JP5707294B2 - Rubber composition for conveyor belt and conveyor belt using the same - Google Patents

Rubber composition for conveyor belt and conveyor belt using the same Download PDF

Info

Publication number
JP5707294B2
JP5707294B2 JP2011220493A JP2011220493A JP5707294B2 JP 5707294 B2 JP5707294 B2 JP 5707294B2 JP 2011220493 A JP2011220493 A JP 2011220493A JP 2011220493 A JP2011220493 A JP 2011220493A JP 5707294 B2 JP5707294 B2 JP 5707294B2
Authority
JP
Japan
Prior art keywords
group
copolymer
conjugated diene
compound
diene compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011220493A
Other languages
Japanese (ja)
Other versions
JP2013079341A (en
Inventor
中野 宏規
宏規 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2011220493A priority Critical patent/JP5707294B2/en
Publication of JP2013079341A publication Critical patent/JP2013079341A/en
Application granted granted Critical
Publication of JP5707294B2 publication Critical patent/JP5707294B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、コンベアベルト用ゴム組成物及びそれを用いたコンベアベルトに関し、特に、接着性及び耐オゾン性(耐候性)を向上させることができるコンベアベルト用ゴム組成物及びそれを用いたコンベアベルトに関する。   TECHNICAL FIELD The present invention relates to a rubber composition for a conveyor belt and a conveyor belt using the same, and in particular, a rubber composition for a conveyor belt capable of improving adhesion and ozone resistance (weather resistance) and a conveyor belt using the same. About.

鉄鋼、石炭、セメント等の産業分野において、物品を輸送する手段としてコンベアベルトが多く利用されている。こうしたコンベアベルトは、被輸送物との摩擦や衝撃等に耐え得る高度な耐久性を有することが要求されるため、図1に示すように、スチールコード等の金属部材やアラミド繊維、PET、ナイロン等からなる帆布のような補強材を芯材(芯体)3として用い、これにゴム組成物を覆うようにして貼りあわせた後に加硫して、カバーゴム層1を形成することにより製造される。カバーゴム層1は、搬送物やアイドラー等と接触する。また、芯体3とカバーゴム層1との間には、接着ゴム層2としての芯体ゴムが形成されている。   In industrial fields such as steel, coal and cement, conveyor belts are often used as means for transporting articles. Since such a conveyor belt is required to have high durability capable of withstanding friction and impact with a transported object, as shown in FIG. 1, a metal member such as a steel cord, aramid fiber, PET, nylon, etc. It is manufactured by forming a cover rubber layer 1 by using a reinforcing material such as canvas made of a material such as canvas as a core material (core body) 3, pasting the rubber composition so as to cover the rubber composition, and vulcanizing. The The cover rubber layer 1 is in contact with a conveyed product, an idler, or the like. A core rubber as an adhesive rubber layer 2 is formed between the core body 3 and the cover rubber layer 1.

従来より、コンベアベルトのカバーゴムとして用いられるゴム組成物としては種々のものが採用されているが、高い耐熱老化性を付与する観点から、ゴム成分としてスチレン−ブタジエンゴムが好適に用いられている(例えば、特許文献1参照)。   Conventionally, various rubber compositions have been adopted as cover rubbers for conveyor belts. From the viewpoint of imparting high heat aging resistance, styrene-butadiene rubber is suitably used as a rubber component. (For example, refer to Patent Document 1).

ここで、コンベアベルト(特に、パイプコンベアベルト(筒状のベルト))のカバーゴムは、常に伸縮を繰り返すことから、野外で使用するとオゾンクラックが生じやすい。そのため、耐オゾン性を向上するために、老化防止剤を多量に添加したり(例えば、特許文献2参照)、ポリマー系にエチレン−プロピレン−ジエン三元共重合体ゴム(非共役ジエン化合物−非共役オレフィン共重合体、EPDM)を配合する(例えば、特許文献3参照)ことなどが検討されている。   Here, since the cover rubber of the conveyor belt (particularly, the pipe conveyor belt (cylindrical belt)) constantly expands and contracts, ozone cracks are likely to occur when used outdoors. Therefore, in order to improve ozone resistance, a large amount of anti-aging agent is added (for example, see Patent Document 2), or ethylene-propylene-diene terpolymer rubber (non-conjugated diene compound-non-conjugated) is added to the polymer system. Compounding a conjugated olefin copolymer (EPDM) (for example, see Patent Document 3) has been studied.

ここで、特許文献2に示すように、老化防止剤を多量に添加すると、耐摩耗性等の物性低下が大きく、さらに経時とともに老化防止剤がブルーミングを引き起こし、外観を著しく損ない、接着性に悪影響を及ぼすという問題がある。   Here, as shown in Patent Document 2, when a large amount of an anti-aging agent is added, physical properties such as abrasion resistance are greatly deteriorated, and the anti-aging agent causes blooming over time, the appearance is remarkably impaired, and the adhesiveness is adversely affected. There is a problem of affecting.

一方、特許文献3に示すように、ポリマー系にエチレン−プロピレン−ジエン三元共重合体ゴム(非共役ジエン化合物−非共役オレフィン共重合体、EPDM)を配合すると、使用する環境温度が変化しても一定の摩擦係数としなやかさを維持することができ、また、ゴム粉の搬送物への付着を阻止することができ、さらに、耐オゾンクラック性能を向上させることができるが、コンベアベルトにおける芯体ゴムとの加硫ゴム接着性能が低下するという問題がある。   On the other hand, as shown in Patent Document 3, when an ethylene-propylene-diene terpolymer rubber (non-conjugated diene compound-non-conjugated olefin copolymer, EPDM) is added to the polymer system, the environmental temperature to be used changes. However, it is possible to maintain flexibility with a constant coefficient of friction, to prevent adhesion of rubber powder to the conveyed product, and to further improve ozone cracking resistance. There is a problem that the adhesion performance of the vulcanized rubber with the core rubber is lowered.

特開2006−199892号公報JP 2006-199892 A 特開2005−153604号公報JP 2005-153604 A 特開平8−233037号公報JP-A-8-233037

そこで、本発明の目的は、接着性及び耐オゾン性(耐候性)を向上させることができるコンベアベルト用ゴム組成物及びそれを用いたコンベアベルトを提供することにある。   Then, the objective of this invention is providing the rubber composition for conveyor belts which can improve adhesiveness and ozone resistance (weather resistance), and a conveyor belt using the same.

本発明者らは、共役ジエン系重合体と、共役ジエン化合物−非共役オレフィン共重合体(共役ジエン化合物と非共役オレフィンとの共重合体)とを含むゴム成分100質量部に対し、前記共重合体を30質量部〜50質量部含むことにより、接着性及び耐オゾン性(耐候性)を向上させることができることを見出し、本発明を完成させるに至った。   The inventors of the present invention described above with respect to 100 parts by mass of a rubber component containing a conjugated diene polymer and a conjugated diene compound-nonconjugated olefin copolymer (a copolymer of a conjugated diene compound and a nonconjugated olefin). It has been found that by including 30 to 50 parts by mass of the polymer, the adhesiveness and ozone resistance (weather resistance) can be improved, and the present invention has been completed.

即ち、本発明のコンベアベルト用ゴム組成物は、ゴム成分中に、共役ジエン系重合体と、共役ジエン化合物と非共役オレフィンとの共重合体とを含むコンベアベルト用ゴム組成物であって、前記ゴム成分100質量部に対し、前記共重合体を30質量部〜50質量部含むことを特徴とする。   That is, the rubber composition for conveyor belts of the present invention is a rubber composition for conveyor belts containing a conjugated diene polymer and a copolymer of a conjugated diene compound and a nonconjugated olefin in a rubber component, 30 mass parts-50 mass parts of said copolymers are included with respect to 100 mass parts of said rubber components.

本発明のコンベアベルト用ゴム組成物は、前記共重合体において、前記共役ジエン化合物由来部分の割合が30mol%〜80mol%であることが好ましい。   In the rubber composition for conveyor belts of the present invention, the proportion of the conjugated diene compound-derived portion in the copolymer is preferably 30 mol% to 80 mol%.

本発明のコンベアベルト用ゴム組成物は、前記共重合体が前記共役ジエン化合物由来部分のシス−1,4結合量が50%以上であることが好ましい。   In the rubber composition for conveyor belts of the present invention, the copolymer preferably has a cis-1,4 bond content of the conjugated diene compound-derived portion of 50% or more.

本発明のコンベアベルト用ゴム組成物は、前記共役ジエン系重合体が、スチレン−ブタジエン共重合体ゴム、並びに、天然ゴム及びポリイソプレンの少なくともいずれかを含むことが好ましい。   In the rubber composition for a conveyor belt according to the present invention, the conjugated diene polymer preferably contains a styrene-butadiene copolymer rubber, and at least one of natural rubber and polyisoprene.

本発明のコンベアベルト用ゴム組成物は、前記共重合体のポリスチレン換算重量平均分子量が10,000〜10,000,000であることが好ましい。   In the conveyor belt rubber composition of the present invention, the copolymer preferably has a polystyrene-equivalent weight average molecular weight of 10,000 to 10,000,000.

本発明のコンベアベルト用ゴム組成物は、前記共重合体の分子量分布(Mw/Mn)が10以下であることが好ましい。   The rubber composition for conveyor belts of the present invention preferably has a molecular weight distribution (Mw / Mn) of the copolymer of 10 or less.

本発明のコンベアベルト用ゴム組成物は、前記非共役オレフィンが非環状オレフィンであることが好ましい。   In the rubber composition for conveyor belts of the present invention, the non-conjugated olefin is preferably an acyclic olefin.

本発明のコンベアベルト用ゴム組成物は、前記非共役オレフィンの炭素数が2〜10であることが好ましい。   In the conveyor belt rubber composition of the present invention, the non-conjugated olefin preferably has 2 to 10 carbon atoms.

本発明のコンベアベルト用ゴム組成物は、前記非共役オレフィンが、エチレン、プロピレン、及び1−ブテンからなる群から選択される少なくとも1種であることが好ましい。   In the rubber composition for a conveyor belt of the present invention, the non-conjugated olefin is preferably at least one selected from the group consisting of ethylene, propylene, and 1-butene.

本発明のコンベアベルト用ゴム組成物は、前記非共役オレフィンがエチレンであることが好ましい。   In the rubber composition for a conveyor belt according to the present invention, the non-conjugated olefin is preferably ethylene.

本発明のコンベアベルト用ゴム組成物は、前記共役ジエン化合物が1,3−ブタジエン及びイソプレンの少なくともいずれかであることが好ましい。   In the rubber composition for conveyor belts of the present invention, the conjugated diene compound is preferably at least one of 1,3-butadiene and isoprene.

本発明のコンベアベルトは、本発明のコンベアベルト用ゴム組成物を用いたことを特徴とする。   The conveyor belt of the present invention is characterized by using the rubber composition for a conveyor belt of the present invention.

本発明によれば、接着性及び耐オゾン性(耐候性)を向上させることができるコンベアベルト用ゴム組成物及びそれを用いたコンベアベルトを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the rubber composition for conveyor belts which can improve adhesiveness and ozone resistance (weather resistance), and a conveyor belt using the same can be provided.

図1は、本発明のコンベアベルトの部分断面図である。FIG. 1 is a partial sectional view of a conveyor belt according to the present invention. 図2は、調製例1に従って製造された共重合体Aの13C−NMRスペクトルチャートを示す図である。2 is a diagram showing a 13 C-NMR spectrum chart of copolymer A produced according to Preparation Example 1. FIG. 図3は、調製例1に従って製造された共重合体AのDSC曲線を示す図である。FIG. 3 is a diagram showing a DSC curve of copolymer A produced according to Preparation Example 1.

(コンベアベルト用ゴム組成物)
本発明のコンベアベルト用ゴム組成物は、少なくとも、(i)共役ジエン系重合体と、(ii)共役ジエン化合物と非共役オレフィンとの共重合体と、を含んでなり、さらに必要に応じて、(iii)その他のゴム成分、(iv)架橋剤、(v)加硫促進剤、(vi)その他の成分、を含んでなる。
(Rubber composition for conveyor belt)
The rubber composition for conveyor belts of the present invention comprises at least (i) a conjugated diene polymer, and (ii) a copolymer of a conjugated diene compound and a nonconjugated olefin, and further if necessary. , (Iii) other rubber components, (iv) a crosslinking agent, (v) a vulcanization accelerator, and (vi) other components.

<(i)共役ジエン系重合体>
前記共役ジエン系重合体は、モノマー単位成分(共重合体の一部)として非共役オレフィンを含まない重合体(ポリマー)を意味する。なお、スチレンは、非共役オレフィンに含まれないものとする。
前記共役ジエン系重合体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、天然ゴム(NR)、各種ポリブタジエンゴム(BR)、合成ポリイソプレンゴム(IR)、各種スチレン−ブタジエン共重合体ゴム(SBR)、スチレン−イソプレン共重合体ゴム、スチレン−イソプレン−ブタジエン共重合体ゴム、イソプレン−ブタジエン共重合体ゴム、アクリロニトリル−ブタジエン共重合体ゴム(NBR)、クロロプレンゴム、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、スチレン−ブタジエン共重合体と天然ゴム(又は、ポリイソプレン)とを併用することが、強力、引裂き特性、摩耗特性のバランスの点で好ましい。
また、スチレン−ブタジエン共重合体と天然ゴムとを併用する場合、重量比(スチレン−ブタジエン共重合体:天然ゴム(又は、ポリイソプレン))としては、特に制限はなく、目的に応じて適宜選択することができるが、20:80〜80:20が好ましい。80以下:20以上であると、高い強力を得ることができ、20以上:80以下であると、高い摩耗性を得ることができる。
<(I) Conjugated diene polymer>
The conjugated diene polymer means a polymer (polymer) containing no non-conjugated olefin as a monomer unit component (part of copolymer). Styrene is not included in the non-conjugated olefin.
The conjugated diene polymer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include natural rubber (NR), various polybutadiene rubbers (BR), synthetic polyisoprene rubber (IR), and various styrenes. -Butadiene copolymer rubber (SBR), styrene-isoprene copolymer rubber, styrene-isoprene-butadiene copolymer rubber, isoprene-butadiene copolymer rubber, acrylonitrile-butadiene copolymer rubber (NBR), chloroprene rubber, Etc. These may be used individually by 1 type and may use 2 or more types together.
Among these, the combined use of styrene-butadiene copolymer and natural rubber (or polyisoprene) is preferable from the viewpoint of balance between strength, tearing properties, and wear properties.
Moreover, when using together a styrene-butadiene copolymer and natural rubber, there is no restriction | limiting in particular as weight ratio (styrene-butadiene copolymer: natural rubber (or polyisoprene)), It selects suitably according to the objective. 20:80 to 80:20 are preferred. When it is 80 or less: 20 or more, high strength can be obtained, and when it is 20 or more: 80 or less, high wear resistance can be obtained.

<(ii)共役ジエン化合物と非共役オレフィンとの共重合体>
前記共役ジエン化合物と非共役オレフィンとの共重合体は、共重合体におけるモノマー単位成分として非共役オレフィンを含む。
<(Ii) Copolymer of conjugated diene compound and non-conjugated olefin>
The copolymer of the conjugated diene compound and the nonconjugated olefin contains a nonconjugated olefin as a monomer unit component in the copolymer.

前記共役ジエン化合物と非共役オレフィンとの共重合体における共役ジエン化合物由来部分のシス−1,4結合量としては、特に制限はなく、目的に応じて適宜選択することができるが、50%以上が好ましく、92%超が好ましく、95%以上がより好ましい。
前記共役ジエン化合物由来部分のシス1,4−結合量が、50%以上であれば、低いガラス転移点(Tg)を保持することができ、これにより、耐亀裂成長性や耐摩耗性等の物性が改良される。
一方、前記共役ジエン化合物由来部分のシス1,4−結合量を92%超とすることにより、耐亀裂成長性、耐候性、耐熱性を向上させることが可能となる。また、、前記共役ジエン化合物由来部分のシス1,4−結合量を95%以上とすることにより、耐亀裂成長性、耐候性、耐熱性を一層向上させることが可能となる。
なお、前記シス−1,4結合量は、前記共役ジエン化合物由来部分中の量であって、共重合体全体に対する割合ではない。
The cis-1,4 bond amount of the conjugated diene compound-derived moiety in the copolymer of the conjugated diene compound and the non-conjugated olefin is not particularly limited and may be appropriately selected depending on the intended purpose. Is preferable, more than 92% is preferable, and 95% or more is more preferable.
If the amount of cis 1,4-bond in the conjugated diene compound-derived portion is 50% or more, a low glass transition point (Tg) can be maintained, and thereby, such as crack growth resistance and wear resistance. Physical properties are improved.
On the other hand, the crack growth resistance, weather resistance, and heat resistance can be improved by setting the cis 1,4-bond amount of the conjugated diene compound-derived portion to more than 92%. Moreover, by making the cis 1,4-bond amount of the conjugated diene compound-derived portion 95% or more, it becomes possible to further improve the crack growth resistance, weather resistance, and heat resistance.
The cis-1,4 bond amount is an amount in the conjugated diene compound-derived portion, and is not a ratio to the entire copolymer.

前記共役ジエン化合物と非共役オレフィンとの共重合体における前記共役ジエン化合物由来部分の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、30mol%〜80mol%が好ましい。
前記共役ジエン化合物と非共役オレフィンとの共重合体における前記共役ジエン化合物由来部分の含有量が、30mol%以上であると、加工性が十分に確保できるので好ましく、80mol%以下であると、非共役オレフィンの割合が多くなり、耐候性が向上して好ましい。
一方、前記共役ジエン化合物と非共役オレフィンとの共重合体における前記共役ジエン化合物由来部分の含有量が、前記特に好ましい範囲内であると、加工性及び屈曲疲労性の点で、有利である。
The content of the conjugated diene compound-derived moiety in the copolymer of the conjugated diene compound and the non-conjugated olefin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 30 mol% to 80 mol%. .
When the content of the conjugated diene compound-derived moiety in the copolymer of the conjugated diene compound and the non-conjugated olefin is 30 mol% or more, it is preferable because processability can be sufficiently secured, and when it is 80 mol% or less, The ratio of the conjugated olefin increases, and the weather resistance is improved, which is preferable.
On the other hand, when the content of the conjugated diene compound-derived portion in the copolymer of the conjugated diene compound and the non-conjugated olefin is within the particularly preferable range, it is advantageous in terms of workability and bending fatigue.

前記共役ジエン化合物と非共役オレフィンとの共重合体における前記非共役オレフィン由来部分の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、20mol%〜70mol%が好ましい。
前記共役ジエン化合物と非共役オレフィンとの共重合体における前記非共役オレフィン由来部分の含有量が、20mol%以上であると、耐候性を向上させることができ、70mol%以下であると、共役ジエン系重合体との相溶性を維持して、耐候性及び耐亀裂成長性を向上することができる。
一方、前記共役ジエン化合物と非共役オレフィンとの共重合体における前記非共役オレフィン由来部分の含有量が、前記特に好ましい範囲内であると、加工性の点で、有利である。
The content of the non-conjugated olefin-derived portion in the copolymer of the conjugated diene compound and the non-conjugated olefin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 20 mol% to 70 mol%. .
When the content of the non-conjugated olefin-derived moiety in the copolymer of the conjugated diene compound and the non-conjugated olefin is 20 mol% or more, the weather resistance can be improved, and when the content is 70 mol% or less, the conjugated diene. The compatibility with the polymer can be maintained, and the weather resistance and crack growth resistance can be improved.
On the other hand, when the content of the non-conjugated olefin-derived portion in the copolymer of the conjugated diene compound and the non-conjugated olefin is within the particularly preferable range, it is advantageous in terms of workability.

一方、前記共役ジエン化合物と非共役オレフィンとの共重合体において、単量体として用いる非共役オレフィンは、共役ジエン化合物以外の非共役オレフィンであり、優れた耐熱性や、共重合体の主鎖中に占める二重結合の割合を減らし、結晶性を低下させることでエラストマーとしての設計自由度を高めることが可能となる。また、非共役オレフィンとしては、非環状オレフィンであることが好ましく、また、該非共役オレフィンの炭素数は、2〜10であることが好ましい。従って、上記非共役オレフィンとしては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン等のα−オレフィンが好適に挙げられ、これらの中でも、エチレン、プロピレン及び1−ブテンが好ましく、エチレンが特に好ましい。α−オレフィンはオレフィンのα位に二重結合を有するため、共役ジエンとの共重合を効率よく行うことができる。これら非共役オレフィンは、単独で用いてもよく、二種以上を組み合わせて用いてもよい。なお、オレフィンは、脂肪族不飽和炭化水素で、炭素−炭素二重結合を1個以上有する化合物を指す。
また、非共役オレフィンの単量体単位からなるブロック部分を備える場合には、静的結晶性を示すため、破断強度等の機械的性質に優れる。
On the other hand, in the copolymer of the conjugated diene compound and the non-conjugated olefin, the non-conjugated olefin used as a monomer is a non-conjugated olefin other than the conjugated diene compound, and has excellent heat resistance and the main chain of the copolymer. It is possible to increase the degree of design freedom as an elastomer by reducing the proportion of double bonds in the interior and reducing the crystallinity. Moreover, as a nonconjugated olefin, it is preferable that it is an acyclic olefin, and it is preferable that carbon number of this nonconjugated olefin is 2-10. Accordingly, preferred examples of the non-conjugated olefin include α-olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene and 1-octene. Among these, ethylene, propylene And 1-butene are preferred, with ethylene being particularly preferred. Since the α-olefin has a double bond at the α-position of the olefin, copolymerization with the conjugated diene can be performed efficiently. These non-conjugated olefins may be used alone or in combination of two or more. In addition, an olefin refers to the compound which is an aliphatic unsaturated hydrocarbon and has one or more carbon-carbon double bonds.
In addition, when a block portion composed of a monomer unit of non-conjugated olefin is provided, it exhibits static crystallinity and is excellent in mechanical properties such as breaking strength.

なお、前記共役ジエン化合物と非共役オレフィンとの共重合体において、単量体として用いる共役ジエン化合物は、炭素数が4〜12であることが好ましい。該共役ジエン化合物として、具体的には、1,3−ブタジエン、イソプレン、1,3−ペンタジエン、2,3−ジメチルブタジエン等が挙げられ、これらの中でも、1,3−ブタジエン及びイソプレンが好ましい。また、これら共役ジエン化合物は、単独で用いてもよく、二種以上を組み合わせて用いてもよい。   In the copolymer of conjugated diene compound and non-conjugated olefin, the conjugated diene compound used as a monomer preferably has 4 to 12 carbon atoms. Specific examples of the conjugated diene compound include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethylbutadiene, and among these, 1,3-butadiene and isoprene are preferable. Moreover, these conjugated diene compounds may be used independently and may be used in combination of 2 or more type.

上述した共役ジエン化合物の具体例のいずれを用いても、同様のメカニズムで本発明の共重合体を調製することができる。   The copolymer of the present invention can be prepared by the same mechanism using any of the specific examples of the conjugated diene compound described above.

前記共役ジエン化合物と非共役オレフィンとの共重合体において、重量平均分子量(Mw)は、低分子量化の問題が起こることも無く、その重量平均分子量(Mw)は特に限定されるものでもないが、高分子構造材料への適用の観点から、該共重合体のポリスチレン換算重量平均分子量(Mw)は10,000〜10,000,000が好ましく、10,000〜1,000,000がより好ましく、50,000〜600,000が特に好ましい。Mwが10,000,000を超えると成形加工性が悪化するおそれがある。
また、重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、10以下が好ましく、6以下がより好ましい。分子量分布が10を超えると物性が均質でなくなるためである。ここで、平均分子量及び分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレンを標準物質として求めることができる。
In the copolymer of the conjugated diene compound and the non-conjugated olefin, the weight average molecular weight (Mw) is not particularly limited, and the weight average molecular weight (Mw) is not particularly limited. From the viewpoint of application to a polymer structural material, the polystyrene-converted weight average molecular weight (Mw) of the copolymer is preferably 10,000 to 10,000,000, more preferably 10,000 to 1,000,000. 50,000 to 600,000 are particularly preferred. If the Mw exceeds 10,000,000, the moldability may be deteriorated.
Further, the molecular weight distribution (Mw / Mn) represented by the ratio of the weight average molecular weight (Mw) and the number average molecular weight (Mn) is preferably 10 or less, more preferably 6 or less. This is because if the molecular weight distribution exceeds 10, the physical properties are not uniform. Here, the average molecular weight and the molecular weight distribution can be determined using polystyrene as a standard substance by gel permeation chromatography (GPC).

前記共役ジエン化合物と非共役オレフィンとの共重合体の共役ジエン化合物由来部分における共役ジエン化合物の1,2付加体部分(3,4付加体部分を含む)含量としては、特に制限はなく、目的に応じて適宜選択することができるが、5%以下が好ましく、3%以下がより好ましく、2.5%以下が特に好ましい。
前記共役ジエン化合物と非共役オレフィンとの共重合体の共役ジエン化合物由来部分における共役ジエン化合物の1,2付加体部分(3,4付加体部分を含む)含量が、5%以下であると、共重合体の耐候性や耐オゾン性をさらに向上させることができる。
一方、前記共役ジエン化合物と非共役オレフィンとの共重合体の共役ジエン化合物由来部分における共役ジエン化合物の1,2付加体部分(3,4付加体部分を含む)含量が、2.5%以下であると、共重合体の耐候性や耐オゾン性をさらに向上させることができる。
前記1,2付加体部分(3,4付加体部分を含む)含量は、前記共役ジエン化合物由来部分中の量であって、共重合体全体に対する割合ではない。
なお、前記共役ジエン化合物由来部分における共役ジエン化合物の1,2付加体部分(3,4付加体部分を含む)含量は、共役ジエン化合物がブタジエンの場合、1,2−ビニル結合量と同じ意味である。
The content of 1,2 adducts (including 3,4 adducts) of the conjugated diene compound in the conjugated diene compound-derived part of the copolymer of the conjugated diene compound and the nonconjugated olefin is not particularly limited. However, it is preferably 5% or less, more preferably 3% or less, and particularly preferably 2.5% or less.
When the content of the 1,2 adduct portion (including the 3,4 adduct portion) of the conjugated diene compound in the conjugated diene compound-derived portion of the copolymer of the conjugated diene compound and the nonconjugated olefin is 5% or less, The weather resistance and ozone resistance of the copolymer can be further improved.
On the other hand, the content of 1,2 adducts (including 3,4 adducts) of the conjugated diene compound in the conjugated diene compound-derived part of the copolymer of the conjugated diene compound and the nonconjugated olefin is 2.5% or less. If it is, the weather resistance and ozone resistance of the copolymer can be further improved.
The content of the 1,2-adduct portion (including the 3,4-adduct portion) is an amount in the portion derived from the conjugated diene compound, and is not a ratio to the whole copolymer.
The 1,2-adduct portion (including 3,4-adduct portion) content of the conjugated diene compound in the conjugated diene compound-derived portion has the same meaning as the 1,2-vinyl bond amount when the conjugated diene compound is butadiene. It is.

前記共役ジエン化合物と非共役オレフィンとの共重合体の連鎖構造としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ブロック共重合体、ランダム共重合体、テーパー共重合体、交互共重合体などが挙げられる。   The chain structure of the copolymer of the conjugated diene compound and the non-conjugated olefin is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a block copolymer, a random copolymer, a taper copolymer Examples thereof include coalescence and alternating copolymer.

<<ブロック共重合体>>
前記ブロック共重合体の構造は、(A−B)、A−(B−A)及びB−(A−B)(ここで、Aは、非共役オレフィンの単量体単位からなるブロック部分であり、Bは、共役ジエン化合物の単量体単位からなるブロック部分であり、xは1以上の整数である)のいずれかである。なお、(A−B)又は(B−A)の構造を複数備えるブロック共重合体をマルチブロック共重合体と称する。
共役ジエン化合物と非共役オレフィンとの共重合体がブロック共重合体である場合は、非共役オレフィンの単量体からなるブロック部分が静的結晶性を示すため、破断強度等の機械的性質に優れる。
<< Block copolymer >>
The block copolymer has a structure of (AB) x , A- (BA) x and B- (AB) x (where A is a monomer unit of a non-conjugated olefin. It is a block part, B is a block part consisting of monomer units of a conjugated diene compound, and x is an integer of 1 or more. In addition, the block copolymer provided with two or more structures of (AB) or (BA) is called a multi-block copolymer.
When the copolymer of a conjugated diene compound and a non-conjugated olefin is a block copolymer, the block portion composed of the monomer of the non-conjugated olefin exhibits static crystallinity. Excellent.

<<ランダム共重合体>>
共役ジエン化合物と非共役オレフィンとの共重合体がランダム共重合体である場合は、非共役オレフィンの単量体単位の配列が不規則であるため、共重合体が相分離を起こすことなく、ブロック部分に由来する結晶化温度が観測されない。すなわち、耐熱性などの性質を有する非共役オレフィンを共重合体の主鎖中に導入することが可能になるため、耐熱性が向上する。
<< Random copolymer >>
When the copolymer of the conjugated diene compound and the non-conjugated olefin is a random copolymer, since the arrangement of the monomer units of the non-conjugated olefin is irregular, the copolymer does not cause phase separation, The crystallization temperature derived from the block part is not observed. That is, since it becomes possible to introduce a non-conjugated olefin having properties such as heat resistance into the main chain of the copolymer, the heat resistance is improved.

<<テーパー共重合体>>
前記テーパー共重合体とは、ランダム共重合体とブロック共重合体とが混在してなる共重合体であり、共役ジエン化合物の単量体単位からなるブロック部分及び非共役オレフィンの単量体単位からなるブロック部分のうち少なくとも一方のブロック部分(ブロック構造ともいう)と、共役ジエン化合物及び非共役オレフィンの単量体単位が不規則に配列してなるランダム部分(ランダム構造という)とから構成される共重合体である。
前記テーパー共重合体の構造は、共役ジエン化合物成分と非共役オレフィン成分との組成が連続的又は不連続的に分布があることを示す。ここで、非共役オレフィン成分の連鎖構造としては、長鎖(高分子量)の非共役オレフィンブロック成分を多く含まず、短鎖(低分子量)の非共役オレフィンブロック成分を多く含むことが好ましい。
<< Tapered copolymer >>
The taper copolymer is a copolymer in which a random copolymer and a block copolymer are mixed, a block portion composed of monomer units of a conjugated diene compound and a monomer unit of non-conjugated olefins. The block part is composed of at least one block part (also referred to as a block structure) and a random part (referred to as a random structure) in which monomer units of a conjugated diene compound and a nonconjugated olefin are irregularly arranged. It is a copolymer.
The structure of the taper copolymer indicates that the composition of the conjugated diene compound component and the non-conjugated olefin component is distributed continuously or discontinuously. Here, it is preferable that the chain structure of the non-conjugated olefin component does not contain many long-chain (high molecular weight) non-conjugated olefin block components but contains many short-chain (low molecular weight) non-conjugated olefin block components.

<<交互共重合体>>
前記交互共重合体は、共役ジエン化合物と非共役オレフィンとが交互に配列する構造(非共役オレフィンをAと、共役ジエン化合物をBとした場合の、−ABABABAB−の分子鎖構造)を有する重合体である。交互共重合体である場合は、柔軟性と接着性の両立が可能となる。
<< Alternate Copolymer >>
The alternating copolymer has a structure in which a conjugated diene compound and a non-conjugated olefin are alternately arranged (a molecular chain structure of -ABABABAB-, where A is a non-conjugated olefin and B is a conjugated diene compound). It is a coalescence. In the case of an alternating copolymer, both flexibility and adhesiveness can be achieved.

本発明においては、共役ジエン化合物と非共役オレフィンとの共重合体がブロック共重合体である場合は、非共役オレフィンの単量体からなるブロック部分が静的結晶性を示すため、破断強度等の機械的性質に優れるので、共重合体は、ブロック共重合体及びテーパー共重合体から選ばれる少なくとも1種であることが好ましい。   In the present invention, when the copolymer of the conjugated diene compound and the non-conjugated olefin is a block copolymer, the block portion made of the monomer of the non-conjugated olefin exhibits static crystallinity. Therefore, the copolymer is preferably at least one selected from a block copolymer and a tapered copolymer.

<<共役ジエン化合物と非共役オレフィンとの共重合体の製造方法>>
次に、前記共役ジエン化合物と非共役オレフィンとの共重合体を製造することができる製造方法を詳細に説明する。但し、以下に詳述する製造方法は、あくまで例示に過ぎない。本発明に係る共重合体は、重合触媒または重合触媒組成物の存在下、共役ジエン化合物と非共役オレフィンとを重合させることができる。
<< Method for producing copolymer of conjugated diene compound and non-conjugated olefin >>
Next, a production method capable of producing a copolymer of the conjugated diene compound and the non-conjugated olefin will be described in detail. However, the manufacturing method described in detail below is merely an example. The copolymer according to the present invention can polymerize a conjugated diene compound and a non-conjugated olefin in the presence of a polymerization catalyst or a polymerization catalyst composition.

共役ジエン化合物と非共役オレフィンとの共重合体の製造方法においては、後述する重合触媒、または第一、第二、第三重合触媒組成物を用いること以外は、通常の配位イオン重合触媒による重合体の製造方法と同様にして、単量体である共役ジエン化合物と非共役オレフィンを共重合させることができる。本発明において、使用される重合触媒または重合触媒組成物については、後に詳述する。   In the method for producing a copolymer of a conjugated diene compound and a non-conjugated olefin, a normal coordination ion polymerization catalyst is used except that a polymerization catalyst described later, or first, second, and third polymerization catalyst compositions are used. In the same manner as in the method for producing a polymer by the method, a conjugated diene compound as a monomer and a non-conjugated olefin can be copolymerized. In the present invention, the polymerization catalyst or polymerization catalyst composition used will be described in detail later.

重合方法としては、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の方法を用いることができる。また、重合反応に溶媒を用いる場合、用いられる溶媒は重合反応において不活性であればよく、例えば、トルエン、シクロヘキサン、ノルマルヘキサン、またそれらの混合物等が挙げられる。   As a polymerization method, any method such as a solution polymerization method, a suspension polymerization method, a liquid phase bulk polymerization method, an emulsion polymerization method, a gas phase polymerization method, and a solid phase polymerization method can be used. Moreover, when using a solvent for a polymerization reaction, the solvent used should just be inactive in a polymerization reaction, For example, toluene, cyclohexane, normal hexane, mixtures thereof etc. are mentioned.

共役ジエン化合物と非共役オレフィンとの共重合体の製造方法は、例えば、(1)単量体として共役ジエン化合物及び該共役ジエン化合物以外の非共役オレフィンを含む重合反応系中に、重合触媒組成物の構成成分を別個に提供し、該反応系中において重合触媒組成物としてもよいし、(2)予め調製された重合触媒組成物を重合反応系中に提供してもよい。また、(2)においては、助触媒によって活性化されたメタロセン錯体(活性種)を提供することも含まれる。なお、重合触媒組成物に含まれるメタロセン錯体の使用量は、共役ジエン化合物及び該共役ジエン化合物以外の非共役オレフィンの合計に対して、0.0001〜0.01倍モルの範囲が好ましい。   A method for producing a copolymer of a conjugated diene compound and a non-conjugated olefin includes, for example, (1) a polymerization catalyst composition in a polymerization reaction system including a conjugated diene compound as a monomer and a non-conjugated olefin other than the conjugated diene compound. The components of the product may be provided separately and used as a polymerization catalyst composition in the reaction system, or (2) a polymerization catalyst composition prepared in advance may be provided in the polymerization reaction system. Moreover, (2) includes providing a metallocene complex (active species) activated by a cocatalyst. In addition, the usage-amount of the metallocene complex contained in a polymerization catalyst composition has the preferable range of 0.0001-0.01 times mole with respect to the sum total of nonconjugated olefins other than a conjugated diene compound and this conjugated diene compound.

また、本発明に係る共役ジエン化合物と非共役オレフィンとの共重合体の製造方法においては、メタノール、エタノール、イソプロパノール等の重合停止剤を用いて、重合を停止させてもよい。   Moreover, in the manufacturing method of the copolymer of the conjugated diene compound and nonconjugated olefin which concerns on this invention, you may stop superposition | polymerization using polymerization terminators, such as methanol, ethanol, and isopropanol.

本発明に係る製造方法において、共役ジエン化合物及び非共役オレフィンの重合反応は、不活性ガス、好ましくは窒素ガスやアルゴンガスの雰囲気下において行われることが好ましい。上記重合反応の重合温度は、特に制限されないが、例えば−100℃〜200℃の範囲が好ましく、室温程度とすることもできる。なお、重合温度を上げると、重合反応のシス−1,4選択性が低下することがある。また、上記重合反応の圧力は、共役ジエン化合物及び非共役オレフィンを十分に重合反応系中に取り込むため、0.1〜10.0MPaの範囲が好ましい。また、上記重合反応の反応時間も特に制限されず、例えば1秒〜10日の範囲が好ましいが、重合される単量体の種類、触媒の種類、重合温度等の条件によって適宜選択することができる。   In the production method according to the present invention, the polymerization reaction of the conjugated diene compound and the non-conjugated olefin is preferably performed in an atmosphere of an inert gas, preferably nitrogen gas or argon gas. The polymerization temperature of the polymerization reaction is not particularly limited, but is preferably in the range of −100 ° C. to 200 ° C., for example, and can be about room temperature. If the polymerization temperature is raised, the cis-1,4 selectivity of the polymerization reaction may be lowered. Moreover, since the pressure of the said polymerization reaction fully takes in a conjugated diene compound and a nonconjugated olefin in a polymerization reaction system, the range of 0.1-10.0 MPa is preferable. Further, the reaction time of the polymerization reaction is not particularly limited, and is preferably in the range of 1 second to 10 days, for example, but may be appropriately selected depending on conditions such as the type of monomer to be polymerized, the type of catalyst, and the polymerization temperature. it can.

前記共重合体の製造方法において、上記共役ジエン化合物と該共役ジエン化合物以外の非共役オレフィンとの重合の際、該非共役オレフィンの圧力は、0.1MPa〜10MPaであることが好ましい。該非共役オレフィンの圧力が0.1MPa以上であれば、反応混合物中に非共役オレフィンを効率的に導入することができる。また、非共役オレフィンの圧力を高くし過ぎても、非共役オレフィンを効率的に導入する効果が頭打ちとなるため、非共役オレフィンの圧力を10MPa以下とするのが好ましい。   In the method for producing the copolymer, when the conjugated diene compound is polymerized with a non-conjugated olefin other than the conjugated diene compound, the pressure of the non-conjugated olefin is preferably 0.1 MPa to 10 MPa. When the pressure of the non-conjugated olefin is 0.1 MPa or more, the non-conjugated olefin can be efficiently introduced into the reaction mixture. Moreover, even if the pressure of the non-conjugated olefin is increased too much, the effect of efficiently introducing the non-conjugated olefin reaches a peak, and therefore the pressure of the non-conjugated olefin is preferably 10 MPa or less.

前記共重合体の製造方法において、上記共役ジエン化合物と該共役ジエン化合物以外の非共役オレフィンとの重合の際、重合開始時における該共役ジエン化合物の濃度(mol/l)と該非共役オレフィンの濃度(mol/l)とは、下記式の関係を満たすことが好ましい。非共役オレフィンの濃度/共役ジエン化合物の濃度の値を1以上とすることで、反応混合物中に非共役オレフィンを効率的に導入することができる。
非共役オレフィンの濃度/共役ジエン化合物の濃度 ≧ 1.0
さらに好ましくは下記式の関係を満たすことが好ましい。
非共役オレフィンの濃度/共役ジエン化合物の濃度 ≧ 1.3
さらに好ましくは下記式の関係を満たすことが好ましい。
非共役オレフィンの濃度/共役ジエン化合物の濃度 ≧ 1.7
In the method for producing the copolymer, when the conjugated diene compound is polymerized with a non-conjugated olefin other than the conjugated diene compound, the concentration of the conjugated diene compound at the start of polymerization (mol / l) and the concentration of the non-conjugated olefin (Mol / l) preferably satisfies the relationship of the following formula. By setting the value of the concentration of the non-conjugated olefin / the concentration of the conjugated diene compound to 1 or more, the non-conjugated olefin can be efficiently introduced into the reaction mixture.
Non-conjugated olefin concentration / conjugated diene compound concentration ≧ 1.0
More preferably, the relationship of the following formula is satisfied.
Non-conjugated olefin concentration / conjugated diene compound concentration ≧ 1.3
More preferably, the relationship of the following formula is satisfied.
Non-conjugated olefin concentration / conjugated diene compound concentration ≧ 1.7

本発明に係る製造方法によれば、上記重合触媒または重合触媒組成物を用いること以外は、通常の配位イオン重合触媒による重合体の製造方法と同様にして、単量体である共役ジエン化合物と非共役オレフィンを共重合させることができる。   According to the production method of the present invention, a conjugated diene compound that is a monomer is used in the same manner as in the production method of a polymer using a normal coordination ion polymerization catalyst, except that the polymerization catalyst or the polymerization catalyst composition is used. And non-conjugated olefin can be copolymerized.

−第一の重合触媒組成物−
次に、本発明に係る共役ジエン化合物と非共役オレフィンとの共重合体の製造方法において用いられる第一重合触媒組成物について説明する。
上記重合触媒組成物としては、下記一般式(I):

Figure 0005707294
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpRは、それぞれ独立して無置換もしくは置換インデニルを示し、Ra〜Rfは、それぞれ独立して炭素数1〜3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセン錯体、及び下記一般式(II): -First polymerization catalyst composition-
Next, the 1st polymerization catalyst composition used in the manufacturing method of the copolymer of the conjugated diene compound and nonconjugated olefin which concerns on this invention is demonstrated.
The polymerization catalyst composition includes the following general formula (I):
Figure 0005707294
(In the formula, M represents a lanthanoid element, scandium or yttrium, Cp R independently represents unsubstituted or substituted indenyl, and R a to R f each independently represents an alkyl having 1 to 3 carbon atoms. A group or a hydrogen atom, L represents a neutral Lewis base, w represents an integer of 0 to 3), and the following general formula (II):

Figure 0005707294
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpRは、それぞれ独立して無置換もしくは置換インデニルを示し、X'は、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1〜20の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセン錯体、並びに下記一般式(III):
Figure 0005707294
(In the formula, M represents a lanthanoid element, scandium or yttrium, Cp R each independently represents an unsubstituted or substituted indenyl group, and X ′ represents a hydrogen atom, a halogen atom, an alkoxide group, a thiolate group, an amide group. , A silyl group or a hydrocarbon group having 1 to 20 carbon atoms, L represents a neutral Lewis base, and w represents an integer of 0 to 3), and the following general formula (III ):

Figure 0005707294
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR'は、無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1〜20の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示し、[B]-は、非配位性アニオンを示す)で表されるハーフメタロセンカチオン錯体からる群より選択される少なくとも1種類の錯体を含む重合触媒組成物(以下、第一重合触媒組成物ともいう)が挙げられる。
Figure 0005707294
(In the formula, M represents a lanthanoid element, scandium or yttrium, Cp R ′ represents unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl, and X represents a hydrogen atom, a halogen atom, an alkoxide group or a thiolate group. , An amide group, a silyl group, or a hydrocarbon group having 1 to 20 carbon atoms, L represents a neutral Lewis base, w represents an integer of 0 to 3, and [B] represents a non-coordinating group. A polymerization catalyst composition (hereinafter also referred to as a first polymerization catalyst composition) containing at least one complex selected from the group consisting of half metallocene cation complexes represented by

第一重合触媒組成物は、更に、通常のメタロセン錯体を含む重合触媒組成物に含有される他の成分、例えば助触媒等を含んでいてもよい。ここで、メタロセン錯体は、一つ又は二つ以上のシクロペンタジエニル又はその誘導体が中心金属に結合した錯体化合物であり、特に、中心金属に結合したシクロペンタジエニル又はその誘導体が一つであるメタロセン錯体を、ハーフメタロセン錯体と称することがある。
なお、重合反応系において、第一重合触媒組成物に含まれる錯体の濃度は0.1〜0.0001mol/Lの範囲であることが好ましい。
The first polymerization catalyst composition may further contain other components contained in the polymerization catalyst composition containing a normal metallocene complex, such as a promoter. Here, the metallocene complex is a complex compound in which one or more cyclopentadienyl or a derivative thereof is bonded to a central metal, and in particular, one cyclopentadienyl or a derivative thereof bonded to the central metal. A certain metallocene complex may be called a half metallocene complex.
In the polymerization reaction system, the concentration of the complex contained in the first polymerization catalyst composition is preferably in the range of 0.1 to 0.0001 mol / L.

上記一般式(I)及び式(II)で表されるメタロセン錯体において、式中のCpRは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpRは、C97-XX又はC911-XXで示され得る。ここで、Xは0〜7又は0〜11の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。置換インデニルとして、具体的には、2−フェニルインデニル、2−メチルインデニル等が挙げられる。なお、一般式(I)及び式(II)における二つのCpRは、それぞれ互いに同一でも異なっていてもよい。 In the metallocene complexes represented by the above general formulas (I) and (II), Cp R in the formula is unsubstituted indenyl or substituted indenyl. Cp R having an indenyl ring as a basic skeleton can be represented by C 9 H 7-X R X or C 9 H 11-X R X. Here, X is an integer of 0-7 or 0-11. In addition, each R is preferably independently a hydrocarbyl group or a metalloid group. The hydrocarbyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 8 carbon atoms. Specific examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group, and a benzyl group. On the other hand, examples of metalloid group metalloids include germyl Ge, stannyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group that the metalloid group has is the same as the above hydrocarbyl group. is there. Specific examples of the metalloid group include a trimethylsilyl group. Specific examples of the substituted indenyl include 2-phenylindenyl and 2-methylindenyl. Note that the two Cp Rs in the general formulas (I) and (II) may be the same as or different from each other.

上記一般式(III)で表されるハーフメタロセンカチオン錯体において、式中のCpR'は、無置換もしくは置換のシクロペンタジエニル、インデニル又はフルオレニルであり、これらの中でも、無置換もしくは置換のインデニルであることが好ましい。シクロペンタジエニル環を基本骨格とするCpR'は、C55-XXで示される。ここで、Xは0〜5の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。シクロペンタジエニル環を基本骨格とするCpR'として、具体的には、以下のものが例示される。 In the half metallocene cation complex represented by the general formula (III), Cp R ′ in the formula is unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl, and among these, unsubstituted or substituted indenyl It is preferable that Cp R ′ having a cyclopentadienyl ring as a basic skeleton is represented by C 5 H 5-X R X. Here, X is an integer of 0-5. In addition, each R is preferably independently a hydrocarbyl group or a metalloid group. The hydrocarbyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 8 carbon atoms. Specific examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group, and a benzyl group. On the other hand, examples of metalloid group metalloids include germyl Ge, stannyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group that the metalloid group has is the same as the above hydrocarbyl group. is there. Specific examples of the metalloid group include a trimethylsilyl group. Specific examples of Cp R ′ having a cyclopentadienyl ring as a basic skeleton include the following.

Figure 0005707294
(式中、Rは水素原子、メチル基又はエチル基を示す。)
一般式(III)において、上記インデニル環を基本骨格とするCpR'は、一般式(I)のCpRと同様に定義され、好ましい例も同様である。
Figure 0005707294
(In the formula, R represents a hydrogen atom, a methyl group or an ethyl group.)
In the general formula (III), Cp R ′ having the indenyl ring as a basic skeleton is defined in the same manner as Cp R in the general formula (I), and preferred examples thereof are also the same.

一般式(III)において、上記フルオレニル環を基本骨格とするCpR'は、C139-XX又はC1317-XXで示され得る。ここで、Xは0〜9又は0〜17の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。 In the general formula (III), Cp R ′ having the fluorenyl ring as a basic skeleton can be represented by C 13 H 9-X R X or C 13 H 17-X R X. Here, X is an integer of 0-9 or 0-17. In addition, each R is preferably independently a hydrocarbyl group or a metalloid group. The hydrocarbyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 8 carbon atoms. Specific examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group, and a benzyl group. On the other hand, examples of metalloid group metalloids include germyl Ge, stannyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group that the metalloid group has is the same as the above hydrocarbyl group. is there. Specific examples of the metalloid group include a trimethylsilyl group.

一般式(I)、式(II)及び式(III)における中心金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。中心金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。   The central metal M in the general formulas (I), (II) and (III) is a lanthanoid element, scandium or yttrium. The lanthanoid elements include 15 elements having atomic numbers 57 to 71, and any of these may be used. Preferred examples of the central metal M include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, holmium Ho, scandium Sc, and yttrium Y.

一般式(I)で表されるメタロセン錯体は、シリルアミド配位子[−N(SiR32]を含む。シリルアミド配位子に含まれるR基(一般式(I)におけるRa〜Rf)は、それぞれ独立して炭素数1〜3のアルキル基又は水素原子である。また、Ra〜Rfのうち少なくとも一つが水素原子であることが好ましい。Ra〜Rfのうち少なくとも一つを水素原子にすることで、触媒の合成が容易になり、また、ケイ素まわりのかさ高さが低くなるため、非共役オレフィンが導入され易くなる。同様の観点から、Ra〜Rcのうち少なくとも一つが水素原子であり、Rd〜Rfのうち少なくとも一つが水素原子であることが更に好ましい。更に、アルキル基としては、メチル基が好ましい。 The metallocene complex represented by the general formula (I) contains a silylamide ligand [—N (SiR 3 ) 2 ]. The R groups contained in the silylamide ligand (R a to R f in the general formula (I)) are each independently an alkyl group having 1 to 3 carbon atoms or a hydrogen atom. Moreover, it is preferable that at least one of R a to R f is a hydrogen atom. By making at least one of R a to R f a hydrogen atom, the synthesis of the catalyst is facilitated, and the bulk height around silicon is reduced, so that non-conjugated olefin is easily introduced. From the same viewpoint, it is more preferable that at least one of R a to R c is a hydrogen atom and at least one of R d to R f is a hydrogen atom. Furthermore, a methyl group is preferable as the alkyl group.

一般式(II)で表されるメタロセン錯体は、シリル配位子[−SiX'3]を含む。シリル配位子[−SiX'3]に含まれるX'は、下記で説明される一般式(III)のXと同様に定義される基であり、好ましい基も同様である。 The metallocene complex represented by the general formula (II) includes a silyl ligand [—SiX ′ 3 ]. X ′ contained in the silyl ligand [—SiX ′ 3 ] is a group defined in the same manner as X in the general formula (III) described below, and preferred groups are also the same.

一般式(III)において、Xは水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基及び炭素数1〜20の炭化水素基からなる群より選択される基である。ここで、上記アルコキシド基としては、メトキシ基、エトキシ基、プロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、2,6−ジイソプロピルフェノキシ基、2,6−ジネオペンチルフェノキシ基、2−tert−ブチル−6−イソプロピルフェノキシ基、2−tert−ブチル−6−ネオペンチルフェノキシ基、2−イソプロピル−6−ネオペンチルフェノキシ基等のアリールオキシド基が挙げられ、これらの中でも、2,6−ジ−tert−ブチルフェノキシ基が好ましい。   In the general formula (III), X is a group selected from the group consisting of a hydrogen atom, a halogen atom, an alkoxide group, a thiolate group, an amide group, a silyl group, and a hydrocarbon group having 1 to 20 carbon atoms. Here, examples of the alkoxide group include aliphatic alkoxy groups such as a methoxy group, an ethoxy group, a propoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, and a tert-butoxy group; a phenoxy group and 2,6-dioxy -Tert-butylphenoxy group, 2,6-diisopropylphenoxy group, 2,6-dinepentylphenoxy group, 2-tert-butyl-6-isopropylphenoxy group, 2-tert-butyl-6-neopentylphenoxy group, Examples include aryloxide groups such as 2-isopropyl-6-neopentylphenoxy group, and among these, 2,6-di-tert-butylphenoxy group is preferable.

一般式(III)において、Xが表すチオラート基としては、チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn−ブトキシ基、チオイソブトキシ基、チオsec−ブトキシ基、チオtert−ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6−ジ−tert−ブチルチオフェノキシ基、2,6−ジイソプロピルチオフェノキシ基、2,6−ジネオペンチルチオフェノキシ基、2−tert−ブチル−6−イソプロピルチオフェノキシ基、2−tert−ブチル−6−チオネオペンチルフェノキシ基、2−イソプロピル−6−チオネオペンチルフェノキシ基、2,4,6−トリイソプロピルチオフェノキシ基等のアリールチオラート基が挙げられ、これらの中でも、2,4,6−トリイソプロピルチオフェノキシ基が好ましい。   In the general formula (III), the thiolate group represented by X includes a thiomethoxy group, a thioethoxy group, a thiopropoxy group, a thio n-butoxy group, a thioisobutoxy group, a thiosec-butoxy group, a thiotert-butoxy group and the like Group thiolate group; thiophenoxy group, 2,6-di-tert-butylthiophenoxy group, 2,6-diisopropylthiophenoxy group, 2,6-dineopentylthiophenoxy group, 2-tert-butyl-6-isopropyl Arylthiolate groups such as thiophenoxy group, 2-tert-butyl-6-thioneopentylphenoxy group, 2-isopropyl-6-thioneopentylphenoxy group, 2,4,6-triisopropylthiophenoxy group, etc. Among these, 2,4,6-triisopropylthiophenoxy group Preferred.

一般式(III)において、Xが表すアミド基としては、ジメチルアミド基、ジエチルアミド基、ジイソプロピルアミド基等の脂肪族アミド基;フェニルアミド基、2,6−ジ−tert−ブチルフェニルアミド基、2,6−ジイソプロピルフェニルアミド基、2,6−ジネオペンチルフェニルアミド基、2−tert−ブチル−6−イソプロピルフェニルアミド基、2−tert−ブチル−6−ネオペンチルフェニルアミド基、2−イソプロピル−6−ネオペンチルフェニルアミド基、2,4,6−トリ−tert−ブチルフェニルアミド基等のアリールアミド基;ビストリメチルシリルアミド基等のビストリアルキルシリルアミド基が挙げられ、これらの中でも、ビストリメチルシリルアミド基が好ましい。   In the general formula (III), examples of the amide group represented by X include aliphatic amide groups such as a dimethylamide group, a diethylamide group, and a diisopropylamide group; a phenylamide group, a 2,6-di-tert-butylphenylamide group, 2 , 6-diisopropylphenylamide group, 2,6-dineopentylphenylamide group, 2-tert-butyl-6-isopropylphenylamide group, 2-tert-butyl-6-neopentylphenylamide group, 2-isopropyl- Arylamide groups such as 6-neopentylphenylamide group and 2,4,6-tri-tert-butylphenylamide group; and bistrialkylsilylamide groups such as bistrimethylsilylamide group. Among these, bistrimethylsilylamide Groups are preferred.

一般式(III)において、Xが表すシリル基としては、トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等が挙げられ、これらの中でも、トリス(トリメチルシリル)シリル基が好ましい。   In the general formula (III), examples of the silyl group represented by X include trimethylsilyl group, tris (trimethylsilyl) silyl group, bis (trimethylsilyl) methylsilyl group, trimethylsilyl (dimethyl) silyl group, triisopropylsilyl (bistrimethylsilyl) silyl group, and the like. Among these, a tris (trimethylsilyl) silyl group is preferable.

一般式(III)において、Xが表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子のいずれでもよいが、塩素原子又は臭素原子が好ましい。また、Xが表す炭素数1〜20の炭化水素基として、具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ネオペンチル基、ヘキシル基、オクチル基等の直鎖又は分枝鎖の脂肪族炭化水素基;フェニル基、トリル基、ナフチル基等の芳香族炭化水素基;ベンジル基等のアラルキル基等の他;トリメチルシリルメチル基、ビストリメチルシリルメチル基等のケイ素原子を含有する炭化水素基等が挙げられ、これらの中でも、メチル基、エチル基、イソブチル基、トリメチルシリルメチル基等が好ましい。   In the general formula (III), the halogen atom represented by X may be any of a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, but a chlorine atom or a bromine atom is preferred. Moreover, as a C1-C20 hydrocarbon group which X represents, specifically, a methyl group, an ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert- Linear or branched aliphatic hydrocarbon groups such as butyl group, neopentyl group, hexyl group, octyl group; aromatic hydrocarbon groups such as phenyl group, tolyl group, naphthyl group; aralkyl groups such as benzyl group, etc. Others: Examples include hydrocarbon groups containing silicon atoms such as trimethylsilylmethyl group and bistrimethylsilylmethyl group. Among these, methyl group, ethyl group, isobutyl group, trimethylsilylmethyl group and the like are preferable.

一般式(III)において、Xとしては、ビストリメチルシリルアミド基又は炭素数1〜20の炭化水素基が好ましい。   In the general formula (III), X is preferably a bistrimethylsilylamide group or a hydrocarbon group having 1 to 20 carbon atoms.

一般式(III)において、[B]-で示される非配位性アニオンとしては、例えば、4価のホウ素アニオンが挙げられる。該4価のホウ素アニオンとして、具体的には、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。 In the general formula (III), [B] - The non-coordinating anion represented by, for example, a tetravalent boron anion. Specific examples of the tetravalent boron anion include tetraphenyl borate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis ( Pentafluorophenyl) borate, tetrakis (tetrafluoromethylphenyl) borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tri Decahydride-7,8-dicarbaoundecaborate and the like can be mentioned, and among these, tetrakis (pentafluorophenyl) borate is preferable.

上記一般式(I)及び式(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体は、更に0〜3個、好ましくは0〜1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。   The metallocene complex represented by the general formulas (I) and (II) and the half metallocene cation complex represented by the general formula (III) are further 0 to 3, preferably 0 to 1 neutral. Contains Lewis base L. Here, examples of the neutral Lewis base L include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, neutral diolefins, and the like. Here, when the complex includes a plurality of neutral Lewis bases L, the neutral Lewis bases L may be the same or different.

また、上記一般式(I)及び式(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。   Further, the metallocene complex represented by the general formula (I) and the formula (II) and the half metallocene cation complex represented by the general formula (III) may exist as a monomer, It may exist as a body or higher multimer.

上記一般式(I)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えばカリウム塩やリチウム塩)及びビス(トリアルキルシリル)アミドの塩(例えば、カリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、一般式(I)で表されるメタロセン錯体を得るための反応例を示す。

Figure 0005707294
(式中、X''はハライドを示す。)
上記一般式(II)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えばカリウム塩やリチウム塩)及びシリルの塩(例えばカリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、一般式(II)で表されるメタロセン錯体を得るための反応例を示す。 The metallocene complex represented by the general formula (I) includes, for example, a lanthanoid trishalide, scandium trishalide or yttrium trishalide in a solvent, an indenyl salt (for example, potassium salt or lithium salt) and bis (trialkylsilyl). It can be obtained by reacting with an amide salt (for example, potassium salt or lithium salt). In addition, since reaction temperature should just be about room temperature, it can manufacture on mild conditions. The reaction time is arbitrary, but is about several hours to several tens of hours. The reaction solvent is not particularly limited, but is preferably a solvent that dissolves the raw material and the product. For example, toluene may be used. Below, the reaction example for obtaining the metallocene complex represented by general formula (I) is shown.
Figure 0005707294
(In the formula, X ″ represents a halide.)
The metallocene complex represented by the general formula (II) includes, for example, a lanthanide trishalide, scandium trishalide, or yttrium trishalide in a solvent, an indenyl salt (for example, potassium salt or lithium salt), and a silyl salt (for example, potassium). Salt or lithium salt). In addition, since reaction temperature should just be about room temperature, it can manufacture on mild conditions. The reaction time is arbitrary, but is about several hours to several tens of hours. The reaction solvent is not particularly limited, but is preferably a solvent that dissolves the raw material and the product. For example, toluene may be used. Below, the reaction example for obtaining the metallocene complex represented by general formula (II) is shown.

Figure 0005707294
(式中、X''はハライドを示す。)
Figure 0005707294
(In the formula, X ″ represents a halide.)

上記一般式(III)で表されるハーフメタロセンカチオン錯体は、例えば、次の反応により得ることができる。   The half metallocene cation complex represented by the general formula (III) can be obtained, for example, by the following reaction.

Figure 0005707294
Figure 0005707294

ここで、一般式(IV)で表される化合物において、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR'は、それぞれ独立して無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1〜20の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す。また、一般式[A]+[B]-で表されるイオン性化合物において、[A]+は、カチオンを示し、[B]-は、非配位性アニオンを示す。 Here, in the compound represented by the general formula (IV), M represents a lanthanoid element, scandium or yttrium, and Cp R ′ independently represents unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl. , X represents a hydrogen atom, a halogen atom, an alkoxide group, a thiolate group, an amide group, a silyl group, or a hydrocarbon group having 1 to 20 carbon atoms, L represents a neutral Lewis base, and w represents 0 to 3 Indicates an integer. In the ionic compound represented by the general formula [A] + [B] , [A] + represents a cation, and [B] represents a non-coordinating anion.

[A]+で表されるカチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N−ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N−ジアルキルアニリニウムカチオンが特に好ましい。 Examples of the cation represented by [A] + include a carbonium cation, an oxonium cation, an amine cation, a phosphonium cation, a cycloheptatrienyl cation, and a ferrocenium cation having a transition metal. Examples of the carbonium cation include trisubstituted carbonium cations such as a triphenylcarbonium cation and a tri (substituted phenyl) carbonium cation. The tri (substituted phenyl) carbonyl cation is specifically exemplified by tri (methylphenyl). ) Carbonium cation and the like. Examples of amine cations include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation; N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N- N, N-dialkylanilinium cations such as 2,4,6-pentamethylanilinium cation; dialkylammonium cations such as diisopropylammonium cation and dicyclohexylammonium cation. Examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation. Among these cations, N, N-dialkylanilinium cation or carbonium cation is preferable, and N, N-dialkylanilinium cation is particularly preferable.

上記反応に用いる一般式[A]+[B]-で表されるイオン性化合物としては、上記の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物であって、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、一般式[A]+[B]-で表されるイオン性化合物は、メタロセン錯体に対して0.1〜10倍モル加えることが好ましく、約1倍モル加えることが更に好ましい。なお、一般式(III)で表されるハーフメタロセンカチオン錯体を重合反応に用いる場合、一般式(III)で表されるハーフメタロセンカチオン錯体をそのまま重合反応系中に提供してもよいし、上記反応に用いる一般式(IV)で表される化合物と一般式[A]+[B]-で表されるイオン性化合物を別個に重合反応系中に提供し、反応系中で一般式(III)で表されるハーフメタロセンカチオン錯体を形成させてもよい。また、一般式(I)又は式(II)で表されるメタロセン錯体と一般式[A]+[B]-で表されるイオン性化合物とを組み合わせて使用することにより、反応系中で一般式(III)で表されるハーフメタロセンカチオン錯体を形成させることもできる。 The ionic compound represented by the general formula [A] + [B] used for the above reaction is a compound selected and combined from the above non-coordinating anions and cations, which is N, N-dimethylaniline. Preference is given to nium tetrakis (pentafluorophenyl) borate, triphenylcarbonium tetrakis (pentafluorophenyl) borate and the like. Further, the ionic compound represented by the general formula [A] + [B]-is preferably added in an amount of 0.1 to 10 times, more preferably about 1 time, with respect to the metallocene complex. When the half metallocene cation complex represented by the general formula (III) is used for the polymerization reaction, the half metallocene cation complex represented by the general formula (III) may be provided as it is in the polymerization reaction system, or the compound represented by the general formula (IV) and the general formula used in the reaction [a] + [B] - provides an ionic compound represented separately into the polymerization reaction system, the general formula in the reaction system (III You may form the half metallocene cation complex represented by this. Further, by using a combination of the metallocene complex represented by the general formula (I) or the formula (II) and the ionic compound represented by the general formula [A] + [B] , A half metallocene cation complex represented by the formula (III) can also be formed.

一般式(I)及び式(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体の構造は、X線構造解析により決定することが好ましい。   The structures of the metallocene complexes represented by the general formulas (I) and (II) and the half metallocene cation complex represented by the general formula (III) are preferably determined by X-ray structural analysis.

上記第一重合触媒組成物に用いることができる助触媒は、通常のメタロセン錯体を含む重合触媒組成物の助触媒として用いられる成分から任意に選択され得る。該助触媒としては、例えば、アルミノキサン、有機アルミニウム化合物、上記のイオン性化合物等が好適に挙げられる。これら助触媒は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。   The co-catalyst that can be used in the first polymerization catalyst composition can be arbitrarily selected from components used as a co-catalyst for a polymerization catalyst composition containing a normal metallocene complex. Suitable examples of the cocatalyst include aluminoxanes, organoaluminum compounds, and the above ionic compounds. These promoters may be used alone or in combination of two or more.

上記アルミノキサンとしては、アルキルアミノキサンが好ましく、例えば、メチルアルミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチルアルミノキサンとしては、MMAO−3A(東ソーファインケム社製)等が好ましい。なお、上記第一重合触媒組成物におけるアルミノキサンの含有量は、メタロセン錯体の中心金属Mと、アルミノキサンのアルミニウム元素Alとの元素比率Al/Mが、10〜1000程度、好ましくは100程度となるようにすることが好ましい。   The aluminoxane is preferably an alkylaminoxan, and examples thereof include methylaluminoxane (MAO) and modified methylaluminoxane. As the modified methylaluminoxane, MMAO-3A (manufactured by Tosoh Finechem Co., Ltd.) and the like are preferable. The content of aluminoxane in the first polymerization catalyst composition is such that the element ratio Al / M between the central metal M of the metallocene complex and the aluminum element Al of the aluminoxane is about 10 to 1000, preferably about 100. It is preferable to make it.

一方、上記有機アルミニウム化合物としては、一般式AlRR'R''(式中、R及びR'はそれぞれ独立してC1〜C10の炭化水素基又は水素原子であり、R''はC1〜C10の炭化水素基である)で表される有機アルミニウム化合物が好ましい。上記有機アルミニウム化合物としては、例えば、トリアルキルアルミニウム、ジアルキルアルミニウムクロライド、アルキルアルミニウムジクロライド、ジアルキルアルミニウムハイドライド等が挙げられ、これらの中でも、トリアルキルアルミニウムが好ましい。また、トリアルキルアルミニウムとしては、例えば、トリエチルアルミニウム、トリイソブチルアルミニウム等が挙げられる。なお、上記重合触媒組成物における有機アルミニウム化合物の含有量は、メタロセン錯体に対して1〜50倍モルでであることが好ましく、約10倍モルであることが更に好ましい。   On the other hand, as the organoaluminum compound, the general formula AlRR′R ″ (wherein R and R ′ are each independently a C1-C10 hydrocarbon group or a hydrogen atom, and R ″ is a C1-C10 An organoaluminum compound represented by (a hydrocarbon group) is preferable. Examples of the organoaluminum compound include trialkylaluminum, dialkylaluminum chloride, alkylaluminum dichloride, and dialkylaluminum hydride. Among these, trialkylaluminum is preferable. Examples of the trialkylaluminum include triethylaluminum and triisobutylaluminum. In addition, it is preferable that it is 1-50 times mole with respect to a metallocene complex, and, as for content of the organoaluminum compound in the said polymerization catalyst composition, it is still more preferable that it is about 10 times mole.

更に、上記重合触媒組成物においては、一般式(I)及び式(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体をそれぞれ、適切な助触媒と組み合わせることで、シス−1,4結合量や得られる共重合体の分子量を増大できる。   Further, in the above polymerization catalyst composition, the metallocene complex represented by the general formula (I) and the formula (II) and the half metallocene cation complex represented by the above general formula (III) are each used as an appropriate promoter. By combining, the amount of cis-1,4 bonds and the molecular weight of the resulting copolymer can be increased.

−第二の重合触媒組成物−
次に、本発明に係る共役ジエン化合物と非共役オレフィンとの共重合体の製造方法において用いられる第二重合触媒組成物について説明する。
また、上記重合触媒組成物としては、
(A)成分:希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であって、希土類元素と炭素との結合を有さない該希土類元素化合物又は反応物と、
(B)成分:非配位性アニオンとカチオンとからなるイオン性化合物(B−1)、アルミノキサン(B−2)、並びにルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも一種のハロゲン化合物(B−3)よりなる群から選択される少なくとも一種とを含む重合触媒組成物(以下、第二重合触媒組成物ともいう)を好適に挙げることができる。
第二重合触媒組成物が、イオン性化合物(B−1)及びハロゲン化合物(B−3)の少なくとも一種を含む場合、該重合触媒組成物は、更に、
(C)成分:下記一般式(X):
YR1 a2 b3 c ・・・ (X)
[式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R1及びR2は、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、R3は炭素数1〜10の炭化水素基であり、但し、R3は上記R1又はR2と同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a,b及びcは1である]で表される有機金属化合物を含む。
-Second polymerization catalyst composition-
Next, the 2nd polymerization catalyst composition used in the manufacturing method of the copolymer of the conjugated diene compound and nonconjugated olefin which concerns on this invention is demonstrated.
In addition, as the polymerization catalyst composition,
(A) component: a rare earth element compound or a reaction product of the rare earth element compound and a Lewis base, the rare earth element compound or the reaction product having no bond between the rare earth element and carbon,
Component (B): Contains ionic compound (B-1) composed of non-coordinating anion and cation, aluminoxane (B-2), Lewis acid, complex compound of metal halide and Lewis base, and active halogen. A polymerization catalyst composition (hereinafter also referred to as a second polymerization catalyst composition) containing at least one selected from the group consisting of at least one halogen compound (B-3) among organic compounds can be preferably mentioned.
When the second polymerization catalyst composition contains at least one of the ionic compound (B-1) and the halogen compound (B-3), the polymerization catalyst composition further comprises:
(C) Component: The following general formula (X):
YR 1 a R 2 b R 3 c (X)
[Wherein Y is a metal selected from Group 1, Group 2, Group 12 and Group 13 of the Periodic Table, and R1 and R2 are the same or different and have 1 to 10 carbon atoms. R 3 is a group or a hydrogen atom, and R 3 is a hydrocarbon group having 1 to 10 carbon atoms, provided that R 3 may be the same as or different from R 1 or R 2, and Y is 1 in the periodic table. When the metal is selected from the group, a is 1, and b and c are 0, and when Y is the metal selected from groups 2 and 12 of the periodic table, a and In the case where b is 1 and c is 0, and Y is a metal selected from Group 13 of the Periodic Table, a, b, and c are 1].

前記共重合体の製造方法に用いる第二重合触媒組成物は、上記(A)成分及び(B)成分を含むことを要し、ここで、該重合触媒組成物が、上記イオン性化合物(B−1)及び上記ハロゲン化合物(B−3)の少なくとも一種を含む場合には、更に、
(C)成分:下記一般式(X):
YR1 a2 b3 c ・・・ (X)
[式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R1及びR2は、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、R3は炭素数1〜10の炭化水素基であり、但し、R3は上記R1又はR2と同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a,b及びcは1である]で表される有機金属化合物を含むことを要する。上記イオン性化合物(B−1)及び上記ハロゲン化合物(B−3)は、(A)成分へ供給するための炭素原子が存在しないため、該(A)成分への炭素供給源として、上記(C)成分が必要となる。なお、上記重合触媒組成物が上記アルミノキサン(B−2)を含む場合であっても、該重合触媒組成物は、上記(C)成分を含むことができる。また、上記第二重合触媒組成物は、通常の希土類元素化合物系の重合触媒組成物に含有される他の成分、例えば助触媒等を含んでいてもよい。
なお、重合反応系において、第二重合触媒組成物に含まれる(A)成分の濃度は0.1〜0.0001mol/lの範囲であることが好ましい。
The second polymerization catalyst composition used in the method for producing the copolymer needs to contain the component (A) and the component (B), and the polymerization catalyst composition is the ionic compound (B). -1) and at least one of the above halogen compounds (B-3),
(C) Component: The following general formula (X):
YR 1 a R 2 b R 3 c (X)
[Wherein Y is a metal selected from Group 1, Group 2, Group 12 and Group 13 of the Periodic Table, and R 1 and R 2 are the same or different and have 1 to 10 carbon atoms. R 3 is a hydrocarbon group or a hydrogen atom, and R 3 is a hydrocarbon group having 1 to 10 carbon atoms, provided that R 3 may be the same as or different from R 1 or R 2, and Y is a periodic table. When it is a metal selected from Group 1, a is 1 and b and c are 0, and when Y is a metal selected from Groups 2 and 12 of the Periodic Table, a and b are 1 and c is 0, and when Y is a metal selected from Group 13 of the Periodic Table, a, b and c are 1]. It is necessary to include. Since the ionic compound (B-1) and the halogen compound (B-3) do not have a carbon atom to be supplied to the component (A), the carbon source for the component (A) is the above ( Component C) is required. In addition, even if it is a case where the said polymerization catalyst composition contains the said aluminoxane (B-2), this polymerization catalyst composition can contain the said (C) component. The second polymerization catalyst composition may contain other components, such as a promoter, contained in a normal rare earth element compound-based polymerization catalyst composition.
In the polymerization reaction system, the concentration of the component (A) contained in the second polymerization catalyst composition is preferably in the range of 0.1 to 0.0001 mol / l.

上記第二重合触媒組成物に用いる(A)成分は、希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であり、ここで、希土類元素化合物及び該希土類元素化合物とルイス塩基との反応物は、希土類元素と炭素との結合を有さない。該希土類元素化合物及び反応物が希土類元素−炭素結合を有さない場合、化合物が安定であり、取り扱いやすい。ここで、希土類元素化合物とは、周期律表中の原子番号57〜71の元素から構成されるランタノイド元素又はスカンジウムもしくはイットリウムを含有する化合物である。
なお、ランタノイド元素の具体例としては、ランタニウム、セリウム、プラセオジム、ネオジウム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミニウム、エルビウム、ツリウム、イッテルビウム、ルテチウムを挙げることができる。なお、上記(A)成分は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
The component (A) used in the second polymerization catalyst composition is a rare earth element compound or a reaction product of the rare earth element compound and a Lewis base. Here, the reaction of the rare earth element compound and the rare earth element compound with a Lewis base is performed. The object does not have a bond between rare earth element and carbon. When the rare earth element compound and the reactant do not have a rare earth element-carbon bond, the compound is stable and easy to handle. Here, the rare earth element compound is a compound containing a lanthanoid element or scandium or yttrium composed of the elements of atomic numbers 57 to 71 in the periodic table.
Specific examples of the lanthanoid element include lanthanium, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. In addition, the said (A) component may be used individually by 1 type, and may be used in combination of 2 or more type.

また、上記希土類元素化合物は、希土類金属が2価もしくは3価の塩又は錯体化合物であることが好ましく、水素原子、ハロゲン原子及び有機化合物残基から選択される1種又は2種以上の配位子を含有する希土類元素化合物であることが更に好ましい。更に、上記希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物は、下記一般式(XI)又は(XII):
1111 2・L11w ・・・ (XI)
1111 3・L11w ・・・ (XII)
[式中、M11は、ランタノイド元素、スカンジウム又はイットリウムを示し、X11は、それぞれ独立して、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基、アルデヒド残基、ケトン残基、カルボン酸残基、チオカルボン酸残基又はリン化合物残基を示し、L11は、ルイス塩基を示し、wは、0〜3を示す]で表されることができる。
The rare earth element compound is preferably a divalent or trivalent salt or complex compound of a rare earth metal, and one or more coordinations selected from a hydrogen atom, a halogen atom and an organic compound residue. More preferably, the rare earth element compound contains a child. Furthermore, the reaction product of the rare earth element compound or the rare earth element compound and a Lewis base is represented by the following general formula (XI) or (XII):
M 11 X 11 2 · L 11 w (XI)
M 11 X 11 3 · L 11 w (XII)
[Wherein, M 11 represents a lanthanoid element, scandium or yttrium, and X 11 independently represents a hydrogen atom, a halogen atom, an alkoxide group, a thiolate group, an amide group, a silyl group, an aldehyde residue, a ketone residue. A group, a carboxylic acid residue, a thiocarboxylic acid residue or a phosphorus compound residue, L 11 represents a Lewis base, and w represents 0 to 3].

上記希土類元素化合物の希土類元素に結合する基(配位子)として、具体的には、水素原子;メトキシ基、エトキシ基、プロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、2,6−ジイソプロピルフェノキシ基、2,6−ジネオペンチルフェノキシ基、2−tert−ブチル−6−イソプロピルフェノキシ基、2−tert−ブチル−6−ネオペンチルフェノキシ基、2−イソプロピル−6−ネオペンチルフェノキシ基;チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn−ブトキシ基、チオイソブトキシ基、チオsec−ブトキシ基、チオtert−ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6−ジ−tert−ブチルチオフェノキシ基、2,6−ジイソプロピルチオフェノキシ基、2,6−ジネオペンチルチオフェノキシ基、2−tert−ブチル−6−イソプロピルチオフェノキシ基、2−tert−ブチル−6−チオネオペンチルフェノキシ基、2−イソプロピル−6−チオネオペンチルフェノキシ基、2,4,6−トリイソプロピルチオフェノキシ基等のアリールチオラート基;ジメチルアミド基、ジエチルアミド基、ジイソプロピルアミド基等の脂肪族アミド基;フェニルアミド基、2,6−ジ−tert−ブチルフェニルアミド基、2,6−ジイソプロピルフェニルアミド基、2,6−ジネオペンチルフェニルアミド基、2−tert−ブチル−6−イソプロピルフェニルアミド基、2−tert−ブチル−6−ネオペンチルフェニルアミド基、2−イソプロピル−6−ネオペンチルフェニルアミド基、2,4,6−tert−ブチルフェニルアミド基等のアリールアミド基;ビストリメチルシリルアミド基等のビストリアルキルシリルアミド基;トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等のシリル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子等が挙げられる。更には、サリチルアルデヒド、2−ヒドロキシ−1−ナフトアルデヒド、2−ヒドロキシ−3−ナフトアルデヒド等のアルデヒドの残基;2'−ヒドロキシアセトフェノン、2'−ヒドロキシブチロフェノン、2'−ヒドロキシプロピオフェノン等のヒドロキシフェノンの残基;アセチルアセトン、ベンゾイルアセトン、プロピオニルアセトン、イソブチルアセトン、バレリルアセトン、エチルアセチルアセトン等のジケトンの残基;イソ吉草酸、カプリル酸、オクタン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、オレイン酸、リノール酸、シクロペンタンカルボン酸、ナフテン酸、エチルヘキサン酸、ビバール酸、バーサチック酸[シェル化学(株)製の商品名、C10モノカルボン酸の異性体の混合物から構成される合成酸]、フェニル酢酸、安息香酸、2−ナフトエ酸、マレイン酸、コハク酸等のカルボン酸の残基;ヘキサンチオ酸、2,2−ジメチルブタンチオ酸、デカンチオ酸、チオ安息香酸等のチオカルボン酸の残基、リン酸ジブチル、リン酸ジペンチル、リン酸ジヘキシル、リン酸ジヘプチル、リン酸ジオクチル、リン酸ビス(2−エチルヘキシル)、リン酸ビス(1−メチルヘプチル)、リン酸ジラウリル、リン酸ジオレイル、リン酸ジフェニル、リン酸ビス(p−ノニルフェニル)、リン酸ビス(ポリエチレングリコール−p−ノニルフェニル)、リン酸(ブチル)(2−エチルヘキシル)、リン酸(1−メチルヘプチル)(2−エチルヘキシル)、リン酸(2−エチルヘキシル)(p−ノニルフェニル)等のリン酸エステルの残基;2−エチルヘキシルホスホン酸モノブチル、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル、フェニルホスホン酸モノ−2−エチルヘキシル、2−エチルヘキシルホスホン酸モノ−p−ノニルフェニル、ホスホン酸モノ−2−エチルヘキシル、ホスホン酸モノ−1−メチルヘプチル、ホスホン酸モノ−p−ノニルフェニル等のホスホン酸エステルの残基、ジブチルホスフィン酸、ビス(2−エチルヘキシル)ホスフィン酸、ビス(1−メチルヘプチル)ホスフィン酸、ジラウリルホスフィン酸、ジオレイルホスフィン酸、ジフェニルホスフィン酸、ビス(p−ノニルフェニル)ホスフィン酸、ブチル(2−エチルヘキシル)ホスフィン酸、(2−エチルヘキシル)(1−メチルヘプチル)ホスフィン酸、(2−エチルヘキシル)(p−ノニルフェニル)ホスフィン酸、ブチルホスフィン酸、2−エチルヘキシルホスフィン酸、1−メチルヘプチルホスフィン酸、オレイルホスフィン酸、ラウリルホスフィン酸、フェニルホスフィン酸、p−ノニルフェニルホスフィン酸等のホスフィン酸の残基を挙げることもできる。なお、これらの配位子は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。   Specific examples of the group (ligand) bonded to the rare earth element of the rare earth element compound include a hydrogen atom; a methoxy group, an ethoxy group, a propoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, a tert- Aliphatic alkoxy groups such as butoxy group; phenoxy group, 2,6-di-tert-butylphenoxy group, 2,6-diisopropylphenoxy group, 2,6-dineopentylphenoxy group, 2-tert-butyl-6- Isopropylphenoxy group, 2-tert-butyl-6-neopentylphenoxy group, 2-isopropyl-6-neopentylphenoxy group; thiomethoxy group, thioethoxy group, thiopropoxy group, thio n-butoxy group, thioisobutoxy group, thio aliphatic thiolate groups such as sec-butoxy group and thio-tert-butoxy group; Noxy group, 2,6-di-tert-butylthiophenoxy group, 2,6-diisopropylthiophenoxy group, 2,6-dineopentylthiophenoxy group, 2-tert-butyl-6-isopropylthiophenoxy group, 2 Arylthiolate groups such as -tert-butyl-6-thioneopentylphenoxy, 2-isopropyl-6-thioneopentylphenoxy, 2,4,6-triisopropylthiophenoxy; dimethylamide, diethylamide, diisopropyl Aliphatic amide group such as amide group; phenylamide group, 2,6-di-tert-butylphenylamide group, 2,6-diisopropylphenylamide group, 2,6-dineopentylphenylamide group, 2-tert- Butyl-6-isopropylphenylamide group, 2-tert-butyl Arylamide groups such as ru-6-neopentylphenylamide group, 2-isopropyl-6-neopentylphenylamide group, 2,4,6-tert-butylphenylamide group; bistrialkylsilylamides such as bistrimethylsilylamide group Groups: silyl groups such as trimethylsilyl group, tris (trimethylsilyl) silyl group, bis (trimethylsilyl) methylsilyl group, trimethylsilyl (dimethyl) silyl group, triisopropylsilyl (bistrimethylsilyl) silyl group; fluorine atom, chlorine atom, bromine atom, iodine And halogen atoms such as atoms. Furthermore, residues of aldehydes such as salicylaldehyde, 2-hydroxy-1-naphthaldehyde, 2-hydroxy-3-naphthaldehyde; 2′-hydroxyacetophenone, 2′-hydroxybutyrophenone, 2′-hydroxypropiophenone, etc. Hydroxyphenone residues of: acetylacetone, benzoylacetone, propionylacetone, isobutylacetone, valerylacetone, ethylacetylacetone, etc. diketone residues; isovaleric acid, caprylic acid, octanoic acid, lauric acid, myristic acid, palmitic acid, Stearic acid, isostearic acid, oleic acid, linoleic acid, cyclopentanecarboxylic acid, naphthenic acid, ethylhexanoic acid, bivaric acid, versatic acid [trade name of Shell Chemical Co., Ltd., mixture of isomers of C10 monocarboxylic acid Synthetic acids comprised of, carboxylic acid residues such as phenylacetic acid, benzoic acid, 2-naphthoic acid, maleic acid, succinic acid; hexanethioic acid, 2,2-dimethylbutanethioic acid, decanethioic acid, thiobenzoic acid Thiocarboxylic acid residues such as dibutyl phosphate, dipentyl phosphate, dihexyl phosphate, diheptyl phosphate, dioctyl phosphate, bis (2-ethylhexyl phosphate), bis (1-methylheptyl phosphate), dilauryl phosphate Dioleyl phosphate, diphenyl phosphate, bis (p-nonylphenyl) phosphate, bis (polyethylene glycol-p-nonylphenyl) phosphate, (butyl) phosphate (2-ethylhexyl), phosphoric acid (1-methylheptyl) ) (2-ethylhexyl), phosphoric acid esters such as phosphoric acid (2-ethylhexyl) (p-nonylphenyl) Residues; monobutyl 2-ethylhexylphosphonate, mono-2-ethylhexyl 2-ethylhexylphosphonate, mono-2-ethylhexyl phenylphosphonate, mono-p-nonylphenyl 2-ethylhexylphosphonate, mono-2-ethylhexyl phosphonate, Phosphonic acid ester residues such as mono-1-methylheptyl phosphonate, mono-p-nonylphenyl phosphonate, dibutylphosphinic acid, bis (2-ethylhexyl) phosphinic acid, bis (1-methylheptyl) phosphinic acid, di Laurylphosphinic acid, dioleylphosphinic acid, diphenylphosphinic acid, bis (p-nonylphenyl) phosphinic acid, butyl (2-ethylhexyl) phosphinic acid, (2-ethylhexyl) (1-methylheptyl) phosphinic acid, (2-ethylhexyl) Phosphinic acids such as (p-nonylphenyl) phosphinic acid, butylphosphinic acid, 2-ethylhexylphosphinic acid, 1-methylheptylphosphinic acid, oleylphosphinic acid, laurylphosphinic acid, phenylphosphinic acid, p-nonylphenylphosphinic acid Can also be mentioned. In addition, these ligands may be used individually by 1 type, and may be used in combination of 2 or more type.

上記第二重合触媒組成物に用いる(A)成分において、上記希土類元素化合物と反応するルイス塩基としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記希土類元素化合物が複数のルイス塩基と反応する場合(式(XI)及び(XII)においては、wが2又は3である場合)、ルイス塩基L11は、同一であっても異なっていてもよい。 In the component (A) used in the second polymerization catalyst composition, examples of the Lewis base that reacts with the rare earth element compound include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, Diolefins and the like. Here, when the rare earth element compound reacts with a plurality of Lewis bases (in the formulas (XI) and (XII), when w is 2 or 3), the Lewis base L 11 is the same or different. It may be.

上記第二重合触媒組成物に用いる(B)成分は、イオン性化合物(B−1)、アルミノキサン(B−2)及びハロゲン化合物(B−3)よりなる群から選択される少なくとも一種の化合物である。なお、上記第二重合触媒組成物における(B)成分の合計の含有量は、(A)成分に対して0.1〜50倍モルであることが好ましい。   The component (B) used in the second polymerization catalyst composition is at least one compound selected from the group consisting of an ionic compound (B-1), an aluminoxane (B-2), and a halogen compound (B-3). is there. In addition, it is preferable that content of the sum total of (B) component in said 2nd polymerization catalyst composition is 0.1-50 times mole with respect to (A) component.

上記(B−1)で表されるイオン性化合物は、非配位性アニオンとカチオンとからなり、上記(A)成分である希土類元素化合物又はそのルイス塩基との反応物と反応してカチオン性遷移金属化合物を生成できるイオン性化合物等を挙げることができる。ここで、非配位性アニオンとしては、例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられる。一方、カチオンとしては、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等を挙げることができる。カルボニウムカチオンの具体例としては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、より具体的には、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオン等が挙げられる。アンモニウムカチオンの具体例としては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン(例えば、トリ(n−ブチル)アンモニウムカチオン)等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンの具体例としては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。従って、イオン性化合物としては、上述の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物が好ましく、具体的には、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、これらのイオン性化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記第二重合触媒組成物におけるイオン性化合物の含有量は、(A)成分に対して0.1〜10倍モルであることが好ましく、約1倍モルであることが更に好ましい。   The ionic compound represented by the above (B-1) is composed of a non-coordinating anion and a cation, and reacts with a reaction product of the rare earth element compound or its Lewis base as the component (A) to be cationic. Examples thereof include ionic compounds capable of generating a transition metal compound. Here, as the non-coordinating anion, for example, tetraphenyl borate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis ( Pentafluorophenyl) borate, tetrakis (tetrafluoromethylphenyl) borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tri Decahydride-7,8-dicarboundecaborate and the like can be mentioned. On the other hand, examples of the cation include a carbonium cation, an oxonium cation, an ammonium cation, a phosphonium cation, a cycloheptatrienyl cation, and a ferrocenium cation having a transition metal. Specific examples of the carbonium cation include trisubstituted carbonium cations such as triphenylcarbonium cation and tri (substituted phenyl) carbonium cation, and more specifically, as tri (substituted phenyl) carbonyl cation, Examples include tri (methylphenyl) carbonium cation, tri (dimethylphenyl) carbonium cation, and the like. Specific examples of ammonium cations include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation (for example, tri (n-butyl) ammonium cation); N, N-dimethylanilinium N, N-dialkylanilinium cation such as cation, N, N-diethylanilinium cation, N, N-2,4,6-pentamethylanilinium cation; dialkylammonium cation such as diisopropylammonium cation and dicyclohexylammonium cation Is mentioned. Specific examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation. Accordingly, the ionic compound is preferably a compound selected and combined from the above-mentioned non-coordinating anions and cations, specifically, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, triphenylcarbohydrate. Preferred is nitrotetrakis (pentafluorophenyl) borate. Moreover, these ionic compounds can be used individually by 1 type, or 2 or more types can be mixed and used for them. In addition, it is preferable that it is 0.1-10 times mole with respect to (A) component, and, as for content of the ionic compound in the said 2nd polymerization catalyst composition, it is still more preferable that it is about 1 time mole.

上記(B−2)で表されるアルミノキサンは、有機アルミニウム化合物と縮合剤とを接触させることによって得られる化合物であり、例えば、一般式:(−Al(R')O−)で示される繰り返し単位を有する鎖状アルミノキサン又は環状アルミノキサン(式中、R'は炭素数1〜10の炭化水素基であり、一部の炭化水素基はハロゲン原子及び/又はアルコキシ基で置換されてもよく、繰り返し単位の重合度は、5以上が好ましく、10以上が更に好ましい)を挙げることができる。ここで、R'として、具体的には、メチル基、エチル基、プロピル基、イソブチル基等が挙げられ、これらの中でも、メチル基が好ましい。また、アルミノキサンの原料として用いられる有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム及びその混合物等が挙げられ、トリメチルアルミニウムが特に好ましい。例えば、トリメチルアルミニウムとトリブチルアルミニウムとの混合物を原料として用いたアルミノキサンを好適に用いることができる。なお、上記第二重合触媒組成物におけるアルミノキサンの含有量は、(A)成分を構成する希土類元素Mと、アルミノキサンのアルミニウム元素Alとの元素比率Al/Mが、10〜1000程度となるようにすることが好ましい。   The aluminoxane represented by the above (B-2) is a compound obtained by bringing an organoaluminum compound and a condensing agent into contact with each other. For example, the repetition represented by the general formula: (—Al (R ′) O—) A chain aluminoxane or cyclic aluminoxane having a unit (wherein R ′ is a hydrocarbon group having 1 to 10 carbon atoms, and some of the hydrocarbon groups may be substituted with a halogen atom and / or an alkoxy group) The degree of polymerization of the unit is preferably 5 or more, and more preferably 10 or more. Here, specific examples of R ′ include a methyl group, an ethyl group, a propyl group, and an isobutyl group. Among these, a methyl group is preferable. Examples of the organoaluminum compound used as an aluminoxane raw material include trialkylaluminums such as trimethylaluminum, triethylaluminum, and triisobutylaluminum, and mixtures thereof, and trimethylaluminum is particularly preferable. For example, an aluminoxane using a mixture of trimethylaluminum and tributylaluminum as a raw material can be preferably used. The aluminoxane content in the second polymerization catalyst composition is such that the element ratio Al / M of the rare earth element M constituting the component (A) and the aluminum element Al of the aluminoxane is about 10 to 1000. It is preferable to do.

上記(B−3)で表されるハロゲン化合物は、ルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも一種からなり、例えば、上記(A)成分である希土類元素化合物又はそのルイス塩基との反応物と反応して、カチオン性遷移金属化合物やハロゲン化遷移金属化合物や遷移金属中心が電荷不足の化合物を生成することができる。なお、上記第二重合触媒組成物におけるハロゲン化合物の合計の含有量は、(A)成分に対して1〜5倍モルであることが好ましい。   The halogen compound represented by (B-3) is composed of at least one of a Lewis acid, a complex compound of a metal halide and a Lewis base, and an organic compound containing an active halogen, and is, for example, the component (A). By reacting with a rare earth element compound or a reaction product thereof with a Lewis base, a cationic transition metal compound, a halogenated transition metal compound, or a compound in which the transition metal center is deficient in charge can be generated. In addition, it is preferable that content of the sum total of the halogen compound in the said 2nd polymerization catalyst composition is 1-5 times mole with respect to (A) component.

上記ルイス酸としては、B(C653等のホウ素含有ハロゲン化合物、Al(C653等のアルミニウム含有ハロゲン化合物を使用できる他、周期律表中の第III,IV,V,VI又はVIII族に属する元素を含有するハロゲン化合物を用いることもできる。好ましくはアルミニウムハロゲン化物又は有機金属ハロゲン化物が挙げられる。また、ハロゲン元素としては、塩素又は臭素が好ましい。上記ルイス酸として、具体的には、メチルアルミニウムジブロマイド、メチルアルミニウムジクロライド、エチルアルミニウムジブロマイド、エチルアルミニウムジクロライド、ブチルアルミニウムジブロマイド、ブチルアルミニウムジクロライド、ジメチルアルミニウムブロマイド、ジメチルアルミニウムクロライド、ジエチルアルミニウムブロマイド、ジエチルアルミニウムクロライド、ジブチルアルミニウムブロマイド、ジブチルアルミニウムクロライド、メチルアルミニウムセスキブロマイド、メチルアルミニウムセスキクロライド、エチルアルミニウムセスキブロマイド、エチルアルミニウムセスキクロライド、ジブチル錫ジクロライド、アルミニウムトリブロマイド、三塩化アンチモン、五塩化アンチモン、三塩化リン、五塩化リン、四塩化錫、四塩化チタン、六塩化タングステン等が挙げられ、これらの中でも、ジエチルアルミニウムクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライド、ジエチルアルミニウムブロマイド、エチルアルミニウムセスキブロマイド、エチルアルミニウムジブロマイドが特に好ましい。 As the Lewis acid, boron-containing halogen compounds such as B (C 6 F 5 ) 3 and aluminum-containing halogen compounds such as Al (C 6 F 5 ) 3 can be used. A halogen compound containing an element belonging to the group V, VI or VIII can also be used. Preferably, aluminum halide or organometallic halide is used. Moreover, as a halogen element, chlorine or bromine is preferable. Specific examples of the Lewis acid include methyl aluminum dibromide, methyl aluminum dichloride, ethyl aluminum dibromide, ethyl aluminum dichloride, butyl aluminum dibromide, butyl aluminum dichloride, dimethyl aluminum bromide, dimethyl aluminum chloride, diethyl aluminum bromide, diethyl Aluminum chloride, dibutylaluminum bromide, dibutylaluminum chloride, methylaluminum sesquibromide, methylaluminum sesquichloride, ethylaluminum sesquibromide, ethylaluminum sesquichloride, dibutyltin dichloride, aluminum tribromide, antimony trichloride, antimony pentachloride, phosphorus trichloride , Pentachloride , Tin tetrachloride, titanium tetrachloride, tungsten hexachloride, etc., among which diethylaluminum chloride, ethylaluminum sesquichloride, ethylaluminum dichloride, diethylaluminum bromide, ethylaluminum sesquibromide, ethylaluminum dibromide preferable.

上記金属ハロゲン化物とルイス塩基との錯化合物を構成する金属ハロゲン化物としては、塩化ベリリウム、臭化ベリリウム、ヨウ化ベリリウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、塩化カドミウム、臭化カドミウム、ヨウ化カドミウム、塩化水銀、臭化水銀、ヨウ化水銀、塩化マンガン、臭化マンガン、ヨウ化マンガン、塩化レニウム、臭化レニウム、ヨウ化レニウム、塩化銅、ヨウ化銅、塩化銀、臭化銀、ヨウ化銀、塩化金、ヨウ化金、臭化金等が挙げられ、これらの中でも、塩化マグネシウム、塩化カルシウム、塩化バリウム、塩化マンガン、塩化亜鉛、塩化銅が好ましく、塩化マグネシウム、塩化マンガン、塩化亜鉛、塩化銅が特に好ましい。   The metal halide constituting the complex compound of the above metal halide and Lewis base includes beryllium chloride, beryllium bromide, beryllium iodide, magnesium chloride, magnesium bromide, magnesium iodide, calcium chloride, calcium bromide, iodine. Calcium chloride, barium chloride, barium bromide, barium iodide, zinc chloride, zinc bromide, zinc iodide, cadmium chloride, cadmium bromide, cadmium iodide, mercury chloride, mercury bromide, mercury iodide, manganese chloride, Manganese bromide, manganese iodide, rhenium chloride, rhenium bromide, rhenium iodide, copper chloride, copper iodide, silver chloride, silver bromide, silver iodide, gold chloride, gold iodide, gold bromide, etc. Of these, magnesium chloride, calcium chloride, barium chloride, manganese chloride, zinc chloride, and copper chloride are preferred. , Magnesium chloride, manganese chloride, zinc chloride, copper chloride being particularly preferred.

また、上記金属ハロゲン化物とルイス塩基との錯化合物を構成するルイス塩基としては、リン化合物、カルボニル化合物、窒素化合物、エーテル化合物、アルコール等が好ましい。具体的には、リン酸トリブチル、リン酸トリ−2−エチルヘキシル、リン酸トリフェニル、リン酸トリクレジル、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、ジエチルホスフィノエタン、ジフェニルホスフィノエタン、アセチルアセトン、ベンゾイルアセトン、プロピオニトリルアセトン、バレリルアセトン、エチルアセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸フェニル、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジフェニル、酢酸、オクタン酸、2−エチル−ヘキサン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸、トリエチルアミン、N,N−ジメチルアセトアミド、テトラヒドロフラン、ジフェニルエーテル、2−エチル−ヘキシルアルコール、オレイルアルコール、ステアリルアルコール、フェノール、ベンジルアルコール、1−デカノール、ラウリルアルコール等が挙げられ、これらの中でも、リン酸トリ−2−エチルヘキシル、リン酸トリクレジル、アセチルアセトン、2−エチルヘキサン酸、バーサチック酸、2−エチルヘキシルアルコール、1−デカノール、ラウリルアルコールが好ましい。   Moreover, as a Lewis base which comprises the complex compound of the said metal halide and a Lewis base, a phosphorus compound, a carbonyl compound, a nitrogen compound, an ether compound, alcohol, etc. are preferable. Specifically, tributyl phosphate, tri-2-ethylhexyl phosphate, triphenyl phosphate, tricresyl phosphate, triethylphosphine, tributylphosphine, triphenylphosphine, diethylphosphinoethane, diphenylphosphinoethane, acetylacetone, benzoylacetone , Propionitrile acetone, valeryl acetone, ethyl acetylacetone, methyl acetoacetate, ethyl acetoacetate, phenyl acetoacetate, dimethyl malonate, diethyl malonate, diphenyl malonate, acetic acid, octanoic acid, 2-ethyl-hexanoic acid, olein Acid, stearic acid, benzoic acid, naphthenic acid, versatic acid, triethylamine, N, N-dimethylacetamide, tetrahydrofuran, diphenyl ether, 2-ethyl-hexyl alcohol Examples include oleyl alcohol, stearyl alcohol, phenol, benzyl alcohol, 1-decanol, and lauryl alcohol. Among these, tri-2-ethylhexyl phosphate, tricresyl phosphate, acetylacetone, 2-ethylhexanoic acid, versatic acid, 2 -Ethylhexyl alcohol, 1-decanol and lauryl alcohol are preferred.

上記ルイス塩基は、上記金属ハロゲン化物1モル当り、0.01〜30モル、好ましくは0.5〜10モルの割合で反応させる。このルイス塩基との反応物を使用すると、ポリマー中に残存する金属を低減することができる。   The Lewis base is reacted at a ratio of 0.01 to 30 mol, preferably 0.5 to 10 mol, per mol of the metal halide. When the reaction product with the Lewis base is used, the metal remaining in the polymer can be reduced.

上記活性ハロゲンを含む有機化合物としては、ベンジルクロライド等が挙げられる。   Examples of the organic compound containing the active halogen include benzyl chloride.

上記第二重合触媒組成物に用いる(C)成分は、下記一般式(X):
YR1 a2 b3 c ・・・ (X)
[式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R1及びR2は、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、R3は炭素数1〜10の炭化水素基であり、但し、R3は上記R1又はR2と同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a,b及びcは1である]で表される有機金属化合物であり、下記一般式(Xa):
AlR123 ・・・ (Xa)
[式中、R1及びR2は、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、R3は炭素数1〜10の炭化水素基であり、但し、R3は上記R1又はR2と同一又は異なっていてもよい]で表される有機アルミニウム化合物であることが好ましい。式(X)の有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリイソプロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−t−ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ−n−プロピルアルミニウム、水素化ジ−n−ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n−プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。以上に述べた(C)成分としての有機アルミニウム化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記第二重合触媒組成物における有機アルミニウム化合物の含有量は、(A)成分に対して1〜50倍モルであることが好ましく、約10倍モルであることが更に好ましい。
The component (C) used in the second polymerization catalyst composition is represented by the following general formula (X):
YR 1 a R 2 b R 3 c (X)
[Wherein Y is a metal selected from Group 1, Group 2, Group 12 and Group 13 of the Periodic Table, and R 1 and R 2 are the same or different and have 1 to 10 carbon atoms. R 3 is a hydrocarbon group or a hydrogen atom, and R 3 is a hydrocarbon group having 1 to 10 carbon atoms, provided that R 3 may be the same as or different from R 1 or R 2, and Y is a periodic table. When it is a metal selected from Group 1, a is 1 and b and c are 0, and when Y is a metal selected from Groups 2 and 12 of the Periodic Table, a and b are 1 and c is 0, and when Y is a metal selected from Group 13 of the Periodic Table, a, b and c are 1]. Yes, the following general formula (Xa):
AlR 1 R 2 R 3 (Xa)
[Wherein, R 1 and R 2 are the same or different and each represents a hydrocarbon group having 1 to 10 carbon atoms or a hydrogen atom, and R 3 is a hydrocarbon group having 1 to 10 carbon atoms, provided that R 3 represents the above It may be the same as or different from R 1 or R 2 ]. Examples of the organoaluminum compound of the formula (X) include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, tripentylaluminum, Trihexyl aluminum, tricyclohexyl aluminum, trioctyl aluminum; diethyl aluminum hydride, di-n-propyl aluminum hydride, di-n-butyl aluminum hydride, diisobutyl aluminum hydride, dihexyl aluminum hydride, diisohexyl hydride Aluminum, dioctyl aluminum hydride, diisooctyl aluminum hydride; ethyl aluminum dihydride, n-propyl aluminum Hydride, include isobutyl aluminum dihydride and the like, among these, triethylaluminum, triisobutylaluminum, hydrogenated diethylaluminum, hydrogenated diisobutylaluminum are preferred. The organoaluminum compound as component (C) described above can be used alone or in combination of two or more. In addition, it is preferable that it is 1-50 times mole with respect to (A) component, and, as for content of the organoaluminum compound in the said 2nd polymerization catalyst composition, it is still more preferable that it is about 10 times mole.

−重合触媒−
次に、本発明に係る共役ジエン化合物と非共役オレフィンとの共重合体の製造方法において用いられる重合触媒について説明する。
重合触媒としては、共役ジエン化合物と非共役オレフィンとの重合用であり、下記式(A):
aMXbQYb・・・(A)
[式中、Rはそれぞれ独立して無置換もしくは置換インデニルを示し、該RはMに配位しており、Mはランタノイド元素、スカンジウム又はイットリウムを示し、Xはそれぞれ独立して炭素数1〜20の炭化水素基を示し、該XはM及びQにμ配位しており、Qは周期律表第13族元素を示し、Yはそれぞれ独立して炭素数1〜20の炭化水素基又は水素原子を示し、該YはQに配位しており、a及びbは2である]で表されるメタロセン系複合触媒が挙げられる。
-Polymerization catalyst-
Next, the polymerization catalyst used in the method for producing a copolymer of a conjugated diene compound and a non-conjugated olefin according to the present invention will be described.
As a polymerization catalyst, it is for superposition | polymerization with a conjugated diene compound and a nonconjugated olefin, and following formula (A):
R a MX b QY b (A)
[In the formula, each R independently represents an unsubstituted or substituted indenyl, the R is coordinated to M, M represents a lanthanoid element, scandium or yttrium; 20 represents a hydrocarbon group, X is μ-coordinated to M and Q, Q represents a group 13 element of the periodic table, and Y independently represents a hydrocarbon group having 1 to 20 carbon atoms or A hydrogen atom, wherein Y is coordinated to Q and a and b are 2].

上記メタロセン系複合触媒の好適例においては、下記式(XV):

Figure 0005707294
[式中、M1は、ランタノイド元素、スカンジウム又はイットリウムを示し、CpRは、それぞれ独立して無置換もしくは置換インデニルを示し、RA及びRBは、それぞれ独立して炭素数1〜20の炭化水素基を示し、該RA及びRBは、M1及びAlにμ配位しており、RC及びRDは、それぞれ独立して炭素数1〜20の炭化水素基又は水素原子を示す]で表されるメタロセン系複合触媒が挙げられる。
上記メタロセン系重合触媒を用いることで、共役ジエン化合物と非共役オレフィンとの共重合体を製造することができる。また、上記メタロセン系複合触媒、例えば予めアルミニウム触媒と複合させてなる触媒を用いることで、共重合体合成時に使用されるアルキルアルミニウムの量を低減したり、無くしたりすることが可能となる。なお、従来の触媒系を用いると、共重合体合成時に大量のアルキルアルミニウムを用いる必要がある。例えば、従来の触媒系では、金属触媒に対して10当量以上のアルキルアルミニウムを用いる必要があるところ、上記メタロセン系複合触媒であれば、5当量程度のアルキルアルミニウムを加えることで、優れた触媒作用が発揮される。 In a preferred example of the metallocene composite catalyst, the following formula (XV):
Figure 0005707294
[ Wherein , M 1 represents a lanthanoid element, scandium or yttrium, Cp R independently represents unsubstituted or substituted indenyl, and R A and R B each independently represents a group having 1 to 20 carbon atoms. R A and R B are μ-coordinated to M 1 and Al, and R C and R D each independently represent a hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom. Metallocene composite catalysts represented by
By using the metallocene polymerization catalyst, a copolymer of a conjugated diene compound and a non-conjugated olefin can be produced. In addition, by using the metallocene composite catalyst, for example, a catalyst previously combined with an aluminum catalyst, the amount of alkylaluminum used at the time of copolymer synthesis can be reduced or eliminated. If a conventional catalyst system is used, it is necessary to use a large amount of alkylaluminum at the time of copolymer synthesis. For example, in the conventional catalyst system, it is necessary to use 10 equivalents or more of alkylaluminum with respect to the metal catalyst. Is demonstrated.

上記メタロセン系複合触媒において、上記式(A)中の金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。   In the metallocene composite catalyst, the metal M in the formula (A) is a lanthanoid element, scandium, or yttrium. The lanthanoid elements include 15 elements having atomic numbers 57 to 71, and any of these may be used. Preferred examples of the metal M include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, holmium Ho, scandium Sc, and yttrium Y.

上記式(A)において、Rは、それぞれ独立して無置換インデニル又は置換インデニルであり、該Rは上記金属Mに配位している。なお、置換インデニル基の具体例としては、例えば、1,2,3−トリメチルインデニル基、ヘプタメチルインデニル基、1,2,4,5,6,7−ヘキサメチルインデニル基等が挙げられる。   In the formula (A), each R is independently an unsubstituted indenyl or a substituted indenyl, and the R is coordinated to the metal M. Specific examples of the substituted indenyl group include 1,2,3-trimethylindenyl group, heptamethylindenyl group, 1,2,4,5,6,7-hexamethylindenyl group, and the like. It is done.

上記式(A)において、Qは、周期律表第13族元素を示し、具体的には、ホウ素、アルミニウム、ガリウム、インジウム、タリウム等が挙げられる。   In the above formula (A), Q represents a group 13 element in the periodic table, and specific examples include boron, aluminum, gallium, indium, thallium and the like.

上記式(A)において、Xはそれぞれ独立して炭素数1〜20の炭化水素基を示し、該XはM及びQにμ配位している。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。なお、μ配位とは、架橋構造をとる配位様式のことである。   In the above formula (A), each X independently represents a hydrocarbon group having 1 to 20 carbon atoms, and X is μ-coordinated to M and Q. Here, as a C1-C20 hydrocarbon group, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group , Pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like. Note that the μ coordination is a coordination mode having a crosslinked structure.

上記式(A)において、Yはそれぞれ独立して炭素数1〜20の炭化水素基又は水素原子を示し、該YはQに配位している。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。   In the formula (A), each Y independently represents a hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom, and the Y is coordinated to Q. Here, as a C1-C20 hydrocarbon group, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group , Pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.

上記式(XV)において、金属M1は、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。金属M1としては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。 In the above formula (XV), the metal M 1 is a lanthanoid element, scandium or yttrium. The lanthanoid elements include 15 elements having atomic numbers 57 to 71, and any of these may be used. Preferred examples of the metal M 1 include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, holmium Ho, scandium Sc, and yttrium Y.

上記式(XV)において、CpRは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpRは、C97-XX又はC911-XXで示され得る。ここで、Xは0〜7又は0〜11の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。
置換インデニルとして、具体的には、2−フェニルインデニル、2−メチルインデニル等が挙げられる。なお、式(XV)における二つのCpRは、それぞれ互いに同一でも異なっていてもよい。
In the above formula (XV), Cp R is unsubstituted indenyl or substituted indenyl. Cp R having an indenyl ring as a basic skeleton can be represented by C 9 H 7-X R X or C 9 H 11-X R X. Here, X is an integer of 0-7 or 0-11. In addition, each R is preferably independently a hydrocarbyl group or a metalloid group. The hydrocarbyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 8 carbon atoms. Specific examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group, and a benzyl group. On the other hand, examples of metalloid group metalloids include germyl Ge, stannyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group that the metalloid group has is the same as the above hydrocarbyl group. is there. Specific examples of the metalloid group include a trimethylsilyl group.
Specific examples of the substituted indenyl include 2-phenylindenyl and 2-methylindenyl. Incidentally, the two Cp R in the formula (XV) may each be the same or different from each other.

上記式(XV)において、RA及びRBは、それぞれ独立して炭素数1〜20の炭化水素基を示し、該RA及びRBは、M1及Alにμ配位している。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。なお、μ配位とは、架橋構造をとる配位様式のことである。 In the above formula (XV), R A and R B each independently represent a hydrocarbon group having 1 to 20 carbon atoms, said R A and R B is coordinated μ to M 1及A l . Here, as a C1-C20 hydrocarbon group, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group , Pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like. Note that the μ coordination is a coordination mode having a crosslinked structure.

上記式(XV)において、RC及びRDは、それぞれ独立して炭素数1〜20の炭化水素基又は水素原子である。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。 In the above formula (XV), R C and R D are each independently a hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom. Here, as a C1-C20 hydrocarbon group, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group , Pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.

なお、上記メタロセン系複合触媒は、例えば、溶媒中で、下記式(XVI):

Figure 0005707294
(式中、M2は、ランタノイド元素、スカンジウム又はイットリウムを示し、CpRは、それぞれ独立して無置換もしくは置換インデニルを示し、RE〜RJは、それぞれ独立して炭素数1〜3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセン錯体を、AlRKLMで表される有機アルミニウム化合物と反応させることで得られる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンやヘキサンを用いればよい。なお、上記メタロセン系複合触媒の構造は、1H−NMRやX線構造解析により決定することが好ましい。 The metallocene composite catalyst is, for example, in a solvent in the following formula (XVI):
Figure 0005707294
(In the formula, M 2 represents a lanthanoid element, scandium or yttrium, Cp R each independently represents an unsubstituted or substituted indenyl group, and R E to R J each independently represents a group having 1 to 3 carbon atoms. an alkyl group or a hydrogen atom, L is a neutral Lewis base, w is, the metallocene complex represented by an integer of 0 to 3), an organoaluminum compound represented by AlR K R L R M It is obtained by reacting with. In addition, since reaction temperature should just be about room temperature, it can manufacture on mild conditions. The reaction time is arbitrary, but is about several hours to several tens of hours. The reaction solvent is not particularly limited, but is preferably a solvent that dissolves the raw material and the product. For example, toluene or hexane may be used. The structure of the metallocene composite catalyst is preferably determined by 1 H-NMR or X-ray structural analysis.

上記式(XVI)で表されるメタロセン錯体において、CpRは、無置換インデニル又は置換インデニルであり、上記式(XV)中のCpRと同義である。また、上記式(XVI)において、金属M2は、ランタノイド元素、スカンジウム又はイットリウムであり、上記式(XV)中の金属M1と同義である。 In the metallocene complex represented by the above formula (XVI), Cp R is unsubstituted indenyl or substituted indenyl, and has the same meaning as Cp R in the above formula (XV). In the above formula (XVI), the metal M 2 is a lanthanoid element, scandium or yttrium, and has the same meaning as the metal M 1 in the above formula (XV).

上記式(XVI)で表されるメタロセン錯体は、シリルアミド配位子[−N(SiR32]を含む。シリルアミド配位子に含まれるR基(RE〜RJ基)は、それぞれ独立して炭素数1〜3のアルキル基又は水素原子である。また、RE〜RJのうち少なくとも一つが水素原子であることが好ましい。RE〜RJのうち少なくとも一つを水素原子にすることで、触媒の合成が容易になる。更に、アルキル基としては、メチル基が好ましい。 The metallocene complex represented by the above formula (XVI) contains a silylamide ligand [—N (SiR 3 ) 2 ]. The R groups (R E to R J groups) contained in the silylamide ligand are each independently an alkyl group having 1 to 3 carbon atoms or a hydrogen atom. Moreover, it is preferable that at least one of R E to R J is a hydrogen atom. By making at least one of R E to R J a hydrogen atom, the catalyst can be easily synthesized. Furthermore, a methyl group is preferable as the alkyl group.

上記式(XVI)で表されるメタロセン錯体は、更に0〜3個、好ましくは0〜1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。   The metallocene complex represented by the above formula (XVI) further contains 0 to 3, preferably 0 to 1, neutral Lewis bases L. Here, examples of the neutral Lewis base L include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, neutral diolefins, and the like. Here, when the complex includes a plurality of neutral Lewis bases L, the neutral Lewis bases L may be the same or different.

また、上記式(XVI)で表されるメタロセン錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。   In addition, the metallocene complex represented by the above formula (XVI) may exist as a monomer, or may exist as a dimer or a higher multimer.

一方、上記メタロセン系複合触媒の生成に用いる有機アルミニウム化合物は、AlRKLMで表され、ここで、RK及びRLは、それぞれ独立して炭素数1〜20の1価の炭化水素基又は水素原子で、RMは炭素数1〜20の1価の炭化水素基であり、但し、RMは上記RK又はRLと同一でも異なっていてもよい。炭素数1〜20の1価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。 On the other hand, the organoaluminum compound used for the production of the metallocene composite catalyst is represented by AlR K R L R M , where R K and R L are each independently a monovalent carbon atom having 1 to 20 carbon atoms. R M is a hydrogen group or a hydrogen atom, and R M is a monovalent hydrocarbon group having 1 to 20 carbon atoms, provided that R M may be the same as or different from R K or R L described above. Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group and tetradecyl group. , Pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.

上記有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリイソプロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−t−ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ−n−プロピルアルミニウム、水素化ジ−n−ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n−プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。また、これら有機アルミニウム化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記メタロセン系複合触媒の生成に用いる有機アルミニウム化合物の量は、メタロセン錯体に対して1〜50倍モルであることが好ましく、約10倍モルであることが更に好ましい。   Specific examples of the organoaluminum compound include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, tripentylaluminum, Hexyl aluminum, tricyclohexyl aluminum, trioctyl aluminum; diethyl aluminum hydride, di-n-propyl aluminum hydride, di-n-butyl aluminum hydride, diisobutyl aluminum hydride, dihexyl aluminum hydride, diisohexyl aluminum hydride , Dioctylaluminum hydride, diisooctylaluminum hydride; ethylaluminum dihydride, n-propylaluminium Dihydride, isobutyl aluminum dihydride and the like. Among these, triethylaluminum, triisobutylaluminum, hydrogenated diethylaluminum, hydrogenated diisobutylaluminum are preferred. Moreover, these organoaluminum compounds can be used individually by 1 type, or 2 or more types can be mixed and used for them. In addition, the amount of the organoaluminum compound used for the production of the metallocene composite catalyst is preferably 1 to 50 times mole, more preferably about 10 times mole relative to the metallocene complex.

−第三の重合触媒組成物−
また、上記重合触媒組成物は、上記メタロセン系複合触媒と、ホウ素アニオンとを含むことを特徴とし、更に、通常のメタロセン系触媒を含む重合触媒組成物に含有される他の成分、例えば助触媒等を含むことが好ましい。なお、上記メタロセン系複合触媒とホウ素アニオンとを合わせて2成分触媒ともいう。上記第三重合触媒組成物によれば、上記メタロセン系複合触媒と同様に、更にホウ素アニオンを含有するため、各単量体成分の共重合体中での含有量を任意に制御することが可能となる。
-Third polymerization catalyst composition-
The polymerization catalyst composition contains the metallocene composite catalyst and a boron anion, and further contains other components such as a cocatalyst contained in the polymerization catalyst composition containing a normal metallocene catalyst. Etc. are preferably included. The metallocene composite catalyst and boron anion are also referred to as a two-component catalyst. According to the third polymerization catalyst composition, since the boron anion is further contained in the same manner as the metallocene composite catalyst, the content of each monomer component in the copolymer can be arbitrarily controlled. It becomes possible.

上記第三重合触媒組成物において、2成分触媒を構成するホウ素アニオンとして、具体的には、4価のホウ素アニオンが挙げられる。例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。   In the third polymerization catalyst composition, specific examples of the boron anion constituting the two-component catalyst include a tetravalent boron anion. For example, tetraphenylborate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis (pentafluorophenyl) borate, tetrakis (tetrafluoromethyl) Phenyl) borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tridecahydride-7,8-dicarboundecaborate Among these, tetrakis (pentafluorophenyl) borate is preferable.

なお、上記ホウ素アニオンは、カチオンと組み合わされたイオン性化合物として使用することができる。上記カチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N−ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N−ジアルキルアニリニウムカチオンが特に好ましい。従って、上記イオン性化合物としては、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。なお、ホウ素アニオンとカチオンとからなるイオン性化合物は、上記メタロセン系複合触媒に対して0.1〜10倍モル加えることが好ましく、約1倍モル加えることが更に好ましい。   In addition, the said boron anion can be used as an ionic compound combined with the cation. Examples of the cation include a carbonium cation, an oxonium cation, an amine cation, a phosphonium cation, a cycloheptatrienyl cation, and a ferrocenium cation having a transition metal. Examples of the carbonium cation include trisubstituted carbonium cations such as a triphenylcarbonium cation and a tri (substituted phenyl) carbonium cation. The tri (substituted phenyl) carbonyl cation is specifically exemplified by tri (methylphenyl). ) Carbonium cation and the like. Examples of amine cations include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation; N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N- N, N-dialkylanilinium cations such as 2,4,6-pentamethylanilinium cation; dialkylammonium cations such as diisopropylammonium cation and dicyclohexylammonium cation. Examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation. Among these cations, N, N-dialkylanilinium cation or carbonium cation is preferable, and N, N-dialkylanilinium cation is particularly preferable. Therefore, as the ionic compound, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, triphenylcarbonium tetrakis (pentafluorophenyl) borate and the like are preferable. The ionic compound composed of a boron anion and a cation is preferably added in an amount of 0.1 to 10 times, more preferably about 1 time, with respect to the metallocene composite catalyst.

なお、上記第三重合触媒組成物においては、上記メタロセン系複合触媒と上記ホウ素アニオンとを用いる必要があるが、上記式(XVI)で表されるメタロセン触媒と有機アルミニウム化合物を反応させる反応系に、ホウ素アニオンが存在していると、上記式(XV)のメタロセン系複合触媒を合成することができない。従って、上記第三重合触媒組成物の調製には、該メタロセン系複合触媒を予め合成し、該メタロセン系複合触媒を単離精製してからホウ素アニオンと組み合わせる必要がある。   In the third polymerization catalyst composition, it is necessary to use the metallocene composite catalyst and the boron anion, but a reaction system for reacting the metallocene catalyst represented by the formula (XVI) with an organoaluminum compound. If a boron anion is present, the metallocene composite catalyst of the above formula (XV) cannot be synthesized. Therefore, for the preparation of the third polymerization catalyst composition, it is necessary to synthesize the metallocene composite catalyst in advance, isolate and purify the metallocene composite catalyst, and then combine with the boron anion.

上記第三重合触媒組成物に用いることができる助触媒としては、例えば、上述のAlRKLMで表される有機アルミニウム化合物の他、アルミノキサン等が好適に挙げられる。上記アルミノキサンとしては、アルキルアミノキサンが好ましく、例えば、メチルアルミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチルアルミノキサンとしては、MMAO−3A(東ソーファインケム社製)等が好ましい。なお、これらアルミノキサンは、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。 Examples of the third polymerization catalyst co-catalyst which can be used in the compositions, for example, other organic aluminum compound represented by AlR K R L R M described above, aluminoxane can be preferably used. The aluminoxane is preferably an alkylaminoxan, and examples thereof include methylaluminoxane (MAO) and modified methylaluminoxane. As the modified methylaluminoxane, MMAO-3A (manufactured by Tosoh Finechem Co., Ltd.) and the like are preferable. These aluminoxanes may be used alone or in combination of two or more.

また、上記第一重合触媒組成物又は第二重合触媒組成物を使用しなくても、即ち、通常の配位イオン重合触媒を使用する場合であっても、重合反応系中への単量体の仕込み方を調整することで、前記共重合体を製造することができる。即ち、前記共重合体の第二の製造方法は、非共役オレフィンの存在下において、共役ジエン化合物の投入を制御することで、共重合体の連鎖構造を制御することを特徴とし、これによって、共重合体中の単量体単位の配列を制御することができる。なお、本発明において、重合反応系とは、共役ジエン化合物と非共役オレフィンとの重合が行われる場所を意味し、具体例としては、反応容器等が挙げられる。   Further, even if the first polymerization catalyst composition or the second polymerization catalyst composition is not used, that is, when a normal coordination ion polymerization catalyst is used, the monomer into the polymerization reaction system The copolymer can be produced by adjusting the charging method. That is, the second production method of the copolymer is characterized by controlling the chain structure of the copolymer by controlling the introduction of the conjugated diene compound in the presence of the non-conjugated olefin, The arrangement of the monomer units in the copolymer can be controlled. In addition, in this invention, a polymerization reaction system means the place where superposition | polymerization with a conjugated diene compound and a nonconjugated olefin is performed, A reaction container etc. are mentioned as a specific example.

ここで、共役ジエン化合物の投入方法は、連続投入、分割投入のいずれであってもよく、更には、連続投入及び分割投入を組み合わせてもよい。また、連続投入とは、例えば、一定の添加速度で一定の時間添加することをいう。   Here, the charging method of the conjugated diene compound may be either continuous charging or split charging, and further, continuous charging and split charging may be combined. Moreover, continuous injection means adding for a fixed time at a fixed addition rate, for example.

具体的には、共役ジエン化合物と非共役オレフィンとを重合させる重合反応系に共役ジエン化合物を分割又は連続投入することで、該重合反応系内の単量体の濃度比を制御することが可能となり、その結果、得られる共重合体中の連鎖構造(即ち、単量体単位の配列)を特徴づけることが可能となる。また、共役ジエン化合物の投入の際に、非共役オレフィンが重合反応系中に存在することで、共役ジエン化合物単独重合体の生成を抑制することができる。なお、共役ジエン化合物の投入は、非共役オレフィンの重合を開始した後に行ってもよい。   Specifically, the concentration ratio of monomers in the polymerization reaction system can be controlled by dividing or continuously adding the conjugated diene compound to the polymerization reaction system for polymerizing the conjugated diene compound and the non-conjugated olefin. As a result, it is possible to characterize the chain structure (that is, the arrangement of monomer units) in the resulting copolymer. Further, when the conjugated diene compound is added, the presence of the non-conjugated olefin in the polymerization reaction system can suppress the formation of a conjugated diene compound homopolymer. The addition of the conjugated diene compound may be performed after the polymerization of the nonconjugated olefin is started.

例えば、上記第二製造方法によって前記共重合体を製造する場合には、あらかじめ非共役オレフィンの重合を開始した重合反応系に、非共役オレフィンの存在下で共役ジエン化合物を連続投入することが有効となる。特に、上記第二製造方法によってマルチブロック共重合体を製造する場合には、「非共役オレフィンを重合反応系中で重合させ、次に、非共役オレフィンの存在下で共役ジエン化合物を該重合反応系中に連続投入する」という操作を2回以上繰り返すことが有効となる。   For example, when the copolymer is produced by the second production method, it is effective to continuously add a conjugated diene compound in the presence of the non-conjugated olefin to the polymerization reaction system in which the polymerization of the non-conjugated olefin has been started in advance. It becomes. In particular, when a multi-block copolymer is produced by the second production method, “a non-conjugated olefin is polymerized in a polymerization reaction system, and then the conjugated diene compound is reacted in the presence of the non-conjugated olefin. It is effective to repeat the operation of “continuous charging into the system” twice or more.

上記第二製造方法は、上述のように重合反応系中への単量体の仕込み方を特定する以外は特に限定されず、例えば、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の重合方法を用いることができる。また、上記第二製造方法は、上述のように重合反応系中への単量体の仕込み方を特定する以外は、上記第一製造方法と同様にして、単量体である共役ジエン化合物と非共役オレフィンを共重合させることができる。   The second production method is not particularly limited as described above, except that the method of charging the monomer into the polymerization reaction system as described above. For example, the solution polymerization method, the suspension polymerization method, the liquid phase bulk polymerization method, Any polymerization method such as an emulsion polymerization method, a gas phase polymerization method, and a solid phase polymerization method can be used. In addition, the second production method is the same as the first production method, except that the method of charging the monomer into the polymerization reaction system as described above, and the conjugated diene compound as a monomer Non-conjugated olefins can be copolymerized.

なお、上記第二製造方法においては、共役ジエン化合物の投入を制御する必要があるが、具体的には、共役ジエン化合物の投入量や共役ジエン化合物の投入回数を制御することが好ましい。また、共役ジエン化合物の投入の制御方法は、例えば、コンピュータ等のプログラムで制御する方法や、タイマー等を用いてアナログで制御する方法が挙げられるが、これらに限定されるものではない。また、上述のように、共役ジエン化合物の投入方法は、特に限定されず、連続投入、分割投入等が挙げられる。ここで、共役ジエン化合物を分割投入する場合、該共役ジエン化合物の投入回数は、特に限定されないが、1〜5回の範囲が好ましい。共役ジエン化合物の投入回数が大きくなり過ぎると、ブロック共重合体とランダム共重合体との区別が困難になる場合がある。   In the second production method, it is necessary to control the input of the conjugated diene compound. Specifically, it is preferable to control the input amount of the conjugated diene compound and the input frequency of the conjugated diene compound. Examples of the method for controlling the introduction of the conjugated diene compound include a method of controlling by a program such as a computer and a method of controlling by analog using a timer or the like, but are not limited thereto. In addition, as described above, the method for charging the conjugated diene compound is not particularly limited, and examples thereof include continuous charging and divided charging. Here, when the conjugated diene compound is dividedly added, the number of times the conjugated diene compound is added is not particularly limited, but is preferably in the range of 1 to 5 times. If the conjugated diene compound is charged too many times, it may be difficult to distinguish between a block copolymer and a random copolymer.

また、上記第二製造方法においては、共役ジエン化合物の投入時に、非共役オレフィンが重合反応系に存在していることが必要であるため、非共役オレフィンを重合反応系へ連続的に供給することが好ましい。また、非共役オレフィンの供給方法は、特に限定されるものではない。   In the second production method, since it is necessary that the non-conjugated olefin is present in the polymerization reaction system when the conjugated diene compound is charged, the non-conjugated olefin is continuously supplied to the polymerization reaction system. Is preferred. Moreover, the supply method of a nonconjugated olefin is not specifically limited.

<(i)共役ジエン系重合体と(ii)共重合体との質量比>
前記共役ジエン系重合体と、前記共役ジエン化合物と非共役オレフィンとの共重合体との質量比としては、特に制限はなく、目的に応じて適宜選択することができるが、10/90〜90/10が好ましく、25/75〜75/25がより好ましい。
前記共役ジエン系重合体と、前記共役ジエン化合物と非共役オレフィンとの共重合体との質量比が、10未満/90超であると、耐破壊特性や加工性が不十分であることがあり、90超/10未満であると、耐候性が不十分であることがある。より好ましい範囲内にあると、各性能のバランスの点で有利である。
<Mass ratio of (i) conjugated diene polymer and (ii) copolymer>
The mass ratio of the conjugated diene polymer and the copolymer of the conjugated diene compound and the non-conjugated olefin is not particularly limited and may be appropriately selected depending on the intended purpose. / 10 is preferable, and 25/75 to 75/25 is more preferable.
If the mass ratio of the conjugated diene polymer and the copolymer of the conjugated diene compound and the non-conjugated olefin is less than 10 / more than 90, the fracture resistance and workability may be insufficient. If it is over 90/10, the weather resistance may be insufficient. Within the more preferable range, it is advantageous in terms of the balance of each performance.

<ゴム成分>
前記ゴム成分としては、前記(i)共役ジエン系重合体と、前記(ii)共役ジエン化合物と非共役オレフィンとの共重合体と、を含み、これら以外の(iii)その他のゴムも含まれる。
前記(iii)その他のゴムとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
<Rubber component>
The rubber component includes (i) a conjugated diene polymer and (ii) a copolymer of a conjugated diene compound and a non-conjugated olefin, and (iii) other rubbers other than these. .
There is no restriction | limiting in particular as said (iii) other rubber | gum, According to the objective, it can select suitably, For example, polysulfide rubber, silicone rubber, fluororubber, urethane rubber etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together.

前記ゴム成分100質量部中における前記共役ジエン化合物と非共役オレフィンとの共重合体の含有量としては、30質量部〜50質量部である限り、特に制限はなく、目的に応じて適宜選択することができるが、30質量部〜40質量部が好ましい。
前記ゴム成分100質量部中における前記共役ジエン化合物と非共役オレフィンとの共重合体の含有量が、30質量部以上であると、耐候性を向上させることができ、50質量部以下であると、耐破壊性及び加工性を向上させることができる。
一方、前記ゴム成分100質量部中における前記共役ジエン化合物と非共役オレフィンとの共重合体の含有量が、前記特に好ましい範囲内であると、各性能のバランスの点で有利である。
The content of the copolymer of the conjugated diene compound and the non-conjugated olefin in 100 parts by mass of the rubber component is not particularly limited as long as it is 30 parts by mass to 50 parts by mass, and is appropriately selected according to the purpose. Although 30 mass parts-40 mass parts is preferable.
When the content of the copolymer of the conjugated diene compound and the non-conjugated olefin in 100 parts by mass of the rubber component is 30 parts by mass or more, weather resistance can be improved, and is 50 parts by mass or less. The fracture resistance and workability can be improved.
On the other hand, when the content of the copolymer of the conjugated diene compound and the non-conjugated olefin in 100 parts by mass of the rubber component is within the particularly preferable range, it is advantageous in terms of balance of performances.

前記ゴム成分100質量部中における前記共役ジエン系重合体の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、70質量部以下が好ましい。
前記ゴム成分100質量部中における前記共役ジエン系重合体の含有量が、70質量部以下であると、耐候性を向上させることができる。
一方、前記ゴム成分100質量部中における前記共役ジエン系重合体の含有量が、前記特に好ましい範囲内であると、各性能のバランスの点で有利である。
There is no restriction | limiting in particular as content of the said conjugated diene polymer in 100 mass parts of said rubber components, Although it can select suitably according to the objective, 70 mass parts or less are preferable.
When the content of the conjugated diene polymer in 100 parts by mass of the rubber component is 70 parts by mass or less, the weather resistance can be improved.
On the other hand, when the content of the conjugated diene polymer in 100 parts by mass of the rubber component is within the particularly preferable range, it is advantageous in terms of balance of performances.

<(iv)架橋剤>
前記架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硫黄系架橋剤、有機過酸化物系架橋剤、無機架橋剤、ポリアミン架橋剤、樹脂架橋剤、硫黄化合物系架橋剤、オキシム−ニトロソアミン系架橋剤硫黄などが挙げられるが、これらの中でもコンベアベルト用ゴム組成物としては硫黄系架橋剤がより好ましい。
前記架橋剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分100質量部に対し、1質量部〜10質量部が好ましく、1質量部〜3質量部がより好ましい。
前記架橋剤の含有量が1質量部以上であると、架橋を確実に進行させることができ、10質量部以下であると、一部の架橋剤により混練り中に架橋が進んでしまったり、加硫物の物性が損なわれたりすることを防止することができる。
<(Iv) Crosslinking agent>
There is no restriction | limiting in particular as said crosslinking agent, According to the objective, it can select suitably, For example, a sulfur type crosslinking agent, an organic peroxide type crosslinking agent, an inorganic crosslinking agent, a polyamine crosslinking agent, a resin crosslinking agent, sulfur Compound-based crosslinking agents, oxime-nitrosamine-based crosslinking agents, sulfur and the like can be mentioned. Among these, sulfur-based crosslinking agents are more preferable as rubber compositions for conveyor belts.
There is no restriction | limiting in particular as content of the said crosslinking agent, Although it can select suitably according to the objective, 1 mass part-10 mass parts are preferable with respect to 100 mass parts of rubber components, and 1 mass part-3 masses. Part is more preferred.
When the content of the cross-linking agent is 1 part by mass or more, cross-linking can surely proceed, and when it is 10 parts by mass or less, the cross-linking proceeds during kneading with some cross-linking agents, It can prevent that the physical property of a vulcanizate is impaired.

<(v)加硫促進剤>
前記加硫促進剤としては、グアジニン系、アルデヒド−アミン系、アルデヒド−アンモニア系、チアゾール系、スルフェンアミド系、チオ尿素系、チウラム系、ジチオカルバメート系、ザンテート系等の化合物が使用できる。
前記加硫促進剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分100質量部に対し、0.5質量部〜3質量部が好ましい。
前記加硫促進剤の含有量の含有量が0.5質量部以上であると、十分な架橋密度を得ることができ、3質量部以下であると、十分な伸びを保持することができる。
<(V) Vulcanization accelerator>
As the vulcanization accelerator, compounds such as guanidine, aldehyde-amine, aldehyde-ammonia, thiazole, sulfenamide, thiourea, thiuram, dithiocarbamate and xanthate can be used.
There is no restriction | limiting in particular as content of the said vulcanization accelerator, Although it can select suitably according to the objective, 0.5 mass part-3 mass parts are preferable with respect to 100 mass parts of rubber components.
When the content of the vulcanization accelerator is 0.5 parts by mass or more, a sufficient crosslinking density can be obtained, and when it is 3 parts by mass or less, sufficient elongation can be maintained.

<(vi)その他の成分>
また必要に応じて、シリカ(カップリング剤をいれてもいれなくてもよい)、カーボンブラック等の補強性充填剤、老化防止剤、可塑剤、石油樹脂、ワックス類、酸化防止剤、オイル、滑剤、紫外線吸収剤、分散剤、相溶化剤、均質化剤、加硫助剤(ステアリン酸、亜鉛華)、などが挙げられる。
<(Vi) Other components>
In addition, if necessary, silica (which may or may not contain a coupling agent), reinforcing filler such as carbon black, anti-aging agent, plasticizer, petroleum resin, waxes, antioxidant, oil, Examples include lubricants, ultraviolet absorbers, dispersants, compatibilizers, homogenizers, vulcanization aids (stearic acid, zinc white), and the like.

<コンベアベルト用ゴム組成の製造方法>
本発明のコンベアベルト用ゴム組成物は、上記各成分を、たとえば、バンバリーミキサー、ニーダー等により混練りすることにより製造することができる。
<Method for producing rubber composition for conveyor belt>
The rubber composition for conveyor belts of the present invention can be produced by kneading the above components with, for example, a Banbury mixer, a kneader or the like.

(コンベアベルト)
本発明のコンベアベルトは、本発明のコンベアベルト用ゴム組成物を補強材(芯体)上に配置密着させ、加硫することにより製造することができる。例えば、補強材(芯体)を前記コンベアベルト用ゴム組成物からなるシートで挟み込み、このゴム組成物を加熱圧着して加硫接着することにより、補強材(芯体)にゴム組成物を接着及び被覆する。なお、補強材(芯体)とカバーゴムとの間には、接着ゴムとしての芯体ゴムが形成されている。この場合、加硫条件は適宜選択し得るが、通常135℃〜180℃で10分間〜100分間の条件を採用する。
前記コンベアベルトは、例えば、図1に示すように、カバーゴム層1と、接着ゴム層2と、補強材(芯体)3としてのスチールコードとを備える。
(Conveyor belt)
The conveyor belt of this invention can be manufactured by arrange | positioning and sticking the rubber composition for conveyor belts of this invention on a reinforcing material (core body), and vulcanizing | curing. For example, the rubber composition is bonded to the reinforcing material (core body) by sandwiching the reinforcing material (core body) with a sheet made of the rubber composition for the conveyor belt, and heat-pressing the rubber composition to vulcanize and bond. And coat. A core rubber as an adhesive rubber is formed between the reinforcing material (core body) and the cover rubber. In this case, the vulcanization conditions can be selected as appropriate, but usually the conditions at 135 ° C. to 180 ° C. for 10 minutes to 100 minutes are adopted.
For example, as shown in FIG. 1, the conveyor belt includes a cover rubber layer 1, an adhesive rubber layer 2, and a steel cord as a reinforcing material (core body) 3.

<補強材>
前記補強材は、コンベアベルトの用途に応じ、サイズ等を考慮して適宜選択し得るが、亜鉛めっきスチールコード、ブラスめっきスチールコード、アラミド繊維を用いたアラミド帆布、PET帆布、ナイロン帆布、であるのが望ましい。これらの補強材を採用したコンベアベルトの種類としては、亜鉛めっきスチールコードを補強材とするスチールコンベアベルト、ブラスめっきスチールコードを補強材とするリップガードコンベアベルト、アラミド帆布を補強材とするアラミド補強コンベアベルトが挙げられ、いずれの態様においても本発明のコンベアベルト用ゴム組成物を好適に用いることができる。
<Reinforcing material>
The reinforcing material may be appropriately selected in consideration of the size and the like according to the use of the conveyor belt, and is a galvanized steel cord, a brass plated steel cord, an aramid canvas using an aramid fiber, a PET canvas, a nylon canvas. Is desirable. The types of conveyor belts that use these reinforcing materials include steel conveyor belts that use galvanized steel cords as reinforcing materials, lip guard conveyor belts that use brass-plated steel cords as reinforcing materials, and aramid reinforcement that uses aramid canvas as a reinforcing material. A conveyor belt is mentioned, The rubber composition for conveyor belts of this invention can be used suitably also in any aspect.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

共重合体の分析方法及び樹脂組成物の評価方法を以下に示す。   The analysis method of the copolymer and the evaluation method of the resin composition are shown below.

<共重合体の分析方法>
(1)共重合体のミクロ構造(1,2−ビニル結合量、シス−1,4結合量)
共重合体中のブタジエン部分のミクロ構造(1,2−ビニル結合量)を、1H−NMRスペクトル(100℃、d−テトラクロロエタン標準:6ppm)により1,2−ビニル結合成分(5.0−5.1ppm)と全体のブタジエン結合成分(5−5.6ppm)の積分比より求めた。また、共重合体中のブタジエン部分のミクロ構造(シス−1,4結合量)を、13C−NMRスペクトル(100℃、d−テトラクロロエタン標準:73.8ppm)によるシス−1,4結合成分(26.5−27.5ppm)と全体のブタジエン結合成分(26.5−27.5ppm+31.5−32.5ppm)の積分比より求めた。
<Method for analyzing copolymer>
(1) Microstructure of copolymer (1,2-vinyl bond content, cis-1,4 bond content)
The microstructure (1,2-vinyl bond amount) of the butadiene moiety in the copolymer was determined by 1 H-NMR spectrum (100 ° C., d-tetrachloroethane standard: 6 ppm) according to the 1,2-vinyl bond component (5.0 -5.1 ppm) and the integral ratio of the entire butadiene bond component (5-5.6 ppm). Further, the microstructure (cis-1,4 bond amount) of the butadiene moiety in the copolymer is determined based on the 13 C-NMR spectrum (100 ° C., d-tetrachloroethane standard: 73.8 ppm). (26.5-27.5 ppm) and the total butadiene bond component (26.5-27.5 ppm + 31.5-32.5 ppm) were obtained from the integral ratio.

(2)共重合体のエチレン由来部分の含有率
共重合体中のエチレン由来部分の含有率(mol%)を13C−NMRスペクトル(100℃、d−テトラクロロエタン標準:73.8ppm)による全体のエチレン結合成分(28.5−30.0ppm)と全体のブタジエン結合成分(26.5−27.5ppm+31.5−32.5ppm)の積分比より求めた。
(2) Content of ethylene-derived portion of copolymer The content (mol%) of the ethylene-derived portion in the copolymer is the whole by 13 C-NMR spectrum (100 ° C., d-tetrachloroethane standard: 73.8 ppm). The integration ratio of the ethylene bond component (28.5-30.0 ppm) and the total butadiene bond component (26.5-27.5 ppm + 31.5-32.5 ppm).

(3)共重合体の重量平均分子量(Mw)及び分子量分布(Mw/Mn)
ゲルパーミエーションクロマトグラフィー[GPC:東ソー製HLC−8121GPC/HT、カラム:東ソー製GMHHR−H(S)HT×2本、検出器:示差屈折率計(RI)]で単分散ポリスチレンを基準として、重合体のポリスチレン換算の重量平均分子量(Mw)及び分子量分布(Mw/Mn)を求めた。なお、測定温度は140℃である。
(3) Weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the copolymer
Gel permeation chromatography [GPC: Tosoh HLC-8121GPC / HT, column: Tosoh GMH HR- H (S) HT × 2, detector: differential refractometer (RI)] on the basis of monodisperse polystyrene The polystyrene equivalent weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the polymer were determined. The measurement temperature is 140 ° C.

(4)共重合体のブロックポリエチレン融解温度(DSCピーク温度)
JIS K7121−1987に準拠して示差走査熱量測定(DSC)を行い、DSC曲線を描き、ブロックポリエチレン融解温度(DSCピーク温度)を測定した。なお、測定は、単体ポリマーや触媒残渣等の不純物の影響をさけるため、共重合体を大量のテトラヒドロフランに48h浸漬し、テトラヒドロフランに溶解する成分を全て取り除いた後、乾燥したゴム成分をサンプルとして使用した。
(4) Block polyethylene melting temperature of copolymer (DSC peak temperature)
Differential scanning calorimetry (DSC) was performed in accordance with JIS K7121-1987, a DSC curve was drawn, and a block polyethylene melting temperature (DSC peak temperature) was measured. In order to avoid the influence of impurities such as single polymer and catalyst residue, the measurement was performed by immersing the copolymer in a large amount of tetrahydrofuran for 48 hours, removing all components dissolved in tetrahydrofuran, and then using the dried rubber component as a sample. did.

(5)共重合体の同定
文献(「高分子学会予稿集Vol.42,No.4,Page1347」)のオゾン分解−GPC法を応用して、連鎖分布の解析を行った。なお、ゲルパーミエーションクロマトグラフィーは[GPC:東ソー製HLC−8121GPC/HT、カラム:昭和電工製GPC HT−803×2本、検出器:示差屈折率計(RI)、単分散ポリスチレンを基準、測定温度は140℃]を用いて測定した。
(5) Identification of copolymer The chain distribution was analyzed by applying the ozonolysis-GPC method in the literature ("Proceedings of the Society of Polymer Science, Vol. 42, No. 4, Page 1347"). The gel permeation chromatography was measured based on [GPC: Tosoh HLC-8121GPC / HT, column: Showa Denko GPC HT-803 × 2, detector: differential refractometer (RI), monodisperse polystyrene as a reference. The temperature was measured using 140 ° C.].

<樹脂組成物の評価方法>
(1)耐候性(耐オゾン性)
前記耐候性は、以下の方法により評価した。まず、作製したゴム組成物から、20mm×100mm×1.0mmの試験片を作製し、試験片を40%伸長させ、40℃、オゾン濃度100ppmの恒温槽中に7日間放置した。この試験片に肉眼でクラックが確認できたか否かを観察した。
<Evaluation method of resin composition>
(1) Weather resistance (ozone resistance)
The weather resistance was evaluated by the following method. First, a test piece of 20 mm × 100 mm × 1.0 mm was produced from the produced rubber composition, the test piece was elongated by 40%, and left in a thermostatic bath at 40 ° C. and an ozone concentration of 100 ppm for 7 days. It was observed whether or not cracks could be confirmed on the test piece with the naked eye.

(2)接着性試験(ゴム−ゴム)
得られたゴム組成物からなる同種ゴム同士の界面が剥離するまでの応力を剥離試験機(商品名:テイ・エス エンジニアリング製、商品名:AC−10kN)を用いて測定した。比較例1の剥離抗力の値を100とする指数で表示した。値が大きいほど、剥離抗力が大きく、接着性が良好であることを示す。
(2) Adhesion test (rubber-rubber)
The stress until the interface between the same rubbers made of the obtained rubber composition was peeled was measured using a peel tester (trade name: manufactured by TS Engineering, trade name: AC-10 kN). The value was expressed as an index with the peel resistance value of Comparative Example 1 as 100. It shows that peeling resistance is so large that a value is large and adhesiveness is favorable.

(調製例1)
<エチレン−ブタジエン−共重合体A(表1〜3におけるEBR1)の調製>
十分に乾燥した400mL耐圧ガラス反応器に、トルエン溶液160mLを添加した後、エチレンを0.8MPaで導入した。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にビス(2−フェニルインデニル)ガドリニウムビス(ジメチルシリルアミド)[(2−PhC962GdN(SiHMe22]28.5μmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート[Me2NHPhB(C654]34.2μmol、及びジイソブチルアルミニウムハイドライド1.43mmolを仕込み、トルエン8mLに溶解させて触媒溶液とした。その後、グローブボックスから触媒溶液を取り出し、ガドリニウム換算で28.2μmolとなる量をモノマー溶液へ添加し、室温で5分間重合を行った。その後、エチレンの導入圧力を0.2MPa/minの速度で低下させながら、1,3−ブタジエン15.23g(0.28mol)を含むトルエン溶液100mLを添加した後、さらに90分間重合を行った。重合後、2,2´−メチレン−ビス(4−エチル−6−t−ブチルフェノール)(NS−5)5質量%のイソプロパノール溶液1mLを加えて反応を停止させ、さらに大量のメタノールで共重合体を分離し、70℃で真空乾燥し、共重合体A(ブロック共重合体)を得た。得られた共重合体Aの収量は12.50gであった。
得られた共重合体Aについて、ミクロ構造、エチレン含有率、重量平均分子量(Mw)、分子量分布(Mw/Mn)、ブロックポリエチレン融解温度(DSCピーク温度)及び連鎖構造を上記の方法で測定・評価した。共重合体Aの13C−NMRスペクトルチャートを図2に、DSC曲線を図3に示す。
共重合体A中のブタジエン部分のミクロ構造として、シス−1,4−結合量は98%、1,2−ビニル結合量は1.2%であった。
重量平均分子量Mwは350000であり、分子量分布Mw/Mnは、2.2であった。
エチレン含有率は7mol%(ブタジエン含有率は93mol%)であった。
ブロックポリエチレン融解温度(DSCピーク温度)は、121℃であり、連鎖構造はブロックであった。
(Preparation Example 1)
<Preparation of ethylene-butadiene-copolymer A (EBR1 in Tables 1 to 3)>
After adding 160 mL of toluene solution to a sufficiently dry 400 mL pressure-resistant glass reactor, ethylene was introduced at 0.8 MPa. On the other hand, in a glove box under a nitrogen atmosphere, bis (2-phenylindenyl) gadolinium bis (dimethylsilylamide) [(2-PhC 9 H 6 ) 2 GdN (SiHMe 2 ) 2 ] 28.5 μmol in a glass container. And 34.2 μmol of dimethylanilinium tetrakis (pentafluorophenyl) borate [Me 2 NHPhB (C 6 F 5 ) 4 ] and 1.43 mmol of diisobutylaluminum hydride were dissolved in 8 mL of toluene to obtain a catalyst solution. Thereafter, the catalyst solution was taken out from the glove box, an amount of 28.2 μmol in terms of gadolinium was added to the monomer solution, and polymerization was performed at room temperature for 5 minutes. Thereafter, 100 mL of a toluene solution containing 15.23 g (0.28 mol) of 1,3-butadiene was added while lowering the ethylene introduction pressure at a rate of 0.2 MPa / min, and polymerization was further performed for 90 minutes. After the polymerization, 1 mL of 2,2′-methylene-bis (4-ethyl-6-tert-butylphenol) (NS-5) 5% by mass of isopropanol solution was added to stop the reaction, and a copolymer with a large amount of methanol was added. Was separated and vacuum dried at 70 ° C. to obtain a copolymer A (block copolymer). The yield of the obtained copolymer A was 12.50 g.
For the obtained copolymer A, the microstructure, ethylene content, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), block polyethylene melting temperature (DSC peak temperature) and chain structure were measured by the above methods. evaluated. The 13 C-NMR spectrum chart of copolymer A is shown in FIG. 2, and the DSC curve is shown in FIG.
As the microstructure of the butadiene portion in the copolymer A, the cis-1,4-bond amount was 98%, and the 1,2-vinyl bond amount was 1.2%.
The weight average molecular weight Mw was 350,000, and the molecular weight distribution Mw / Mn was 2.2.
The ethylene content was 7 mol% (butadiene content was 93 mol%).
The block polyethylene melting temperature (DSC peak temperature) was 121 ° C., and the chain structure was a block.

(調製例2)
<エチレン−ブタジエン−共重合体B(表2におけるEBR2)の調製>
十分に乾燥した2Lステンレス反応器に、トルエン150mlを添加した後、エチレンを0.8MPaで導入した。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にビス(2−フェニル−1−メチルインデニル)ガドリニウムビス(ジメチルシリルアミド)[(2−Ph−1−MeCGdN(SiHMe]14.5μmol、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート(PhCB(C)14.1μmol、及びジイソブチルアルミニウムハイドライド0.87mmolを仕込み、トルエン5mlに溶解させて触媒溶液とした。その後、グローブボックスから触媒溶液を取り出し、ガドリニウム換算で14.1μmolとなる量をモノマー溶液へ添加し、50℃で5分間重合を行った。その後、エチレンの導入圧力を0.2MPa/minの速度で低下させながら、1,3−ブタジエン3.05g(0.056mol)を含むトルエン溶液20mlを添加した後、さらに15分間重合を行った。次に、「エチレンの導入圧力を0.8MPaに戻し5分間重合を行い、その後、エチレンの導入圧力を0.2MPa/minの速度で低下させながら、1,3−ブタジエン6.09g(0.113mol)を含むトルエン溶液40mlを添加し、その後さらに30分間重合を行う」という操作を計3回繰り返した。重合後、2,2‘−メチレンービス(4−エチル−6−t−ブチルフェノール)(NS−5)5質量%のイソプロパノール溶液1mlを加えて反応を停止させ、さらに大量のメタノールで共重合体を分離し、70℃で真空乾燥し、共重合体B(マルチブロック共重合体)を得た。得られた共重合体Bの収量は28.55gであった。
得られた共重合体Bについて、ミクロ構造、エチレン含有率、重量平均分子量(Mw)、分子量分布(Mw/Mn)、ブロックポリエチレン融解温度(DSCピーク温度)及び連鎖構造を上記の方法で測定・評価した。
共重合体B中のブタジエン部分のミクロ構造として、シス−1,4−結合量は97%、1,2−ビニル結合量は1.8%であった。
重量平均分子量Mwは221000であり、分子量分布Mw/Mnは、3.13であった。
エチレン含有率は45mol%(ブタジエン含有率は55mol%)であった。
ブロックポリエチレン融解温度(DSCピーク温度)は、122℃であり、連鎖構造はマルチブロックであった。
(Preparation Example 2)
<Preparation of ethylene-butadiene-copolymer B (EBR2 in Table 2)>
After adding 150 ml of toluene to a sufficiently dry 2 L stainless steel reactor, ethylene was introduced at 0.8 MPa. On the other hand, in a glove box under a nitrogen atmosphere, a bis (2-phenyl-1-methylindenyl) gadolinium bis (dimethylsilylamide) [(2-Ph-1-MeC 9 H 5 ) 2 GdN ( SiHMe 2 ) 2 ] 14.5 μmol, triphenylcarbonium tetrakis (pentafluorophenyl) borate (Ph 3 CB (C 6 F 5 ) 4 ) 14.1 μmol, and diisobutylaluminum hydride 0.87 mmol were charged and dissolved in 5 ml of toluene. To give a catalyst solution. Thereafter, the catalyst solution was taken out from the glove box, an amount of 14.1 μmol in terms of gadolinium was added to the monomer solution, and polymerization was carried out at 50 ° C. for 5 minutes. Thereafter, 20 ml of a toluene solution containing 3.05 g (0.056 mol) of 1,3-butadiene was added while lowering the ethylene introduction pressure at a rate of 0.2 MPa / min, and polymerization was further performed for 15 minutes. Next, “the ethylene introduction pressure was returned to 0.8 MPa, polymerization was performed for 5 minutes, and then the ethylene introduction pressure was reduced at a rate of 0.2 MPa / min, while 6.09 g (0. The operation of adding 40 ml of a toluene solution containing 113 mol) and then performing polymerization for another 30 minutes was repeated a total of 3 times. After the polymerization, 1 ml of 2,2′-methylene-bis (4-ethyl-6-t-butylphenol) (NS-5) 5% by mass isopropanol solution was added to stop the reaction, and the copolymer was separated with a large amount of methanol. And vacuum-dried at 70 ° C. to obtain a copolymer B (multi-block copolymer). The yield of the obtained copolymer B was 28.55g.
For the obtained copolymer B, the microstructure, ethylene content, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), block polyethylene melting temperature (DSC peak temperature) and chain structure were measured by the above methods. evaluated.
As the microstructure of the butadiene portion in the copolymer B, the cis-1,4-bond amount was 97% and the 1,2-vinyl bond amount was 1.8%.
The weight average molecular weight Mw was 221000, and the molecular weight distribution Mw / Mn was 3.13.
The ethylene content was 45 mol% (butadiene content was 55 mol%).
The block polyethylene melting temperature (DSC peak temperature) was 122 ° C., and the chain structure was multiblock.

(調製例3)
<エチレン−ブタジエン−共重合体C(表2におけるEBR3)の調製>
十分に乾燥した400ml耐圧ガラス反応器に、トルエン溶液100mlを添加した後、エチレンを0.8MPaで導入した。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にビス(2−フェニルインデニル)ガドリニウムビス(ジメチルシリルアミド)[(2−PhCGdN(SiHMe]28.5μmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート[MeNHPhB(C]34.2μmol、及びジイソブチルアルミニウムハイドライド1.43mmolを仕込み、トルエン8mlに溶解させて触媒溶液とした。その後、グローブボックスから触媒溶液を取り出し、ガドリニウム換算で28.2μmolとなる量をモノマー溶液へ添加し、室温で5分間重合を行った。その後、エチレンの導入圧力を0.2MPa/minの速度で低下させながら、1,3−ブタジエン4.57g(0.085mol)を含むトルエン溶液30mlを添加した後、さらに60分間重合を行った。次に、「エチレンの導入圧力を0.8MPaに戻し5分間重合を行い、その後エチレンの導入圧力を0.2MPa/minの速度で低下させながら、1,3−ブタジエン4.57g(0.085mol)を含むトルエン溶液30mlを添加し、その後さらに60分間重合を行う」という操作を計3回繰り返した。重合後、2,2’−メチレン−ビス(4−エチル−6−t−ブチルフェノール)(NS−5)5質量%のイソプロパノール溶液1mlを加えて反応を停止させ、さらに大量のメタノールで共重合体を分離し、70℃で真空乾燥し、共重合体C(マルチブロック共重合体)を得た。得られた共重合体Cの収量は14.00gであった。
得られた共重合体Cについて、ミクロ構造、エチレン含有率、重量平均分子量(Mw)、分子量分布(Mw/Mn)、ブロックポリエチレン融解温度(DSCピーク温度)及び連鎖構造を上記の方法で測定・評価した。
共重合体C中のブタジエン部分のミクロ構造として、シス−1,4−結合量は97%、1,2−ビニル結合量は1.2%であった。
重量平均分子量Mwは283000であり、分子量分布Mw/Mnは、2.80であった。
エチレン含有率は13mol%(ブタジエン含有率は87mol%)であった。
ブロックポリエチレン融解温度(DSCピーク温度)は、121℃であり、連鎖構造はマルチブロックであった。
(Preparation Example 3)
<Preparation of ethylene-butadiene-copolymer C (EBR3 in Table 2)>
After adding 100 ml of toluene solution to a sufficiently dried 400 ml pressure-resistant glass reactor, ethylene was introduced at 0.8 MPa. On the other hand, bis (2-phenylindenyl) gadolinium bis (dimethylsilylamide) [(2-PhC 9 H 6 ) 2 GdN (SiHMe 2 ) 2 ] 28.5 μmol in a glass container in a glove box under a nitrogen atmosphere. , 34.2 μmol of dimethylanilinium tetrakis (pentafluorophenyl) borate [Me 2 NHPhB (C 6 F 5 ) 4 ] and 1.43 mmol of diisobutylaluminum hydride were dissolved in 8 ml of toluene to obtain a catalyst solution. Thereafter, the catalyst solution was taken out from the glove box, an amount of 28.2 μmol in terms of gadolinium was added to the monomer solution, and polymerization was performed at room temperature for 5 minutes. Thereafter, 30 ml of a toluene solution containing 4.57 g (0.085 mol) of 1,3-butadiene was added while lowering the ethylene introduction pressure at a rate of 0.2 MPa / min, and polymerization was further performed for 60 minutes. Next, “the ethylene introduction pressure was returned to 0.8 MPa, polymerization was performed for 5 minutes, and then the ethylene introduction pressure was decreased at a rate of 0.2 MPa / min, while 4.57 g of 1,3-butadiene (0.085 mol). The operation of “addition of 30 ml of a toluene solution containing) followed by further polymerization for 60 minutes” was repeated a total of 3 times. After the polymerization, 1 ml of 2,2′-methylene-bis (4-ethyl-6-tert-butylphenol) (NS-5) 5% by mass of isopropanol solution was added to stop the reaction, and a copolymer with a large amount of methanol was added. Was separated and vacuum dried at 70 ° C. to obtain a copolymer C (multi-block copolymer). The yield of the obtained copolymer C was 14.00 g.
For the obtained copolymer C, the microstructure, ethylene content, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), block polyethylene melting temperature (DSC peak temperature) and chain structure were measured by the above methods. evaluated.
As the microstructure of the butadiene portion in the copolymer C, the cis-1,4-bond amount was 97% and the 1,2-vinyl bond amount was 1.2%.
The weight average molecular weight Mw was 283000, and the molecular weight distribution Mw / Mn was 2.80.
The ethylene content was 13 mol% (butadiene content was 87 mol%).
The block polyethylene melting temperature (DSC peak temperature) was 121 ° C., and the chain structure was multiblock.

(調製例4)
<エチレン−ブタジエン−共重合体D(表2におけるEBR4)の調製>
十分に乾燥した400ml耐圧ガラス反応器に、トルエン溶液160mlを添加した後、エチレンを0.8MPaで導入した。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にビス(2−フェニルインデニル)ガドリニウムビス(ジメチルシリルアミド)[(2−PhCGdN(SiHMe]28.5μmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート[MeNHPhB(C]34.2μmol、及びジイソブチルアルミニウムハイドライド1.43mmolを仕込み、トルエン8mlに溶解させて触媒溶液とした。その後、グローブボックスから触媒溶液を取り出し、ガドリニウム換算で28.2μmolとなる量をモノマー溶液へ添加し、室温で5分間重合を行った。その後、エチレンの導入圧力を0.2MPa/minの速度で低下させながら、1,3−ブタジエン15.23g(0.28mol)を含むトルエン溶液100mlを添加した後、さらに90分間重合を行った。重合後、2,2’−メチレン−ビス(4−エチル−6−t−ブチルフェノール)(NS−5)5質量%のイソプロパノール溶液1mlを加えて反応を停止させ、さらに大量のメタノールで共重合体を分離し、70℃で真空乾燥し、共重合体D(ブロック共重合体)を得た。得られた共重合体Dの収量は12.50gであった。
得られた共重合体Dについて、ミクロ構造、エチレン含有率、重量平均分子量(Mw)、分子量分布(Mw/Mn)、ブロックポリエチレン融解温度(DSCピーク温度)及び連鎖構造を上記の方法で測定・評価した。
共重合体D中のブタジエン部分のミクロ構造として、シス−1,4−結合量は98%、1,2−ビニル結合量は1.2%であった。
重量平均分子量Mwは350000であり、分子量分布Mw/Mnは、2.20であった。
エチレン含有率は7mol%(ブタジエン含有率は93mol%)であった。
ブロックポリエチレン融解温度(DSCピーク温度)は、121℃であり、連鎖構造はブロックであった。
(Preparation Example 4)
<Preparation of ethylene-butadiene-copolymer D (EBR4 in Table 2)>
After adding 160 ml of a toluene solution to a sufficiently dried 400 ml pressure-resistant glass reactor, ethylene was introduced at 0.8 MPa. On the other hand, bis (2-phenylindenyl) gadolinium bis (dimethylsilylamide) [(2-PhC 9 H 6 ) 2 GdN (SiHMe 2 ) 2 ] 28.5 μmol in a glass container in a glove box under a nitrogen atmosphere. , 34.2 μmol of dimethylanilinium tetrakis (pentafluorophenyl) borate [Me 2 NHPhB (C 6 F 5 ) 4 ] and 1.43 mmol of diisobutylaluminum hydride were dissolved in 8 ml of toluene to obtain a catalyst solution. Thereafter, the catalyst solution was taken out from the glove box, an amount of 28.2 μmol in terms of gadolinium was added to the monomer solution, and polymerization was performed at room temperature for 5 minutes. Thereafter, 100 ml of a toluene solution containing 15.23 g (0.28 mol) of 1,3-butadiene was added while lowering the ethylene introduction pressure at a rate of 0.2 MPa / min, and polymerization was further performed for 90 minutes. After the polymerization, 1 ml of 2,2′-methylene-bis (4-ethyl-6-tert-butylphenol) (NS-5) 5% by mass of isopropanol solution was added to stop the reaction, and a copolymer with a large amount of methanol was added. Was separated and vacuum-dried at 70 ° C. to obtain a copolymer D (block copolymer). The yield of the obtained copolymer D was 12.50 g.
For the obtained copolymer D, the microstructure, ethylene content, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), block polyethylene melting temperature (DSC peak temperature) and chain structure were measured by the above methods. evaluated.
As the microstructure of the butadiene portion in the copolymer D, the cis-1,4-bond amount was 98%, and the 1,2-vinyl bond amount was 1.2%.
The weight average molecular weight Mw was 350,000, and the molecular weight distribution Mw / Mn was 2.20.
The ethylene content was 7 mol% (butadiene content was 93 mol%).
The block polyethylene melting temperature (DSC peak temperature) was 121 ° C., and the chain structure was a block.

(調製例5)
<エチレン−ブタジエン−共重合体E(表3におけるEBR5)の調製>
十分に乾燥した400mL耐圧ガラス反応器に、1,3−ブタジエン1.57g(0.029mol)を含むトルエン溶液110mLを添加した後、エチレンを0.8MPaで導入した。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にジメチルアルミニウム(μ−ジメチル)ビス(ベンタメテルシクロペンタジエニル)プラセオジウム[((CMeP(μ−Me)AlMe]30.0μmol、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート(PhCB(C)30.0μmo1、及びトリイソブチルアルミニウム0.60mmolを仕込み、トルエン8mLに溶解させて触媒溶液とした。その後、グローブボックスから触媒溶液を取り出し、ガドリニウム換算で29.0μmolとなる量をモノマー溶液へ添加し、室温で20分間重合を行った。その後、新たに1,3−ブタジエン3.13g(0.058mol)を含むトルエン溶液20mLを添加した後、さらに30分間重合を行う操作を2回繰り返した。重合後、2,2’−メチレン−ビス(4−エチル−6−t−ブチルフェノール)(NS−5)5質量%のイソプロパノール溶液1mLを加えて反応を停止させ、さらに大量のメタノールで共重合体を分離し、70℃で真空乾燥し、共重合体Eを得た。得られた共重合体Eの収量は9.70gであった。
得られた共重合体Eについて、ミクロ構造、エチレン含有率、重量平均分子量(Mw)、分子量分布(Mw/Mn)、ブロックポリエチレン融解温度(DSCピーク温度)及び連鎖構造を上記の方法で測定・評価した。
共重合体E中のブタジエン部分のミクロ構造として、シス−1,4−結合量は45%であった。
重量平均分子量Mwは252000であり、分子量分布Mw/Mnは、5.1であった。
エチレン含有率は32mol%(ブタジエン含有率は68mol%)であった。
(Preparation Example 5)
<Preparation of ethylene-butadiene-copolymer E (EBR5 in Table 3)>
After adding 110 mL of a toluene solution containing 1.57 g (0.029 mol) of 1,3-butadiene to a sufficiently dried 400 mL pressure-resistant glass reactor, ethylene was introduced at 0.8 MPa. On the other hand, in a glove box under a nitrogen atmosphere, dimethylaluminum (μ-dimethyl) bis (bentamtercyclopentadienyl) praseodymium [((C 5 Me 5 ) 2 P (μ-Me) 2 AlMe 2 ] 30.0 μmol, triphenylcarbonium tetrakis (pentafluorophenyl) borate (Ph 3 CB (C 6 F 5 ) 4 ) 30.0 μmol, and triisobutylaluminum 0.60 mmol were charged and dissolved in 8 mL of toluene to obtain a catalyst solution. Thereafter, the catalyst solution was taken out from the glove box, and an amount of 29.0 μmol in terms of gadolinium was added to the monomer solution, and polymerization was carried out at room temperature for 20 minutes. (20 mL of toluene solution containing 0.058 mol) was added. After the polymerization, the operation of carrying out the polymerization for 30 minutes was repeated twice, and after the polymerization, an isopropanol solution containing 5% by mass of 2,2′-methylene-bis (4-ethyl-6-tert-butylphenol) (NS-5). 1 mL was added to stop the reaction, and the copolymer was further separated with a large amount of methanol, followed by vacuum drying at 70 ° C. to obtain a copolymer E. The yield of the obtained copolymer E was 9.70 g. there were.
For the obtained copolymer E, the microstructure, ethylene content, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), block polyethylene melting temperature (DSC peak temperature) and chain structure were measured by the above methods. evaluated.
As a microstructure of the butadiene portion in the copolymer E, the cis-1,4-bond amount was 45%.
The weight average molecular weight Mw was 252000, and the molecular weight distribution Mw / Mn was 5.1.
The ethylene content was 32 mol% (butadiene content was 68 mol%).

(調製例6)
<エチレン−ブタジエン−共重合体F(表3におけるEBR6)の調製>
十分に乾燥した400mL耐圧ガラス反応器に、1,3−ブタジエン23.78g(0.44mol)を含むトルエン溶液300mLを添加した後、エチレンを0.8MPaで導入した。一方、窒素雰囲気下の中で、ガラス製容器にトリスビストリメチルシリルアミドネオジウム[Nd〔N(SiMe)]を500μmol、MeNHPhB(C600μmol、及びジイソブチルアルミニウムハイドライド10.0mmolを仕込み、トルエン25mLに溶解させて触媒溶液とした。その後、グローブボックスから触媒溶液を取り出し、ネオジウム換算で440μmolとなる量をモノマー溶液へ添加し、室温で180分間重合を行った。重合後、NS−5、5質量%のイソプロパノール溶液1mLを加えて反応を停止させ、さらに大量のメタノールで共重合体を分離し、70℃で真空乾燥し、共重合体Fを得た。得られた共重合体Fの収量は35.50gであった。
得られた共重合体Fについて、ミクロ構造、エチレン含有率、重量平均分子量(Mw)、分子量分布(Mw/Mn)、ブロックポリエチレン融解温度(DSCピーク温度)及び連鎖構造を上記の方法で測定・評価した。
共重合体F中のブタジエン部分のミクロ構造として、シス−1,4−結合量は58%であった。
重量平均分子量Mwは114000であり、分子量分布Mw/Mnは、16.4であった。
エチレン含有率は54mol%(ブタジエン含有率は46mol%)
(Preparation Example 6)
<Preparation of ethylene-butadiene-copolymer F (EBR6 in Table 3)>
After adding 300 mL of a toluene solution containing 23.78 g (0.44 mol) of 1,3-butadiene to a sufficiently dry 400 mL pressure-resistant glass reactor, ethylene was introduced at 0.8 MPa. On the other hand, in a nitrogen atmosphere, 500 μmol of trisbistrimethylsilylamide neodymium [Nd [N (SiMe) 2 ] 3 ], Me 2 NHPhB (C 6 F 5 ) 4 600 μmol, and diisobutylaluminum hydride in a glass container. 0 mmol was charged and dissolved in 25 mL of toluene to obtain a catalyst solution. Thereafter, the catalyst solution was taken out from the glove box, an amount of 440 μmol in terms of neodymium was added to the monomer solution, and polymerization was performed at room temperature for 180 minutes. After polymerization, 1 mL of NS-5, 5 mass% isopropanol solution was added to stop the reaction, and the copolymer was separated with a large amount of methanol, followed by vacuum drying at 70 ° C. to obtain copolymer F. The yield of the obtained copolymer F was 35.50 g.
For the obtained copolymer F, the microstructure, ethylene content, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), block polyethylene melting temperature (DSC peak temperature) and chain structure were measured by the above methods. evaluated.
As the microstructure of the butadiene portion in the copolymer F, the cis-1,4-bond amount was 58%.
The weight average molecular weight Mw was 114,000, and the molecular weight distribution Mw / Mn was 16.4.
Ethylene content is 54 mol% (butadiene content is 46 mol%)

Figure 0005707294
Figure 0005707294

Figure 0005707294
Figure 0005707294

Figure 0005707294
Figure 0005707294

表1〜表3における*1〜*8は以下を示す。
*1 天然ゴム:RSS #1
*2 スチレン−ブタジエンゴム、商品名「SBR1500」、JSR(株)製(スチレン含量235質量%)
*3 エチレン−プロピレン−ジエン三元共重合体ゴム(非共役ジエン化合物−非共役オレフィン共重合体)、商品名「EP35」、JSR(株)製
*4 商品名「シーストKH(N339)」、東海カーボン(株)製
*5 N−(1,3−ジメチルブチル)−N’−p−フェニレンジアミン(大内新興化学(株)社製、商品名「ノックラック6C」)
*6 プロセスオイル(出光興産製、商品名:ダイアナプロセスNH−70S)
*7 N−シクロヘキシル−2−ベンゾチア ジルスルフェンアミド(大内新興化学工業(株)製、商品名「ノクセラーCZ」)
*8 2−メルカプトベンゾチアゾール(大内新興化学(株)社製、商品名「ノクセラーM」)
* 1 to * 8 in Tables 1 to 3 indicate the following.
* 1 Natural rubber: RSS # 1
* 2 Styrene-butadiene rubber, trade name “SBR1500”, manufactured by JSR Corporation (styrene content: 235% by mass)
* 3 Ethylene-propylene-diene terpolymer rubber (non-conjugated diene compound-non-conjugated olefin copolymer), trade name “EP35”, manufactured by JSR Co., Ltd. * 4 trade name “Seast KH (N339)”, * 5 N- (1,3-dimethylbutyl) -N'-p-phenylenediamine manufactured by Tokai Carbon Co., Ltd. (trade name “Nockluck 6C” manufactured by Ouchi Shinsei Chemical Co., Ltd.)
* 6 Process oil (made by Idemitsu Kosan, trade name: Diana Process NH-70S)
* 7 N-Cyclohexyl-2-benzothia disulfenamide (Ouchi Shinsei Chemical Co., Ltd., trade name “Noxeller CZ”)
* 8 2-Mercaptobenzothiazole (Ouchi Shinsei Chemical Co., Ltd., trade name "Noxeller M")

表1〜3より、共役ジエン系重合体と、共役ジエン化合物と非共役オレフィンとの共重合体とを含むゴム成分100質量部に対し、前記共重合体を30質量部〜40質量部含む実施例は、前記ゴム成分100質量部に対し、前記共重合体を30質量部〜50質量部含まない比較例と比べて、接着性及び耐オゾン性(耐候性)を向上させることができることが分かる。 Implementation which contains 30-40 mass parts of said copolymers with respect to 100 mass parts of rubber components containing a conjugated diene polymer and a copolymer of a conjugated diene compound and a nonconjugated olefin from Tables 1-3. The example shows that the adhesiveness and ozone resistance (weather resistance) can be improved with respect to 100 parts by mass of the rubber component as compared with the comparative example not containing 30 to 50 parts by mass of the copolymer. .

表1より、共役ジエン重合体としてスチレン−ブタジエン共重合体ゴム及び天然ゴムを用いた実施例1は、共役ジエン重合体としてスチレン−ブタジエン共重合体ゴムのみを用いた比較例8、及び、共役ジエン重合体として天然ゴムのみを用いた比較例7と比べて、強力(接着力)を向上させることができることが分かる。
From Table 1, Example 1 using styrene-butadiene copolymer rubber and natural rubber as the conjugated diene polymer is Comparative Example 8 using only styrene-butadiene copolymer rubber as the conjugated diene polymer. It can be seen that the strength (adhesive force) can be improved as compared with Comparative Example 7 using only natural rubber as the diene polymer.

本発明のゴム組成物は、例えば、コンベアベルトのカバーゴムに好適に用いることができる。   The rubber composition of this invention can be used suitably for the cover rubber of a conveyor belt, for example.

1 カバーゴム層
2 接着ゴム層
3 芯体
1 Cover rubber layer 2 Adhesive rubber layer 3 Core body

Claims (10)

ゴム成分中に、共役ジエン系重合体と、共役ジエン化合物と非共役オレフィンとの共重合体とを含むコンベアベルト用ゴム組成物であって、前記ゴム成分100質量部に対し、前記共重合体を30質量部〜40質量部含み、
前記共重合体において、前記共役ジエン化合物由来部分の割合が68mol%〜93mol%であり、
前記共役ジエン系重合体は、スチレン−ブタジエン共重合体ゴム、並びに、天然ゴム及びポリイソプレンの少なくともいずれかを含む
ことを特徴とするコンベアベルト用ゴム組成物。
A rubber composition for a conveyor belt comprising a conjugated diene polymer and a copolymer of a conjugated diene compound and a non-conjugated olefin in a rubber component, the copolymer being used with respect to 100 parts by mass of the rubber component 30 parts by weight to 40 parts by weight of only including,
In the copolymer, the proportion of the conjugated diene compound-derived portion is 68 mol% to 93 mol%,
The rubber composition for a conveyor belt, wherein the conjugated diene polymer includes a styrene-butadiene copolymer rubber, and at least one of natural rubber and polyisoprene .
前記共重合体は、前記共役ジエン化合物由来部分のシス−1,4結合量が50%以上であることを特徴とする請求項1に記載のコンベアベルト用ゴム組成物。 The copolymer, the conjugated diene compound conveyor belts rubber composition according to claim 1, wherein the cis-1,4 bond content derived from portions is 50% or more. 前記共重合体のポリスチレン換算重量平均分子量は、10,000〜10,000,000であることを特徴とする請求項1又は2に記載のコンベアベルト用ゴム組成物。 The rubber composition for conveyor belts according to claim 1 or 2 , wherein the copolymer has a weight average molecular weight in terms of polystyrene of 10,000 to 10,000,000. 前記共重合体の分子量分布(Mw/Mn)は、10以下であることを特徴とする請求項1からのいずれかに記載のコンベアベルト用ゴム組成物。 The rubber composition for a conveyor belt according to any one of claims 1 to 3 , wherein a molecular weight distribution (Mw / Mn) of the copolymer is 10 or less. 前記非共役オレフィンは、非環状オレフィンであることを特徴とする請求項1からのいずれかに記載のコンベアベルト用ゴム組成物。 The rubber composition for a conveyor belt according to any one of claims 1 to 4 , wherein the non-conjugated olefin is an acyclic olefin. 前記非共役オレフィンの炭素数は、2〜10であることを特徴とする請求項1からのいずれかに記載のコンベアベルト用ゴム組成物。 The rubber composition for a conveyor belt according to any one of claims 1 to 5 , wherein the non-conjugated olefin has 2 to 10 carbon atoms. 前記非共役オレフィンは、エチレン、プロピレン、及び1−ブテンからなる群から選択される少なくとも1種であることを特徴とする請求項1からのいずれかに記載のコンベアベルト用ゴム組成物。 The rubber composition for a conveyor belt according to any one of claims 1 to 6 , wherein the non-conjugated olefin is at least one selected from the group consisting of ethylene, propylene, and 1-butene. 前記非共役オレフィンは、エチレンであることを特徴とする請求項に記載のコンベアベルト用ゴム組成物。 The rubber composition for a conveyor belt according to claim 7 , wherein the non-conjugated olefin is ethylene. 前記共役ジエン化合物は、1,3−ブタジエン及びイソプレンの少なくともいずれかであることを特徴とする請求項1からのいずれかに記載のコンベアベルト用ゴム組成物。 The rubber composition for a conveyor belt according to any one of claims 1 to 8 , wherein the conjugated diene compound is at least one of 1,3-butadiene and isoprene. 前記請求項1からのいずれかに記載のコンベアベルト用ゴム組成物を用いたことを特徴とするコンベアベルト。 A conveyor belt comprising the rubber composition for a conveyor belt according to any one of claims 1 to 9 .
JP2011220493A 2011-10-04 2011-10-04 Rubber composition for conveyor belt and conveyor belt using the same Expired - Fee Related JP5707294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011220493A JP5707294B2 (en) 2011-10-04 2011-10-04 Rubber composition for conveyor belt and conveyor belt using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011220493A JP5707294B2 (en) 2011-10-04 2011-10-04 Rubber composition for conveyor belt and conveyor belt using the same

Publications (2)

Publication Number Publication Date
JP2013079341A JP2013079341A (en) 2013-05-02
JP5707294B2 true JP5707294B2 (en) 2015-04-30

Family

ID=48525979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011220493A Expired - Fee Related JP5707294B2 (en) 2011-10-04 2011-10-04 Rubber composition for conveyor belt and conveyor belt using the same

Country Status (1)

Country Link
JP (1) JP5707294B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013107729A (en) * 2011-11-18 2013-06-06 Bridgestone Corp Rubber composition for conveyor belt, and conveyor belt using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6891532B2 (en) * 2017-02-22 2021-06-18 横浜ゴム株式会社 Rubber composition for conveyor belts, conveyor belts and belt conveyors

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0859846A (en) * 1994-08-15 1996-03-05 Showa Denko Kk Rubber composition improved in adhesion to synthetic fiber
JP3827256B2 (en) * 1996-10-24 2006-09-27 旭カーボン株式会社 Carbon black for compounding functional parts rubber and rubber composition for functional parts containing the same
JPH11228743A (en) * 1997-07-18 1999-08-24 Mitsui Chem Inc Unsaturated elastomer composition and its vulcanized rubber
JP2000154279A (en) * 1998-09-16 2000-06-06 Nippon Zeon Co Ltd Conjugated diene rubber composition containing crystalline segment
JP2000086857A (en) * 1998-09-16 2000-03-28 Nippon Zeon Co Ltd Conjugated diene rubber composition containing crystalline segment containing reinforcement
JP4965822B2 (en) * 2005-06-09 2012-07-04 株式会社ブリヂストン Wet masterbatch rubber composition and tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013107729A (en) * 2011-11-18 2013-06-06 Bridgestone Corp Rubber composition for conveyor belt, and conveyor belt using the same

Also Published As

Publication number Publication date
JP2013079341A (en) 2013-05-02

Similar Documents

Publication Publication Date Title
JP5918131B2 (en) Copolymer of conjugated diene compound and non-conjugated olefin, rubber composition, crosslinked rubber composition, and tire
JP5918134B2 (en) Copolymer of conjugated diene compound and non-conjugated olefin, rubber composition, and tire
JP5918132B2 (en) Copolymer of conjugated diene compound and non-conjugated olefin, rubber composition, crosslinked rubber composition, and tire
JP5918133B2 (en) Copolymer, rubber composition, crosslinked rubber composition, and tire
JP5739991B2 (en) Copolymer, rubber composition, crosslinked rubber composition, and tire
JP5909121B2 (en) Rubber composition for tire
WO2012105258A1 (en) Copolymer of conjugated diene compound and non-conjugated olefin, rubber composition, rubber composition for tire tread use, crosslinked rubber composition, and tire
JP5932224B2 (en) Copolymer, rubber composition, crosslinked rubber composition, and tire
JP5769577B2 (en) Rubber composition for crawler and rubber crawler using the same
JP2013107729A (en) Rubber composition for conveyor belt, and conveyor belt using the same
WO2013132849A1 (en) Rubber composition and tire having rubber composition
JP5917810B2 (en) Copolymer of conjugated diene compound and non-conjugated olefin, rubber composition, crosslinked rubber composition, and tire
JP5707294B2 (en) Rubber composition for conveyor belt and conveyor belt using the same
JP2013151583A (en) Rubber composition, bead filler, chafer and tire
JP5612511B2 (en) Rubber composition, crosslinked rubber composition, and tire
JP5612512B2 (en) Rubber composition, crosslinked rubber composition, and tire
JP5917813B2 (en) Rubber composition, tire tread rubber composition, crosslinked rubber composition, and tire
JP5656687B2 (en) Rubber composition, crosslinked rubber composition, and tire
JP5917808B2 (en) Copolymer, rubber composition, crosslinked rubber composition, and tire
JP5855930B2 (en) Rubber composition for hose and hydraulic hose using the same
JP5639506B2 (en) Rubber composition, crosslinked rubber composition, and tire
JP5656686B2 (en) Rubber composition, crosslinked rubber composition, and tire
JP2013155239A (en) Rubber composition, bead filler, and tire
JP2012197422A (en) Rubber composition and tire
JP2012180457A (en) Rubber composition, rubber composition for tire side use, crosslinked rubber composition, and tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150302

R150 Certificate of patent or registration of utility model

Ref document number: 5707294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees