、特に制限はなくs、目的に応じて適宜選択することができるが、0.3N/mm2〜1.0N/mm2が好ましく、0.35N/mm2〜0.75N/mm2がより好ましい。
前記ゴム支承被覆用ゴムの加硫後における破壊強度としては、特に制限はなく、目的に応じて適宜選択することができるが、12MPa以上が好ましく、14MPa以上がより好ましい。
(Rubber for rubber bearing coating)
The rubber for covering a rubber bearing of the present invention is characterized by using the rubber composition for covering a rubber bearing of the present invention.
The shear modulus G after vulcanization of the rubber bearing coating rubber, s not particularly limited and may be appropriately selected depending on the purpose, 0.3N / mm 2 ~1.0N / mm 2 is preferably, 0.35N / mm 2 ~0.75N / mm 2 is more preferable.
There is no restriction | limiting in particular as the fracture strength after vulcanization | cure of the said rubber for rubber | gum support coating | cover, Although it can select suitably according to the objective, 12 Mpa or more is preferable and 14 Mpa or more is more preferable.
<ゴム支承被覆用ゴムの製造方法>
前記ゴム支承被覆用ゴム組成物からシート状のゴム支承被覆用ゴム(ゴムシート)を成形する際には、押出成形機、プレス機等の公知の成形機を用いればよい。
前記ゴムシートをゴム支承体の外周に巻き付け、被覆した後、加硫硬化することによって、外観だけでなく耐久性、耐候性等に優れたゴム支承を得ることができる。この時の加硫条件としては、特に限定されるものではないが、通常120〜160℃の加硫条件を採用することができる。
例えば、図1に示されるように、本発明のゴム支承被覆用ゴムが用いられるゴム支承体20は、粘弾性的性質を有するゴム等の軟質板11と、鋼板等の剛性を有する硬質板12とを交互に積層して構成されたゴム積層体13の上下面に取付面板4、5が設けられている。しかして、ゴム積層体13は被覆層14で被覆されている。
本発明のゴム支承被覆用ゴムは、例えば、被覆層14に用いられる。
<Production method of rubber for rubber bearing coating>
When the sheet-like rubber support covering rubber (rubber sheet) is formed from the rubber support covering rubber composition, a known forming machine such as an extrusion molding machine or a press machine may be used.
A rubber bearing excellent not only in appearance but also in durability, weather resistance, and the like can be obtained by winding the rubber sheet around the outer periphery of the rubber bearing body, coating the rubber sheet, and then curing and curing. The vulcanization conditions at this time are not particularly limited, but usually vulcanization conditions of 120 to 160 ° C. can be employed.
For example, as shown in FIG. 1, a
The rubber for covering rubber support according to the present invention is used for the
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。なお、以下、「実施例1」、「実施例2」、「実施例3」、「実施例5」、「実施例8」との記載は、それぞれ、「参考例1」、「参考例2」、「参考例3」、「参考例5」、「参考例8」を意味するものとする。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples. Hereinafter, the descriptions of “Example 1”, “Example 2”, “Example 3”, “Example 5”, and “Example 8” are “Reference Example 1” and “Reference Example 2”, respectively. ”,“ Reference Example 3 ”,“ Reference Example 5 ”, and“ Reference Example 8 ”.
(評価)
後述する各実施例及び比較例で得られたゴム組成物及び加硫ゴムのサンプルについて、下記の方法に従って、耐候性(耐オゾン性)、耐破壊性、耐亀裂成長性(指数)、等価減衰係数、Tb(引張破断応力)及びEb(引張破断伸び)を測定した。また、共役ジエン化合物−非共役オレフィン共重合体の分析方法を以下に示す。
(Evaluation)
According to the following methods, weather resistance (ozone resistance), fracture resistance, crack growth resistance (index), equivalent attenuation of rubber compositions and vulcanized rubber samples obtained in each of Examples and Comparative Examples to be described later The coefficient, Tb (tensile breaking stress) and Eb (tensile breaking elongation) were measured. Moreover, the analysis method of a conjugated diene compound-nonconjugated olefin copolymer is shown below.
(1)耐候性(耐オゾン性)
各実施例及び比較例で得られた加硫ゴムのサンプルについて、JIS K6259に従
って、耐オゾン性を測定した。短冊状試験片を30%の動的伸張を与えながら、40℃、
オゾン濃度50pphm条件で暴露し、24時間後の試料の状況(亀裂の有無)を目視で
判断した。結果を表1及び2に示す。
なお、表1及び2において、○が「亀裂なし」を示し、△が「亀裂あり」を示す。
(1) Weather resistance (ozone resistance)
About the sample of the vulcanized rubber obtained by each Example and the comparative example, ozone resistance was measured according to JISK6259. While giving 30% dynamic stretching of the strip-shaped test piece,
The sample was exposed under an ozone concentration of 50 pphm, and the state of the sample (presence of cracks) after 24 hours was judged visually. The results are shown in Tables 1 and 2.
In Tables 1 and 2, ◯ indicates “no crack” and Δ indicates “crack”.
(2)耐破壊性(Tb(引張破断応力)及びEb(引張破断伸び))
各実施例及び比較例で得られた加硫ゴムのサンプルについて、JIS K 6251に従って、引っ張り試験による室温での破断点強度(Tb(引張破断応力))および破断点伸び(Eb(引張破断伸び))を測定し、比較例1を100として指数表示した。結果を表1及び2に示す。
表1及び2では、比較例1を100としたときの指数で表示し、数値が大きいほど耐破壊性が良好であることを示す。
(2) Fracture resistance (Tb (tensile rupture stress) and Eb (tensile rupture elongation))
About the sample of the vulcanized rubber obtained in each Example and Comparative Example, according to JIS K 6251, the strength at break (Tb (tensile rupture stress)) and the elongation at break (Eb (tensile rupture elongation) at room temperature by a tensile test. ) Was measured, and indexed with Comparative Example 1 as 100. The results are shown in Tables 1 and 2.
In Table 1 and 2, it displays by the index when the comparative example 1 is set to 100, and it shows that destruction resistance is so favorable that a numerical value is large.
(3)耐亀裂成長性(定歪)
各実施例及び比較例で得られた加硫ゴムのサンプルについて、JIS3号試験片中心部
に0.5mmの亀裂を入れ、室温で0〜100%の一定歪みで繰り返し疲労を与え、サン
プルが切断するまでの回数を測定し、評価を行った。
表1及び2では、比較例1を100としたときの指数で表示し、指数値が大きい程、耐亀裂成長性(定歪)が良好であることを示す。
(3) Crack growth resistance (constant strain)
About the vulcanized rubber samples obtained in each of the examples and comparative examples, a 0.5 mm crack was made in the center of the JIS No. 3 test piece, and fatigue was repeatedly given at a constant strain of 0 to 100% at room temperature. The number of times until the measurement was measured and evaluated.
In Table 1 and 2, it displays by the index when the comparative example 1 is set to 100, and it shows that crack growth resistance (constant strain) is so favorable that an index value is large.
(4)等価減衰係数(Heq100%)
各実施例及び比較例で得られた加硫ゴムのサンプルから、25mm×25mmの方形状に打ち抜いた1枚の方形状ゴムシート(厚み2mm)を作製した。該方形状ゴムシートを接着剤を塗布した2枚の鉄板(25mm×60mm×厚み2.3mm)の間に断面クランク状となるように挟んだ。このように、鉄板とこれに接するゴムシートの面とを接着した状態で加硫を行い、鉄板とゴムシート面との接着をして測定サンプルを得た。得られた測定サンプルを、バネ剛性、損失エネルギー測定装置[鷺宮製作所製、型式「EFH−26−8−10」]に配置した。2校の鉄板を方形状ゴムシートに対して外側および内側に、周波数0.2Hzで下記の一回目、二回目の順で剪断率を変えて剪断力を付与した。同剪断率では各3回剪断力を付与した。
1回目:50%→100%→200%→300%
2回目:50%一100%→200%→300%
そして、各剪断率において、1回目の剪断力を加えた時の測定値(3回目)と2回目の剪断力を加えた時の測定値(3回目)を平均し、Heq100%を算出した。
表1および表2では、比較例1を100としたときの指数で表示し、指数値が大きいほど、減衰性が高いことを示す。
(4) Equivalent damping coefficient (Heq 100%)
One rectangular rubber sheet (thickness 2 mm) punched into a 25 mm × 25 mm square was produced from the vulcanized rubber samples obtained in the examples and comparative examples. The rectangular rubber sheet was sandwiched between two iron plates (25 mm × 60 mm × thickness 2.3 mm) coated with an adhesive so as to have a crank shape in cross section. In this way, vulcanization was performed in a state where the iron plate and the surface of the rubber sheet in contact with the iron plate were bonded, and the measurement was obtained by bonding the iron plate and the rubber sheet surface. The obtained measurement sample was placed in a spring stiffness and loss energy measuring device [manufactured by Kakinomiya Seisakusho, model “EFH-26-8-10”]. Two steel plates were applied to the outer and inner sides of the rectangular rubber sheet at a frequency of 0.2 Hz by changing the shear rate in the order of the first and second times described below to apply shear force. At the same shear rate, a shear force was applied three times.
1st: 50% → 100% → 200% → 300%
Second time: 50%-100%->200%-> 300%
Then, at each shear rate, the measured value when the first shear force was applied (third time) and the measured value when the second shear force was applied (third time) were averaged to calculate Heq 100%.
In Table 1 and Table 2, it displays by the index when the comparative example 1 is set to 100, and it shows that attenuation property is so high that an index value is large.
<共重合体の分析方法>
−共重合体の重量平均分子量(Mw)及び分子量分布(Mw/Mn)−
ゲルパーミエーションクロマトグラフィー[GPC:東ソー製HLC−8121GPC/HT、カラム:東ソー製GMHHR−H(S)HT×2本、検出器:示差屈折率計(RI)]で単分散ポリスチレンを基準として、重合体のポリスチレン換算の重量平均分子量(Mw)及び分子量分布(Mw/Mn)を求めた。なお、測定温度は140℃である。
<Method for analyzing copolymer>
-Weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of copolymer-
Gel permeation chromatography [GPC: Tosoh HLC-8121GPC / HT, column: Tosoh GMH HR- H (S) HT × 2, detector: differential refractometer (RI)] on the basis of monodisperse polystyrene The polystyrene equivalent weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the polymer were determined. The measurement temperature is 140 ° C.
(調製例1)
−ブタジエン−エチレン共重合体(EBR1)の調製−
十分に乾燥した4Lステンレス反応器に、1,3−ブタジエン120g(2.22mol)を含むトルエン溶液2,000gを添加した後、エチレンを1.72MPaで導入した。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にビス(2−フェニルインデニル)ガドリニウムビス(ジメチルシリルアミド)[(2−PhC9H6)2GdN(SiHMe2)2]28.5μmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート[Me2NHPhB(C6F5)4]28.5μmol、及びジイソブチルアルミニウムハイドライド2.00mmolを仕込み、トルエン40mlに溶解させて触媒溶液とした。その後、グローブボックスから触媒溶液を取り出し、ガドリニウム換算で25.0μmolとなる量をモノマー溶液へ添加し、50℃で90分間重合を行った。
重合後、2,2’メチレン−ビス(4−エチル−6−t−ブチルフェノール)(NS−5)5質量%のイソプロパノール溶液5mlを加えて反応を停止させ、さらに大量のメタノールで共重合体を分離し、70℃で真空乾燥し重合体を得た。得られた共重合体EBR1の収量は98gであった。
(Preparation Example 1)
-Preparation of butadiene-ethylene copolymer (EBR1)-
After adding 2,000 g of a toluene solution containing 120 g (2.22 mol) of 1,3-butadiene to a sufficiently dry 4 L stainless steel reactor, ethylene was introduced at 1.72 MPa. On the other hand, bis (2-phenylindenyl) gadolinium bis (dimethylsilylamide) [(2-PhC 9 H 6 ) 2 GdN (SiHMe 2 ) 2 ] 28.5 μmol in a glass container in a glove box under a nitrogen atmosphere. , 28.5 μmol of dimethylanilinium tetrakis (pentafluorophenyl) borate [Me 2 NHPhB (C 6 F 5 ) 4 ] and 2.00 mmol of diisobutylaluminum hydride were prepared and dissolved in 40 ml of toluene to obtain a catalyst solution. Thereafter, the catalyst solution was taken out from the glove box, an amount of 25.0 μmol in terms of gadolinium was added to the monomer solution, and polymerization was performed at 50 ° C. for 90 minutes.
After the polymerization, 5 ml of 2,2′methylene-bis (4-ethyl-6-tert-butylphenol) (NS-5) isopropanol solution (5 ml) was added to stop the reaction, and the copolymer was further added with a large amount of methanol. Separation and vacuum drying at 70 ° C. gave a polymer. The yield of the obtained copolymer EBR1 was 98 g.
(調製例2)
−ブタジエン−エチレン共重合体(EBR2)の調製−
十分に乾燥した4Lステンレス反応器に、1,3−ブタジエン230g(4.26mol)を含むトルエン溶液2,000gを添加した後、エチレンを1.72MPaで導入した。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にビス(2−フェニルインデニル)ガドリニウムビス(ジメチルシリルアミド)[(2−PhC9H6)2GdN(SiHMe2)2]145μmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート[Me2NHPhB(C6F5)4]145μmol、及びジイソブチルアルミニウムハイドライド2.9mmolを仕込み、トルエン100mlに溶解させて触媒溶液とした。その後、グローブボックスから触媒溶液を取り出し、ガドリニウム換算で142μmolとなる量をモノマー溶液へ添加し、60℃で60分間重合を行った。重合後、2,2’−メチレン−ビス(4−エチル−6−t−ブチルフェノール)(NS−5)5質量%のイソプロパノール溶液5mlを加えて反応を停止させ、さらに大量のメタノールで共重合体を分離し、70℃で真空乾燥し重合体を得た。得られた共重合体EBR2の収量は248gであった。
(Preparation Example 2)
-Preparation of butadiene-ethylene copolymer (EBR2)-
After adding 2,000 g of a toluene solution containing 230 g (4.26 mol) of 1,3-butadiene to a sufficiently dry 4 L stainless steel reactor, ethylene was introduced at 1.72 MPa. Meanwhile, in a glove box under a nitrogen atmosphere, bis (2-phenylindenyl) gadolinium bis (dimethylsilylamide) [(2-PhC 9 H 6 ) 2 GdN (SiHMe 2 ) 2 ] 145 μmol, dimethyl, Anilinium tetrakis (pentafluorophenyl) borate [Me 2 NHPhB (C 6 F 5 ) 4 ] 145 μmol and 2.9 mmol of diisobutylaluminum hydride were charged and dissolved in 100 ml of toluene to obtain a catalyst solution. Thereafter, the catalyst solution was taken out from the glove box, an amount of 142 μmol in terms of gadolinium was added to the monomer solution, and polymerization was performed at 60 ° C. for 60 minutes. After polymerization, 5 ml of 2,2′-methylene-bis (4-ethyl-6-tert-butylphenol) (NS-5) 5% by mass of isopropanol solution was added to stop the reaction, and a copolymer with a large amount of methanol was added. Was separated and vacuum dried at 70 ° C. to obtain a polymer. The yield of the obtained copolymer EBR2 was 248 g.
(調製例3)
−ブタジエン−エチレン共重合体(EBR3)の調製−
十分に乾燥した400ml耐圧ガラス反応器に、1,3−ブタジエン9.36g(0.173mol)を含むトルエン溶液200mlを添加した後、エチレンを0.6MPaで導入した。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器に(2−MeC9H6)2Sc(MeAlMe3)21.0μmol、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート(Ph3CB(C6F5)4)21.0μmol、及びトリイソブチルアルミニウム0.25mmolを仕込み、トルエン5mlに溶解させて触媒溶液とした。その後、グローブボックスから触媒溶液を取り出し、モノマー溶液へ添加し、25℃で50分間重合を行った。重合後、2,2’−メチレン−ビス(4−エチル−6−t−ブチルフェノール)(NS−5)5質量%のイソプロパノール溶液1mlを加えて反応を停止させ、さらに大量のメタノールで共重合体を分離し、70℃で真空乾燥し重合体を得た。得られた共重合体EBR3の収量は9.30gであった。
(Preparation Example 3)
-Preparation of butadiene-ethylene copolymer (EBR3)-
After adding 200 ml of a toluene solution containing 9.36 g (0.173 mol) of 1,3-butadiene to a sufficiently dried 400 ml pressure-resistant glass reactor, ethylene was introduced at 0.6 MPa. On the other hand, in a glove box under a nitrogen atmosphere, (2-MeC 9 H 6 ) 2 Sc (MeAlMe 3 ) 21.0 μmol, triphenylcarbonium tetrakis (pentafluorophenyl) borate (Ph 3 CB (C 6 F 5 ) 4 ) 21.0 μmol and 0.25 mmol of triisobutylaluminum were charged and dissolved in 5 ml of toluene to obtain a catalyst solution. Thereafter, the catalyst solution was taken out from the glove box, added to the monomer solution, and polymerized at 25 ° C. for 50 minutes. After the polymerization, 1 ml of 2,2′-methylene-bis (4-ethyl-6-tert-butylphenol) (NS-5) 5% by mass of isopropanol solution was added to stop the reaction, and a copolymer with a large amount of methanol was added. Was separated and vacuum dried at 70 ° C. to obtain a polymer. The yield of the obtained copolymer EBR3 was 9.30 g.
(調製例4)
−エチレン−ブタジエン共重合体(EBR4)の調製−
十分に乾燥した4Lステンレス反応器に、1,3−ブタジエン80g(1.48mol)を含むトルエン溶液2,000gを添加した後、エチレンを1.72MPaで導入した。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にビス(2−フェニルインデニル)ガドリニウムビス(ジメチルシリルアミド)[(2−PhC9H6)2GdN(SiHMe2)2]28.5μmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート[Me2NHPhB(C6F5)4]28.5μmol、及びジイソブチルアルミニウムハイドライド2.00mmolを仕込み、トルエン40mlに溶解させて触媒溶液とした。その後、グローブボックスから触媒溶液を取り出し、ガドリニウム換算で25.0μmolとなる量をモノマー溶液へ添加し、80℃で90分間重合を行った。重合後、2,2’−メチレン−ビス(4−エチル−6−t−ブチルフェノール)(NS−5)5質量%のイソプロパノール溶液5mlを加えて反応を停止させ、さらに大量のメタノールで共重合体を分離し、70℃で真空乾燥し重合体を得た。得られた共重合体EBR4の収量は78gであった。
(Preparation Example 4)
-Preparation of ethylene-butadiene copolymer (EBR4)-
After adding 2,000 g of a toluene solution containing 80 g (1.48 mol) of 1,3-butadiene to a sufficiently dry 4 L stainless steel reactor, ethylene was introduced at 1.72 MPa. On the other hand, in a glove box under a nitrogen atmosphere, 28.5 μmol of bis (2-phenylindenyl) gadolinium bis (dimethylsilylamide) [(2-PhC 9 H 6 ) 2GdN (SiHMe 2 ) 2 ] in a glass container. Dimethylanilinium tetrakis (pentafluorophenyl) borate [Me 2 NHPhB (C 6 F 5 ) 4 ] 28.5 μmol and 2.00 mmol of diisobutylaluminum hydride were charged and dissolved in 40 ml of toluene to obtain a catalyst solution. Thereafter, the catalyst solution was taken out from the glove box, an amount of 25.0 μmol in terms of gadolinium was added to the monomer solution, and polymerization was performed at 80 ° C. for 90 minutes. After polymerization, 5 ml of 2,2′-methylene-bis (4-ethyl-6-tert-butylphenol) (NS-5) 5% by mass of isopropanol solution was added to stop the reaction, and a copolymer with a large amount of methanol was added. Was separated and vacuum dried at 70 ° C. to obtain a polymer. The yield of the obtained copolymer EBR4 was 78 g.
(調製例5)
−プロピレン−ブタジエン共重合体(PBR)の調製−
容積が200mlのゴム栓付きガラスびんを乾燥・窒素置換し、0.05molのVOCl3(オキソバナジウムトリクロライド)とネオペンチルアルコール0.10molとトルエンを加えた。その後、窒素でバブリングさせながら発生した塩酸について、注射針を刺して抜くことでジネオペントキシオキソバナジウムクロライドのトルエン溶液を得た。
約1リットル容積のゴム栓付きガラスびんを乾燥・窒素置換し、乾燥精製されたブタジエンのトルエン溶液(17.5wt%)を250g投入した。次に、このガラス瓶を−78℃に冷却し、プロピレンガスを50g送入した。2.81mmolのトリイソブチルアルミニウム(ノルマルヘキサン溶液1mol/L)を加え、攪拌して約10分放置した後、上記で調整したバナジウム溶液0.47mmolを添加して重合を開始させ、−78℃で4時間反応を行なった。その後、50℃にて老化防止剤2,2’−メチレン−ビス(4−エチル−6−t−ブチルフェノール)(NS−5)のイソプロパノール5%溶液2ミリリットルを加えて反応の停止を行い、さらに微量のNS−5を含むイソプロパノール中で再沈殿した後、ドラムにて乾燥することで、共役ジエン化合物−非共役オレフィン共重合体(A)に該当するプロピレン−ブタジエン共重合体(PBR)を得た。得られた共重合体PBRの収率は約70質量%であり、ジエン含有量は50mol%、重量平均分子量(Mw)は250,000であった。
(Preparation Example 5)
-Preparation of propylene-butadiene copolymer (PBR)-
A glass bottle with a rubber stopper having a volume of 200 ml was dried and purged with nitrogen, and 0.05 mol of VOCl 3 (oxovanadium trichloride), 0.10 mol of neopentyl alcohol and toluene were added. Thereafter, the hydrochloric acid generated while bubbling with nitrogen was pierced and removed to obtain a toluene solution of dineopentoxyoxovanadium chloride.
A glass bottle with a rubber stopper having a volume of about 1 liter was dried and purged with nitrogen, and 250 g of a toluene solution (17.5 wt%) of butadiene that had been purified by drying was added. Next, this glass bottle was cooled to −78 ° C., and 50 g of propylene gas was fed. 2.81 mmol of triisobutylaluminum (
(調製例6)
−ブテン−ブタジエン共重合体(BBR)の調製−
容積が200mlのゴム栓付きガラスびんを乾燥・窒素置換し、0.05molのVOCl3(オキソバナジウムトリクロライド)とネオペンチルアルコール0.10molとトルエンを加えた。その後、窒素でバブリングさせながら発生した塩酸について、注射針を刺して抜くことでジネオペントキシオキソバナジウムクロライドのトルエン溶液を得た。
約1リットル容積のゴム栓付きガラスびんを乾燥・窒素置換し、乾燥精製されたブタジエンのトルエン溶液(17.5wt%)を250g投入した。次に、このガラス瓶を−78℃に冷却し、ブテンガスを66g送入した。2.81mmolのトリイソブチルアルミニウム(ノルマルヘキサン溶液1mol/L)を加え、攪拌して約10分放置した後、上記で調整したバナジウム溶液0.47mmolを添加して重合を開始させ、−78℃で12時間反応を行なった。その後、50℃にて老化防止剤2,2’−メチレン−ビス(4−エチル−6−t−ブチルフェノール)(NS−5)のイソプロパノール5%溶液2ミリリットルを加えて反応の停止を行い、さらに微量のNS−5を含むイソプロパノール中で再沈殿した後、ドラムにて乾燥することで、共役ジエン化合物−非共役オレフィン共重合体(A)に該当するブテン−ブタジエン共重合体(BBR)を得た。得られた共重合体BBRの収率は約65質量%であり、ジエン含有量は55mol%、重量平均分子量(Mw)は300,000であった。
(Preparation Example 6)
-Preparation of butene-butadiene copolymer (BBR)-
A glass bottle with a rubber stopper having a volume of 200 ml was dried and purged with nitrogen, and 0.05 mol of VOCl 3 (oxovanadium trichloride), 0.10 mol of neopentyl alcohol and toluene were added. Thereafter, the hydrochloric acid generated while bubbling with nitrogen was pierced and removed to obtain a toluene solution of dineopentoxyoxovanadium chloride.
A glass bottle with a rubber stopper having a volume of about 1 liter was dried and purged with nitrogen, and 250 g of a toluene solution (17.5 wt%) of butadiene that had been purified by drying was added. Next, this glass bottle was cooled to −78 ° C., and 66 g of butene gas was fed. 2.81 mmol of triisobutylaluminum (
(実施例1〜8及び比較例1〜6)
実施例1〜8及び比較例1〜6のゴム組成物のサンプルとして、表1及び2に示す配合処方でゴム組成物を調製した。
その後、各サンプルのゴム組成物を用い、表3に示すマスターバッチの欄に従って化合
物を添加することでマスターバッチを調製した後、表3に示すファイナルバッチの欄に従
って化合物を添加することでファイナルバッチを調整し、その後、調整したファイナルバ
ッチを、160℃で20分間加硫することで、加硫ゴムのサンプルを作製した。なお、表
1及び表2中に記載の「phr」とは、ゴム成分100質量部に対する割合のことである
。
(Examples 1-8 and Comparative Examples 1-6)
As samples of the rubber compositions of Examples 1 to 8 and Comparative Examples 1 to 6, rubber compositions were prepared according to the formulation shown in Tables 1 and 2.
Then, after using the rubber composition of each sample to prepare a master batch by adding compounds according to the master batch column shown in Table 3, the final batch by adding compounds according to the final batch column shown in Table 3 Then, the adjusted final batch was vulcanized at 160 ° C. for 20 minutes to prepare a vulcanized rubber sample. In addition, “phr” described in Tables 1 and 2 is a ratio with respect to 100 parts by mass of the rubber component.
表1〜表3の各組成物において用いられたポリマー等の銘柄等を下記する。
EPDM*1:非共役ジエン化合物−非共役オレフィンとしてのEPDM:JSR製、EP96(ジエン含有量:5.8wt%)
NR*2:共役ジエン系重合体としての天然ゴム グレードRSS♯4
カーボンブラック:ISAF級、東海カーボン製 シースト6
脂肪酸:ステアリン酸
老化防止剤1:「ノクラック(登録商標)224」(商品名)、大内新興化学工業株式会社製(2,2,4−トリメチル−1,2−ジヒドロキノリン重合体)
老化防止剤2:「KUMANOX13」(商品名)、KUMHO.INC製、N−(1,3−ジメチルブチル)N’−フェニル−p−フェニレンジアミン
ジシクロペンタジエン樹脂1:日本ゼオン製 クイントン1920
ジシクロペンタジエン樹脂2:丸善石油化学製 マルカレッツM−890A
軟化剤:芳香族変性テルペン炭化水素樹脂:YSレジンTO105(商品名)、ヤスハラケミカル製
老化防止剤3:大内新興化学工業製 ノクセラーCZ−G、N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド
リターダー:東レファインケミカル製 リターダーCTP、PVI(N−(シクロヘキシルチオ)−フタルイミド)
Brands such as polymers used in the compositions of Tables 1 to 3 are described below.
EPDM * 1 : Non-conjugated diene compound-EPDM as a non-conjugated olefin: manufactured by JSR, EP 96 (diene content: 5.8 wt%)
NR * 2 : natural rubber as a conjugated diene polymer Grade RSS # 4
Carbon Black: ISAF grade, Tokai Carbon Seast 6
Fatty acid: Stearic acid Anti-aging agent 1: “NOCRACK (registered trademark) 224” (trade name), manufactured by Ouchi Shinsei Chemical Co., Ltd. (2,2,4-trimethyl-1,2-dihydroquinoline polymer)
Anti-aging agent 2: “KUMANOX 13” (trade name), KUMHO. INC, N- (1,3-dimethylbutyl) N′-phenyl-p-phenylenediamine dicyclopentadiene resin 1: QUINTON 1920, manufactured by Nippon Zeon
Dicyclopentadiene resin 2: Marukaretsu M-890A manufactured by Maruzen Petrochemical Co., Ltd.
Softener: Aromatically modified terpene hydrocarbon resin: YS resin TO105 (trade name), Yashara Chemical-made anti-aging agent 3: Ouchi Shinsei Chemical Industry Noxeller CZ-G, N-cyclohexyl-2-benzothiazolylsulfenamide retarder : Toray Fine Chemicals Retarder CTP, PVI (N- (cyclohexylthio) -phthalimide)
表1〜3より明らかなごとく、実施例1〜8のゴム組成物は、共役ジエン系重合体(A)、共役ジエン化合物−非共役オレフィン共重合体(B)、及び、エチレン−プロピレン−ジエンゴムを含有する非共役ジエン化合物−非共役オレフィン共重合体(C)を含むゴム成分と、樹脂(D)とを含むゴム支承被覆用ゴム組成物であって、前記ゴム成分100質量部に対し、前記樹脂を5質量部〜60質量部含むことにより、比較例1〜6と比較して、ゴム支承被覆用ゴムの亀裂成長性、耐候性(耐オゾン性)、及び耐破壊性を向上させ、且つ十分な減衰性を得ることができることを達成し得た。 As is clear from Tables 1 to 3, the rubber compositions of Examples 1 to 8 are conjugated diene polymer (A), conjugated diene compound-nonconjugated olefin copolymer (B), and ethylene-propylene-diene rubber. A rubber composition for covering a rubber bearing, comprising a rubber component containing a non-conjugated diene compound-non-conjugated olefin copolymer (C) containing a resin (D), and 100 parts by weight of the rubber component, By including 5 parts by mass to 60 parts by mass of the resin, compared to Comparative Examples 1 to 6, the crack growth property, weather resistance (ozone resistance), and fracture resistance of the rubber for covering a rubber support are improved. In addition, it was possible to achieve sufficient attenuation.
本発明のゴム支承被覆用ゴム組成物は、ゴム支承被覆用ゴムを製造するのに好適に用いられる。前記ゴム支承被覆用ゴムは、ゴム支承体の被覆層などに利用可能である。 The rubber composition for covering a rubber support of the present invention is suitably used for producing a rubber for covering a rubber support. The rubber for covering a rubber support can be used for a covering layer of a rubber support.
4 取付面板
5 取付面板
11 軟質板
12 硬質板
13 ゴム積層体
14 被覆層
20 ゴム支承体
4 Mounting face plate 5 Mounting face plate 11
Claims (7)
前記ゴム成分100質量部に対し、前記樹脂(D)を5質量部〜60質量部含み、
前記共役ジエン化合物−非共役オレフィン共重合体(B)が、プロピレン−ブタジエン共重合体であることを特徴とするゴム支承被覆用ゴム組成物。 Rubber containing a conjugated diene polymer (A), a conjugated diene compound-nonconjugated olefin copolymer (B), and a nonconjugated diene compound-nonconjugated olefin copolymer (C) containing ethylene-propylene-diene rubber A rubber composition for covering a rubber bearing, comprising a component and a resin (D),
Including 5 to 60 parts by mass of the resin (D) with respect to 100 parts by mass of the rubber component ;
A rubber composition for covering a rubber bearing, wherein the conjugated diene compound-nonconjugated olefin copolymer (B) is a propylene-butadiene copolymer .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011173267A JP5735886B2 (en) | 2011-08-08 | 2011-08-08 | Rubber composition for rubber bearing coating and rubber for rubber bearing coating using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011173267A JP5735886B2 (en) | 2011-08-08 | 2011-08-08 | Rubber composition for rubber bearing coating and rubber for rubber bearing coating using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013035943A JP2013035943A (en) | 2013-02-21 |
JP5735886B2 true JP5735886B2 (en) | 2015-06-17 |
Family
ID=47885847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011173267A Expired - Fee Related JP5735886B2 (en) | 2011-08-08 | 2011-08-08 | Rubber composition for rubber bearing coating and rubber for rubber bearing coating using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5735886B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016117783A (en) * | 2014-12-18 | 2016-06-30 | 東洋ゴム工業株式会社 | Rubber composition for seismically isolated structure and rubber for seismically isolated structure |
JP6688456B2 (en) * | 2016-02-03 | 2020-04-28 | 中日本高速技術マーケティング株式会社 | Coated rubber composition |
WO2017154710A1 (en) | 2016-03-11 | 2017-09-14 | Jsr株式会社 | Polymerization catalyst, copolymer, polymer composition, and crosslinked polymer |
EP3680265B1 (en) | 2017-09-04 | 2024-01-17 | Bridgestone Corporation | Method for producing copolymer, copolymer, rubber composition, and tire |
KR102438547B1 (en) * | 2020-08-24 | 2022-08-30 | 한국교통대학교산학협력단 | Seismic isolator for checking deterioration of elastic material |
JP7217396B1 (en) * | 2021-06-30 | 2023-02-02 | 住友理工株式会社 | Rubber composition for side wall of rubber bearing and rubber bearing using the same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2611283B2 (en) * | 1987-07-27 | 1997-05-21 | 株式会社ブリヂストン | High loss rubber composition for seismic isolation |
JP2570341B2 (en) * | 1987-04-06 | 1997-01-08 | 株式会社ブリヂストン | Seismic isolation structure |
JP2570340B2 (en) * | 1987-04-06 | 1997-01-08 | 株式会社ブリヂストン | Seismic isolation structure |
JPH11228743A (en) * | 1997-07-18 | 1999-08-24 | Mitsui Chem Inc | Unsaturated elastomer composition and its vulcanized rubber |
JP2000063576A (en) * | 1998-08-13 | 2000-02-29 | Mitsui Chemicals Inc | Unsaturated copolymer composition and its vulcanizate |
JP2009001603A (en) * | 2007-06-19 | 2009-01-08 | Bridgestone Corp | Rubber sheet for rubber support coating, and coating material for rubber support |
KR20120052385A (en) * | 2009-08-07 | 2012-05-23 | 가부시키가이샤 브리지스톤 | Method for producing copolymer |
JP2011046795A (en) * | 2009-08-26 | 2011-03-10 | Bridgestone Corp | Vibration-damping rubber composition and vibration-damping rubber |
-
2011
- 2011-08-08 JP JP2011173267A patent/JP5735886B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013035943A (en) | 2013-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5771683B2 (en) | Rubber composition, rubber composition for tire side, crosslinked rubber composition, and tire | |
JPWO2012014463A1 (en) | Copolymer of conjugated diene compound and non-conjugated olefin, rubber composition, and tire | |
WO2012105271A1 (en) | Copolymer, rubber composition, rubber composition for tire side use, crosslinked rubber composition, and tire | |
JP5909121B2 (en) | Rubber composition for tire | |
JPWO2013114877A1 (en) | Anti-vibration rubber composition, crosslinked anti-vibration rubber composition and anti-vibration rubber | |
JP5735886B2 (en) | Rubber composition for rubber bearing coating and rubber for rubber bearing coating using the same | |
JP5769577B2 (en) | Rubber composition for crawler and rubber crawler using the same | |
WO2013132846A1 (en) | Polymer, rubber composition containing polymer, crosslinked rubber composition obtained by crosslinking rubber composition, and tire having crosslinked rubber composition | |
JP2013107729A (en) | Rubber composition for conveyor belt, and conveyor belt using the same | |
JP5973735B2 (en) | Rubber composition for tire and tire comprising the rubber composition for tire | |
JP5893938B2 (en) | Anti-vibration rubber composition and anti-vibration rubber | |
JP2013155257A (en) | Rubber composition and tire | |
JP5965414B2 (en) | Anti-vibration rubber composition, crosslinked anti-vibration rubber composition and anti-vibration rubber | |
JP2013155300A (en) | Vibration-proof rubber composition, crosslinking vibration-proof rubber composition, and vibration-proof rubber | |
JP5845099B2 (en) | Anti-vibration rubber composition, crosslinked anti-vibration rubber composition and anti-vibration rubber | |
JP2012179807A (en) | Rubber laminate | |
JP2013151583A (en) | Rubber composition, bead filler, chafer and tire | |
JP5898978B2 (en) | Rubber composition for air spring and air spring using the same | |
JP5707294B2 (en) | Rubber composition for conveyor belt and conveyor belt using the same | |
JP5973737B2 (en) | Rubber composition for tire, crosslinked rubber composition for tire, and tire | |
JP5869847B2 (en) | Rubber composition for damping member and damping member using the same | |
JP2013159631A (en) | Rubber composition, rubber composition for tire tread, crosslinked rubber and tire | |
JP5973736B2 (en) | Rubber composition for tire, crosslinked rubber composition for tire, and tire | |
JP5917814B2 (en) | Rubber composition, rubber composition for tire side, crosslinked rubber composition, and tire | |
JP5769563B2 (en) | Rubber crawler composition and rubber crawler using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140606 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140910 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140916 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150324 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150417 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5735886 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |