JP5917808B2 - Copolymer, rubber composition, crosslinked rubber composition, and tire - Google Patents

Copolymer, rubber composition, crosslinked rubber composition, and tire Download PDF

Info

Publication number
JP5917808B2
JP5917808B2 JP2011023401A JP2011023401A JP5917808B2 JP 5917808 B2 JP5917808 B2 JP 5917808B2 JP 2011023401 A JP2011023401 A JP 2011023401A JP 2011023401 A JP2011023401 A JP 2011023401A JP 5917808 B2 JP5917808 B2 JP 5917808B2
Authority
JP
Japan
Prior art keywords
group
copolymer
conjugated diene
compound
conjugated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011023401A
Other languages
Japanese (ja)
Other versions
JP2012162627A (en
Inventor
堀川 泰郎
泰郎 堀川
会田 昭二郎
昭二郎 会田
タルディフ オリビエ
タルディフ オリビエ
純子 松下
純子 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011023401A priority Critical patent/JP5917808B2/en
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to BR112013019682A priority patent/BR112013019682A2/en
Priority to KR1020137023055A priority patent/KR101592907B1/en
Priority to US13/983,161 priority patent/US20140005321A1/en
Priority to CN2012800164049A priority patent/CN103476813A/en
Priority to EP20157213.8A priority patent/EP3670551A3/en
Priority to PCT/JP2012/000722 priority patent/WO2012105271A1/en
Priority to EP20120742203 priority patent/EP2671897A4/en
Priority to SG2013057823A priority patent/SG192211A1/en
Publication of JP2012162627A publication Critical patent/JP2012162627A/en
Application granted granted Critical
Publication of JP5917808B2 publication Critical patent/JP5917808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤに関し、特に、低発熱性に優れ、耐熱性、耐オゾン性に優れたゴムを製造するのに用いられ、共役ジエン化合物と非共役オレフィンとの共重合体、該共重合体を含むゴム組成物、該ゴム組成物を架橋して得られた架橋ゴム組成物、及び、前記ゴム組成物又は前記架橋ゴム組成物を用いたタイヤに関するものである。   The present invention relates to a copolymer of a conjugated diene compound and a non-conjugated olefin, a rubber composition, a cross-linked rubber composition, and a tire, and in particular, produces a rubber having excellent low heat generation, heat resistance, and ozone resistance. A copolymer of a conjugated diene compound and a non-conjugated olefin, a rubber composition containing the copolymer, a crosslinked rubber composition obtained by crosslinking the rubber composition, and the rubber composition Or a tire using the crosslinked rubber composition.

2種類以上の単量体を同一の反応系で重合すると、1本の重合体鎖中にそれらの単量体
単位を繰り返し単位として含む共重合体が生成される。しかしながら、共役ジエン化合物
と非共役オレフィンとの重合反応によって得られた共重合体中の共役ジエン化合物部分の
1,2付加体部分(3,4付加体部分を含む)含量(共役ジエン化合物由来部分における共役ジエン化合物の1,2付加体部分(3,4付加体部分を含む)含量)については、報告されていない。
When two or more types of monomers are polymerized in the same reaction system, a copolymer containing those monomer units as repeating units in one polymer chain is produced. However, the content of 1,2 adducts (including 3,4 adducts) of the conjugated diene compound in the copolymer obtained by the polymerization reaction of the conjugated diene compound and the nonconjugated olefin (part derived from the conjugated diene compound) The 1,2 adduct portion (including the 3,4 adduct portion content) of the conjugated diene compound in the above has not been reported.

例えば、特開2000−154210号公報(特許文献1)には、シクロペンタジエン
環構造を有する周期律表第IV族遷移金属化合物を含む共役ジエン重合用触媒が開示され
ており、該共役ジエンと共重合可能な単量体として、エチレン等のα-オレフィンが例示
されているが、共重合体中の共役ジエン化合物部分の1,2付加体部分(3,4付加体部分を含む)含量については、全く言及されておらず、1,2付加体部分(3,4付加体部分を含む)含量5mol%以下にすることで、低発熱性に優れ、耐熱性、耐オゾン性に優れたゴム組成物が得られる点について記載も示唆もされていない。
また、特開2006−249442号公報(特許文献2)には、α-オレフィンと共役ジエン化合物との共重合体が開示されるものの、共重合体中の共役ジエン化合物部分の1,2付加体部分(3,4付加体部分を含む)含量については、全く言及されておらず、1,2付加体部分(3,4付加体部分を含む)含量を5mol%以下にすることで、低発熱性に優れ、耐熱性、耐オゾン性に優れたゴム組成物が得られる点について記載も示唆もされていない。
また、特表2006−503141号公報(特許文献3)には、特殊な有機金属錯体を触媒成分として用いて合成したエチレンとブタジエンとの共重合体が開示されるものの、単量体であるブタジエンがトランス-1,2-シクロヘキサンの形態で共重合体中に挿入されることのみが記載されており、共重合体中の共役ジエン化合物部分の1,2付加体部分(3,4付加体部分を含む)含量については、全く言及されておらず、1,2付加体部分(3,4付加体部分を含む)含量5mol%以下にすることで、低発熱性に優れ、耐熱性、耐オゾン性に優れたゴム組成物が得られる点について記載も示唆もされていない。
For example, Japanese Patent Laid-Open No. 2000-154210 (Patent Document 1) discloses a conjugated diene polymerization catalyst containing a Group IV transition metal compound having a cyclopentadiene ring structure, which is co-polymerized with the conjugated diene. Examples of polymerizable monomers include α-olefins such as ethylene. Regarding the content of 1,2-adduct parts (including 3,4-adduct parts) of the conjugated diene compound part in the copolymer The rubber composition is excellent in low heat buildup, heat resistance and ozone resistance by making the content of 1,2 adduct (including 3,4 adduct) 5 mol% or less. There is no mention or suggestion of what can be obtained.
Japanese Patent Laid-Open No. 2006-249442 (Patent Document 2) discloses a copolymer of an α-olefin and a conjugated diene compound, but a 1,2 adduct of a conjugated diene compound portion in the copolymer. The content of the part (including the 3,4 adduct part) is not mentioned at all, and the content of the 1,2 adduct part (including the 3,4 adduct part) is 5 mol% or less, thereby reducing heat generation. There is no description or suggestion that a rubber composition excellent in heat resistance, heat resistance and ozone resistance can be obtained.
In addition, JP-T-2006-503141 (Patent Document 3) discloses a copolymer of ethylene and butadiene synthesized using a special organometallic complex as a catalyst component, but butadiene as a monomer. Is inserted into the copolymer in the form of trans-1,2-cyclohexane, and the 1,2-adduct part (3,4-adduct part) of the conjugated diene compound part in the copolymer is described. The content of 1, 2 adducts (including 3 and 4 adducts) is 5 mol% or less, and is excellent in low heat generation, heat resistance and ozone resistance. There is no description or suggestion that a rubber composition having excellent properties can be obtained.

また、特開平11−228743号公報(特許文献4)には、耐熱性等に優れた加硫物を得るために用いられ、不飽和性オレフィン系共重合体とゴムとからなる不飽和性エラストマー組成物が開示され、1,2付加体(3,4付加体を含む)に由来する側鎖の2重結合と、1,4付加体に由来する主鎖の2重結合との量比について言及されているものの、共役ジエン化合物部分の1,2付加体部分(3,4付加体部分を含む)含量が5mol%以下である共重合体を用いることについては、特開平11−228743号公報(特許文献4)には記載も示唆もされていない。さらに、1,2付加体部分(3,4付加体部分を含む)含量5mol%以下にすることで、低発熱性に優れ、耐熱性、耐オゾン性に優れたゴム組成物が得られる点について、特開平11−228743号公報(特許文献4)には記載も示唆もされていない。   Japanese Patent Application Laid-Open No. 11-228743 (Patent Document 4) describes an unsaturated elastomer used for obtaining a vulcanizate having excellent heat resistance and the like and comprising an unsaturated olefin copolymer and rubber. A composition is disclosed, and a quantitative ratio between a double bond of a side chain derived from a 1,2 adduct (including a 3,4 adduct) and a double bond of a main chain derived from a 1,4 adduct Although mentioned, the use of a copolymer having a conjugated diene compound portion having a 1,2 adduct portion (including 3,4 adduct portion) content of 5 mol% or less is disclosed in JP-A-11-228743. (Patent Document 4) is neither described nor suggested. Further, by setting the content of 1,2 adduct portion (including 3,4 adduct portion) to 5 mol% or less, a rubber composition having excellent low heat generation, heat resistance and ozone resistance can be obtained. JP-A-11-228743 (Patent Document 4) neither describes nor suggests.

また、特開2000−86857号公報(特許文献5)には、低温反発弾性等に優れたゴム組成物を得るために用いられ、ビニル含有量(ビニル結合量)が6%であり、シス含有量%が92%であり、エチレン含有量が3%又は9%のブタジエン重合体が開示されている。しかしながら、共役ジエン化合物部分の1,2付加体部分(3,4付加体部分を含む)含量が5mol%以下である共重合体を用いることで、低発熱性に優れ、耐熱性、耐オゾン性に優れたゴム組成物を得ることについては、特開2000−86857号公報(特許文献5)には記載も示唆もされていない。   JP-A-2000-86857 (Patent Document 5) is used to obtain a rubber composition excellent in low-temperature resilience and the like, and has a vinyl content (vinyl bond content) of 6% and a cis content. A butadiene polymer with a% by volume of 92% and an ethylene content of 3% or 9% is disclosed. However, by using a copolymer in which the content of 1,2-adduct (including 3,4-adduct) in the conjugated diene compound is 5 mol% or less, it is excellent in low heat generation, heat resistance and ozone resistance. Japanese Patent Application Laid-Open No. 2000-86857 (Patent Document 5) neither describes nor suggests obtaining an excellent rubber composition.

さらに、特開2000−154279号公報(特許文献6)には、低温反発弾性等に優れたゴム組成物を得るために用いられ、シス含有量%が40%で以上ある共役ジエン系重合体セグメントを含む共役ジエン系ゴム組成物が開示され、また、実施例には、1,2−ビニル結合量が90%であるポリブタジエンが開示されている。しかしながら、共役ジエン化合物部分の1,2付加体部分(3,4付加体部分を含む)含量が5mol%以下である共重合体を用いることで、低発熱性に優れ、耐熱性、耐オゾン性に優れたゴム組成物を得ることについては、特開2000−154279号公報(特許文献6)には記載も示唆もされていない。   Furthermore, JP 2000-154279 A (Patent Document 6) uses a conjugated diene polymer segment having a cis content of 40% or more, which is used to obtain a rubber composition having excellent low-temperature resilience and the like. Conjugated diene rubber compositions containing a polybutadiene having a 1,2-vinyl bond content of 90% are disclosed in the examples. However, by using a copolymer in which the content of 1,2-adduct (including 3,4-adduct) in the conjugated diene compound is 5 mol% or less, it is excellent in low heat generation, heat resistance and ozone resistance. Japanese Patent Application Laid-Open No. 2000-154279 (Patent Document 6) does not describe or suggest obtaining an excellent rubber composition.

特開2000−154210号公報JP 2000-154210 A 特開2006−249442号公報JP 2006-249442 A 特表2006−503141号公報JP-T-2006-503141 特開平11−228743号公報JP-A-11-228743 特開2000−86857号公報JP 2000-86857 A 特開2000−154279号公報JP 2000-154279 A

そこで、本発明の目的は、低発熱性に優れ、耐熱性、耐オゾン性に優れたゴムを製造するのに用いられ、共役ジエン化合物と非共役オレフィンとの共重合体、該共重合体を含むゴム組成物、該ゴム組成物を架橋して得られた架橋ゴム組成物、及び、前記ゴム組成物又は前記架橋ゴム組成物を用いたタイヤを提供することにある。   Therefore, an object of the present invention is to produce a rubber having excellent low heat build-up, heat resistance and ozone resistance, and a copolymer of a conjugated diene compound and a non-conjugated olefin, It is in providing the rubber composition containing, the crosslinked rubber composition obtained by bridge | crosslinking this rubber composition, and the tire using the said rubber composition or the said crosslinked rubber composition.

本発明者らは、上記目的を達成するために鋭意検討した結果、特定の触媒の存在下、共役ジエン化合物と非共役オレフィンとを重合させることにより、共役ジエン化合物由来部分の1,2付加体部分(3,4付加体部分を含む)含量が5mol%以下である共重合体が得られることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above-mentioned object, the present inventors have polymerized a conjugated diene compound and a non-conjugated olefin in the presence of a specific catalyst, thereby obtaining a 1,2-adduct of a conjugated diene compound-derived moiety. It has been found that a copolymer having a partial content (including a 3,4-adduct portion) of 5 mol% or less can be obtained, and the present invention has been completed.

即ち、本発明の共重合体は、共役ジエン化合物と非共役オレフィンとの共重合体であって、共役ジエン化合物に由来する共役ジエン単位の総量に対する1,2付加体部分(3,4付加体部分を含む)含量が5mol%以下であり、下記一般式(I):
(式中、Mは、ガドリニウムを示し、CpRは、それぞれ独立して無置換もしくは置換インデニルを示し、Ra〜Rfは、それぞれ独立して炭素数1〜3のアルキル基又は水素原子を示し、Ra〜Rfのうち少なくとも一つが水素原子であり、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセン錯体を含む重合触媒組成物の存在下で重合させて得られる、
ことを特徴とする。
That is, the copolymer of the present invention is a copolymer of a conjugated diene compound and a non-conjugated olefin, and is a 1,2-adduct portion (3,4-adduct) relative to the total amount of conjugated diene units derived from the conjugated diene compound. The content is 5 mol% or less, including the following general formula (I):
(In the formula, M represents gadolinium , Cp R independently represents unsubstituted or substituted indenyl, and R a to R f each independently represents an alkyl group having 1 to 3 carbon atoms or a hydrogen atom. And at least one of R a to R f is a hydrogen atom, L represents a neutral Lewis base, and w represents an integer of 0 to 3). Obtained by polymerizing in the presence of
It is characterized by that.

本発明の共重合体は、前記共役ジエン化合物に由来する共役ジエン単位の総量に対するシス1,4−結合量が、50mol%を超えることが好ましい。 In the copolymer of the present invention, the amount of cis 1,4-bonds relative to the total amount of conjugated diene units derived from the conjugated diene compound is preferably more than 50 mol%.

本発明の共重合体は、非共役オレフィンに由来する非共役オレフィン単位の総量の含有量が0mol%を超え且つ50mol%以下であることが好ましい。
In the copolymer of the present invention, the total content of non-conjugated olefin units derived from non-conjugated olefins is preferably more than 0 mol% and 50 mol% or less.

本発明の共重合体は、ポリスチレン換算重量平均分子量が10,000〜10,000,000であることが好ましい。   The copolymer of the present invention preferably has a polystyrene-equivalent weight average molecular weight of 10,000 to 10,000,000.

本発明の共重合体は、分子量分布(Mw/Mn)が10以下であることが好ましい。   The copolymer of the present invention preferably has a molecular weight distribution (Mw / Mn) of 10 or less.

本発明の共重合体は、前記非共役オレフィンが、非環状オレフィンであることが好ましい。   In the copolymer of the present invention, the non-conjugated olefin is preferably an acyclic olefin.

本発明の共重合体は、前記非共役オレフィンが、炭素数が2〜10であることが好ましい。 In the copolymer of the present invention, the non-conjugated olefin preferably has 2 to 10 carbon atoms.

本発明の共重合体は、前記非共役オレフィンが、エチレン、プロピレン及び1-ブテンよりなる群から選択される少なくとも一種であることが好ましく、エチレンであることがより好ましい。   In the copolymer of the present invention, the non-conjugated olefin is preferably at least one selected from the group consisting of ethylene, propylene and 1-butene, and more preferably ethylene.

本発明の共重合体は、前記共役ジエン化合物が、1,3-ブタジエン及びイソプレンよりなる群から選択される少なくとも一種であることが好ましい。   In the copolymer of the present invention, the conjugated diene compound is preferably at least one selected from the group consisting of 1,3-butadiene and isoprene.

本発明によれば、低発熱性に優れ、耐亀裂成長性に優れ、耐オゾン性に優れたゴムを製造するのに用いられ、共役ジエン化合物と非共役オレフィンとの共重合体、該共重合体を含むゴム組成物、該ゴム組成物を架橋して得られた架橋ゴム組成物、及び、前記ゴム組成物又は前記架橋ゴム組成物を用いたタイヤを提供することができる。   According to the present invention, a copolymer of a conjugated diene compound and a non-conjugated olefin is used to produce a rubber having excellent low heat build-up, excellent crack growth resistance, and excellent ozone resistance. A rubber composition containing a coalescence, a crosslinked rubber composition obtained by crosslinking the rubber composition, and a tire using the rubber composition or the crosslinked rubber composition can be provided.

共重合体Aの13C-NMRスペクトルチャートである。3 is a 13 C-NMR spectrum chart of copolymer A. FIG. 共重合体AのDSC曲線を示す。The DSC curve of the copolymer A is shown. 共重合体BのDSC曲線を示す。The DSC curve of the copolymer B is shown. 共重合体CのDSC曲線を示す。The DSC curve of copolymer C is shown. 共重合体DのDSC曲線を示す。The DSC curve of the copolymer D is shown.

(共重合体)
以下に、本発明を詳細に説明する。本発明の共重合体は、共役ジエン化合物と非共役オレフィンとの共重合体であり、共役ジエン化合物由来部分の1,2付加体部分(3,4付加体部分を含む)含量が5mol%以下であることを特徴とする。
前記1,2付加体部分(3,4付加体部分を含む)含量は、前記共役ジエン化合物由来部分中の量であって、共重合体全体に対する割合ではない。
なお、前記共役ジエン化合物部分の1、2付加体部分(3,4付加体部分を含む)含量(共役ジエン化合物由来部分の共役ジエン化合物の1、2付加体部分(3,4付加体部分を含む)含量)は、共役ジエン化合物がブタジエンの場合、1、2−ビニル結合量と同じ意味である。
(Copolymer)
The present invention is described in detail below. The copolymer of the present invention is a copolymer of a conjugated diene compound and a non-conjugated olefin, and the content of 1,2 adduct portion (including 3,4 adduct portion) of the conjugated diene compound-derived portion is 5 mol% or less. It is characterized by being.
The content of the 1,2 adduct portion (including the 3,4 adduct portion) is an amount in the portion derived from the conjugated diene compound, and is not a ratio to the whole copolymer.
In addition, 1, 2 adduct portion (including 3,4 adduct portion) content of conjugated diene compound portion (including 3,4 diadduct portion) 1, 2 adduct portion (3, 4 adduct portion of conjugated diene compound-derived portion) Including) content) has the same meaning as the amount of 1,2-vinyl bonds when the conjugated diene compound is butadiene.

本発明の共重合体は、共役ジエン化合物由来部分の1,2付加体部分(3,4付加体部分を含む)含量が5mol%以下であると、本発明の共重合体は、低発熱性、耐熱性、耐オゾン性を向上させることができる。更には、共役ジエン化合物由来部分の1,2付加体部分(3,4付加体部分を含む)含量が2.5mol%以下であると、耐熱性をより向上させることができる。前記共役ジエン化合物由来部分の1,2付加体部分(3,4付加体部分を含む)含量は、2mol%以下であることがさらに好ましい。
本共重合体は、例えば、HIPS(高衝撃性ポリスチレン)、ABS(アクリロニトリル・ブタジエンスチレン樹脂)、過酸化物架橋による配合物などに適している。
When the copolymer of the present invention has a content of 1,2 adducts (including 3,4 adducts) of the conjugated diene compound-derived part of 5 mol% or less, the copolymer of the present invention has low exothermic properties. , Heat resistance and ozone resistance can be improved. Furthermore, heat resistance can be improved more that the 1,2-adduct part content (a 3, 4-adduct part is included) content of the part derived from a conjugated diene compound is 2.5 mol% or less. The content of 1,2-adduct portion (including 3,4-adduct portion) in the conjugated diene compound-derived portion is more preferably 2 mol% or less.
This copolymer is suitable for, for example, HIPS (high impact polystyrene), ABS (acrylonitrile butadiene styrene resin), a blend by peroxide crosslinking, and the like.

本発明の共重合体は、共役ジエン化合物由来部分のシス-1,4結合量が50mol%超であることが好ましい。更に好ましくは75%以上、より好ましくは85%以上、より更に好ましくは90%以上である。共役ジエン化合物由来部分のシス-1,4結合量が上記の範囲内であれば、ガラス転移温度(Tg)が低く、耐亀裂成長性が良好である。
前記シス−1,4結合量は、前記共役ジエン化合物由来部分中の量であって、共重合体全体に対する割合ではない。
In the copolymer of the present invention, the cis-1,4 bond content of the conjugated diene compound-derived moiety is preferably more than 50 mol%. More preferably, it is 75% or more, more preferably 85% or more, and still more preferably 90% or more. If the cis-1,4 bond content of the conjugated diene compound-derived moiety is within the above range, the glass transition temperature (Tg) is low and the crack growth resistance is good.
The amount of cis-1,4 bonds is the amount in the portion derived from the conjugated diene compound, and is not a ratio relative to the entire copolymer.

本発明の共重合体は、低分子量化の問題が起こることも無く、その重量平均分子量(Mw)は特に限定されるものでもないが、高分子構造材料への適用の観点から、該共重合体のポリスチレン換算重量平均分子量(Mw)は10,000〜10,000,000が好ましく、10,000〜1,000,000がより好ましく、50,000〜600,000が更に好ましい。また、重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、10以下が好ましく、5以下が更に好ましい。ここで、平均分子量及び分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレンを標準物質として求めることができる。   The copolymer of the present invention does not cause a problem of lowering the molecular weight, and its weight average molecular weight (Mw) is not particularly limited, but from the viewpoint of application to a polymer structural material, the copolymer The combined polystyrene equivalent weight average molecular weight (Mw) is preferably 10,000 to 10,000,000, more preferably 10,000 to 1,000,000, and still more preferably 50,000 to 600,000. Further, the molecular weight distribution (Mw / Mn) represented by the ratio of the weight average molecular weight (Mw) and the number average molecular weight (Mn) is preferably 10 or less, and more preferably 5 or less. Here, the average molecular weight and the molecular weight distribution can be determined using polystyrene as a standard substance by gel permeation chromatography (GPC).

本発明の共重合体は、非共役オレフィン由来部分の含有量が0mol%を超え且つ100mol%未満であることが好ましい。非共役オレフィン由来部分の含有量が上記の特定した範囲内にあれば、破断強度等の機械的性質をより確実に向上させることができる。また、共重合体の相分離を起こすことなく、破断強度等の機械的性質を向上させる観点から、上記非共役オレフィン由来部分の含有量が0mol%を超え且つ50mol%以下であることが更に好ましい。   In the copolymer of the present invention, the content of the non-conjugated olefin-derived moiety is preferably more than 0 mol% and less than 100 mol%. When the content of the non-conjugated olefin-derived portion is within the above specified range, mechanical properties such as breaking strength can be improved more reliably. Further, from the viewpoint of improving mechanical properties such as breaking strength without causing phase separation of the copolymer, the content of the non-conjugated olefin-derived portion is more preferably more than 0 mol% and not more than 50 mol%. .

一方、本発明の共重合体は、共役ジエン化合物由来部分の含有量が0mol%を超え且つ100mol%未満であることが好ましく、50mol%以上で且つ100mol%未満であることが更に好ましい。共役ジエン化合物由来部分の含有量が上記の特定した範囲内にあれば、本発明の共重合体は、エラストマーとして均一にふるまうことが可能となる。   On the other hand, in the copolymer of the present invention, the content of the conjugated diene compound-derived moiety is preferably more than 0 mol% and less than 100 mol%, more preferably 50 mol% or more and less than 100 mol%. If the content of the conjugated diene compound-derived moiety is within the above specified range, the copolymer of the present invention can behave uniformly as an elastomer.

なお、単量体として用いる共役ジエン化合物は、炭素数が4〜12であることが好ましく、4〜8であることが更に好ましい。該共役ジエン化合物として、具体的には、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチルブタジエン等が挙げられ、これらの中でも、1,3-ブタジエン及びイソプレンが好ましい。また、これら共役ジエン化合物は、単独で用いてもよく、二種以上を組み合わせて用いてもよい。
上述した共役ジエン化合物の具体例のいずれを用いても、同様のメカニズムで本発明の共重合体を調製することができる。
The conjugated diene compound used as the monomer preferably has 4 to 12 carbon atoms, and more preferably 4 to 8 carbon atoms. Specific examples of the conjugated diene compound include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethylbutadiene, and among these, 1,3-butadiene and isoprene are preferable. Moreover, these conjugated diene compounds may be used independently and may be used in combination of 2 or more type.
The copolymer of the present invention can be prepared by the same mechanism using any of the specific examples of the conjugated diene compound described above.

一方、単量体として用いる非共役のオレフィンは、優れた耐熱性や、共重合体の主鎖中に占める二重結合の割合を減らし、結晶性を低下させることでエラストマーとしての設計自由度を高めることが可能となる。また、上記非共役オレフィンとしては、非環状オレフィンであることも好ましく、また、α-オレフィンであることも好ましい。更に、該非共役オレフィンの炭素数は2〜10であることが好ましい。従って、上記非共役オレフィンとしては、エチレン、プロピレン、1-ブテン、1-ペンテン、1-へキセン、1-へプテン、1-オクテン等が好適に挙げられ、これらの中でも、エチレン、プロピレン及び1-ブテンがより好ましく、エチレンが特に好ましい。これら非共役オレフィンは、単独で用いてもよく、二種以上を組み合わせて用いてもよい。なお、オレフィンは、脂肪族不飽和炭化水素で、炭素−炭素二重結合を1個以上有する化合物を指す。   On the other hand, non-conjugated olefins used as monomers have excellent heat resistance and design freedom as elastomers by reducing the crystallinity by reducing the proportion of double bonds in the main chain of the copolymer. It becomes possible to raise. Further, the non-conjugated olefin is preferably an acyclic olefin and is preferably an α-olefin. Furthermore, it is preferable that carbon number of this nonconjugated olefin is 2-10. Therefore, preferred examples of the non-conjugated olefin include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene and the like. Among these, ethylene, propylene, and 1 -Butene is more preferred and ethylene is particularly preferred. These non-conjugated olefins may be used alone or in combination of two or more. In addition, an olefin refers to the compound which is an aliphatic unsaturated hydrocarbon and has one or more carbon-carbon double bonds.

次に、本発明の共重合体の製造方法を詳細に説明する。但し、以下に詳述する製造方法は、あくまで例示に過ぎない。
本発明の共重合体の第一の製造方法は、下記に示す重合触媒組成物の存在下、共役ジエン化合物と非共役オレフィンとを重合させる工程を含む。なお、重合方法としては、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の方法を用いることができる。また、重合反応に溶媒を用いる場合、用いられる溶媒は重合反応において不活性であればよく、例えば、トルエン、ヘキサン、シクロヘキサン、またそれらの混合物等が挙げられる。
Next, the manufacturing method of the copolymer of this invention is demonstrated in detail. However, the manufacturing method described in detail below is merely an example.
The 1st manufacturing method of the copolymer of this invention includes the process of superposing | polymerizing a conjugated diene compound and a nonconjugated olefin in presence of the polymerization catalyst composition shown below. As a polymerization method, any method such as a solution polymerization method, a suspension polymerization method, a liquid phase bulk polymerization method, an emulsion polymerization method, a gas phase polymerization method, and a solid phase polymerization method can be used. Moreover, when using a solvent for a polymerization reaction, the solvent used should just be inactive in a polymerization reaction, For example, toluene, hexane, cyclohexane, mixtures thereof etc. are mentioned.

<第一の重合触媒組成物>
上記重合触媒組成物としては、下記一般式(I):
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cpは、そ
れぞれ独立して無置換もしくは置換インデニルを示し、R〜Rは、それぞれ独立して炭素数1〜3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセン錯体、及び下記一般式(II):
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cpは、そ
れぞれ独立して無置換もしくは置換インデニルを示し、X'は、水素原子、ハロゲン原子
、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1〜20の炭化水素基
を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセ
ン錯体、並びに下記一般式(III):
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cp'は、無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1〜20の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示し、[B]は、非配位性アニオンを示す)で表されるハーフメタロセンカチオン錯体からなる群より選択される少なくとも1種類の錯体を含む重合触媒組成物(以下、第一重合触媒組成物ともいう)が挙げられ、該重合触媒組成物は、更に、通常のメタロセン錯体を含む重合触媒組成物に含有される他の成分、例えば助触媒等を含んでいてもよい。ここで、メタロセン錯体は、一つ又は二つ以上のシクロペンタジエニル又はその誘導体が中心金属に結合した錯体化合物であり、特に、中心金属に結合したシクロペンタジエニル又はその誘導体が一つであるメタロセン錯体を、ハーフメタロセン錯体と称することがある。なお、重合反応系において、第一重合触媒組成物に含まれる錯体の濃度は0.1〜0.0001mol/lの範囲であることが好ましい。
<First polymerization catalyst composition>
The polymerization catalyst composition includes the following general formula (I):
(In the formula, M represents a lanthanoid element, scandium or yttrium, Cp R independently represents unsubstituted or substituted indenyl, and R a to R f each independently represents an alkyl having 1 to 3 carbon atoms. A group or a hydrogen atom, L represents a neutral Lewis base, w represents an integer of 0 to 3), and the following general formula (II):
(In the formula, M represents a lanthanoid element, scandium or yttrium, Cp R each independently represents an unsubstituted or substituted indenyl group, and X ′ represents a hydrogen atom, a halogen atom, an alkoxide group, a thiolate group, an amide group. , A silyl group or a hydrocarbon group having 1 to 20 carbon atoms, L represents a neutral Lewis base, and w represents an integer of 0 to 3), and the following general formula (III ):
(In the formula, M represents a lanthanoid element, scandium or yttrium, Cp R ′ represents unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl, and X represents a hydrogen atom, a halogen atom, an alkoxide group or a thiolate group. represents an amide group, a silyl group or a hydrocarbon group having a carbon number of 1 to 20, L is a neutral Lewis base, w is, an integer of 0 to 3, [B] - is a non-coordinating A polymerization catalyst composition (hereinafter also referred to as a first polymerization catalyst composition) comprising at least one complex selected from the group consisting of a half metallocene cation complex represented by The product may further contain other components contained in the polymerization catalyst composition containing a normal metallocene complex, such as a promoter. Here, the metallocene complex is a complex compound in which one or more cyclopentadienyl or a derivative thereof is bonded to a central metal, and in particular, one cyclopentadienyl or a derivative thereof bonded to the central metal. A certain metallocene complex may be called a half metallocene complex. In the polymerization reaction system, the concentration of the complex contained in the first polymerization catalyst composition is preferably in the range of 0.1 to 0.0001 mol / l.

上記一般式(I)及び式(II)で表されるメタロセン錯体において、式中のCpは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpは、C7−X又はC11−Xで示され得る。ここで、Xは0〜7又は0〜11の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。置換インデニルとして、具体的には、2−フェニルインデニル、2−メチルインデニル等が挙げられる。なお、一般式(I)及び式(II)における二つのCpは、それぞれ互いに同一でも異なっていてもよい。 In the metallocene complexes represented by the general formula (I) and formula (II), Cp R in the formula is an unsubstituted indenyl or substituted indenyl. Cp R having an indenyl ring as a basic skeleton may be represented by C 9 H 7-X R X or C 9 H 11-X R X. Here, X is an integer of 0-7 or 0-11. In addition, each R is preferably independently a hydrocarbyl group or a metalloid group. The hydrocarbyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 8 carbon atoms. Specific examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group, and a benzyl group. On the other hand, examples of metalloid group metalloids include germyl Ge, stannyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group that the metalloid group has is the same as the above hydrocarbyl group. is there. Specific examples of the metalloid group include a trimethylsilyl group. Specific examples of the substituted indenyl include 2-phenylindenyl and 2-methylindenyl. Note that the two Cp Rs in the general formulas (I) and (II) may be the same as or different from each other.

上記一般式(III)で表されるハーフメタロセンカチオン錯体において、式中のCp'は、無置換もしくは置換のシクロペンタジエニル、インデニル又はフルオレニルであり、これらの中でも、無置換もしくは置換のインデニルであることが好ましい。シクロペンタジエニル環を基本骨格とするCp'は、C5−Xで示される。ここで、Xは0〜5の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。シクロペンタジエニル環を基本骨格とするCp'として、具体的には、以下のものが例示される。
(式中、Rは水素原子、メチル基又はエチル基を示す。)
In the half metallocene cation complex represented by the above general formula (III), Cp R ′ in the formula is unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl, and among these, unsubstituted or substituted indenyl It is preferable that Cp R ′ having a cyclopentadienyl ring as a basic skeleton is represented by C 5 H 5-X R X. Here, X is an integer of 0-5. In addition, each R is preferably independently a hydrocarbyl group or a metalloid group. The hydrocarbyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 8 carbon atoms. Specific examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group, and a benzyl group. On the other hand, examples of metalloid group metalloids include germyl Ge, stannyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group that the metalloid group has is the same as the above hydrocarbyl group. is there. Specific examples of the metalloid group include a trimethylsilyl group. Specific examples of Cp R ′ having a cyclopentadienyl ring as a basic skeleton include the following.
(In the formula, R represents a hydrogen atom, a methyl group or an ethyl group.)

一般式(III)において、上記インデニル環を基本骨格とするCp'は、一般式(I)のCpと同様に定義され、好ましい例も同様である。 In the general formula (III), Cp R ′ having the above indenyl ring as the basic skeleton is defined in the same manner as Cp R in the general formula (I), and preferred examples thereof are also the same.

一般式(III)において、上記フルオレニル環を基本骨格とするCp'は、C139−X又はC1317−Xで示され得る。ここで、Xは0〜9又は0〜17の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。 In the general formula (III), Cp R ′ having the fluorenyl ring as a basic skeleton can be represented by C 13 H 9-X R X or C 13 H 17-X R X. Here, X is an integer of 0-9 or 0-17. In addition, each R is preferably independently a hydrocarbyl group or a metalloid group. The hydrocarbyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 8 carbon atoms. Specific examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group, and a benzyl group. On the other hand, examples of metalloid group metalloids include germyl Ge, stannyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group that the metalloid group has is the same as the above hydrocarbyl group. is there. Specific examples of the metalloid group include a trimethylsilyl group.

一般式(I)、式(II)及び式(III)における中心金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。中心金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。   The central metal M in the general formulas (I), (II) and (III) is a lanthanoid element, scandium or yttrium. The lanthanoid elements include 15 elements having atomic numbers 57 to 71, and any of these may be used. Preferred examples of the central metal M include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, holmium Ho, scandium Sc, and yttrium Y.

一般式(I)で表されるメタロセン錯体は、シリルアミド配位子[−N(SiR]を含む。シリルアミド配位子に含まれるR基(一般式(I)におけるR〜R)は、それぞれ独立して炭素数1〜3のアルキル基又は水素原子である。また、R〜Rのうち少なくとも一つが水素原子であることが好ましい。R〜Rのうち少なくとも一つを水素原子にすることで、触媒の合成が容易になり、また、ケイ素まわりのかさ高さが低くなるため、非共役オレフィンが導入され易くなる。同様の観点から、R〜Rのうち少なくとも一つが水素原子であり、R〜Rのうち少なくとも一つが水素原子であることが更に好ましい。なお、アルキル基としては、メチル基が好ましい。 The metallocene complex represented by the general formula (I) includes a silylamide ligand [—N (SiR 3 ) 2 ]. The R groups (R a to R f in the general formula (I)) contained in the silylamide ligand are each independently an alkyl group having 1 to 3 carbon atoms or a hydrogen atom. Moreover, it is preferable that at least one of R a to R f is a hydrogen atom. By making at least one of R a to R f a hydrogen atom, the synthesis of the catalyst is facilitated, and the bulk around silicon is reduced, so that non-conjugated olefin is easily introduced. From the same viewpoint, it is more preferable that at least one of R a to R c is a hydrogen atom and at least one of R d to R f is a hydrogen atom. The alkyl group is preferably a methyl group.

一般式(II)で表されるメタロセン錯体は、シリル配位子[−SiX'3]を含む。シリル
配位子[−SiX'3]に含まれるX'は、下記で説明される一般式(III)のXと同様に定義
される基であり、好ましい基も同様である。
The metallocene complex represented by the general formula (II) contains a silyl ligand [—SiX ′ 3 ]. X ′ contained in the silyl ligand [—SiX ′ 3 ] is a group defined in the same manner as X in the general formula (III) described below, and preferred groups are also the same.

一般式(III)において、Xは水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基及び炭素数1〜20の炭化水素基からなる群より選択される基である。ここで、上記アルコキシド基としては、メトキシ基、エトキシ基、プロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、2,6−ジイソプロピルフェノキシ基、2,6−ジネオペンチルフェノキシ基、2−tert−ブチル−6−イソプロピルフェノキシ基、2−tert−ブチル−6−ネオペンチルフェノキシ基、2−イソプロピル−6−ネオペンチルフェノキシ基等のアリールオキシド基が挙げられ、これらの中でも、2,6−ジ−tert−ブチルフェノキシ基が好ましい。   In the general formula (III), X is a group selected from the group consisting of a hydrogen atom, a halogen atom, an alkoxide group, a thiolate group, an amide group, a silyl group, and a hydrocarbon group having 1 to 20 carbon atoms. Here, examples of the alkoxide group include aliphatic alkoxy groups such as a methoxy group, an ethoxy group, a propoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, and a tert-butoxy group; a phenoxy group and 2,6-dioxy -Tert-butylphenoxy group, 2,6-diisopropylphenoxy group, 2,6-dinepentylphenoxy group, 2-tert-butyl-6-isopropylphenoxy group, 2-tert-butyl-6-neopentylphenoxy group, Examples include aryloxide groups such as 2-isopropyl-6-neopentylphenoxy group, and among these, 2,6-di-tert-butylphenoxy group is preferable.

一般式(III)において、Xが表すチオラート基としては、チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn−ブトキシ基、チオイソブトキシ基、チオsec−ブトキシ基、チオtert−ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6−ジ−tert−ブチルチオフェノキシ基、2,6−ジイソプロピルチオフェノキシ基、2,6−ジネオペンチルチオフェノキシ基、2−tert−ブチル−6−イソプロピルチオフェノキシ基、2−tert−ブチル−6−チオネオペンチルフェノキシ基、2−イソプロピル−6−チオネオペンチルフェノキシ基、2,4,6−トリイソプロピルチオフェノキシ基等のアリールチオラート基が挙げられ、これらの中でも、2,4,6−トリイソプロピルチオフェノキシ基が好ましい。   In the general formula (III), the thiolate group represented by X includes a thiomethoxy group, a thioethoxy group, a thiopropoxy group, a thio n-butoxy group, a thioisobutoxy group, a thiosec-butoxy group, a thiotert-butoxy group and the like Group thiolate group; thiophenoxy group, 2,6-di-tert-butylthiophenoxy group, 2,6-diisopropylthiophenoxy group, 2,6-dineopentylthiophenoxy group, 2-tert-butyl-6-isopropyl Arylthiolate groups such as thiophenoxy group, 2-tert-butyl-6-thioneopentylphenoxy group, 2-isopropyl-6-thioneopentylphenoxy group, 2,4,6-triisopropylthiophenoxy group, etc. Among these, 2,4,6-triisopropylthiophenoxy group Preferred.

一般式(III)において、Xが表すアミド基としては、ジメチルアミド基、ジエチルアミド基、ジイソプロピルアミド基等の脂肪族アミド基;フェニルアミド基、2,6−ジ−tert−ブチルフェニルアミド基、2,6−ジイソプロピルフェニルアミド基、2,6−ジネオペンチルフェニルアミド基、2−tert−ブチル−6−イソプロピルフェニルアミド基、2−tert−ブチル−6−ネオペンチルフェニルアミド基、2−イソプロピル−6−ネオペンチルフェニルアミド基、2,4,6−トリ−tert−ブチルフェニルアミド基等のアリールアミド基;ビストリメチルシリルアミド基等のビストリアルキルシリルアミド基が挙げられ、これらの中でも、ビストリメチルシリルアミド基が好ましい。   In the general formula (III), examples of the amide group represented by X include aliphatic amide groups such as a dimethylamide group, a diethylamide group, and a diisopropylamide group; a phenylamide group, a 2,6-di-tert-butylphenylamide group, 2 , 6-diisopropylphenylamide group, 2,6-dineopentylphenylamide group, 2-tert-butyl-6-isopropylphenylamide group, 2-tert-butyl-6-neopentylphenylamide group, 2-isopropyl- Arylamide groups such as 6-neopentylphenylamide group and 2,4,6-tri-tert-butylphenylamide group; and bistrialkylsilylamide groups such as bistrimethylsilylamide group. Among these, bistrimethylsilylamide Groups are preferred.

一般式(III)において、Xが表すシリル基としては、トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等が挙げられ、これらの中でも、トリス(トリメチルシリル)シリル基が好ましい。   In the general formula (III), examples of the silyl group represented by X include trimethylsilyl group, tris (trimethylsilyl) silyl group, bis (trimethylsilyl) methylsilyl group, trimethylsilyl (dimethyl) silyl group, triisopropylsilyl (bistrimethylsilyl) silyl group, and the like. Among these, a tris (trimethylsilyl) silyl group is preferable.

一般式(III)において、Xが表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子のいずれでもよいが、塩素原子又は臭素原子が好ましい。また、Xが表す炭素数1〜20の炭化水素基として、具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ネオペンチル基、ヘキシル基、オクチル基等の直鎖又は分枝鎖の脂肪族炭化水素基;フェニル基、トリル基、ナフチル基等の芳香族炭化水素基;ベンジル基等のアラルキル基等の他;トリメチルシリルメチル基、ビストリメチルシリルメチル基等のケイ素原子を含有する炭化水素基等が挙げられ、これらの中でも、メチル基、エチル基、イソブチル基、トリメチルシリルメチル基等が好ましい。   In the general formula (III), the halogen atom represented by X may be any of a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, but a chlorine atom or a bromine atom is preferred. Moreover, as a C1-C20 hydrocarbon group which X represents, specifically, a methyl group, an ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert- Linear or branched aliphatic hydrocarbon groups such as butyl group, neopentyl group, hexyl group, octyl group; aromatic hydrocarbon groups such as phenyl group, tolyl group, naphthyl group; aralkyl groups such as benzyl group, etc. Others: Examples include hydrocarbon groups containing silicon atoms such as trimethylsilylmethyl group and bistrimethylsilylmethyl group. Among these, methyl group, ethyl group, isobutyl group, trimethylsilylmethyl group and the like are preferable.

一般式(III)において、Xとしては、ビストリメチルシリルアミド基又は炭素数1〜2
0の炭化水素基が好ましい。
In the general formula (III), X is a bistrimethylsilylamide group or a carbon number of 1-2.
Zero hydrocarbon groups are preferred.

一般式(III)において、[B]で示される非配位性アニオンとしては、例えば、4価のホウ素アニオンが挙げられる。該4価のホウ素アニオンとして、具体的には、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル,ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル),フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。 In the general formula (III), [B] - The non-coordinating anion represented by, for example, a tetravalent boron anion. Specific examples of the tetravalent boron anion include tetraphenyl borate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis ( Pentafluorophenyl) borate, tetrakis (tetrafluoromethylphenyl) borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tri Decahydride-7,8-dicarbaoundecaborate and the like can be mentioned, and among these, tetrakis (pentafluorophenyl) borate is preferable.

上記一般式(I)及び式(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体は、更に0〜3個、好ましくは0〜1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。   The metallocene complex represented by the general formulas (I) and (II) and the half metallocene cation complex represented by the general formula (III) are further 0 to 3, preferably 0 to 1 neutral. Contains Lewis base L. Here, examples of the neutral Lewis base L include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, neutral diolefins, and the like. Here, when the complex includes a plurality of neutral Lewis bases L, the neutral Lewis bases L may be the same or different.

また、上記一般式(I)及び式(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。   Further, the metallocene complex represented by the general formula (I) and the formula (II) and the half metallocene cation complex represented by the general formula (III) may exist as a monomer, It may exist as a body or higher multimer.

上記一般式(I)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えばカリウム塩やリチウム塩)及びビス(トリアルキルシリル)アミドの塩(例えばカリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、一般式(I)で表されるメタロセン錯体を得るための反応例を示す。
(式中、X''はハライドを示す。)
The metallocene complex represented by the general formula (I) includes, for example, a lanthanoid trishalide, scandium trishalide, or yttrium trishalide in a solvent, an indenyl salt (for example, potassium salt or lithium salt) and bis (trialkylsilyl). It can be obtained by reacting with an amide salt (for example, potassium salt or lithium salt). In addition, since reaction temperature should just be about room temperature, it can manufacture on mild conditions. The reaction time is arbitrary, but is about several hours to several tens of hours. The reaction solvent is not particularly limited, but is preferably a solvent that dissolves the raw material and the product. For example, toluene may be used. Below, the reaction example for obtaining the metallocene complex represented by general formula (I) is shown.
(In the formula, X ″ represents a halide.)

上記一般式(II)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えばカリウム塩やリチウム塩)及びシリルの塩(例えばカリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、一般式(II)で表されるメタロセン錯体を得るための反応例を示す。
(式中、X''はハライドを示す。)
The metallocene complex represented by the general formula (II) includes, for example, a lanthanoid trishalide, a scandium trishalide, or a yttrium trishalide in a solvent, an indenyl salt (for example, potassium salt or lithium salt), and a silyl salt (for example, potassium). Salt or lithium salt). In addition, since reaction temperature should just be about room temperature, it can manufacture on mild conditions. The reaction time is arbitrary, but is about several hours to several tens of hours. The reaction solvent is not particularly limited, but is preferably a solvent that dissolves the raw material and the product. For example, toluene may be used. Below, the reaction example for obtaining the metallocene complex represented by general formula (II) is shown.
(In the formula, X ″ represents a halide.)

上記一般式(III)で表されるハーフメタロセンカチオン錯体は、例えば、次の反応により得ることができる。
The half metallocene cation complex represented by the general formula (III) can be obtained, for example, by the following reaction.

ここで、一般式(IV)で表される化合物において、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cp'は、それぞれ独立して無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1〜20の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す。また、一般式[A][B]で表されるイオン性化合物において、[A]は、カチオンを示し、[B]は、非配位性アニオンを示す。 Here, in the compound represented by the general formula (IV), M represents a lanthanoid element, scandium or yttrium, and Cp R ′ independently represents unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl. , X represents a hydrogen atom, a halogen atom, an alkoxide group, a thiolate group, an amide group, a silyl group, or a hydrocarbon group having 1 to 20 carbon atoms, L represents a neutral Lewis base, and w represents 0 to 3 Indicates an integer. In the ionic compound represented by the general formula [A] + [B] , [A] + represents a cation, and [B] represents a non-coordinating anion.

[A]で表されるカチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N−ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N−ジアルキルアニリニウムカチオンが特に好ましい。 [A] Examples of the cation represented by + include a carbonium cation, an oxonium cation, an amine cation, a phosphonium cation, a cycloheptatrienyl cation, and a ferrocenium cation having a transition metal. Examples of the carbonium cation include trisubstituted carbonium cations such as a triphenylcarbonium cation and a tri (substituted phenyl) carbonium cation. The tri (substituted phenyl) carbonyl cation is specifically exemplified by tri (methylphenyl). ) Carbonium cation and the like. Examples of amine cations include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation; N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N- N, N-dialkylanilinium cations such as 2,4,6-pentamethylanilinium cation; dialkylammonium cations such as diisopropylammonium cation and dicyclohexylammonium cation. Examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation. Among these cations, N, N-dialkylanilinium cation or carbonium cation is preferable, and N, N-dialkylanilinium cation is particularly preferable.

上記反応に用いる一般式[A][B]で表されるイオン性化合物としては、上記の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物であって、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、一般式[A][B]で表されるイオン性化合物は、メタロセン錯体に対して0.1〜10倍モル加えることが好ましく、約1倍モル加えることが更に好ましい。なお、一般式(III)で表されるハーフメタロセンカチオン錯体を重合反応に用いる場合、一般式(III)で表されるハーフメタロセンカチオン錯体をそのまま重合反応系中に提供してもよいし、上記反応に用いる一般式(IV)で表される化合物と一般式[A][B]で表されるイオン性化合物を別個に重合反応系中に提供し、反応系中で一般式(III)で表されるハーフメタロセンカチオン錯体を形成させてもよい。また、一般式(I)又は式(II)で表されるメタロセン錯体と一般式[A][B]で表されるイオン性化合物とを組み合わせて使用することにより、反応系中で一般式(III)で表されるハーフメタロセンカチオン錯体を形成させることもできる。 The ionic compound represented by the general formula [A] + [B] used for the above reaction is a compound selected and combined from the above non-coordinating anions and cations, and is an N, N-dimethylaniline. Preference is given to nium tetrakis (pentafluorophenyl) borate, triphenylcarbonium tetrakis (pentafluorophenyl) borate and the like. Further, the ionic compound represented by the general formula [A] + [B] is preferably added in an amount of 0.1 to 10 times, more preferably about 1 time, with respect to the metallocene complex. When the half metallocene cation complex represented by the general formula (III) is used for the polymerization reaction, the half metallocene cation complex represented by the general formula (III) may be provided as it is in the polymerization reaction system, or the compound represented by the general formula (IV) and the general formula used in the reaction [a] + [B] - provides an ionic compound represented separately into the polymerization reaction system, the general formula in the reaction system (III You may form the half metallocene cation complex represented by this. Further, by using a combination of a metallocene complex represented by the general formula (I) or the formula (II) and an ionic compound represented by the general formula [A] + [B] A half metallocene cation complex represented by the formula (III) can also be formed.

一般式(I)及び式(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体の構造は、X線構造解析により決定することが好ましい。   The structures of the metallocene complexes represented by the general formulas (I) and (II) and the half metallocene cation complex represented by the general formula (III) are preferably determined by X-ray structural analysis.

上記第一重合触媒組成物に用いることができる助触媒は、通常のメタロセン錯体を含む
重合触媒組成物の助触媒として用いられる成分から任意に選択され得る。該助触媒として
は、例えば、アルミノキサン、有機アルミニウム化合物、上記のイオン性化合物等が好適
に挙げられる。これら助触媒は、一種単独で用いてもよく、二種以上を組み合わせて用い
てもよい。
The co-catalyst that can be used in the first polymerization catalyst composition can be arbitrarily selected from components used as a co-catalyst for a polymerization catalyst composition containing a normal metallocene complex. Suitable examples of the cocatalyst include aluminoxanes, organoaluminum compounds, and the above ionic compounds. These promoters may be used alone or in combination of two or more.

上記アルミノキサンとしては、アルキルアミノキサンが好ましく、例えば、メチルアル
ミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチルア
ルミノキサンとしては、MMAO−3A(東ソーファインケム社製)等が好ましい。なお
、上記第一重合触媒組成物におけるアルミノキサンの含有量は、メタロセン錯体の中心金
属Mと、アルミノキサンのアルミニウム元素Alとの元素比率Al/Mが、10〜1000程度、好ましくは100程度となるようにすることが好ましい。
The aluminoxane is preferably an alkylaminoxan, and examples thereof include methylaluminoxane (MAO) and modified methylaluminoxane. As the modified methylaluminoxane, MMAO-3A (manufactured by Tosoh Finechem Co., Ltd.) and the like are preferable. The content of aluminoxane in the first polymerization catalyst composition is such that the element ratio Al / M between the central metal M of the metallocene complex and the aluminum element Al of the aluminoxane is about 10 to 1000, preferably about 100. It is preferable to make it.

一方、上記有機アルミニウム化合物としては、一般式AlRR'R''(式中、R及びR'はそれぞれ独立してC〜C10の炭化水素基又は水素原子であり、R''はC〜C10の炭化水素基である)で表される有機アルミニウム化合物が好ましい。また、上記有機アルミニウム化合物の具体例としては、例えば、トリアルキルアルミニウム、ジアルキルアルミニウムクロライド、アルキルアルミニウムジクロライド、ジアルキルアルミニウムハイドライド等が挙げられ、これらの中でも、トリアルキルアルミニウムが好ましい。更に、トリアルキルアルミニウムとしては、例えば、トリエチルアルミニウム、トリイソブチルアルミニウム等が挙げられる。なお、上記重合触媒組成物における有機アルミニウム化合物の含有量は、メタロセン錯体に対して1〜50倍モルであることが好ましく、約10倍モルであることが更に好ましい。 On the other hand, as the organoaluminum compound, the general formula AlRR′R ″ (wherein R and R ′ are each independently a C 1 to C 10 hydrocarbon group or a hydrogen atom, and R ″ is C 1 an organoaluminum compound represented by a hydrocarbon group which the -C 10) are preferred. Specific examples of the organoaluminum compound include trialkylaluminum, dialkylaluminum chloride, alkylaluminum dichloride, and dialkylaluminum hydride. Among these, trialkylaluminum is preferable. Furthermore, examples of the trialkylaluminum include triethylaluminum and triisobutylaluminum. In addition, it is preferable that it is 1-50 times mole with respect to a metallocene complex, and, as for content of the organoaluminum compound in the said polymerization catalyst composition, it is still more preferable that it is about 10 times mole.

更に、上記重合触媒組成物においては、一般式(I)及び式(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体をそれぞれ、適切な助触媒と組み合わせることで、シス−1,4結合量や得られる共重合体の分子量を増大できる。   Further, in the above polymerization catalyst composition, the metallocene complex represented by the general formula (I) and the formula (II) and the half metallocene cation complex represented by the above general formula (III) are each used as an appropriate promoter. By combining, the amount of cis-1,4 bonds and the molecular weight of the resulting copolymer can be increased.

<第二の重合触媒組成物>
また、上記重合触媒組成物としては、
(A)成分:希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であって、希土類元素と炭素との結合を有さない該希土類元素化合物又は反応物と、
(B)成分:非配位性アニオンとカチオンとからなるイオン性化合物(B−1)、アルミノキサン(B−2)、並びにルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも一種のハロゲン化合物(B−3)よりなる群から選択される少なくとも一種と
を含む重合触媒組成物(以下、第二重合触媒組成物ともいう)を好適に挙げることもで
き、該重合触媒組成物が、イオン性化合物(B−1)及びハロゲン化合物(B−3)の少なくとも一種を含む場合、該重合触媒組成物は、更に、
(C)成分:下記一般式(i):
YR ・・・ (i)
[式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であ
り、R及びRは、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、Rは炭素数1〜10の炭化水素基であり、但し、Rは上記R又はRと同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a、b及びcは1である]で表される有機金属化合物を含むことを特徴とする。上記イオン性化合物(B−1)及び上記ハロゲン化合物(B−3)は、(A)成分へ供給するための炭素原子が存在しないため、該(A)成分への炭素供給源として、上記(C)成分が必要となる。なお、上記重合触媒組成物が上記アルミノキサン(B−2)を含む場合であっても、該重合触媒組成物は、上記(C)成分を含むことができる。また、上記重合触媒組成物は、通常の希土類元素化合物系の重合触媒組成物に含有される他の成分、例えば助触媒等を含んでいてもよい。なお、重合反応系において、第二重合触媒組成物に含まれる(A)成分の濃度は0.1〜0.0001mol/lの範囲であることが好ましい。
<Second polymerization catalyst composition>
In addition, as the polymerization catalyst composition,
(A) component: a rare earth element compound or a reaction product of the rare earth element compound and a Lewis base, the rare earth element compound or the reaction product having no bond between the rare earth element and carbon,
Component (B): Contains ionic compound (B-1) composed of non-coordinating anion and cation, aluminoxane (B-2), Lewis acid, complex compound of metal halide and Lewis base, and active halogen. A polymerization catalyst composition (hereinafter also referred to as a second polymerization catalyst composition) containing at least one selected from the group consisting of at least one halogen compound (B-3) among organic compounds can also be suitably mentioned. When the polymerization catalyst composition contains at least one of an ionic compound (B-1) and a halogen compound (B-3), the polymerization catalyst composition further comprises:
(C) Component: The following general formula (i):
YR 1 a R 2 b R 3 c (i)
[Wherein Y is a metal selected from Group 1, Group 2, Group 12 and Group 13 of the Periodic Table, and R 1 and R 2 are the same or different and have 1 to 10 carbon atoms. R 3 is a hydrocarbon group or a hydrogen atom, and R 3 is a hydrocarbon group having 1 to 10 carbon atoms, provided that R 3 may be the same as or different from R 1 or R 2, and Y is a periodic table. When it is a metal selected from Group 1, a is 1 and b and c are 0, and when Y is a metal selected from Groups 2 and 12 of the Periodic Table, a and b are 1 and c is 0, and when Y is a metal selected from Group 13 of the Periodic Table, a, b and c are 1]. It is characterized by including. Since the ionic compound (B-1) and the halogen compound (B-3) do not have a carbon atom to be supplied to the component (A), the carbon source for the component (A) is the above ( Component C) is required. In addition, even if it is a case where the said polymerization catalyst composition contains the said aluminoxane (B-2), this polymerization catalyst composition can contain the said (C) component. Further, the polymerization catalyst composition may contain other components such as a co-catalyst contained in a normal rare earth element compound-based polymerization catalyst composition. In the polymerization reaction system, the concentration of the component (A) contained in the second polymerization catalyst composition is preferably in the range of 0.1 to 0.0001 mol / l.

上記第二重合触媒組成物に用いる(A)成分は、希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であり、ここで、希土類元素化合物及び該希土類元素化合物とルイス塩基との反応物は、希土類元素と炭素との結合を有さない。該希土類元素化合物及び反応物が希土類元素−炭素結合を有さない場合、化合物が安定であり、取り扱いやすい。ここで、希土類元素化合物とは、周期律表中の原子番号57〜71の元素から構成されるランタノイド元素又はスカンジウムもしくはイットリウムを含有する化合物である。なお、ランタノイド元素の具体例としては、ランタニウム、セリウム、プラセオジム、ネオジウム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミニウム、エルビウム、ツリウム、イッテルビウム、ルテチウムを挙げることができる。なお、上記(A)成分は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。   The component (A) used in the second polymerization catalyst composition is a rare earth element compound or a reaction product of the rare earth element compound and a Lewis base. Here, the reaction of the rare earth element compound and the rare earth element compound with a Lewis base is performed. The object does not have a bond between rare earth element and carbon. When the rare earth element compound and the reactant do not have a rare earth element-carbon bond, the compound is stable and easy to handle. Here, the rare earth element compound is a compound containing a lanthanoid element or scandium or yttrium composed of the elements of atomic numbers 57 to 71 in the periodic table. Specific examples of the lanthanoid element include lanthanium, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. In addition, the said (A) component may be used individually by 1 type, and may be used in combination of 2 or more type.

また、上記希土類元素化合物は、希土類金属が2価もしくは3価の塩又は錯体化合物で
あることが好ましく、水素原子、ハロゲン原子及び有機化合物残基から選択される1種又
は2種以上の配位子を含有する希土類元素化合物であることが更に好ましい。更に、上記
希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物は、下記一般式(XI)又は(XII):
1111 ・L11w ・・・ (XI)
1111 ・L11w ・・・ (XII)
[式中、M11は、ランタノイド元素、スカンジウム又はイットリウムを示し、X11は、それぞれ独立して、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基、アルデヒド残基、ケトン残基、カルボン酸残基、チオカルボン酸残基又はリン化合物残基を示し、L11は、ルイス塩基を示し、wは、0〜3を示す]で表されることができる。
The rare earth element compound is preferably a divalent or trivalent salt or complex compound of a rare earth metal, and one or more coordinations selected from a hydrogen atom, a halogen atom and an organic compound residue. More preferably, the rare earth element compound contains a child. Furthermore, the reaction product of the rare earth element compound or the rare earth element compound and a Lewis base is represented by the following general formula (XI) or (XII):
M 11 X 11 2 · L 11 w (XI)
M 11 X 11 3 · L 11 w (XII)
[Wherein M 11 represents a lanthanoid element, scandium or yttrium, and X 11 independently represents a hydrogen atom, a halogen atom, an alkoxide group, a thiolate group, an amide group, a silyl group, an aldehyde residue, a ketone residue. Represents a group, a carboxylic acid residue, a thiocarboxylic acid residue or a phosphorus compound residue, L 11 represents a Lewis base, and w represents 0 to 3].

上記希土類元素化合物の希土類元素に結合する基(配位子)として、具体的には、水素
原子;メトキシ基、エトキシ基、プロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、2,6−ジイソプロピルフェノキシ基、2,6−ジネオペンチルフェノキシ基、2−tert−ブチル−6−イソプロピルフェノキシ基、2−tert−ブチル−6−ネオペンチルフェノキシ基、2−イソプロピル−6−ネオペンチルフェノキシ基;チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn−ブトキシ基、チオイソブトキシ基、チオsec−ブトキシ基、チオtert−ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6−ジ−tert−ブチルチオフェノキシ基、2,6−ジイソプロピルチオフェノキシ基、2,6−ジネオペンチルチオフェノキシ基、2−tert−ブチル−6−イソプロピルチオフェノキシ基、2−tert−ブチル−6−チオネオペンチルフェノキシ基、2−イソプロピル−6−チオネオペンチルフェノキシ基、2,4,6−トリイソプロピルチオフェノキシ基等のアリールチオラート基
;ジメチルアミド基、ジエチルアミド基、ジイソプロピルアミド基等の脂肪族アミド基;
フェニルアミド基、2,6−ジ−tert−ブチルフェニルアミド基、2,6−ジイソプロピルフェニルアミド基、2,6−ジネオペンチルフェニルアミド基、2−tert−ブチル−6−イソプロピルフェニルアミド基、2−tert−ブチル−6−ネオペンチルフェニルアミド基、2−イソプロピル−6−ネオペンチルフェニルアミド基、2,4,6−tert−ブチルフェニルアミド基等のアリールアミド基;ビストリメチルシリルアミド基等のビストリアルキルシリルアミド基;トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等のシリル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子等が挙げられる。更には、サリチルアルデヒド、2−ヒドロキシ−1−ナフトアルデヒド、2−ヒドロキシ−3−ナフトアルデヒド等のアルデヒドの残基;2'−ヒドロキシアセトフェノン、2'−ヒドロキシブチロフェノン、2'−ヒドロキシプロピオフェノン等のヒドロキシフェノンの残基;アセチルアセトン、ベンゾイルアセトン、プロピオニルアセトン、イソブチルアセトン、バレリルアセトン、エチルアセチルアセトン等のジケトンの残基;イソ吉草酸、カプリル酸、オクタン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、オレイン酸、リノール酸、シクロペンタンカルボン酸、ナフテン酸、エチルヘキサン酸、ビバール酸、バーサチック酸[シェル化学(株)製の商品名、C10モノカルボン酸の異性体の混合物から構成される合成酸]、フェニル酢酸、安息香酸、2−ナフトエ酸、マレイン酸、コハク酸等のカルボン酸の残基;ヘキサンチオ酸、2,2−ジメチルブタンチオ酸、デカンチオ酸、チオ安息香酸等のチオカルボン酸の残基、リン酸ジブチル、リン酸ジペンチル、リン酸ジヘキシル、リン酸ジヘプチル、リン酸ジオクチル、リン酸ビス(2−エチルヘキシル)、リン酸ビス(1−メチルヘプチル)、リン酸ジラウリル、リン酸ジオレイル、リン酸ジフェニル、リン酸ビス(p−ノニルフェニル)、リン酸ビス(ポリエチレングリコール−p−ノニルフェニル)、リン酸(ブチル)(2−エチルヘキシル)、リン酸(1−メチルヘプチル)(2−エチルヘキシル)、リン酸(2−エチルヘキシル)(p−ノニルフェニル)等のリン酸エステルの残基;2−エチルヘキシルホスホン酸モノブチル、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル、フェニルホスホン酸モノ−2−エチルヘキシル、2−エチルヘキシルホスホン酸モノ−p−ノニルフェニル、ホスホン酸モノ−2−エチルヘキシル、ホスホン酸モノ−1−メチルヘプチル、ホスホン酸モノ−p−ノニルフェニル等のホスホン酸エステルの残基、ジブチルホスフィン酸、ビス(2−エチルヘキシル)ホスフィン酸、ビス(1−メチルヘプチル)ホスフィン酸、ジラウリルホスフィン酸、ジオレイルホスフィン酸、ジフェニルホスフィン酸、ビス(p−ノニルフェニル)ホスフィン酸、ブチル(2−エチルヘキシル)ホスフィン酸、(2−エチルヘキシル)(1−メチルヘプチル)ホスフィン酸、(2−エチルヘキシル)(p−ノニルフェニル)ホスフィン酸、ブチルホスフィン酸、2−エチルヘキシルホスフィン酸、1−メチルヘプチルホスフィン酸、オレイルホスフィン酸、ラウリルホスフィン酸、フェニルホスフィン酸、p−ノニルフェニルホスフィン酸等のホスフィン酸の残基を挙げることもできる。なお、これらの配位子は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
Specific examples of the group (ligand) bonded to the rare earth element of the rare earth element compound include a hydrogen atom; a methoxy group, an ethoxy group, a propoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, a tert- Aliphatic alkoxy groups such as butoxy group; phenoxy group, 2,6-di-tert-butylphenoxy group, 2,6-diisopropylphenoxy group, 2,6-dineopentylphenoxy group, 2-tert-butyl-6- Isopropylphenoxy group, 2-tert-butyl-6-neopentylphenoxy group, 2-isopropyl-6-neopentylphenoxy group; thiomethoxy group, thioethoxy group, thiopropoxy group, thio n-butoxy group, thioisobutoxy group, thio aliphatic thiolate groups such as sec-butoxy group and thio-tert-butoxy group; Noxy group, 2,6-di-tert-butylthiophenoxy group, 2,6-diisopropylthiophenoxy group, 2,6-dineopentylthiophenoxy group, 2-tert-butyl-6-isopropylthiophenoxy group, 2 Arylthiolate groups such as -tert-butyl-6-thioneopentylphenoxy, 2-isopropyl-6-thioneopentylphenoxy, 2,4,6-triisopropylthiophenoxy; dimethylamide, diethylamide, diisopropyl An aliphatic amide group such as an amide group;
Phenylamide group, 2,6-di-tert-butylphenylamide group, 2,6-diisopropylphenylamide group, 2,6-dineopentylphenylamide group, 2-tert-butyl-6-isopropylphenylamide group, Aryl amide groups such as 2-tert-butyl-6-neopentylphenylamide group, 2-isopropyl-6-neopentylphenylamide group, 2,4,6-tert-butylphenylamide group; bistrimethylsilylamide group, etc. Bistrialkylsilylamide group; silyl groups such as trimethylsilyl group, tris (trimethylsilyl) silyl group, bis (trimethylsilyl) methylsilyl group, trimethylsilyl (dimethyl) silyl group, triisopropylsilyl (bistrimethylsilyl) silyl group; fluorine atom, chlorine atom, bromine Child, and a halogen atom such as iodine atom. Furthermore, residues of aldehydes such as salicylaldehyde, 2-hydroxy-1-naphthaldehyde, 2-hydroxy-3-naphthaldehyde; 2′-hydroxyacetophenone, 2′-hydroxybutyrophenone, 2′-hydroxypropiophenone, etc. Hydroxyphenone residues of: acetylacetone, benzoylacetone, propionylacetone, isobutylacetone, valerylacetone, ethylacetylacetone, etc. diketone residues; isovaleric acid, caprylic acid, octanoic acid, lauric acid, myristic acid, palmitic acid, Stearic acid, isostearic acid, oleic acid, linoleic acid, cyclopentanecarboxylic acid, naphthenic acid, ethylhexanoic acid, bivaric acid, versatic acid [trade name of Shell Chemical Co., Ltd., mixture of isomers of C10 monocarboxylic acid Synthetic acids comprised of, carboxylic acid residues such as phenylacetic acid, benzoic acid, 2-naphthoic acid, maleic acid, succinic acid; hexanethioic acid, 2,2-dimethylbutanethioic acid, decanethioic acid, thiobenzoic acid Thiocarboxylic acid residues such as dibutyl phosphate, dipentyl phosphate, dihexyl phosphate, diheptyl phosphate, dioctyl phosphate, bis (2-ethylhexyl phosphate), bis (1-methylheptyl phosphate), dilauryl phosphate Dioleyl phosphate, diphenyl phosphate, bis (p-nonylphenyl) phosphate, bis (polyethylene glycol-p-nonylphenyl) phosphate, (butyl) phosphate (2-ethylhexyl), phosphoric acid (1-methylheptyl) ) (2-ethylhexyl), phosphoric acid esters such as phosphoric acid (2-ethylhexyl) (p-nonylphenyl) Residues; monobutyl 2-ethylhexylphosphonate, mono-2-ethylhexyl 2-ethylhexylphosphonate, mono-2-ethylhexyl phenylphosphonate, mono-p-nonylphenyl 2-ethylhexylphosphonate, mono-2-ethylhexyl phosphonate, Phosphonic acid ester residues such as mono-1-methylheptyl phosphonate, mono-p-nonylphenyl phosphonate, dibutylphosphinic acid, bis (2-ethylhexyl) phosphinic acid, bis (1-methylheptyl) phosphinic acid, di Laurylphosphinic acid, dioleylphosphinic acid, diphenylphosphinic acid, bis (p-nonylphenyl) phosphinic acid, butyl (2-ethylhexyl) phosphinic acid, (2-ethylhexyl) (1-methylheptyl) phosphinic acid, (2-ethylhexyl) Phosphinic acids such as (p-nonylphenyl) phosphinic acid, butylphosphinic acid, 2-ethylhexylphosphinic acid, 1-methylheptylphosphinic acid, oleylphosphinic acid, laurylphosphinic acid, phenylphosphinic acid, p-nonylphenylphosphinic acid Can also be mentioned. In addition, these ligands may be used individually by 1 type, and may be used in combination of 2 or more type.

上記第二重合触媒組成物に用いる(A)成分において、上記希土類元素化合物と反応するルイス塩基としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記希土類元素化合物が複数のルイス塩基と反応する場合(式(XI)及び(XII)においては、wが2又は3である場合)、ルイス塩基L11は、同一であっても異なっていてもよい。 In the component (A) used in the second polymerization catalyst composition, examples of the Lewis base that reacts with the rare earth element compound include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, Diolefins and the like. Here, when the rare earth element compound reacts with a plurality of Lewis bases (in the formulas (XI) and (XII), when w is 2 or 3), the Lewis base L 11 is the same or different. It may be.

上記第二重合触媒組成物に用いる(B)成分は、イオン性化合物(B−1)、アルミノキサン(B−2)及びハロゲン化合物(B−3)よりなる群から選択される少なくとも一種の化合物である。なお、上記第二重合触媒組成物における(B)成分の合計の含有量は、(A)成分に対して0.1〜50倍モルであることが好ましい。   The component (B) used in the second polymerization catalyst composition is at least one compound selected from the group consisting of an ionic compound (B-1), an aluminoxane (B-2), and a halogen compound (B-3). is there. In addition, it is preferable that content of the sum total of (B) component in said 2nd polymerization catalyst composition is 0.1-50 times mole with respect to (A) component.

上記(B−1)で表されるイオン性化合物は、非配位性アニオンとカチオンとからなり
、上記(A)成分である希土類元素化合物又はそのルイス塩基との反応物と反応してカチオン性遷移金属化合物を生成できるイオン性化合物等を挙げることができる。ここで、非配位性アニオンとしては、例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル,ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル),フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられる。一方、カチオンとしては、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等を挙げることができる。カルボニウムカチオンの具体例としては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、より具体的には、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオン等が挙げられる。アンモニウムカチオンの具体例としては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン(例えば、トリ(n−ブチル)アンモニウムカチオン)等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンの具体例としては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。従って、イオン性化合物としては、上述の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物が好ましく、具体的には、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、これらのイオン性化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記第二重合触媒組成物におけるイオン性化合物の含有量は、(A)成分に対して0.1〜10倍モルであることが好ましく、約1倍モルであることが更に好ましい。
The ionic compound represented by the above (B-1) is composed of a non-coordinating anion and a cation, and reacts with a reaction product of the rare earth element compound or its Lewis base as the component (A) to be cationic. Examples thereof include ionic compounds capable of generating a transition metal compound. Here, as the non-coordinating anion, for example, tetraphenyl borate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis ( Pentafluorophenyl) borate, tetrakis (tetrafluoromethylphenyl) borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl] borate, tri Decahydride-7,8-dicarboundecaborate and the like can be mentioned. On the other hand, examples of the cation include a carbonium cation, an oxonium cation, an ammonium cation, a phosphonium cation, a cycloheptatrienyl cation, and a ferrocenium cation having a transition metal. Specific examples of the carbonium cation include trisubstituted carbonium cations such as triphenylcarbonium cation and tri (substituted phenyl) carbonium cation, and more specifically, as tri (substituted phenyl) carbonyl cation, Examples include tri (methylphenyl) carbonium cation, tri (dimethylphenyl) carbonium cation, and the like. Specific examples of ammonium cations include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation (for example, tri (n-butyl) ammonium cation); N, N-dimethylanilinium N, N-dialkylanilinium cation such as cation, N, N-diethylanilinium cation, N, N-2,4,6-pentamethylanilinium cation; dialkylammonium cation such as diisopropylammonium cation and dicyclohexylammonium cation Is mentioned. Specific examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation. Accordingly, the ionic compound is preferably a compound selected and combined from the above-mentioned non-coordinating anions and cations, specifically, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, triphenylcarbohydrate. Preferred is nitrotetrakis (pentafluorophenyl) borate. Moreover, these ionic compounds can be used individually by 1 type, or 2 or more types can be mixed and used for them. In addition, it is preferable that it is 0.1-10 times mole with respect to (A) component, and, as for content of the ionic compound in the said 2nd polymerization catalyst composition, it is still more preferable that it is about 1 time mole.

上記(B−2)で表されるアルミノキサンは、有機アルミニウム化合物と縮合剤とを接
触させることによって得られる化合物であり、例えば、一般式:(−Al(R')O−)で示される繰り返し単位を有する鎖状アルミノキサン又は環状アルミノキサン(式中、R'は炭素数1〜10の炭化水素基であり、一部の炭化水素基はハロゲン原子及び/又はアルコキシ基で置換されてもよく、繰り返し単位の重合度は、5以上が好ましく、10以上が更に好ましい)を挙げることができる。ここで、R'として、具体的には、メチル基、エチル基、プロピル基、イソブチル基等が挙げられ、これらの中でも、メチル基が好ましい。また、アルミノキサンの原料として用いられる有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム及びその混合物等が挙げられ、トリメチルアルミニウムが特に好ましい。例えば、トリメチルアルミニウムとトリブチルアルミニウムとの混合物を原料として用いたアルミノキサンを好適に用いることができる。なお、上記第二重合触媒組成物におけるアルミノキサンの含有量は、(A)成分を構成する希土類元素Mと、アルミノキサンのアルミニウム元素Alとの元素比率Al/Mが、10〜1000程度となるようにすることが好ましい。
The aluminoxane represented by the above (B-2) is a compound obtained by bringing an organoaluminum compound and a condensing agent into contact with each other. For example, the repetition represented by the general formula: (—Al (R ′) O—) A chain aluminoxane or cyclic aluminoxane having a unit (wherein R ′ is a hydrocarbon group having 1 to 10 carbon atoms, and some of the hydrocarbon groups may be substituted with a halogen atom and / or an alkoxy group) The degree of polymerization of the unit is preferably 5 or more, and more preferably 10 or more. Here, specific examples of R ′ include a methyl group, an ethyl group, a propyl group, and an isobutyl group. Among these, a methyl group is preferable. Examples of the organoaluminum compound used as an aluminoxane raw material include trialkylaluminums such as trimethylaluminum, triethylaluminum, and triisobutylaluminum, and mixtures thereof, and trimethylaluminum is particularly preferable. For example, an aluminoxane using a mixture of trimethylaluminum and tributylaluminum as a raw material can be preferably used. The aluminoxane content in the second polymerization catalyst composition is such that the element ratio Al / M of the rare earth element M constituting the component (A) and the aluminum element Al of the aluminoxane is about 10 to 1000. It is preferable to do.

上記(B−3)で表されるハロゲン化合物は、ルイス酸、金属ハロゲン化物とルイス塩
基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも一種からなり、例え
ば、上記(A)成分である希土類元素化合物又はそのルイス塩基との反応物と反応してカチオン性遷移金属化合物を生成することができる。なお、上記第二重合触媒組成物におけるハロゲン化合物の合計の含有量は、(A)成分に対して1〜5倍モルであることが好ましい。
The halogen compound represented by (B-3) is composed of at least one of a Lewis acid, a complex compound of a metal halide and a Lewis base, and an organic compound containing an active halogen, and is, for example, the component (A). A cationic transition metal compound can be produced by reacting with a rare earth element compound or a reactant thereof with a Lewis base. In addition, it is preferable that content of the sum total of the halogen compound in the said 2nd polymerization catalyst composition is 1-5 times mole with respect to (A) component.

上記ルイス酸としては、B(C等のホウ素含有ハロゲン化合物、Al(C等のアルミニウム含有ハロゲン化合物を使用できる他、周期律表中の第III,IV,V,VI又はVIII族に属する元素を含有するハロゲン化合物を用いることもできる。好ましくはアルミニウムハロゲン化物又は有機金属ハロゲン化物が挙げられる。また、ハロゲン元素としては、塩素又は臭素が好ましい。上記ルイス酸として、具体的には、メチルアルミニウムジブロマイド、メチルアルミニウムジクロライド、エチルアルミニウムジブロマイド、エチルアルミニウムジクロライド、ブチルアルミニウムジブロマイド、ブチルアルミニウムジクロライド、ジメチルアルミニウムブロマイド、ジメチルアルミニウムクロライド、ジエチルアルミニウムブロマイド、ジエチルアルミニウムクロライド、ジブチルアルミニウムブロマイド、ジブチルアルミニウムクロライド、メチルアルミニウムセスキブロマイド、メチルアルミニウムセスキクロライド、エチルアルミニウムセスキブロマイド、エチルアルミニウムセスキクロライド、ジブチル錫ジクロライド、アルミニウムトリブロマイド、三塩化アンチモン、五塩化アンチモン、三塩化リン、五塩化リン、四塩化錫、四塩化チタン、六塩化タングステン等が挙げられ、これらの中でも、ジエチルアルミニウムクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライド、ジエチルアルミニウムブロマイド、エチルアルミニウムセスキブロマイド、エチルアルミニウムジブロマイドが特に好ましい。 As the Lewis acid, boron-containing halogen compounds such as B (C 6 F 5 ) 3 and aluminum-containing halogen compounds such as Al (C 6 F 5 ) 3 can be used, as well as III, IV, A halogen compound containing an element belonging to the group V, VI or VIII can also be used. Preferably, aluminum halide or organometallic halide is used. Moreover, as a halogen element, chlorine or bromine is preferable. Specific examples of the Lewis acid include methyl aluminum dibromide, methyl aluminum dichloride, ethyl aluminum dibromide, ethyl aluminum dichloride, butyl aluminum dibromide, butyl aluminum dichloride, dimethyl aluminum bromide, dimethyl aluminum chloride, diethyl aluminum bromide, diethyl Aluminum chloride, dibutylaluminum bromide, dibutylaluminum chloride, methylaluminum sesquibromide, methylaluminum sesquichloride, ethylaluminum sesquibromide, ethylaluminum sesquichloride, dibutyltin dichloride, aluminum tribromide, antimony trichloride, antimony pentachloride, phosphorus trichloride , Pentachloride , Tin tetrachloride, titanium tetrachloride, tungsten hexachloride, etc., among which diethylaluminum chloride, ethylaluminum sesquichloride, ethylaluminum dichloride, diethylaluminum bromide, ethylaluminum sesquibromide, ethylaluminum dibromide preferable.

上記金属ハロゲン化物とルイス塩基との錯化合物を構成する金属ハロゲン化物としては
、塩化ベリリウム、臭化ベリリウム、ヨウ化ベリリウム、塩化マグネシウム、臭化マグネ
シウム、ヨウ化マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、塩
化バリウム、臭化バリウム、ヨウ化バリウム、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、塩化カ
ドミウム、臭化カドミウム、ヨウ化カドミウム、塩化水銀、臭化水銀、ヨウ化水銀、塩化
マンガン、臭化マンガン、ヨウ化マンガン、塩化レニウム、臭化レニウム、ヨウ化レニウ
ム、塩化銅、ヨウ化銅、塩化銀、臭化銀、ヨウ化銀、塩化金、ヨウ化金、臭化金等が挙げ
られ、これらの中でも、塩化マグネシウム、塩化カルシウム、塩化バリウム、塩化マンガ
ン、塩化亜鉛、塩化銅が好ましく、塩化マグネシウム、塩化マンガン、塩化亜鉛、塩化銅
が特に好ましい。
The metal halide constituting the complex compound of the above metal halide and Lewis base includes beryllium chloride, beryllium bromide, beryllium iodide, magnesium chloride, magnesium bromide, magnesium iodide, calcium chloride, calcium bromide, iodine. Calcium chloride, barium chloride, barium bromide, barium iodide, zinc chloride, zinc bromide, zinc iodide, cadmium chloride, cadmium bromide, cadmium iodide, mercury chloride, mercury bromide, mercury iodide, manganese chloride, Manganese bromide, manganese iodide, rhenium chloride, rhenium bromide, rhenium iodide, copper chloride, copper iodide, silver chloride, silver bromide, silver iodide, gold chloride, gold iodide, gold bromide, etc. Of these, magnesium chloride, calcium chloride, barium chloride, manganese chloride, zinc chloride, and copper chloride are preferred. , Magnesium chloride, manganese chloride, zinc chloride, copper chloride being particularly preferred.

また、上記金属ハロゲン化物とルイス塩基との錯化合物を構成するルイス塩基としては
、リン化合物、カルボニル化合物、窒素化合物、エーテル化合物、アルコール等が好まし
い。具体的には、リン酸トリブチル、リン酸トリ-2-エチルヘキシル、リン酸トリフェニ
ル、リン酸トリクレジル、トリエチルホスフィン、トリブチルホスフィン、トリフェニル
ホスフィン、ジエチルホスフィノエタン、ジフェニルホスフィノエタン、アセチルアセト
ン、ベンゾイルアセトン、プロピオニトリルアセトン、バレリルアセトン、エチルアセチ
ルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸フェニル、マロン酸ジメ
チル、マロン酸ジエチル、マロン酸ジフェニル、酢酸、オクタン酸、2-エチル-ヘキサン
酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸、トリエチルア
ミン、N,N-ジメチルアセトアミド、テトラヒドロフラン、ジフェニルエーテル、2-エ
チル-ヘキシルアルコール、オレイルアルコール、ステアリルアルコール、フェノール、
ベンジルアルコール、1-デカノール、ラウリルアルコール等が挙げられ、これらの中で
も、リン酸トリ-2-エチルヘキシル、リン酸トリクレジル、アセチルアセトン、2-エチ
ルヘキサン酸、バーサチック酸、2-エチルヘキシルアルコール、1-デカノール、ラウリ
ルアルコールが好ましい。
Moreover, as a Lewis base which comprises the complex compound of the said metal halide and a Lewis base, a phosphorus compound, a carbonyl compound, a nitrogen compound, an ether compound, alcohol, etc. are preferable. Specifically, tributyl phosphate, tri-2-ethylhexyl phosphate, triphenyl phosphate, tricresyl phosphate, triethylphosphine, tributylphosphine, triphenylphosphine, diethylphosphinoethane, diphenylphosphinoethane, acetylacetone, benzoylacetone , Propionitrile acetone, valeryl acetone, ethyl acetylacetone, methyl acetoacetate, ethyl acetoacetate, phenyl acetoacetate, dimethyl malonate, diethyl malonate, diphenyl malonate, acetic acid, octanoic acid, 2-ethyl-hexanoic acid, olein Acid, stearic acid, benzoic acid, naphthenic acid, versatic acid, triethylamine, N, N-dimethylacetamide, tetrahydrofuran, diphenyl ether, 2-ethyl-hexyl alcohol, oleyl Alcohol, stearyl alcohol, phenol,
Examples include benzyl alcohol, 1-decanol, lauryl alcohol, among which tri-2-ethylhexyl phosphate, tricresyl phosphate, acetylacetone, 2-ethylhexanoic acid, versatic acid, 2-ethylhexyl alcohol, 1-decanol, Lauryl alcohol is preferred.

上記ルイス塩基は、上記金属ハロゲン化物1モル当り、0.01〜30モル、好ましく
は0.5〜10モルの割合で反応させる。このルイス塩基との反応物を使用すると、ポリ
マー中に残存する金属を低減することができる。
The Lewis base is reacted at a ratio of 0.01 to 30 mol, preferably 0.5 to 10 mol, per mol of the metal halide. When the reaction product with the Lewis base is used, the metal remaining in the polymer can be reduced.

上記活性ハロゲンを含む有機化合物としては、ベンジルクロライド等が挙げられる。   Examples of the organic compound containing the active halogen include benzyl chloride.

上記第二重合触媒組成物に用いる(C)成分は、下記一般式(i):
YR ・・・ (i)
[式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であ
り、R及びRは、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、Rは炭素数1〜10の炭化水素基であり、但し、Rは上記R又はRと同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a、b及びcは1である]で表される有機金属化合物であり、下記一般式(X):
AlR111213 ・・・ (X)
[式中、R11及びR12は、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、R13は炭素数1〜10の炭化水素基であり、但し、R13は上記R11又はR12と同一又は異なっていてもよい]で表される有機アルミニウム化合物であることが好ましい。式(X)の有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリイソプロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−t−ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ−n−プロピルアルミニウム、水素化ジ−n−ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n−プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。以上に述べた(C)成分としての有機金属化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記第二重合触媒組成物における有機アルミニウム化合物の含有量は、(A)成分に対して1〜50倍モルであることが好ましく、約10倍モルであることが更に好ましい。
The component (C) used in the second polymerization catalyst composition is represented by the following general formula (i):
YR 1 a R 2 b R 3 c (i)
[Wherein Y is a metal selected from Group 1, Group 2, Group 12 and Group 13 of the Periodic Table, and R 1 and R 2 are the same or different and have 1 to 10 carbon atoms. R 3 is a hydrocarbon group or a hydrogen atom, and R 3 is a hydrocarbon group having 1 to 10 carbon atoms, provided that R 3 may be the same as or different from R 1 or R 2, and Y is a periodic table. When it is a metal selected from Group 1, a is 1 and b and c are 0, and when Y is a metal selected from Groups 2 and 12 of the Periodic Table, a and b are 1 and c is 0, and when Y is a metal selected from Group 13 of the Periodic Table, a, b and c are 1]. Yes, the following general formula (X):
AlR 11 R 12 R 13 (X)
[Wherein, R 11 and R 12 are the same or different and each represents a hydrocarbon group having 1 to 10 carbon atoms or a hydrogen atom, and R 13 is a hydrocarbon group having 1 to 10 carbon atoms, provided that R 13 represents the above It may be the same as or different from R 11 or R 12 ]. Examples of the organoaluminum compound of the formula (X) include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, tripentylaluminum, Trihexyl aluminum, tricyclohexyl aluminum, trioctyl aluminum; diethyl aluminum hydride, di-n-propyl aluminum hydride, di-n-butyl aluminum hydride, diisobutyl aluminum hydride, dihexyl aluminum hydride, diisohexyl hydride Aluminum, dioctyl aluminum hydride, diisooctyl aluminum hydride; ethyl aluminum dihydride, n-propyl aluminum Hydride, include isobutyl aluminum dihydride and the like, among these, triethylaluminum, triisobutylaluminum, hydrogenated diethylaluminum, hydrogenated diisobutylaluminum are preferred. The organometallic compound as the component (C) described above can be used alone or in combination of two or more. In addition, it is preferable that it is 1-50 times mole with respect to (A) component, and, as for content of the organoaluminum compound in the said 2nd polymerization catalyst composition, it is still more preferable that it is about 10 times mole.

なお、本発明の共重合体の第一製造方法においては、上述の通り、上記重合触媒組成物
を用いること以外は、通常の配位イオン重合触媒による重合体の製造方法と同様にして、
重合を行うことができる。ここで、本発明の共重合体の製造方法は、例えば、(1)単量
体として共役ジエン化合物及び該共役ジエン化合物以外の非共役オレフィンを含む重合反
応系中に、重合触媒組成物の構成成分を別個に提供し、該反応系中において重合触媒組成
物としてもよいし、(2)予め調製された重合触媒組成物を重合反応系中に提供してもよ
い。また、(2)においては、助触媒によって活性化されたメタロセン錯体(活性種)を
提供することも含まれる。なお、重合触媒組成物に含まれるメタロセン錯体の使用量は、
共役ジエン化合物及び該共役ジエン化合物以外の非共役オレフィンの合計に対して、0.0001〜0.01倍モルの範囲が好ましい。
In the first production method of the copolymer of the present invention, as described above, except that the polymerization catalyst composition is used, in the same manner as in the production method of a polymer with a normal coordination ion polymerization catalyst,
Polymerization can be performed. Here, the method for producing a copolymer of the present invention includes, for example, (1) the constitution of a polymerization catalyst composition in a polymerization reaction system containing a conjugated diene compound as a monomer and a non-conjugated olefin other than the conjugated diene compound. The components may be provided separately and used as a polymerization catalyst composition in the reaction system, or (2) a previously prepared polymerization catalyst composition may be provided in the polymerization reaction system. Moreover, (2) includes providing a metallocene complex (active species) activated by a cocatalyst. The amount of metallocene complex contained in the polymerization catalyst composition is
The range of 0.0001 to 0.01-fold mol is preferable with respect to the total of the conjugated diene compound and the non-conjugated olefin other than the conjugated diene compound.

また、本発明の共重合体の第一製造方法においては、エタノール、イソプロパノール等
の重合停止剤を用いて、重合を停止させてもよい。
In the first method for producing a copolymer of the present invention, the polymerization may be stopped using a polymerization terminator such as ethanol or isopropanol.

本発明の共重合体の第一製造方法において、共役ジエン化合物及び非共役オレフィンの
重合反応は、不活性ガス、好ましくは窒素ガスやアルゴンガスの雰囲気下において行われ
ることが好ましい。上記重合反応の重合温度は、特に制限されないが、例えば−100℃〜200℃の範囲が好ましく、室温程度とすることもできる。なお、重合温度を上げると、重合反応のシス−1,4選択性が低下することがある。また、上記重合反応の圧力は、共役ジエン化合物及び非共役オレフィンを十分に重合反応系中に取り込むため、0.1〜10MPaの範囲が好ましい。また、上記重合反応の反応時間も特に制限されず、例えば1秒〜10日の範囲が好ましいが、重合される単量体の種類、触媒の種類、重合温度等の条件によって適宜選択することができる。
In the first method for producing a copolymer of the present invention, the polymerization reaction of the conjugated diene compound and the non-conjugated olefin is preferably performed in an atmosphere of an inert gas, preferably nitrogen gas or argon gas. The polymerization temperature of the polymerization reaction is not particularly limited, but is preferably in the range of −100 ° C. to 200 ° C., for example, and can be about room temperature. If the polymerization temperature is raised, the cis-1,4 selectivity of the polymerization reaction may be lowered. Moreover, since the pressure of the said polymerization reaction fully takes in a conjugated diene compound and a nonconjugated olefin in a polymerization reaction system, the range of 0.1-10 Mpa is preferable. Further, the reaction time of the above polymerization reaction is not particularly limited, and is preferably in the range of 1 second to 10 days, for example. it can.

また、本発明の共重合体の第一製造方法において、共役ジエン化合物と非共役オレフィ
ンとの重合の際、重合開始時における共役ジエン化合物の濃度(mol/l)と非共役オレフィンの濃度(mol/l)とは、下記式:
非共役オレフィンの濃度/共役ジエン化合物の濃度 ≧ 1.0
の関係を満たすことが好ましく、更に好ましくは下記式:
非共役オレフィンの濃度/共役ジエン化合物の濃度 ≧ 1.3
の関係を満たし、一層好ましくは下記式:
非共役オレフィンの濃度/共役ジエン化合物の濃度 ≧ 1.7
の関係を満たす。非共役オレフィンの濃度/共役ジエン化合物の濃度の値を1以上とする
ことで、反応混合物中に非共役オレフィンを効率的に導入することができる。
In the first method for producing a copolymer of the present invention, when the conjugated diene compound and the non-conjugated olefin are polymerized, the concentration of the conjugated diene compound (mol / l) and the concentration of the non-conjugated olefin (mol) at the start of the polymerization. / L) is the following formula:
Non-conjugated olefin concentration / conjugated diene compound concentration ≧ 1.0
It is preferable to satisfy the relationship:
Non-conjugated olefin concentration / conjugated diene compound concentration ≧ 1.3
And more preferably the following formula:
Non-conjugated olefin concentration / conjugated diene compound concentration ≧ 1.7
Satisfy the relationship. By setting the value of the concentration of the non-conjugated olefin / the concentration of the conjugated diene compound to 1 or more, the non-conjugated olefin can be efficiently introduced into the reaction mixture.

また、上記第一重合触媒組成物又は第二重合触媒組成物を使用しなくても、即ち、通常
の配位イオン重合触媒を使用する場合であっても、重合反応系中への単量体の仕込み方を
調整することで、本発明の共重合体を製造することができる。即ち、本発明の共重合体の
第二の製造方法は、非共役オレフィンの存在下において、共役ジエン化合物の投入を制御
することで、共重合体の連鎖構造を制御することを特徴とし、これによって、共重合体中
の単量体単位の配列を制御することができる。なお、本発明において、重合反応系とは、
共役ジエン化合物と非共役オレフィンとの重合が行われる場所を意味し、具体例としては
、反応容器等が挙げられる。
Further, even if the first polymerization catalyst composition or the second polymerization catalyst composition is not used, that is, when a normal coordination ion polymerization catalyst is used, the monomer into the polymerization reaction system The copolymer of the present invention can be produced by adjusting the charging method. That is, the second production method of the copolymer of the present invention is characterized in that the chain structure of the copolymer is controlled by controlling the introduction of the conjugated diene compound in the presence of the non-conjugated olefin. Can control the arrangement of monomer units in the copolymer. In the present invention, the polymerization reaction system is
It means a place where polymerization of a conjugated diene compound and a non-conjugated olefin is carried out, and specific examples include a reaction vessel.

ここで、共役ジエン化合物の投入方法は、連続投入、分割投入のいずれであってもよく
、更には、連続投入及び分割投入を組み合わせてもよい。また、連続投入とは、例えば、
一定の添加速度で一定の時間添加することをいう。
Here, the charging method of the conjugated diene compound may be either continuous charging or split charging, and further, continuous charging and split charging may be combined. Moreover, continuous input is, for example,
Adding at a constant rate and for a fixed time.

具体的には、共役ジエン化合物と非共役オレフィンとを重合させる重合反応系に共役ジ
エン化合物を分割又は連続投入することで、該重合反応系内の単量体の濃度比を制御する
ことが可能となり、その結果、得られる共重合体中の連鎖構造(即ち、単量体単位の配列
)を特徴づけることが可能となる。また、共役ジエン化合物の投入の際に、非共役オレフ
ィンが重合反応系中に存在することで、共役ジエン化合物単独重合体の生成を抑制するこ
とができる。なお、共役ジエン化合物の投入は、非共役オレフィンの重合を開始した後に
行ってもよい。
Specifically, the concentration ratio of monomers in the polymerization reaction system can be controlled by dividing or continuously adding the conjugated diene compound to the polymerization reaction system for polymerizing the conjugated diene compound and the non-conjugated olefin. As a result, it is possible to characterize the chain structure (that is, the arrangement of monomer units) in the resulting copolymer. Further, when the conjugated diene compound is added, the presence of the non-conjugated olefin in the polymerization reaction system can suppress the formation of a conjugated diene compound homopolymer. The addition of the conjugated diene compound may be performed after the polymerization of the nonconjugated olefin is started.

例えば、上記第二製造方法によってブロック共重合体を製造する場合には、あらかじめ
非共役オレフィンの重合を開始した重合反応系に、非共役オレフィンの存在下で共役ジエ
ン化合物を連続投入することが有効となる。特に、上記第二製造方法によってマルチブロック共重合体を製造する場合には、「非共役オレフィンを重合反応系中で重合させ、次に
、非共役オレフィンの存在下で共役ジエン化合物を該重合反応系中に連続投入する」とい
う操作を2回以上繰り返すことが有効となる。
For example, when a block copolymer is produced by the above second production method, it is effective to continuously add a conjugated diene compound in the presence of the nonconjugated olefin to the polymerization reaction system in which the polymerization of the nonconjugated olefin has been started in advance. It becomes. In particular, when a multi-block copolymer is produced by the second production method, “a non-conjugated olefin is polymerized in a polymerization reaction system, and then the conjugated diene compound is reacted in the presence of the non-conjugated olefin. It is effective to repeat the operation of “continuous charging into the system” twice or more.

上記第二製造方法は、上述のように重合反応系中への単量体の仕込み方を特定する以外
は特に限定されず、例えば、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気
相重合法、固相重合法等の任意の重合方法を用いることができる。また、上記第二製造方
法は、上述のように重合反応系中への単量体の仕込み方を特定する以外は、上記第一製造
方法と同様にして、単量体である共役ジエン化合物と非共役オレフィンを共重合させるこ
とができる。
The second production method is not particularly limited as described above, except that the method of charging the monomer into the polymerization reaction system as described above. For example, the solution polymerization method, the suspension polymerization method, the liquid phase bulk polymerization method, Any polymerization method such as an emulsion polymerization method, a gas phase polymerization method, and a solid phase polymerization method can be used. In addition, the second production method is the same as the first production method, except that the method of charging the monomer into the polymerization reaction system as described above, and the conjugated diene compound as a monomer Non-conjugated olefins can be copolymerized.

なお、上記第二製造方法においては、共役ジエン化合物の投入を制御する必要があるが
、具体的には、共役ジエン化合物の投入量や共役ジエン化合物の投入回数を制御すること
が好ましい。また、共役ジエン化合物の投入の制御方法は、例えば、コンピュータ等のプ
ログラムで制御する方法や、タイマー等を用いてアナログで制御する方法が挙げられるが
、これらに限定されるものではない。また、上述のように、共役ジエン化合物の投入方法
は、特に限定されず、連続投入、分割投入等が挙げられる。ここで、共役ジエン化合物を
分割投入する場合、該共役ジエン化合物の投入回数は、特に限定されないが、1〜5回の
範囲が好ましい。共役ジエン化合物の投入回数が大きくなり過ぎると、ランダム共重合体
との区別が困難になる場合がある。
In the second production method, it is necessary to control the input of the conjugated diene compound. Specifically, it is preferable to control the input amount of the conjugated diene compound and the input frequency of the conjugated diene compound. Examples of the method for controlling the introduction of the conjugated diene compound include a method of controlling by a program such as a computer and a method of controlling by analog using a timer or the like, but are not limited thereto. In addition, as described above, the method for charging the conjugated diene compound is not particularly limited, and examples thereof include continuous charging and divided charging. Here, when the conjugated diene compound is dividedly added, the number of times the conjugated diene compound is added is not particularly limited, but is preferably in the range of 1 to 5 times. If the conjugated diene compound is charged too many times, it may be difficult to distinguish it from a random copolymer.

また、上記第二製造方法においては、共役ジエン化合物の投入時に、非共役オレフィン
が重合反応系に存在していることが必要であるため、非共役オレフィンを重合反応系へ連
続的に供給することが好ましい。また、非共役オレフィンの供給方法は、特に限定される
ものではない。
In the second production method, since it is necessary that the non-conjugated olefin is present in the polymerization reaction system when the conjugated diene compound is charged, the non-conjugated olefin is continuously supplied to the polymerization reaction system. Is preferred. Moreover, the supply method of a nonconjugated olefin is not specifically limited.

(ゴム組成物)
本発明のゴム組成物としては、本発明の共重合体を含む限り、特に制限はなく、目的に応じて適宜選択することができるが、本発明の共重合体以外のゴム成分、無機充填剤、カーボンブラック、架橋剤、などを含むことが好ましい。
(Rubber composition)
The rubber composition of the present invention is not particularly limited as long as it contains the copolymer of the present invention, and can be appropriately selected according to the purpose. However, rubber components other than the copolymer of the present invention, inorganic fillers , Carbon black, a crosslinking agent, and the like are preferable.

<共重合体>
本発明の共重合体のゴム成分中の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、3質量%以上が好ましい。
前記共重合体のゴム成分中の含有量が、3質量%未満であると、本発明の特徴が小さかったり、またはその特徴を発揮しなかったりすることがある。
<Copolymer>
There is no restriction | limiting in particular as content in the rubber component of the copolymer of this invention, Although it can select suitably according to the objective, 3 mass% or more is preferable.
When the content of the copolymer in the rubber component is less than 3% by mass, the characteristics of the present invention may be small or the characteristics may not be exhibited.

<ゴム成分>
前記ゴム成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の共重合体、天然ゴム、各種ブタジエンゴム、各種スチレン−ブタジエン共重合体ゴム、イソプレンゴム、ブチルゴム、イソブチレンとp−メチルスチレンの共重合体の臭化物、ハロゲン化ブチルゴム、アクリロニトリロブタジエンゴム、クロロプレンゴム、エチレン−プロピレン共重合体ゴム、エチレン−プロピレン−ジエン共重合体ゴム、スチレン−イソプレン共重合体ゴム、スチレン−イソプレン−ブタジエン共重合体ゴム、イソプレン−ブタジエン共重合体ゴム、クロロスルホン化ポリエチレン、アクリルゴム、エピクロルヒドリンゴム、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
<Rubber component>
The rubber component is not particularly limited and may be appropriately selected depending on the purpose. For example, the copolymer of the present invention, natural rubber, various butadiene rubbers, various styrene-butadiene copolymer rubbers, isoprene rubber, Butyl rubber, isobutylene and p-methylstyrene copolymer bromide, halogenated butyl rubber, acrylonitrile butadiene rubber, chloroprene rubber, ethylene-propylene copolymer rubber, ethylene-propylene-diene copolymer rubber, styrene-isoprene copolymer Polymer rubber, styrene-isoprene-butadiene copolymer rubber, isoprene-butadiene copolymer rubber, chlorosulfonated polyethylene, acrylic rubber, epichlorohydrin rubber, polysulfide rubber, silicone rubber, fluorine rubber, urethane rubber, etc. . These may be used individually by 1 type and may use 2 or more types together.

前記ゴム組成物には、必要に応じて補強性充填剤を配合することができる。前記補強性充填剤としては、カーボンブラック、無機充填剤、などを挙げることができ、カーボンブラック及び無機充填剤から選択される少なくとも一種が好ましい。   A reinforcing filler can be blended with the rubber composition as necessary. Examples of the reinforcing filler include carbon black and inorganic filler, and at least one selected from carbon black and inorganic filler is preferable.

<無機充填剤>
前記無機充填剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シリカ、水酸化アルミニウム、クレー、アルミナ、タルク、マイカ、カオリン、ガラスバルーン、ガラスビーズ、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、酸化マグネシウム、酸化チタン、チタン酸カリウム、硫酸バリウム、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
なお、無機充填剤を用いる時は適宜シランカップリング剤を使用してもよい。
<Inorganic filler>
The inorganic filler is not particularly limited and may be appropriately selected depending on the intended purpose.For example, silica, aluminum hydroxide, clay, alumina, talc, mica, kaolin, glass balloon, glass beads, calcium carbonate, Examples thereof include magnesium carbonate, magnesium hydroxide, calcium carbonate, magnesium oxide, titanium oxide, potassium titanate, and barium sulfate. These may be used individually by 1 type and may use 2 or more types together.
In addition, when using an inorganic filler, you may use a silane coupling agent suitably.

前記補強性充填剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分100質量部に対し、5質量部〜200質量部が好ましい。
前記補強性充填剤の含有量が、5質量部未満であると、補強性充填剤を入れる効果があまりみられないことがあり、200質量部を超えると前記補強性充填剤が混ざり込まなくなる傾向があり、ゴム組成物としての性能を低下させることがある。
There is no restriction | limiting in particular as content of the said reinforcing filler, Although it can select suitably according to the objective, 5 mass parts-200 mass parts are preferable with respect to 100 mass parts of rubber components.
When the content of the reinforcing filler is less than 5 parts by mass, the effect of adding the reinforcing filler may not be seen so much, and when it exceeds 200 parts by mass, the reinforcing filler tends not to be mixed. And the performance as a rubber composition may be reduced.

<架橋剤>
前記架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硫黄系架橋剤、有機過酸化物系架橋剤、無機架橋剤、ポリアミン架橋剤、樹脂架橋剤、硫黄化合物系架橋剤、オキシム−ニトロソアミン系架橋剤硫黄などが挙げられるが、中でもタイヤ用ゴム組成物としては硫黄系架橋剤がより好ましい。
<Crosslinking agent>
There is no restriction | limiting in particular as said crosslinking agent, According to the objective, it can select suitably, For example, a sulfur type crosslinking agent, an organic peroxide type crosslinking agent, an inorganic crosslinking agent, a polyamine crosslinking agent, a resin crosslinking agent, sulfur Compound-based crosslinking agents, oxime-nitrosamine-based crosslinking agents, sulfur and the like can be mentioned. Among them, sulfur-based crosslinking agents are more preferable as the rubber composition for tires.

前記架橋剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分100質量部に対し、0.1質量部〜20質量部が好ましい。
前記架橋剤の含有量が0.1質量部未満では、架橋がほとんど進行しなかったり、20質量部を超えると一部の架橋剤により混練り中に架橋が進んでしまう傾向があったり、加硫物の物性が損なわれたりすることがある。
There is no restriction | limiting in particular as content of the said crosslinking agent, Although it can select suitably according to the objective, 0.1 mass part-20 mass parts are preferable with respect to 100 mass parts of rubber components.
When the content of the cross-linking agent is less than 0.1 parts by mass, the cross-linking hardly proceeds, and when the content exceeds 20 parts by mass, the cross-linking tends to progress during kneading with a part of the cross-linking agent. The physical properties of the sulfide may be impaired.

<その他の成分>
その他に加硫促進剤を併用することも可能であり、加硫促進剤としては、グアジニン系、アルデヒド−アミン系、アルデヒド−アンモニア系、チアゾール系、スルフェンアミド系、チオ尿素系、チウラム系、ジチオカルバメート系、ザンテート系等の化合物が使用できる。
また必要に応じて、補強剤、軟化剤、充填剤、加硫助剤、着色剤、難燃剤、滑剤、発泡剤、可塑剤、加工助剤、酸化防止剤、老化防止剤、スコーチ防止剤、紫外線防止剤、帯電防止剤、着色防止剤、その他の配合剤など公知のものをその使用目的に応じて使用することができる。
<Other ingredients>
In addition, it is also possible to use a vulcanization accelerator in combination, and examples of the vulcanization accelerator include guanidine, aldehyde-amine, aldehyde-ammonia, thiazole, sulfenamide, thiourea, thiuram, Dithiocarbamate and xanthate compounds can be used.
If necessary, reinforcing agents, softeners, fillers, vulcanization aids, colorants, flame retardants, lubricants, foaming agents, plasticizers, processing aids, antioxidants, anti-aging agents, scorch prevention agents, Known materials such as ultraviolet ray inhibitors, antistatic agents, anti-coloring agents, and other compounding agents can be used depending on the intended use.

(架橋ゴム組成物)
本発明の架橋ゴム組成物は、本発明のゴム組成物を架橋して得られたものである限り、特に制限はなく、目的に応じて適宜選択することができる。
前記架橋の条件としては、特に制限はなく、目的に応じて適宜選択することができるが、温度120℃〜200℃、加温時間1分間〜900分間が好ましい。
(Crosslinked rubber composition)
The crosslinked rubber composition of the present invention is not particularly limited as long as it is obtained by crosslinking the rubber composition of the present invention, and can be appropriately selected according to the purpose.
The crosslinking conditions are not particularly limited and may be appropriately selected depending on the intended purpose. However, a temperature of 120 ° C. to 200 ° C. and a heating time of 1 minute to 900 minutes are preferable.

(タイヤ)
本発明のタイヤは、本発明のゴム組成物、又は、本発明の架橋ゴム組成物を用いたものである限り、特に制限はなく、目的に応じて適宜選択することができる。
本発明のゴム組成物、又は、本発明の架橋ゴム組成物のタイヤにおける適用部位としては、例えば、トレッド、ベーストレッド、サイドウォール、サイド補強ゴム及びビードフィラーなどが挙げられるが、これに限定されない。
前記タイヤを製造する方法としては、慣用の方法を用いることができる。例えば、タイヤ成形用ドラム上に未加硫ゴムからなるカーカス層、ベルト層、トレッド層等の通常タイヤ製造に用いられる部材を順次貼り重ね、ドラムを抜き去ってグリーンタイヤとする。次いで、このグリーンタイヤを常法に従って加熱加硫することにより、所望のタイヤを製造することができる。
(tire)
The tire of the present invention is not particularly limited as long as the rubber composition of the present invention or the crosslinked rubber composition of the present invention is used, and can be appropriately selected according to the purpose.
Examples of the application site in the tire of the rubber composition of the present invention or the crosslinked rubber composition of the present invention include, but are not limited to, a tread, a base tread, a sidewall, a side reinforcing rubber, and a bead filler. .
As a method for manufacturing the tire, a conventional method can be used. For example, on a tire molding drum, members usually used for manufacturing a tire such as a carcass layer, a belt layer, and a tread layer made of unvulcanized rubber are sequentially laminated, and the drum is removed to obtain a green tire. Next, the desired tire can be manufactured by heat vulcanizing the green tire according to a conventional method.

(タイヤ以外の用途)
タイヤ用途以外にも、防振ゴム、免震ゴム、ベルト(コンベアベルト)、ゴムクローラ、各種ホース、モランなどに本発明のゴム組成物、又は、本発明の架橋ゴム組成物を使用することができる。
(Applications other than tires)
In addition to tire applications, the rubber composition of the present invention or the crosslinked rubber composition of the present invention may be used for anti-vibration rubber, seismic isolation rubber, belts (conveyor belts), rubber crawlers, various hoses, Moran and the like. it can.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら
限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
十分に乾燥した400ml耐圧ガラス反応器に、トルエン溶液160mlを添加した後、エチレンを0.8MPaで導入した。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にビス(2−フェニルインデニル)ガドリニウムビス(ジメチルシリルアミド)[(2−PhCGdN(SiHMe]28.5μmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート[MeNHPhB(C]34.2μmol、及びジイソブチルアルミニウムハイドライド1.43mmolを仕込み、トルエン8mlに溶解させて触媒溶液とした。その後、グローブボックスから触媒溶液を取り出し、ガドリニウム換算で28.2μmolとなる量をモノマー溶液へ添加し、室温で5分間重合を行った。その後、エチレンの導入圧力を0.2MPa/minの速度で低下させながら、1,3−ブタジエン15.23g(0.28mol)を含むトルエン溶液100mlを添加した後、さらに90分間重合を行った。重合後、2,2'−メチレン−ビス(4−エチル−6−t−ブチルフェノール)(NS−5)5質量%のイソプロパノール溶液1mlを加えて反応を停止させ、さらに大量のメタノールで共重合体を分離し、70℃で真空乾燥し、共重合体A(ブロック共重合体)を得た。得られた共重合体Aの収量は12.50gであった。
Example 1
After adding 160 ml of a toluene solution to a sufficiently dried 400 ml pressure-resistant glass reactor, ethylene was introduced at 0.8 MPa. On the other hand, bis (2-phenylindenyl) gadolinium bis (dimethylsilylamide) [(2-PhC 9 H 6 ) 2 GdN (SiHMe 2 ) 2 ] 28.5 μmol in a glass container in a glove box under a nitrogen atmosphere. , 34.2 μmol of dimethylanilinium tetrakis (pentafluorophenyl) borate [Me 2 NHPhB (C 6 F 5 ) 4 ] and 1.43 mmol of diisobutylaluminum hydride were dissolved in 8 ml of toluene to obtain a catalyst solution. Thereafter, the catalyst solution was taken out from the glove box, an amount of 28.2 μmol in terms of gadolinium was added to the monomer solution, and polymerization was performed at room temperature for 5 minutes. Thereafter, 100 ml of a toluene solution containing 15.23 g (0.28 mol) of 1,3-butadiene was added while lowering the ethylene introduction pressure at a rate of 0.2 MPa / min, and polymerization was further performed for 90 minutes. After the polymerization, 1 ml of 2,2′-methylene-bis (4-ethyl-6-tert-butylphenol) (NS-5) 5% by mass of isopropanol solution was added to stop the reaction, and a copolymer with a large amount of methanol was added. Was separated and vacuum dried at 70 ° C. to obtain a copolymer A (block copolymer). The yield of the obtained copolymer A was 12.50 g.

参考例2)
十分に乾燥した2Lステンレス反応器に、1,3−ブタジエン28.0g(0.52mol)を含むトルエン溶液700mlを添加した後、エチレンを0.8MPaで導入した。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にジメチルアルミニウム(μ−ジメチル)ビス(2−フェニルインデニル)ネオジウム[(2−PhCNd(μ−Me)AlMe]400.0μmol、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート(PhCB(C)200.0μmolを仕込み、トルエン80mlに溶解させて触媒溶液とした。その後、グローブボックスから触媒溶液を取り出し、ネオジウム換算で390.0μmolとなる量をモノマー溶液へ添加し、60℃で60分間重合を行った。重合後、2,2´−メチレンービス(4−エチル−6−t−ブチルフェノール)(NS−5)5質量%のイソプロパノール溶液1mlを加えて反応を停止させ、さらに大量のメタノールで共重合体を分離し、70℃で真空乾燥し重合体B(ランダム共重合体)を得た。得られた共重合体Bの収量は17.00gであった。
( Reference Example 2)
After adding 700 ml of a toluene solution containing 28.0 g (0.52 mol) of 1,3-butadiene to a sufficiently dry 2 L stainless steel reactor, ethylene was introduced at 0.8 MPa. On the other hand, dimethylaluminum (μ-dimethyl) bis (2-phenylindenyl) neodium [(2-PhC 9 H 6 ) 2 Nd (μ-Me) 2 AlMe 2 in a glass container in a glove box under a nitrogen atmosphere. 400.0 μmol, 200.0 μmol of triphenylcarbonium tetrakis (pentafluorophenyl) borate (Ph 3 CB (C 6 F 5 ) 4 ) were charged and dissolved in 80 ml of toluene to obtain a catalyst solution. Thereafter, the catalyst solution was taken out from the glove box, an amount of 390.0 μmol in terms of neodymium was added to the monomer solution, and polymerization was performed at 60 ° C. for 60 minutes. After the polymerization, 1 ml of 2,2′-methylene-bis (4-ethyl-6-tert-butylphenol) (NS-5) 5% by mass isopropanol solution was added to stop the reaction, and the copolymer was separated with a large amount of methanol. And dried in a vacuum at 70 ° C. to obtain a polymer B (random copolymer). The yield of the obtained copolymer B was 17.00 g.

(実施例3)
十分に乾燥した400ml耐圧ガラス反応器に、エチレンを0.8MPaで導入した後、1,3−ブタジエン9.14g(0.17mol)を含むトルエン溶液160mlを添加した。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にビス(2−フェニルインデニル)ガドリニウムビス(ジメチルシリルアミド)[(2−PhCGdN(SiHMe]28.5μmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート[MeNHPhB(C]34.2μmol、及びジイソブチルアルミニウムハイドライド1.43mmolを仕込み、トルエン8mlに溶解させて触媒溶液とした。その後、グローブボックスから触媒溶液を取り出し、ガドリニウム換算で28.2μmolとなる量をモノマー溶液へ添加し、室温で60分間重合を行った。その後、エチレンの導入圧力を0.1MPa/minの速度で低下させながら、新たに1,3−ブタジエン9.14g(0.17mol)を含むトルエン溶液60mlを1.0ml/minの速度で添加し、その後さらに60分間重合を行った。重合後、2,2'−メチレン−ビス(4−エチル−6−t−ブチルフェノール)(NS−5)5質量%のイソプロパノール溶液1mlを加えて反応を停止させ、さらに大量のメタノールで共重合体を分離し、70℃で真空乾燥し重合体Cを得た。得られた共重合体Cの収量は16.30gであった。
(Example 3)
Ethylene was introduced at 0.8 MPa into a sufficiently dried 400 ml pressure-resistant glass reactor, and then 160 ml of a toluene solution containing 9.14 g (0.17 mol) of 1,3-butadiene was added. On the other hand, bis (2-phenylindenyl) gadolinium bis (dimethylsilylamide) [(2-PhC 9 H 6 ) 2 GdN (SiHMe 2 ) 2 ] 28.5 μmol in a glass container in a glove box under a nitrogen atmosphere. , 34.2 μmol of dimethylanilinium tetrakis (pentafluorophenyl) borate [Me 2 NHPhB (C 6 F 5 ) 4 ] and 1.43 mmol of diisobutylaluminum hydride were dissolved in 8 ml of toluene to obtain a catalyst solution. Thereafter, the catalyst solution was taken out from the glove box, an amount of 28.2 μmol in terms of gadolinium was added to the monomer solution, and polymerization was performed at room temperature for 60 minutes. Thereafter, 60 ml of a toluene solution containing 9.14 g (0.17 mol) of 1,3-butadiene was newly added at a rate of 1.0 ml / min while lowering the ethylene introduction pressure at a rate of 0.1 MPa / min. Thereafter, polymerization was further performed for 60 minutes. After the polymerization, 1 ml of 2,2′-methylene-bis (4-ethyl-6-tert-butylphenol) (NS-5) 5% by mass of isopropanol solution was added to stop the reaction, and a copolymer with a large amount of methanol was added. Was separated and vacuum dried at 70 ° C. to obtain a polymer C. The yield of the obtained copolymer C was 16.30 g.

(比較例1)
比較例サンプルとして、ブタジエンゴム(BR01、JSR製)を準備した。
(Comparative Example 1)
Butadiene rubber (BR01, manufactured by JSR) was prepared as a comparative sample.

(比較例2)特開2000−86857号公報の実施例1に基づいて共重合体Dを合成した。 (Comparative Example 2) Copolymer D was synthesized based on Example 1 of JP-A-2000-86857.

上記のようにして製造乃至入手した実施例1、参考例2、実施例3のそれぞれの共重合体の共重合体A、B、C、比較例1のブタジエンゴム、比較例2の共重合体Dについて、ミクロ構造、エチレン含有率、重量平均分子量(Mw)、分子量分布(Mw/Mn)及びDSC曲線を下記の方法で測定・評価した。なお、図1は共重合体Aの13C-NMRスペクトルチャートであり、また、図2は共重合体AのDSC曲線を示し、図3は共重合体CのDSC曲線を示す。
なお、DSC曲線の縦軸は、熱流量を示す。
Example were prepared or obtained as described above 1, Reference Example 2, the copolymer A of each of the copolymer of Example 3, B, C, butadiene rubber of Comparative Example 1, the copolymer of Comparative Example 2 For D, the microstructure, ethylene content, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn) and DSC curve were measured and evaluated by the following methods. 1 is a 13 C-NMR spectrum chart of the copolymer A, FIG. 2 shows a DSC curve of the copolymer A, and FIG. 3 shows a DSC curve of the copolymer C.
In addition, the vertical axis | shaft of a DSC curve shows a heat flow rate.

(1)ミクロ構造(1,2−ビニル結合量(Vi(%))、シス−1,4結合量)
共重合体中のブタジエン部分のミクロ構造(1,2−ビニル結合量)を、H−NMRスペクトル(100℃、d−テトラクロロエタン標準:6ppm)により1,2−ビニル結合成分(5.0−5.1ppm)と全体のブタジエン結合成分(5〜5.6ppm)の積分比より求め、共重合体中のブタジエン部分のミクロ構造(シス−1,4結合量)を、13C−NMRスペクトル(100℃、d−テトラクロロエタン標準:73.8ppm)によりシス−1,4結合成分(26.5−27.5ppm)と全体のブタジエン結合成分(26.5−27.5ppm+31.5−32.5ppm)の積分比より求めた。1,2−ビニル結合量(Vi(%))、シス−1,4結合量(%)の計算値を表1に示す。
(2)エチレンの含有率
共重合体中のエチレン部分の含有率(mol%)を 13C−NMRスペクトル(100℃、d−テトラクロロエタン標準:73.8ppm)によりシス−1,4結合成分(26.5−27.5ppm)と全体のブタジエン結合成分(26.5−27.5ppm+31.5−32.5ppm)の積分比より求めた。の積分比より求めた。
(3)重量平均分子量(Mw)及び分子量分布(Mw/Mn)
ゲルパーミエーションクロマトグラフィー[GPC:東ソー製HLC−8121GPC
/HT、カラム:東ソー製GMHHR−H(S)HT×2本、検出器:示差屈折率計(R
I)]で単分散ポリスチレンを基準として、重合体のポリスチレン換算の重量平均分子量
(Mw)及び分子量分布(Mw/Mn)を求めた。なお、測定温度は140℃である。
(4)DSC曲線
JIS K 7121−1987に準拠して示差走査熱量測定(DSC)を行い、DSC曲線を描いた。なお、測定は、単体ポリマーや触媒残渣等の不純物の影響を避けるため、共重合体A、B、Dについては大量のテトラヒドロフランに48h浸漬し、テトラヒドロフランに溶解する成分を全て取り除いた後、乾燥したゴム成分をサンプルとして使用した。共重合体Cについては処理せず測定した。
(1) Microstructure (1,2-vinyl bond amount (Vi (%)), cis-1,4 bond amount)
The microstructure of the butadiene moiety in the copolymer (1,2-vinyl bond content) was determined by 1 H-NMR spectrum (100 ° C., d-tetrachloroethane standard: 6 ppm) according to the 1,2-vinyl bond component (5.0 -5.1 ppm) and the total ratio of butadiene bond components (5 to 5.6 ppm), and the microstructure of the butadiene moiety in the copolymer (cis-1,4 bond content) is determined by 13 C-NMR spectrum. (100 ° C., d-tetrachloroethane standard: 73.8 ppm) and cis-1,4 bonding component (26.5-27.5 ppm) and total butadiene bonding component (26.5-27.5 ppm + 31.5-32. 5 ppm). Table 1 shows calculated values of 1,2-vinyl bond amount (Vi (%)) and cis-1,4 bond amount (%).
(2) Content of ethylene The content (mol%) of the ethylene moiety in the copolymer was determined by 13 C-NMR spectrum (100 ° C., d-tetrachloroethane standard: 73.8 ppm) as a cis-1,4 bond component ( 26.5-27.5 ppm) and the total butadiene bond component (26.5-27.5 ppm + 31.5-32.5 ppm). It was obtained from the integral ratio of.
(3) Weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn)
Gel permeation chromatography [GPC: Tosoh HLC-8121GPC
/ HT, column: Tosoh GMH HR- H (S) HT × 2, detector: differential refractometer (R
I)] with respect to monodisperse polystyrene, the polystyrene equivalent weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the polymer were determined. The measurement temperature is 140 ° C.
(4) DSC curve Differential scanning calorimetry (DSC) was performed in accordance with JIS K 7121-1987, and a DSC curve was drawn. In order to avoid the influence of impurities such as a single polymer and catalyst residue, the measurement was performed by immersing the copolymers A, B, and D in a large amount of tetrahydrofuran for 48 hours, removing all components dissolved in tetrahydrofuran, and then drying. A rubber component was used as a sample. Copolymer C was measured without treatment.

図1の共重合体Aの13C−NMRスペクトルチャートでは、29.4ppmにエチレンブロック部分に由来するピークが見られ、図2、5の共重合体A、DのDSC曲線では、DSCにより−10℃付近に1,3−ブタジエンの単量体シス単位からなるブロック部分に由来する結晶化温度及び120-130℃付近にエチレンの単量体単位からなるブロック部分に由来する結晶化温度が観測できる。
以上より、共重合体A、Dは、高シスの1,3−ブタジエン及びエチレンのブロック共重合体であることが分かる。
また共重合体A、Dについて、文献(「高分子学会予稿集Vol.42, No.4, Page1347」)のオゾン分解−GPC法を応用して、連鎖分布の解析を行った。なお、ゲルパーミエーションクロマトグラフィーは[GPC:東ソー製HLC−8121GPC/HT、カラム:昭和電工製GPC HT−803×2本、検出器:示差屈折率計(RI)、単分散ポリスチレンを基準、測定温度は140℃]を用いて測定した。その結果、全エチレン成分に対しブロックエチレン成分、即ち、数平均分子量(Mn)が1000以上のポリエチレン成分が80質量%以上であり、共重合体Aがブロック共重合体であることを確認した。
共重合体Bは、図3のDSC曲線では、DSCにより−10℃付近に1,3−ブタジエンの単量体シス単位からなるブロック部分に由来する結晶化温度のみが観測され、エチレンの単量体単位からなるブロック部分に由来する結晶化温度が観測できない。またオゾン分解−GPC法を応用して、連鎖分布の解析の結果、全エチレン成分に対しブロックエチレン成分、即ち、数平均分子量(Mn)が1000以上のポリエチレン成分が10質量%以下であり、共重合体Bがランダム共重合体であることを確認した。
共重合体Cは、図4のDSC曲線では、エチレンの単量体単位からなる長鎖のブロック部分の結晶化温度に由来する120℃以上の吸熱ピークのほかに、ブタジエン及びエチレンの単量体単位(低分子量のブロック含む)が不規則に配列してなるランダム部分が形成されていることを示す40℃〜120℃にブロードな吸熱ピークが観測された。オゾン分解−GPC法を応用して、連鎖分布の解析の結果、全エチレン成分に対しブロックエチレン成分、即ち、数平均分子量(Mn)が1000以上のポリエチレン成分が67質量%であり共重合体Cは1,3−ブタジエン及びエチレンのテーパー共重合体であることが分かった。
In the 13 C-NMR spectrum chart of copolymer A in FIG. 1, a peak derived from the ethylene block portion is observed at 29.4 ppm, and in the DSC curves of copolymers A and D in FIGS. A crystallization temperature derived from a block portion consisting of a monomeric cis unit of 1,3-butadiene at around 10 ° C and a crystallization temperature derived from a block portion consisting of a monomeric unit of ethylene at around 120-130 ° C were observed. it can.
From the above, it can be seen that the copolymers A and D are block copolymers of high cis 1,3-butadiene and ethylene.
The copolymers A and D were analyzed for chain distribution by applying the ozonolysis-GPC method described in the literature ("Science of Polymer Science Vol. 42, No. 4, Page 1347"). The gel permeation chromatography was measured based on [GPC: Tosoh HLC-8121GPC / HT, column: Showa Denko GPC HT-803 × 2, detector: differential refractometer (RI), monodisperse polystyrene as a reference. The temperature was measured using 140 ° C.]. As a result, it was confirmed that the block ethylene component, that is, the polyethylene component having a number average molecular weight (Mn) of 1000 or more was 80% by mass or more and the copolymer A was a block copolymer with respect to the total ethylene component.
In the DSC curve of FIG. 3, only the crystallization temperature derived from the block portion composed of monomeric cis units of 1,3-butadiene was observed by DSC at around −10 ° C. for copolymer B. The crystallization temperature derived from the block part consisting of body units cannot be observed. Further, as a result of analysis of chain distribution by applying the ozonolysis-GPC method, the block ethylene component, that is, the polyethylene component having a number average molecular weight (Mn) of 1000 or more is 10% by mass or less based on the total ethylene component. It was confirmed that the polymer B was a random copolymer.
In the DSC curve of FIG. 4, the copolymer C has a butadiene and ethylene monomer in addition to an endothermic peak of 120 ° C. or more derived from the crystallization temperature of a long-chain block portion composed of an ethylene monomer unit. A broad endothermic peak was observed at 40 ° C. to 120 ° C. indicating that a random portion formed by irregularly arranging units (including low molecular weight blocks) was formed. As a result of analyzing the chain distribution by applying the ozonolysis-GPC method, the block ethylene component, that is, the polyethylene component having a number average molecular weight (Mn) of 1000 or more is 67% by mass, and the copolymer C Was found to be a tapered copolymer of 1,3-butadiene and ethylene.

実施例1、参考例2、実施例3および比較例1、2について、表2に示す配合処方のゴム配合物を調製し、160℃で20分間加硫して得た加硫ゴムに対し、下記の方法に従って、低発熱性、耐熱性、及び耐オゾン性試験を測定した。 For Example 1 , Reference Example 2, Example 3 and Comparative Examples 1 and 2, a rubber compound having a compounding formulation shown in Table 2 was prepared, and vulcanized rubber obtained by vulcanizing at 160 ° C. for 20 minutes. According to the following method, low exothermic property, heat resistance, and ozone resistance test were measured.

※1:N−(1,3−ジメチルブチル)−N’−p−フェニレンジアミン、大内新興化学(株)製、ノックラック6C
※2:N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド、大内新興化学(株)製、ノクセラーCZ−G
※3:ジベンゾチアジルジスルフィド、大内新興化学(株)製、ノクセラーDM−P
* 1: N- (1,3-dimethylbutyl) -N′-p-phenylenediamine, manufactured by Ouchi Shinsei Chemical Co., Ltd., knock rack 6C
* 2: N-cyclohexyl-2-benzothiazolylsulfenamide, manufactured by Ouchi Shinsei Chemical Co., Ltd., Noxeller CZ-G
* 3: Dibenzothiazyl disulfide, manufactured by Ouchi Shinsei Chemical Co., Ltd., Noxeller DM-P

《低発熱性(指数)》
動的スペクトロメーターを使用し、引張動歪3%、周波数15Hz、50℃の条件で測定した。表3においては、比較例1の逆数を100とする指数で表示した。指数値が大きい程、低発熱性(低ロス性)に優れることを示す。
《Low exothermicity (index)》
Using a dynamic spectrometer, the measurement was performed under the conditions of a tensile dynamic strain of 3%, a frequency of 15 Hz, and 50 ° C. In Table 3, it represented by the index | exponent which makes the reciprocal number of the comparative example 1 100. It shows that it is excellent in low exothermic property (low loss property), so that an index value is large.

《耐熱性(指数)》
サンプル試験片を100℃のオーブン中で48時間熱劣化させた後、サンプル取り出しJIS K 6251に従って、室温にて引っ張り試験による300%伸びの応力(Md300%)を測定した。熱劣化を行わないサンプルの引っ張り試験によるMd300%を100として、表3にMd変化率(%)として表示した。変化率(%)が小さい程、耐熱性が良好であることを示す。
《Heat resistance (index)》
After the sample specimen was thermally deteriorated in an oven at 100 ° C. for 48 hours, the sample was taken out, and a 300% elongation stress (Md 300%) by a tensile test was measured at room temperature in accordance with JIS K 6251. The Md change rate (%) is shown in Table 3 with Md 300% in the tensile test of the sample not subjected to thermal degradation as 100. It shows that heat resistance is so favorable that change rate (%) is small.

<<耐オゾン性(動的)>>
JIS K 6259に従って、耐オゾン性を測定した。短冊状試験片を30%の動的伸張を与えながら、40℃、オゾン濃度50pphm条件で暴露し、12時間後の試料の状況(亀裂の有無)を目視で判断した。結果を表3に示す。
<< Ozone resistance (dynamic) >>
The ozone resistance was measured according to JIS K 6259. The strip-shaped test piece was exposed under the conditions of 40 ° C. and ozone concentration of 50 pphm while giving a dynamic elongation of 30%, and the state of the sample after 12 hours (presence of cracks) was judged visually. The results are shown in Table 3.

本発明の共重合体は、エラストマー製品全般、特にタイヤ部材に用いることができる。
The copolymer of the present invention can be used for elastomer products in general, particularly for tire members.

Claims (10)

共役ジエン化合物と非共役オレフィンとの共重合体であって、共役ジエン化合物に由来する共役ジエン単位の総量に対する1,2付加体部分(3,4付加体部分を含む)含量が5mol%以下であり、
下記一般式(I):
(式中、Mは、ガドリニウムを示し、CpRは、それぞれ独立して無置換もしくは置換インデニルを示し、Ra〜Rfは、それぞれ独立して炭素数1〜3のアルキル基又は水素原子を示し、Ra〜Rfのうち少なくとも一つが水素原子であり、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセン錯体を含む重合触媒組成物の存在下で重合させて得られる、
ことを特徴とする共重合体。
A copolymer of a conjugated diene compound and a non-conjugated olefin, wherein the content of 1,2 adduct portion (including 3,4 adduct portion) is 5 mol% or less with respect to the total amount of conjugated diene units derived from the conjugated diene compound. Yes,
The following general formula (I):
(In the formula, M represents gadolinium, Cp R independently represents unsubstituted or substituted indenyl, and R a to R f each independently represents an alkyl group having 1 to 3 carbon atoms or a hydrogen atom. And at least one of R a to R f is a hydrogen atom, L represents a neutral Lewis base, and w represents an integer of 0 to 3). Obtained by polymerizing in the presence of
A copolymer characterized by the above.
前記共役ジエン化合物に由来する共役ジエン単位の総量に対するシス1,4−結合量が、50mol%を超えることを特徴とする請求項1に記載の共重合体。   The copolymer according to claim 1, wherein the amount of cis 1,4-bonds relative to the total amount of conjugated diene units derived from the conjugated diene compound exceeds 50 mol%. 非共役オレフィンに由来する非共役オレフィン単位の総量の含有量が0mol%を超え且つ50mol%以下であることを特徴とする請求項1に記載の共重合体。   The copolymer according to claim 1, wherein the content of the total amount of non-conjugated olefin units derived from the non-conjugated olefin exceeds 0 mol% and is 50 mol% or less. ポリスチレン換算重量平均分子量が10,000〜10,000,000であることを特徴とする請求項1に記載の共重合体。   The copolymer according to claim 1, wherein the polystyrene-equivalent weight average molecular weight is 10,000 to 10,000,000. 分子量分布(Mw/Mn)が10以下であることを特徴とする請求項1に記載の共重合体。   The copolymer according to claim 1, wherein the molecular weight distribution (Mw / Mn) is 10 or less. 前記非共役オレフィンが、非環状オレフィンであることを特徴とする請求項1に記載の共重合体。   The copolymer according to claim 1, wherein the non-conjugated olefin is an acyclic olefin. 前記非共役オレフィンが、炭素数が2〜10であることを特徴とする請求項6に記載の共重合体。   The copolymer according to claim 6, wherein the non-conjugated olefin has 2 to 10 carbon atoms. 前記非共役オレフィンが、エチレン、プロピレン及び1−ブテンよりなる群から選択される少なくとも一種であることを特徴とする請求項7に記載の共重合体。   The copolymer according to claim 7, wherein the non-conjugated olefin is at least one selected from the group consisting of ethylene, propylene, and 1-butene. 前記非共役オレフィンが、エチレンであることを特徴とする請求項8に記載の共重合体。   The copolymer according to claim 8, wherein the non-conjugated olefin is ethylene. 前記共役ジエン化合物が、1,3−ブタジエン及びイソプレンよりなる群から選択される少なくとも一種であることを特徴とする請求項1に記載の共重合体。   The copolymer according to claim 1, wherein the conjugated diene compound is at least one selected from the group consisting of 1,3-butadiene and isoprene.
JP2011023401A 2011-02-04 2011-02-04 Copolymer, rubber composition, crosslinked rubber composition, and tire Active JP5917808B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2011023401A JP5917808B2 (en) 2011-02-04 2011-02-04 Copolymer, rubber composition, crosslinked rubber composition, and tire
KR1020137023055A KR101592907B1 (en) 2011-02-04 2012-02-02 Copolymer, rubber composition, rubber composition for tire side use, crosslinked rubber composition, and tire
US13/983,161 US20140005321A1 (en) 2011-02-04 2012-02-02 Copolymer, rubber composition, rubber composition for tire side use, crosslinked rubber composition and tire
CN2012800164049A CN103476813A (en) 2011-02-04 2012-02-02 Copolymer, rubber composition, rubber composition for tire side use, crosslinked rubber composition, and tire
BR112013019682A BR112013019682A2 (en) 2011-02-04 2012-02-02 copolymer, rubber composition, tire side rubber composition, cross-linked rubber composition and tire
EP20157213.8A EP3670551A3 (en) 2011-02-04 2012-02-02 Copolymer, rubber composition, rubber composition for tire side use, crosslinked rubber composition and tire
PCT/JP2012/000722 WO2012105271A1 (en) 2011-02-04 2012-02-02 Copolymer, rubber composition, rubber composition for tire side use, crosslinked rubber composition, and tire
EP20120742203 EP2671897A4 (en) 2011-02-04 2012-02-02 Copolymer, rubber composition, rubber composition for tire side use, crosslinked rubber composition, and tire
SG2013057823A SG192211A1 (en) 2011-02-04 2012-02-02 Copolymer, rubber composition, rubber composition for tire side use, crosslinked rubber composition and tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011023401A JP5917808B2 (en) 2011-02-04 2011-02-04 Copolymer, rubber composition, crosslinked rubber composition, and tire

Publications (2)

Publication Number Publication Date
JP2012162627A JP2012162627A (en) 2012-08-30
JP5917808B2 true JP5917808B2 (en) 2016-05-18

Family

ID=46842345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011023401A Active JP5917808B2 (en) 2011-02-04 2011-02-04 Copolymer, rubber composition, crosslinked rubber composition, and tire

Country Status (1)

Country Link
JP (1) JP5917808B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3085167B1 (en) * 2018-08-23 2020-07-31 Michelin & Cie PNEUMATICS PROVIDED WITH A COMPOSITION CONSISTING OF AN ELASTOMER RICH IN ETHYLENE, A PEROXIDE AND A SPECIFIC ACRYLATE DERIVATIVE

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259733A (en) * 1995-03-22 1996-10-08 Asahi Carbon Kk Rubber composition
JP3672376B2 (en) * 1996-04-26 2005-07-20 旭化成ケミカルズ株式会社 Butene-butadiene copolymer, process for producing the same, and vulcanized rubber
JP2000256423A (en) * 1999-03-05 2000-09-19 Jsr Corp Ethylenic copolymer rubber and composition thereof
JP3624290B2 (en) * 2002-05-08 2005-03-02 独立行政法人理化学研究所 Polymerization catalyst
KR101538625B1 (en) * 2006-05-09 2015-07-22 가부시키가이샤 브리지스톤 Metallocene complex and polymerization catalyst composition containing the same
JP5083870B2 (en) * 2007-05-08 2012-11-28 株式会社ブリヂストン Method for producing copolymer
JP2008291096A (en) * 2007-05-23 2008-12-04 Bridgestone Corp Polybutadiene, and rubber composition and tire using the same
WO2009148140A1 (en) * 2008-06-04 2009-12-10 株式会社ブリヂストン Aromatic vinyl compound-conjugated diene compound copolymer, method for producing the same, rubber composition and tire
EP2599803B1 (en) * 2010-07-30 2020-09-02 Bridgestone Corporation Copolymer of conjugated diene compound and non-conjugated olefin, rubber composition, cross-linked rubber composition, and tire
JP5918133B2 (en) * 2010-07-30 2016-05-18 株式会社ブリヂストン Copolymer, rubber composition, crosslinked rubber composition, and tire
RU2537385C2 (en) * 2010-07-30 2015-01-10 Бриджстоун Корпорейшн Copolymer, rubber composition, cross-linked rubber composition and tyre
JP5917809B2 (en) * 2010-11-30 2016-05-18 株式会社ブリヂストン Copolymer, production method thereof, rubber composition, crosslinked rubber composition, and tire

Also Published As

Publication number Publication date
JP2012162627A (en) 2012-08-30

Similar Documents

Publication Publication Date Title
JP5775873B2 (en) Copolymer, rubber composition, crosslinked rubber composition, and tire
JP5918131B2 (en) Copolymer of conjugated diene compound and non-conjugated olefin, rubber composition, crosslinked rubber composition, and tire
JP5918132B2 (en) Copolymer of conjugated diene compound and non-conjugated olefin, rubber composition, crosslinked rubber composition, and tire
JP5918134B2 (en) Copolymer of conjugated diene compound and non-conjugated olefin, rubber composition, and tire
JP5918133B2 (en) Copolymer, rubber composition, crosslinked rubber composition, and tire
JP5739991B2 (en) Copolymer, rubber composition, crosslinked rubber composition, and tire
JP5731217B2 (en) Copolymer, rubber composition, crosslinked rubber composition, and tire
WO2012105271A1 (en) Copolymer, rubber composition, rubber composition for tire side use, crosslinked rubber composition, and tire
WO2012105258A1 (en) Copolymer of conjugated diene compound and non-conjugated olefin, rubber composition, rubber composition for tire tread use, crosslinked rubber composition, and tire
JP5932224B2 (en) Copolymer, rubber composition, crosslinked rubber composition, and tire
JP2012131965A (en) Copolymer and method for producing the same, and rubber composition, crosslinked rubber composition, and tire
WO2013132849A1 (en) Rubber composition and tire having rubber composition
WO2013132848A1 (en) Polymer and method for producing same, rubber composition containing polymer, and tire having rubber composition
JP5917810B2 (en) Copolymer of conjugated diene compound and non-conjugated olefin, rubber composition, crosslinked rubber composition, and tire
JP5612512B2 (en) Rubber composition, crosslinked rubber composition, and tire
JP5612511B2 (en) Rubber composition, crosslinked rubber composition, and tire
JP5675434B2 (en) Rubber composition, crosslinked rubber composition, and tire
JP5917813B2 (en) Rubber composition, tire tread rubber composition, crosslinked rubber composition, and tire
JP5917808B2 (en) Copolymer, rubber composition, crosslinked rubber composition, and tire
JP5656687B2 (en) Rubber composition, crosslinked rubber composition, and tire
JP5917814B2 (en) Rubber composition, rubber composition for tire side, crosslinked rubber composition, and tire
JP5639506B2 (en) Rubber composition, crosslinked rubber composition, and tire
JP5656686B2 (en) Rubber composition, crosslinked rubber composition, and tire
JP2012162628A (en) Copolymer of conjugated diene compound and non-conjugated olefin, rubber composition, crosslinked rubber composition, and tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160407

R150 Certificate of patent or registration of utility model

Ref document number: 5917808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250