JP5733148B2 - 熱風炉制御計算装置、熱風炉操業指標導出方法及びコンピュータプログラム - Google Patents

熱風炉制御計算装置、熱風炉操業指標導出方法及びコンピュータプログラム Download PDF

Info

Publication number
JP5733148B2
JP5733148B2 JP2011225184A JP2011225184A JP5733148B2 JP 5733148 B2 JP5733148 B2 JP 5733148B2 JP 2011225184 A JP2011225184 A JP 2011225184A JP 2011225184 A JP2011225184 A JP 2011225184A JP 5733148 B2 JP5733148 B2 JP 5733148B2
Authority
JP
Japan
Prior art keywords
hot stove
value
cycle
process state
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011225184A
Other languages
English (en)
Other versions
JP2013082983A (ja
Inventor
章 藤井
章 藤井
宮崎 裕之
裕之 宮崎
辰一郎 下井
辰一郎 下井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011225184A priority Critical patent/JP5733148B2/ja
Publication of JP2013082983A publication Critical patent/JP2013082983A/ja
Application granted granted Critical
Publication of JP5733148B2 publication Critical patent/JP5733148B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

本発明は、熱風炉制御計算装置、熱風炉操業指標導出方法及びコンピュータプログラムに関し、特に、熱風炉に対して操業指示を行うために用いて好適なものである。
高炉に熱風を供給するために、高炉には熱風炉が付帯されている。熱風炉は、高炉から要求される送風条件に基づいて、燃焼ガスにより蓄熱煉瓦を加熱して蓄熱する燃焼期間と、蓄熱煉瓦に冷風を通して蓄熱煉瓦との熱交換により熱風を生成して高炉に供給する送風期間とを1つずつ含む期間を1サイクルとして、燃焼期間と送風期間とを交互に繰り返して高炉に熱風を供給するものである。
熱風炉では、高炉から要求される送風条件を満足する熱風を高炉に供給しなければならない。このため、熱風炉に対する投入熱量を適切に定めて、熱風炉の燃焼制御を行うことが望まれる。熱風炉に対する投入熱量を定める技術として、特許文献1、2に記載の技術がある。
特許文献1では、熱風炉の蓄熱量を表す量として、熱風炉を構成する珪石煉瓦の温度を採用し、珪石煉瓦の温度の実測値と目標値との差が0(ゼロ)となるように、熱風炉への投入熱量を決定している。
また、特許文献2では、高炉から要請される次回送風条件から送風期理論放熱量を求めると共に、熱風炉の実績熱収支の移動平均から奪熱効率を求め、さらに、熱風炉の操業に応じた補正熱量を求める。そして、送風期理論放熱量に対して補正熱量を加えた値(又は引いた値)を奪熱効率で割ることにより投入熱量を求めている。
特開昭62−248918号公報 特開平7−145416号公報
ところで、通常、熱風炉の規模は大きく、その制御の時定数は3日程度にもなる。ここで、時定数とは、熱風炉に対して操業指示(送風流量や送風温度の指示)を行ってから、(外乱による影響を受けずに)熱風炉の各部の温度が平衡状態(操業条件を反映した状態)になるまでの時間をいう。
しかしながら、特許文献1に記載の技術では、珪石煉瓦の温度の目標値が、定量的且つ合理的な手法で与えられていない。また、特許文献1に記載の技術では、熱風炉プロセスの時間遅れ(前述した時定数)を考慮しないので、操業条件の変更があった場合に、熱風炉の状態に追従して投入熱量を決定することが困難である。
また、特許文献2に記載の技術では、次回送風条件から送風期理論放熱量を求めているので(すなわち、現時点の蓄熱量と次サイクルの必要熱量に基づいて次サイクルの投入熱量を求めているので)、熱風炉プロセスの時間遅れ(前述した時定数)を考慮することができない。また、特許文献2に記載の技術では、操業条件の変更があった場合には熱風炉に対する投入熱量を決定することが困難である。
本発明は、以上のような問題点に鑑みてなされたものであり、熱風炉における蓄熱量を反映する物理量の目標値を、熱風炉の時定数よりも長い時間に亘り設定できるようにすることを第1の目的とする。
また、本発明は、熱風炉における蓄熱量を反映する物理量の時間変化が目標値に追従するように、熱風炉に対する投入熱量を決定できるようにすることを第2の目的とする。
本発明の熱風炉制御計算装置は、燃焼ガスにより蓄熱煉瓦を加熱して蓄熱する燃焼期間と、当該蓄熱煉瓦に冷風を通して当該蓄熱煉瓦との熱交換により熱風を生成して高炉に供給する送風期間とを含む期間を1サイクルとして稼働する熱風炉の操業を制御するための計算を行う熱風炉制御計算装置であって、前記熱風炉における蓄熱量を反映する物理量であって、測定することが可能な物理量の目標値を、前記熱風炉の時定数よりも長い期間である最適化時間範囲において導出する目標蓄熱量導出手段と、前記熱風炉に対する投入熱量を変数として有する計算式を含む複数の計算式であって、当該熱風炉のプロセス状態を計算するための複数の計算式を記憶し、当該複数の計算式による計算を実行することにより、当該熱風炉のプロセス状態の予測値を導出する第1のプロセス状態予測手段と、を有し、前記第1のプロセス状態予測手段は、前記熱風炉に対する投入熱量の候補を前記変数の値として代入して前記複数の計算式を実行することにより、前記熱風炉の時定数を下回る期間である予測区間における前記物理量の予測値を導出する手段と、前記予測区間における前記物理量の予測値が、前記最適化時間範囲において設定された前記物理量の目標値の候補に近いほど評価が高くなる第1の目的関数の値を最小化するときの、前記熱風炉に対する投入熱量の候補が、前記熱風炉に対する現時点以降の投入熱量として得られるまで、前記熱風炉に対する投入熱量の候補を設定し直して、前記熱風炉に対する現時点以降の投入熱量を決定する手段と、を更に有し、前記目標蓄熱量導出手段は、前記熱風炉への現時点以降の投入熱量が小さいほど評価が高くなる第2の目的関数の値を最小化するときの、前記物理量の目標値の候補が得られるまで、前記物理量の目標値の候補を設定し直して、前記物理量の目標値を決定することを特徴とする。
本発明の熱風炉操業指標導出方法は、燃焼ガスにより蓄熱煉瓦を加熱して蓄熱する燃焼期間と、当該蓄熱煉瓦に冷風を通して当該蓄熱煉瓦との熱交換により熱風を生成して高炉に供給する送風期間とを含む期間を1サイクルとして稼働する熱風炉の操業を制御するための計算を行う熱風炉操業指標導出方法であって、前記熱風炉における蓄熱量を反映する物理量であって、測定することが可能な物理量の目標値を、前記熱風炉の時定数よりも長い期間である最適化時間範囲において導出することを目標蓄熱量導出手段により行う目標蓄熱量導出工程と、前記熱風炉に対する投入熱量を変数として有する計算式を含む複数の計算式であって、当該熱風炉のプロセス状態を計算するための複数の計算式を記憶し、当該複数の計算式による計算を実行することにより、当該熱風炉のプロセス状態の予測値を導出することを第1のプロセス状態予測手段により行う第1のプロセス状態予測工程と、を有し、前記第1のプロセス状態予測工程は、前記熱風炉に対する投入熱量の候補を前記変数の値として代入して前記複数の計算式を実行することにより、前記熱風炉の時定数を下回る期間である予測区間における前記物理量の予測値を導出する工程と、前記予測区間における前記物理量の予測値が、前記最適化時間範囲において設定された前記物理量の目標値の候補に近いほど評価が高くなる第1の目的関数の値を最小化するときの、前記熱風炉に対する投入熱量の候補が、前記熱風炉に対する現時点以降の投入熱量として得られるまで、前記熱風炉に対する投入熱量の候補を設定し直して、前記熱風炉に対する現時点以降の投入熱量を決定する工程と、を更に有し、前記目標蓄熱量導出工程は、前記熱風炉への現時点以降の投入熱量が小さいほど評価が高くなる第2の目的関数の値を最小化するときの、前記物理量の目標値の候補が得られるまで、前記物理量の目標値の候補を設定し直して、前記物理量の目標値を決定することを特徴とする。
本発明のコンピュータプログラムは、前記熱風炉制御計算装置の各手段としてコンピュータを機能させることを特徴とする。
本発明によれば、熱風炉に対する投入熱量の候補を第1のプロセスモデルに与えて、熱風炉における蓄熱量を反映する物理量の予測値を導出し、当該物理量の予測値が、最適化時間範囲において設定された物理量の目標値の候補に近いほど評価が高くなる第1の目的関数の値を最小化する現時点以降の投入熱量が得られるまで、投入熱量の候補を設定し直して、第1の目的関数の値を最小化する現時点以降の投入熱量を決定する。そして、現時点以降の投入熱量の総和が小さいほど評価が高くなる第2の目的関数の値を最小化する前記物理量の目標値が得られるまで、前記物理量の目標値の候補を設定し直して、第2の目的関数の値を最小化する前記物理量の目標値を決定する。よって、熱風炉における蓄熱量を反映する物理量の目標値を、熱風炉の時定数よりも長い時間に亘り設定することができる。
また、本発明の他の特徴によれば、熱風炉に対する投入熱量の候補を第1のプロセスモデルに与えて、熱風炉における蓄熱量を反映する物理量の予測値を導出し、当該物理量の予測値が、前述したようにして決定された物理量の目標値に近いほど評価が高くなる第3の目的関数の値を最小化する現時点以降の投入熱量が得られるまで、投入熱量の候補を設定し直して、第3の目的関数の値を最小化する現時点以降の投入熱量を決定する。よって、熱風炉における蓄熱量を反映する物理量の時間変化が目標値に追従するように、熱風炉に対する投入熱量を決定することができる。
熱風炉の概略構成の一例を示す図である。 熱風炉における燃焼期間と送風期間の動作の概要の一例を示す図である。 熱風炉の制御システムの概略構成の一例を示す図である。 スタッガードパラレル方式における操業スケジュールの概略の一例を説明する図である。 熱風炉制御計算機の機能的な構成の一例を示す図である。 送風期間終了時の炉別・サイクル別目標珪石煉瓦最低温度と、操業目標値(操業条件)の一例を概念的に示す図である。 送風期間終了時の炉別・サイクル別目標珪石煉瓦最低温度と、送風期間終了時の炉別・サイクル別珪石煉瓦最低温度の予測値と、操業目標値(操業条件)と、炉別・サイクル別投入熱量の一例を概念的に示す図である。 熱風炉モデルの一例を概念的に示す図である。 第2のプロセス状態予測部の詳細な機能構成の一例を示す図である。 各送風期間終了時の炉別・サイクル別目標珪石煉瓦最低温度を導出する際の熱風炉制御計算機の処理の一例を説明するフローチャートである。 現時点以降の炉別・サイクル別投入熱量を導出する際の熱風炉制御計算機の処理の一例を説明するフローチャートである。 図11のステップS1105の熱風炉シミュレータ実行処理の一例を説明するフローチャートである。
以下、図面を参照しながら、本発明の一実施形態を説明する。
[熱風炉100の構成]
図1は、熱風炉100の概略構成の一例を示す図である。尚、各図では、説明の都合上、必要な部分のみを、必要に応じて簡略化して示す。
図1において、熱風炉100は、不図示の高炉に熱風を供給するための蓄熱式熱交換器である。熱風炉100は、高炉への送風に熱を与える蓄熱室101と、蓄熱室101を加熱するための燃焼室102と、熱風の温度調節を行うための混冷室103と、を有している。
燃焼室102では、ガス供給ダクト112から吹き込まれるBFGとCOGとLDGとの混合ガス(尚、以下の説明では、これらの混合ガスを必要に応じて「燃焼ガス」と総称する)及び燃焼空気供給ダクト113から吹き込まれる燃焼空気とを燃焼バーナ108で燃焼させ、この燃焼ガスを蓄熱室101の内部に積層された蓄熱煉瓦の間を通過させて加熱して熱を蓄える。
図1に示す例では、この蓄熱煉瓦として、下側から順に、粘土煉瓦109、ハイアルミナ煉瓦110、シリカを主成分とする珪石煉瓦111が積層されており、これらの粘土煉瓦109、ハイアルミナ煉瓦110、珪石煉瓦111には、上下方向に延びる複数の通過口が形成されている。
ガス供給ダクト112には、ガス遮断弁130、ガスバタフライ弁131、及び燃焼ガス流量計132が設けられており、ガスバタフライ弁131を開閉することにより、燃焼室102に流入する燃焼ガスの流入量を調節することができる。
燃焼空気供給ダクト113は、燃焼空気ファンから送風された空気を熱風炉100に送風する。
燃焼空気供給ダクト113には、空気流量計127、空気バタフライ弁128、及び空気遮断弁129が設けられている。燃焼空気供給ダクト113には、燃焼ガスの流量に応じて、燃焼に必要な量の空気が流入されるようにしている。
蓄熱室101の下端部には、ダクト114が設けられており、このダクト114は、N2、CO2等を含む燃焼ガスを排出するためのガス排出ダクト119と、ダクト114を介して蓄熱室101に冷風を供給するための冷風導入ダクト116と、に分岐される。
ガス排出ダクト119には、煙道弁126が設けられている。
冷風導入ダクト116には、送風弁124、及び送風バタフライ弁125が設けられており、送風バタフライ弁125を開閉させることにより、熱風炉100に流入する冷風の流入量を調節することができる。
また、混冷室103には、高炉用の熱風を排出するための熱風排出ダクト117が接続されている。この熱風排出ダクト117には、熱風弁121が設けられている。
また、冷風導入ダクト116の送風バタフライ弁125より上流側には、混冷室103に繋がるダクト118が設けられている。このダクト118には、冷風弁122と、冷風バタフライ弁123とが設けられている。
図2は、熱風炉100における燃焼期間と送風期間の動作の概要の一例を示す図である。
図2(a)に示すように、燃焼期間において、蓄熱室101に熱を蓄える場合には、送風弁124、冷風弁122、及び熱風弁121を完全に閉じて、ガス供給ダクト112及び燃焼空気供給ダクト113を介して燃焼室102内に燃焼ガス及び燃焼空気を流入させる。
これらの燃焼ガス及び燃焼空気はバーナ108によって燃焼され、この燃焼ガスは、蓄熱室101の粘土煉瓦109、ハイアルミナ煉瓦110、珪石煉瓦111に形成された開口部を通って、粘土煉瓦109、ハイアルミナ煉瓦110、珪石煉瓦111を蓄熱する。粘土煉瓦109、ハイアルミナ煉瓦110、珪石煉瓦111を通過した燃焼ガスは、ガス排出ダクト119を介して排ガスとして煙道に排出される。ここで、通常は、珪石煉瓦111の最下部での最低温度は変態点温度以下とならないように管理される。また、粘土煉瓦109の最下部での温度の下限値は(排ガス温度が高くならないようにできるだけ低く)一定値に管理される。本実施形態では、珪石煉瓦111の下端部の最低温度(送風期間の終了時の温度)を、熱風炉100における各サイクルの蓄熱量を反映する物理量とする場合を例に挙げて説明する。また、以下の説明では、送風期間終了時の珪石煉瓦111の下端部の最低温度を、必要に応じて「珪石煉瓦最低温度」と略称する。
蓄熱室101への蓄熱が完了すると、図2(b)に示すように、煙道弁126、空気遮断弁129、及びガス遮断弁130を完全に閉じて、冷風導入ダクト116を介して蓄熱室101に冷風を流入させる。蓄熱室101に流入した冷風は、粘土煉瓦109、ハイアルミナ煉瓦110、珪石煉瓦111に形成された開口部を通過して900〜1300℃に加熱された後、高炉用の熱風として熱風排出ダクト117から排出される。
図3は、熱風炉の制御システムの概略構成の一例を示す図である。図3において、実線は信号の流れを示し、破線は、冷風、熱風、燃焼ガス、燃焼空気の流れを示している。
図3では、1基の高炉に対して4基の熱風炉100a〜100dを付帯させた場合を例に挙げて示している。また、これら4基の熱風炉100a〜100dは、スタッガードパラレル方式で操業するものとする。
図4は、スタッガードパラレル方式における操業スケジュールの概略の一例を説明する図である。
図4に示す例では、左から右へ送風から燃焼への切替と、燃焼と、燃焼から送風への切替と、送風とをこの順番で行い、これらの期間を合わせた期間で1サイクルを構成するようにしている(図4に示す「1サイクル=切り替え時間401+燃焼時間402+切り替え時間401+送風時間403」の部分を参照)。1サイクルは、例えば、180[min]である。そして、熱風を供給する順番で前後(隣接)する2基(例えば熱風炉1と熱風炉2)の送風時間の一部をラップさせるようにする。更に、図4に示す例では、簡単のために送風時間と燃焼時間とを同じ長さにしているので、熱風を供給する順番で隣接しない2基(例えば熱風炉1と熱風炉3)については、一方の熱風炉が送風期間であるときに他方の熱風炉が燃焼期間となり、一方の熱風炉が燃焼期間であるときに他方の熱風炉が送風期間となるようにする。また、本実施形態では、全てのサイクルにおいて、送風時間が同じ時間である場合を例に挙げて説明する。
[制御装置300の構成]
図3の説明に戻り、熱風炉の制御システムは、熱風炉100a〜100dの操業を制御する制御装置300を有している。制御装置300は、熱風炉制御計算機301と、入出力装置302と、流量調節計304と、温度調節計305と、開度調節計313a〜313dと、を有している。
熱風炉制御計算機301は、予め設定される入力データをもとに熱風炉100a〜100dの操業指標を導出するための演算を行う。熱風炉制御計算機301に対するデータの入力は、インターフェース部である入出力装置302を介して行われる。入出力装置302に入力される情報としては、例えば、以下のようなものがある。
まず、熱風炉のオペレータによる入力装置312の操作に基づく情報として、例えば、以下の情報がある。
・熱風炉100a〜100dの操業を、高炉からの要求に応じた状態に変更する際の操業目標値(目標送風温度BTref(time)、目標送風流量BVref(time)、目標送風時間BTimeref(time))。尚、本実施形態では、目標送風時間BTimeref(time)は固定値であるとする。
・設備負荷(炉別・サイクル別熱効率η(i,n+j)、炉別・サイクル別投入熱量Qin(i,n+j)、炉別・サイクル別蓄熱量Qbf(i,n+j)、炉別・サイクル別蓄熱分担比率α(i,n+j)の候補の初期値。
・炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)の候補の初期値
・熱風炉のプロセスモデルを表す線形時系列モデルの係数a0x(i)、b0・x(i)、c0・x(i)、a1・x(i)、b1・x(i)、c1・x(i)
・目的関数J1(i)の重み係数w1(i)、w2(i)
・炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)の最適化時間範囲602を定めるサイクル数q(qは正の整数)
ここで、サイクル数qが、熱風炉100a〜100dの時定数よりも長い時間に対応するサイクル数となるように、サイクル数qが設定される。例えば、現在時刻が属するサイクルに対応するサイクル数をnとし、熱風炉100a〜100dの時定数が3日である場合、現在時刻が属するサイクルから、3日以上先のサイクルに対応するサイクル数がn+qとなるように、サイクル数qが設定される(図6を参照)。
・現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)の導出対象となる制御区間702を定めるサイクル数s(sは正の整数)
ここで、サイクル数sは、制御区間702の最後のサイクルを定めるものであり、サイクル数n+sは、熱風炉100a〜100dの時定数及びサイクル数n+qを下回る値である(図6、図7を参照)。
・炉別・サイクル別珪石煉瓦最低温度の予測値Tsi,p(i,t)の予測区間701を定めるサイクル数d、m(d、mは正の整数。d<m)
ここで、サイクル数d(dは正の整数)は、予測区間701の最初のサイクルを定めるものである(図7を参照)。また、サイクル数dはサイクル数sよりも大きい(サイクル数s以上となる)値である(図7を参照)。
サイクル数mは、予測区間701の最後のサイクルを定めるものである(図7を参照)。サイクル数mは、熱風炉100a〜100dの時定数及びサイクル数qを下回る値である(図6、図7を参照)。
このように、予測区間701と制御区間702は、熱風炉100a〜100dの時定数及び最適化時間範囲602を下回る期間であり、制御区間702の最後のサイクルは、予測区間701の最初のサイクルよりも(時間的に)前のサイクルとなる。
予測区間701としては、炉別・サイクル別珪石煉瓦最低温度の予測値Tsi,p(i,t)が、目標値(炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n))によく追従するような区間が、オペレータにより適宜設定される。送風流量BVや送風温度BTといった操業条件の変更をしても、熱風炉100a〜100dの蓄熱量は、直ぐにはその操業条件の変更を反映しない。よって、例えば、熱風炉100a〜100dの蓄熱量が、操業条件の変更を反映し始めた後の時間に対応するサイクル数を、サイクル数dとして設定することができる。一方、サイクル数mとしては、例えば、8時間〜1日先の時間に対応するサイクル数を設定することができる。
・熱風炉100を構成する設備(粘土煉瓦109、ハイアルミナ煉瓦110、珪石煉瓦111等)・ガス(燃焼ガス・燃焼空気等)の既知データ(物理定数・設備定数)。
この他にも、後述する計算において予めオペレータが設定する情報も入出力装置302に入力される。
ここで、添字refは、目標値であることを表し、添字pは、将来の値であることを表す。
また、(i,n+j)、(i)のiは、熱風炉100によって値が異なり得ることを表す。本実施形態では、熱風炉100a〜100dは4基なので、iは1〜4となる。また、(i,n+j)、(i,t)のn、j、tは、サイクルによって値が異なり得ることを表す。nは、現在時刻が属するサイクルのサイクル数を、n+jは、現在時刻が属するサイクルよりもjだけ先のサイクルのサイクル数をそれぞれ表す。tは、現在時刻が属するサイクルよりも先のサイクル数を表す。
また、(time)のtimeは、時刻(例えば、分(min)を最小単位とする時刻)によって値が異なり得ることを表す。
本実施形態では、炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)の候補の初期値として、Tsi,ref(i,n)、Tsi,ref(i,n+1)、・・・、Tsi,ref(i,n+q)が設定される。
また、サイクル数n〜n+qに対応する時間(最適化時間範囲602)において、目標送風温度BTref(time)と、目標送風流量BVref(time)が設定される。
また、炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)として、Tsi,ref(i,n)、Tsi,ref(i,n+1)、・・・、Tsi,ref(i,n+q)が導出される。
また、炉別・サイクル別珪石煉瓦最低温度の予測値Tsi,p(i,t)として、Tsi,p(i,n+d+g)、Tsi,p(i,n+d+1+g)、・・・、Tsi,p(i,n+m+g)が導出される。ここで、gは、0(ゼロ)からq−mまでの整数である。すなわち、炉別・サイクル別珪石煉瓦最低温度の予測値Tsi,p(i,t)として、Tsi,p(i,n+d)〜Tsi,p(i,n+m)、Tsi,p(i,n+d+1)〜Tsi,p(i,n+m+1)、Tsi,p(i,n+d+2)〜Tsi,p(i,n+m+2)、・・・、Tsi,p(i,n+d+q−m)〜Tsi,p(i,n+m+q−m)が、この順で導出される。導出された炉別・サイクル別珪石煉瓦最低温度の予測値Tsi,p(i,t)のうち、重複するサイクルの値については、最新の値が採用される。
また、現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)として、Qin,p(i,n+g)、Qin,p(i,n+1+g)、・・・、Qin,p(i,n+s+g)が導出される。すなわち、現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)として、Qin,p(i,n)〜Qin,p(i,n+s)、Qin,p(i,n+1)〜Qin,p(i,n+s+1)、・・・、Qin,p(i,n+g)〜Qin,p(i,n+s+g)が、この順で導出される。導出された現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)のうち、重複するサイクルの値については、最新の値が採用される。
操業実績を示す情報としては、例えば、以下のようなものがある。
・熱風炉100a〜100dから高炉に排出される熱風の温度(送風温度)を測定する熱風温度計310により測定された送風温度BT。
・珪石煉瓦111の下端の温度を炉毎に測定する珪石煉瓦温度計315a〜315dにより測定された珪石煉瓦下端温度Tsi
・送風機306から送風された冷風の流量(冷風流量)を測定する送風流量計307で測定された冷風流量(=送風流量BV)。
・送風機306から送風された冷風の温度を測定する冷風温度計308により測定された冷風温度。
また、図示を省略するが、各熱風炉100a〜100dに付帯するその他センサから出力されるその他の操業実績を示す情報も入出力装置302に入力される。
以下に、熱風炉制御計算機301が行う処理の一例の概要を説明する。
本実施形態では、熱風炉制御計算機301は、入力された情報等をもとに、蓄熱量目標軌道導出プログラムを実行して、現在時刻が属するサイクル(サイクル数n)から、熱風炉100a〜100dの時定数よりも長い時間に対応するサイクル(サイクル数n+q)が経過するまで(例えば3日以上先まで)の各サイクルにおいて、炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)を導出する。ここで、jは以下の(1)式で表される。
j=0,1,・・・,q ・・・(1)
次に、熱風炉制御計算機301は、入力された情報等をもとに、投入熱量導出プログラムを実行して、炉別・サイクル別珪石煉瓦最低温度の予測値Tsi,p(i,t)が、炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)に追従するように、各熱風炉100a〜100dへの現時点以降の投入熱量Qin,p(i,t)を熱風炉100a〜100d毎に個別に計算する。次に、熱風炉制御計算機301は、各熱風炉100a〜100dへの現時点以降の投入熱量Qin,p(i,t)を用いて、燃焼ガスの流量を熱風炉100a〜100d毎に個別に計算する。次に、熱風炉制御計算機301は、熱風炉制御計算機301は、各熱風炉100a〜100dに対応して設けられている流量調節計304a〜304dに対して、燃焼ガスの流量を指示する。
流量調節計304a〜304dは、熱風炉制御計算機301から指示された流量が指示通りになるように、ガスバタフライ弁131a〜131dの開閉動作を調節する。
また、熱風炉制御計算機301は、オペレータによる入力装置312の操作に基づいて得られた温度を、熱風炉100a〜100dから排出される熱風の温度の目標値として、温度調節計305に設定する。温度調節計305は、送風バタフライ弁125a〜125dの開閉動作を調節する開度調節計313a〜313dに対して、目標開度を指示する。例えば、2基の熱風炉100で送風している期間であれば、温度調節計305は、送風温度が高ければ、先行して送風する熱風炉100の送風バタフライ弁125の開度を開けると共に、後行して送風する熱風炉100の送風バタフライ弁125の開度を閉める。逆に、送風温度が低ければ、温度調節計305は、先行して送風する熱風炉100の送風バタフライ弁125の開度を閉めると共に、後行して送風する熱風炉100の送風バタフライ弁125の開度を開ける。先行して送風する熱風炉100は、熱交換が進んでいるため、熱風温度が低く、後行して送風する熱風炉100は、十分に蓄熱しているため、熱風温度が高いので、これらの送風バタフライ弁125の開度(風量の配分)を調節することによって送風温度を制御することができる。また、送風期間中に冷風バタフライ弁123を徐々に閉めて送風温度を調節する。
送風機306は、送風流量調節計309に設定された風量の冷風を送風する。送風流量調節計309の設定は、送風工場で変更される。
また、熱風炉制御計算機301は、以上のような計算結果に基づく画面の表示を、入出力装置302を介して表示装置303に行わせる。
以下に、熱風炉制御計算機301が行う処理の一例を詳細に説明する。尚、以下の説明では、熱風炉制御計算機301が行う処理のうち、本実施形態を説明するのに必要な部分のみの構成及び動作を説明し、本実施形態の説明に不要な部分の構成及び動作の詳細な説明を省略する。
熱風炉制御計算機301は、例えば、CPU、ROM、RAM、HDDを備えたコンピュータを用いることにより実現することができる。また、前述したプログラムは、例えば、HDDに記憶され、CPUにより実行される。
[熱風炉制御計算機301の機能構成]
図5は、熱風炉制御計算機301の機能的な構成の一例を示す図である。
図5に示すように、熱風炉制御計算機301は、蓄熱量目標軌道最適化部501と、第1のプロセス状態予測部502と、最適追従制御部503と、第2のプロセス状態予測部504と、を有する。
(蓄熱量目標軌道最適化部501、第1のプロセス状態予測部502)
蓄熱量目標軌道最適化部501及び第1のプロセス状態予測部502は、前述した蓄熱量目標軌道導出プログラムを実行する部分である。前述したように、蓄熱量目標軌道導出プログラムを実行することにより、炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)が、最適化時間範囲602(j=0、1、・・・、q)において導出される。最適化時間範囲602とは、現在時刻が属するサイクル(サイクル数n)から、熱風炉100a〜100dの時定数よりも長い時間に対応するサイクル(サイクル数n+q)が経過するまでの時間である。このように長期間に亘って、炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)を導出するのは、炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)を、熱風炉100a〜100dの各部の温度が平衡状態になるまでの状態を反映したものにするためである。
以下に、蓄熱量目標軌道最適化部501及び第1のプロセス状態予測部502が有する機能の一例を説明する。
図6は、炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)と、操業目標値(操業条件)の一例を概念的に示す図である。
蓄熱量目標軌道最適化部501は、現在時刻が属するサイクル(サイクル数n)から、最適化時間範囲602が経過する時刻が属するサイクル(サイクル数n+q)までの間に、操業目標値601が変動するか否かを判定する。操業目標値601とは、操業条件を指し、例えば、目標送風温度BTref(time)、目標送風流量BVref(time))、又はこれらから得られる目標送風熱量である。
この判定の結果、操業目標値601が変動する場合に、以下の処理が実行される。図6に示す例では、最適化時間範囲602内で、操業目標値601が3回変動している。尚、この判定は、例えば、1[min]毎に行われる。
以上のようにして操業目標値601が変動していると判定すると、蓄熱量目標軌道最適化部501は、炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)の候補を第1のプロセス状態予測部502に出力する。尚、最初は、入出力装置302に入力された「炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)の候補の初期値」を第1のプロセス状態予測部502に出力する。
図7は、炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)と、炉別・サイクル別珪石煉瓦最低温度の予測値Tp,ref(i,t)と、操業目標値(操業条件)と、炉別・サイクル別投入熱量Qin,p(i,t)の一例を概念的に示す図である。
第1のプロセス状態予測部502は、熱風炉100a〜100dに対する炉別・サイクル別投入熱量Qinを入力して当該熱風炉100a〜100dのプロセス状態を個別に計算する計算モデルであるプロセスモデルを用いて、各熱風炉100a〜100dのプロセス状態の予測値を導出する。本実施形態では、各熱風炉100a〜100dのプロセス状態の予測値は、現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)と、炉別・サイクル別珪石煉瓦最低温度の予測値Tsi,p(i,t)と、炉別・サイクル別送風温度の予測値BTp(i,t)とを含む。ここで、tは、予測区間701又は制御区間702におけるサイクル数を表すものであり、以下の(2a)式、(2b)式で表される。
予測区間; t=n+d+g、n+d+1+g、・・・、n+m+g ・・・(2a)
制御区間; t=n+g、n+1+g、・・・、n+s+g ・・・(2b)
前述したように、nは、現在時刻が属するサイクル数である。dは、予測区間701の最初のサイクルに対応するサイクル数を表す。mは、予測区間701の最後のサイクルに対応するサイクル数を表す。gは、0(ゼロ)からq−mまでの整数である。すなわち、予測区間701は、サイクル数m−dの範囲の区間である。
以上のように、予測区間701は、その最後のサイクルに対応するサイクル数がn+q−mとなるまで、サイクル数m−dの範囲の区間を1サイクルずつ後ろにずらしたものとなる。また、制御区間702は、その最後のサイクルに対応するサイクル数がn+s+q−mになるまで、サイクル数sの範囲の区間を1サイクルずつ後ろにずらしたものとなる。
本実施形態では、第1のプロセス状態予測部502は、プロセスモデルとして、線形時系列モデルを用いる。プロセス状態の予測値をサイクル毎に計算する統計解析モデルの一つである。
具体的に、炉別・サイクル別珪石煉瓦最低温度の予測値Tsi,p(i,t)は、以下の(3)式を用いることにより求められる。
Figure 0005733148
(3)式において、係数a0・x(i)、b0・x(i)、c0・x(i)は、入力装置312の操作に基づいて入力された係数である。例えば、これらの係数として、熱風炉100a〜100dの過去の操業結果に(3)式の形が最も合うときの係数が別途求められ、求められた係数が入力装置312の操作に基づいて入力される。熱風炉100a〜100dの過去の操業結果に(3)式の形を合わせるための手法としては、最小二乗法等の手法が用いられる。
ΔTsi,p(i,n+j+1)は、以下の(4)式で表される。
ΔTsi,p(i,n+j+1)=Tsi,p(i,n+j+1)−Tsi,p(i,n+j) ・・・(4)
ΔTsi(i,n+j−x)は、以下の(5)式で表される。
ΔTsi(i,n+j−x)=Tsi(i,n+j−x)−Tsi(i,n+j−x−1) ・・・(5)
第1のプロセス状態予測部502は、炉別・サイクル別珪石煉瓦最低温度Tsi(i,n+j−x)のうち、過去の値については、操業実績として入力された珪石煉瓦下端温度を設定する。一方、将来の値については、それまでに(4)式により得られている炉別・サイクル別珪石煉瓦最低温度の予測値Tsi,p(i,t)を設定する。
ΔQin(i,n+j+1−x)は、以下の(6)式で表される。
ΔQin(i,n+j+1−x)=Qin(i,n+j+1−x)−Qin(i,n+j−x) ・・・(6)
第1のプロセス状態予測部502は、Qin(i,n+j+1−x)のうち、過去の値については、炉別・サイクル別投入熱量Qin,p(i,t)の過去の値を設定する。一方、将来の値については、現時点で既に導出されている現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)と、現時点で計算対象となっている制御区間702における現時点以降の炉別・サイクル別投入熱量Qin,p(i,n+g)〜Qin,p(i,n+s+g)の候補とを設定する。
ΔQout(i,n+j+1−x)は、以下の(7)式で表される。
ΔQout(i,n+j+1−x)=Qout(i,n+j+1−x)−Qout(i,n+j−x) ・・・(7)
outは、送風熱量[J]である。第1のプロセス状態予測部502は、炉別・サイクル別送風熱量Qout(i,n+j+1−x)のうち、過去の値については、操業実績として入力された送風温度及び送風流量から求められる炉別・サイクル別送風熱量を設定する。一方、将来の値については、操業目標値(目標送風温度BTref(time)、目標送風流量BVref(time))から求められる炉別・サイクル別送風熱量を設定する。
第1のプロセス状態予測部502は、以上のようにして、炉別・サイクル別珪石煉瓦最低温度の予測値Tsi,p(i,t)を、少なくとも、i=1〜4、t=n〜n+m+gについてそれぞれ導出する。そして、第1のプロセス状態予測部502は、導出した炉別・サイクル別珪石煉瓦最低温度の予測値Tsi,p(i,t)のうち、i=1〜4、t=n+d+g〜n+m+gの値を、予測区間701における炉別・サイクル別珪石煉瓦最低温度の予測値Tsi,p(i,t)として採用する。
また、炉別・サイクル別送風温度の予測値BTp(i,t)は、以下の(8)式を用いることにより求められる。
Figure 0005733148
(8)式において、係数a1・x(i)、b1・x(i)、c1・x(i)は、入力装置312の操作に基づいて入力された係数である。これらの係数a1・x(i)、b1・x(i)、c1・x(i)も、係数a0・x(i)、b0・x(i)、c0・x(i)と同様にして予め求められるものである。
ΔBTp(i,n+j+1)は、以下の(9)式で表される。
ΔBTp(i,n+j+1)=BTp(i,n+j+1)−BTp(i,n+j) ・・・(9)
ΔBT(i,n+j−x)は、以下の(10)式で表される。
ΔBT(i,n+j−x)=BT(i,n+j−x)−BT(i,n+j−x−1) ・・・(10)
第1のプロセス状態予測部502は、炉別・サイクル別送風温度BT(i,n+j−x)のうち、過去の値については、操業実績として入力された送風温度を設定する。一方、将来の値については、それまでに(8)式により得られている炉別・サイクル別送風温度の予測値BTp(i,t)を設定する。
ΔQin(i,n+j+1−x)、ΔQout(i,n+j+1−x)については、それぞれ、前述した(6)式、(7)式で表される。
第1のプロセス状態予測部502は、以上のようにして、予測区間701における炉別・サイクル別珪石煉瓦最低温度の予測値Tsi,p(i,n+d+g)〜Tsi,p(i,n+m+g)と、予測区間701における炉別・サイクル別送風温度の予測値BTp(i,n+d+g)〜BTp(i,n+m+g)とを導出すると、第1の目的関数の一例である以下の(11)式の炉別目的関数J1(i)の評価値の値を、以下の(12)式及び(13)式の制約条件を満たす範囲で最小化するために、現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)の候補の値をそれぞれどれだけ変更すればよいのかを、最適化手法を用いて判断する。この判断のロジックは、GA、山登り法、及び線形計画法等、公知の方法で実現することができる。制御区間702における現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)の候補の変更量は、このロジックに応じて定まるものである。第1のプロセス状態予測部502は、この変更量に基づいて、(11)式の炉別目的関数J1(i)の評価値の値が最小と見なせるまで、制御区間702における現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)の候補の値を変更して、前述した(3)式〜(13)式の計算を繰り返し行う。
Figure 0005733148
(11)式において、Tsi,err(i,t)は、以下の(14)式で表され、ΔQin(i,t)は、以下の(15)式で表される。
si,err(i,t)=Tsi,ref(i,t)−Tsi,p(i,t) ・・・(14)
ΔQin(i,t)=Qin(i,t)−Qin(i,t−1) ・・・(15)
また、(12)式、(13)式において、Th1(i)、Th2(i)は、閾値であり、予め設定されているものである。また、BTp,min(i,t)は、炉別・サイクル別送風温度の予測値BTp(i,t)の最低値であることを示す。また、BTref(i,t)は、目標送風温度である。尚、前述したように、本実施形態では、目標送風温度BTref(time)は、炉iに依存せず時間timeに依存するので、サイクルtに対応する時間timeの目標送風温度BTref(time)がBTref(i,t)として採用される。
(11)式の右辺の第1項は、予測区間701における炉別・サイクル別珪石煉瓦最低温度の予測値Tsi,p(i,t)を、炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)に良く追従させることを目的とする目的関数である。(11)式の右辺の第2項は、同一の熱風炉100において相互に隣接するサイクルにおける炉別・サイクル別投入熱量Qin(i,t)の変動を小さくすることを目的とする目的関数である。(11)式に示す炉別目的関数は、これらの目的関数の重み付き線形和で表される。
第1のプロセス状態予測部502は、(11)式の炉別目的関数J1(i)の評価値の値が最小となったときの「炉別・サイクル別珪石煉瓦最低温度の予測値Tsi,p(i,n+d+g)〜Tsi,p(i,n+m+g)、炉別・サイクル別送風温度の予測値BTp(i,n+d+g)〜BTp(i,n+m+g)、現時点以降の炉別・サイクル別投入熱量Qin,p(i,n)〜Qin(i,n+s+g)(の候補の値)」を、各熱風炉100a〜100dのプロセス状態の予測値の一例として、蓄熱量目標軌道最適化部501に出力(返信)する。
以上のような各熱風炉100a〜100dのプロセス状態の予測値の導出は、予測区間701と制御区間702をそれぞれ1サイクルずつ後ろにずらして順次行われる。例えば、予測区間701として、サイクル数n+d〜n+mのサイクルの区間を設定すると共に、制御区間702として、サイクル数n〜n+sのサイクルの区間を設定して、各熱風炉100a〜100dのプロセス状態の予測値を導出すると、その次に、予測区間701として、サイクル数n+d+1〜n+m+1のサイクルの区間を設定すると共に、制御区間702として、サイクル数n+1〜n+s+1のサイクルの区間を設定して、各熱風炉100a〜100dのプロセス状態の予測値を導出する。
そして、予測区間701の最後のサイクルが、サイクル数n+qのサイクルになったときのプロセス状態の予測値が導出されると、プロセス状態の予測値の導出を終了する。このようにすることにより、サイクル数n〜n+q−mの各サイクルにおけるプロセス状態の予測値が導出される。ここで、同一のサイクルにおいて導出されたプロセス状態の予測値のうち、最新のプロセス状態の予測値が採用される。
蓄熱量目標軌道最適化部501は、第1のプロセス状態予測部502から、各熱風炉100a〜100dのプロセス状態の予測値を入力すると、第2の目的関数の一例である以下の(16)式の炉別目的関数J2(i)の評価値の値を、以下の(17)式及び(18)式の制約条件を満たす範囲で最小化するために、炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)の候補の値をそれぞれどれだけ変更すればよいのかを、最適化手法を用いて判断する。この判断のロジックは、GA、山登り法、及び線形計画法等、公知の方法で実現することができる。炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)の候補の変更量は、このロジックに応じて定まるものである。この変更量に基づいて、(16)式の炉別目的関数J2(i)の評価値の値が最小であると見なせるまで、炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)の候補の値を変更して、前述した(3)式〜(18)式の計算が繰り返し行われる。
Figure 0005733148
(17)式、(18)式において、Th3(i)、Th4(i)は、閾値であり、予め設定されているものである。
蓄熱量目標軌道最適化部501は、(16)式の炉別目的関数J2(i)の評価値の値が最小となったときの「最適化時間範囲602における炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)(の候補の値)」を記憶する。
(最適追従制御部503、第2のプロセス状態予測部504)
最適追従制御部503及び第2のプロセス状態予測部504は、前述した投入熱量導出プログラムを実行する部分である。前述したようにして蓄熱量目標軌道最適化部501により、最適化時間範囲602における炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)が導出されると、炉別・サイクル別珪石煉瓦最低温度の予測値Tsi,p(i,n+j)を予測区間701において導出する。前述したように、予測区間701は、現在時刻が属するサイクル(サイクル数n)よりもサイクル数d〜mだけ先の期間である。また、サイクル数n+mに対応する時間は、熱風炉100a〜100dの時定数を下回る時間である。このように、サイクル数n+mに対応する時間を、熱風炉100a〜100dの時定数を下回る時間としているのは、炉別・サイクル別珪石煉瓦最低温度の予測値Tsi,p(i,n+j)を、余りに先の時間まで導出すると、操業の変更等があった場合に、導出した値の多くが無駄になってしまう虞があるからである。
そして、炉別・サイクル別珪石煉瓦最低温度の予測値Tsi,p(i,n+j)が、炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)に追従するように、制御区間702における現時点以降の炉別・サイクル別投入熱量Qin,p(i,n+g)〜Qin,p(i,n+s+g)が導出される。制御区間702は、サイクル数sの範囲の期間である。
以下に、最適追従制御部503及び第2のプロセス状態予測部504が有する機能の一例を説明する。
最適追従制御部503は、熱風炉100a〜100d毎に、各サイクルの燃焼期間が開始する前の切り替え時間内の所定の時間になったか否かを判定する。
この判定の結果、熱風炉100a〜100dの何れかにおいて、各サイクルの燃焼期間が開始する前の切り替え時間内の所定の時間になると、以下の処理が実行される。
最適追従制御部503は、制御区間702における現時点以降の炉別・サイクル別投入熱量Qin,p(i,n+g)〜Qin,p(i,n+s+g)の候補を第2のプロセス状態予測部504に出力する。尚、最初は、現在時刻が属するサイクル(サイクル数n)よりもs−1だけ前のサイクル(サイクル数n−s−1)から、現在時刻が属するサイクルよりも1だけ前のサイクル(サイクル数n−1)までの現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)の値Qin,p(i,n−s−1)〜Qin,p(i,n−1)を、第2のプロセス状態予測部504に出力する。
第2のプロセス状態予測部504は、熱風炉シミュレータを実行する。熱風炉シミュレータは、熱物理学を活用して、燃焼・送風によって、熱風炉100で行われる熱交換を忠実に再現する熱風炉モデルを用いて構築される。熱風炉シミュレータも、線形時系列モデルと同様に、熱風炉100a〜100dに対する炉別・サイクル別投入熱量Qinを入力して当該熱風炉100a〜100dのプロセス状態を個別に計算する計算モデルであるプロセスモデルである。ただし、熱風炉シミュレータは、1サイクルを下回る時間間隔でプロセス状態の予測値を計算するものであり、線形時系列モデルよりもプロセス状態の予測値を厳密に計算することができる。
図8は、熱風炉モデルの一例を概念的に示す図である。ここでは、蓄熱室101における熱風炉モデルの一例を示す。
本実施形態で説明する熱風炉モデルでは、蓄熱室101の形が円筒であるとする。そして、その円筒を軸に沿って切った断面(二次元平面)における熱収支を表すモデル式を構築する。
図8に示すように、例えば、珪石煉瓦111は、蓄熱煉瓦(珪石)801と、炉壁煉瓦802とにより表され、この炉壁煉瓦802は、更に、鉄皮802a、耐火煉瓦(A)〜(C)802b〜802d、キャスタブル802e、鉄皮802fにより構成される。珪石煉瓦111のモデル式では、これらについての前述した二次元平面の伝熱が表現される。他の粘土煉瓦109及びハイアルミナ煉瓦110についても、珪石煉瓦111と同様に、前述した二次元平面の伝熱が表現される。
本実施形態の熱風炉モデルでは、燃焼時において、燃焼ガスと蓄熱煉瓦(珪石)801との間と、蓄熱煉瓦(珪石)801と炉壁煉瓦802との間の伝熱は、対流熱伝達と輻射熱伝達によるものとする。また、送風時において、冷風と蓄熱煉瓦(珪石)801との間と、蓄熱煉瓦(珪石)801と炉壁802との間と、炉壁802と大気との間の伝熱は、対流熱伝達によるものとする。また、炉壁802内は、熱伝導による伝熱がなされるものとする。また、蓄熱煉瓦(珪石)801は、通過口が存在することによる寸法換算を行う。また、高さ方向の熱伝導は無視するものとする。これらの仮定は、他の粘土煉瓦109及びハイアルミナ煉瓦110についても同じである。
まず、ガスの熱収支を表すモデル式は、以下の(19)式で表される。また、蓄熱煉瓦の熱収支を表すモデル式は、以下の(20)式で表される。また、炉壁煉瓦の熱収支を表すモデル式は、以下の(21)式で表される。
Figure 0005733148
(19)式〜(21)式における記号の意味は、以下の通りである。
ρ:密度[kg/m3
p:比熱[J/kg・K]
S:断面積[m2](前述した円筒をその軸に沿って切った断面積から通過口の断面積の総和を引いた煉瓦の(正味の)切り口面積)
v:流速[m/s]
T:温度[K]
h:熱伝達率[W/m2・K]
A:接触面積[m2
L:高さ[m](炉底を0とする)
ε:放射率[−]
z:高さ方向の位置[m]
t:時間[s]
G:ガス
CH:蓄熱煉瓦
W:炉壁煉瓦
Wb:炉壁煉瓦の構成煉瓦(珪石煉瓦111であれば、耐火煉瓦(珪石)802a、耐熱煉瓦(A)〜(C)802b〜802d、キャスタブル802e、鉄皮802f)
Wb−1、Wb+1:Wbで特定される煉瓦の隣の煉瓦(耐熱煉瓦(A)がWbであれば、Wb−1は耐火煉瓦(珪石)802aであり、Wb+1は、耐熱煉瓦(B))
δ:ステファンボルツマン定数
第2のプロセス状態予測部504は、(19)式〜(21)式のモデル式を使って、以下に示す機能を実現するものである。
図9は、第2のプロセス状態予測部504の詳細な機能構成の一例を示す図である。
第2のプロセス状態予測部504は、燃焼時シミュレーション部901と、送風時シミュレーション部902とに大別される。
((燃焼時シミュレーション部901))
燃焼時シミュレーション部901は、燃焼期間における各熱風炉100a〜100bの状態をシミュレーションするためのものである。
燃焼時シミュレーション部901は、使用ガス容量算出部901aと、モデル式計算部901bとを有する。
<使用ガス容量算出部901a>
使用ガス容量算出部901aは、現時点で既に導出されている現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)と、現時点で計算対象となっている制御区間702における現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)の候補と、を入力する。ここで、現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)は、1サイクルずつ制御区間702を後ろにずらして導出されるものである。よって、既に計算が行われた制御区間702を示すサイクル数がn〜n+s+vであるとすると、現時点で計算対象となっている制御区間702は、n+v+1〜n+s+v+1となる。
また、使用ガス容量算出部901aは、BFG、COG、及びLDGの各使用ガスの使用比率[−]を入力する。この使用ガスの使用比率は、燃焼期間中に変化するものとし、1つの燃焼期間を分割した複数の期間毎に個別に設定することができる。
さらに、使用ガス容量算出部901aは、BFG、COG、LDG、及び空気の各使用ガスのガスカロリー(ガス組成単位熱量)[J/Nm3]を入力する。
使用ガス容量算出部901aは、以上の入力した情報に基づいて、BFG、COG、LDG、及び空気の各使用ガスの容量[Nm3]を算出してモデル式計算部901bに出力する。
<モデル式計算部901b>
モデル式計算部901bは、使用ガス容量算出部901aから、BFG、COG、LDG、及び空気の各ガスの容量を入力する。
モデル式計算部901bは、ガス燃焼温度TG[℃]、密度ρG[kg/m3]、比熱Cp,G[J/kg・K]を入力する。ここで、添字Gは、ガスを表す。
そして、モデル式計算部901bは、入力した情報を用いて、前述したモデル式((19)式〜(21)式)を使用して、燃焼開始から燃焼終了まで(1つの燃焼期間)の、熱風炉100a〜100dにおける熱収支の計算を行い、燃焼終了の時点での以下の値を出力する。
・炉別・サイクル別蓄熱煉瓦温度TCH(i,t)
・炉別・サイクル別炉壁煉瓦(の構成煉瓦)温度TWb(i,t)
・炉別・サイクル別排ガス温度Tex(i,t)
・炉別・サイクル別燃焼効率η(i,t)
尚、ガスボリュームVGは、(19)式の左辺の「SG×vG」に反映されるものである。また、炉別・サイクル別排ガス温度Tex(i,t)は、計算対象の燃焼期間において蓄熱されなかった熱量と、ガスボリュームVGと、ガスの成分とを用いて算出されるものである。
以上の使用ガス容量算出部901aとモデル式計算部901bの処理は、サイクル毎に繰り返し行われる。
((送風時シミュレーション部902))
送風時シミュレーション部902は、送風期間における各熱風炉100a〜100bの状態をシミュレーションするためのものである。
送風時シミュレーション部902は、各炉運転内容指示部902aと、モデル式計算部902bと、送風流量・温度決定部902cとを有する。
<各炉運転内容指示部902a>
各炉運転内容指示部902aは、モデル式計算部901bから、炉別・サイクル別蓄熱煉瓦温度TCH(i,t)と炉別・サイクル別炉壁煉瓦(の構成煉瓦)温度TWb(i,t)とを入力する度に(燃焼時シミュレーション部901において、燃焼期間における燃焼終了時の計算が終了する度に)計算を開始する。ここでは、3秒毎の計算結果が得られるように繰り返し計算が行われるものとする。
各炉運転内容指示部902aは、後述する送風流量・温度決定部902cで決定された「炉別・時間別通過送風流量BHS(i,time+3)と、炉別・時間別混冷流量Air(i,time+3)」を、計算対象の時間の「炉別・時間別通過送風流量BHS(i,time)と、炉別・時間別混冷流量Air(i,time)」とする。ここで、timeは時間(時刻)を表し、time+3は、時間timeの3秒後であることを表す。
そして、各炉運転内容指示部902aは、炉別・時間別通過送風流量BHS(i,time)をモデル式計算部902bに出力すると共に、炉別・時間別混冷流量Air(i,time)を送風流量・温度決定部902cに出力する。ここで、通過送風流量とは、図1に示すダクト114、蓄熱室101、燃焼室102を通って混冷室103に進入した冷風の流量である。また、混冷流量とは、図1に示すダクト118を通って混冷室103に進入した冷風の流量である。これらの通過送風流量と混冷流量との加算値が送風流量BV(i,time)になる。
尚、最初の計算では、後述する送風流量・温度決定部902cで「炉別・時間別通過送風流量BHS(i,time+3)と、炉別・時間別混冷流量Air(i,time+3)」が決定されていないので、各炉運転内容指示部902aは、炉別・時間別通過送風流量BHS(i,time)と、炉別・時間別混冷流量Air(i,time)の初期値を採用する。
<モデル式計算部902b>
モデル式計算部902bは、モデル式計算部901bから、炉別・サイクル別蓄熱煉瓦の温度TCH(i,t)と、炉別・サイクル別炉壁煉瓦の構成煉瓦の温度TWb(i,t)とを入力する。
また、モデル式計算部902bは、密度ρG、及び比熱Cp,Gを入力する。
また、モデル式計算部902bは、各炉運転内容指示部902aから、炉別・時間別通過送風流量BHS(i,time)を入力する。ここで、炉別・時間別通過送風流量BHS(i,time)に時間timeを掛けた値がガスボリュームVGとなる。
そして、モデル式計算部902bは、入力した情報を用いて、前述したモデル式((19)式〜(21)式)を使用して、送風期間における計算対象の時間timeでの熱収支の計算を繰り返し行い、炉別・時間別ガス温度TG(i,time)と炉別・サイクル別蓄熱煉瓦温度TCH(i,time)を、送風流量・温度決定部902cに出力する。尚、燃焼時と送風時とでは、モデル式((19)式及び(20)式)熱伝達率hG,CHの値が異なる。
<送風流量・温度決定部902c>
送風流量・温度決定部902cは、操業目標値601(目標送風温度BTref(time)、目標送風流量BVref(time)、目標送風時間BTimeref(time))を入力する。
また、送風流量・温度決定部902cは、各炉運転内容指示部902aから、炉別・時間別混冷流量Air(i,time)を入力する。
また、送風流量・温度決定部902cは、モデル式計算部902bから、炉別・時間別のガスの温度TG(i,time)を入力する。
また、送風流量・温度決定部902cは、冷風温度TCWを入力する。
そして、送風流量・温度決定部902cは、入力した情報を用いて、以下の(22)式〜(24)式により、目標送風温度BTref(time)及び目標送風流量BVref(time)が得られるように、「炉別・時間別送風流量BV(i,time+3)、炉別・時間別通過送風流量BHS(i,time+3)、炉別・時間別混冷流量Air(i,time+3)」を算出する。そして、算出された「炉別・時間別通過送風流量BHS(i,time+3)と、炉別・時間別混冷流量Air(i,time+3)」は、前述したように、各炉運転内容指示部902aに出力される。すなわち、「炉別・時間別通過送風流量BHS(i,time+3)と、炉別・時間別混冷流量Air(i,time+3)」は、次の計算対象の時間における炉別の通過送風流量・混冷流量となる。
Figure 0005733148
送風流量・温度決定部902cは、予測区間701において得られた「炉別・時間別のガスの温度TG(i,time)、炉別・時間別通過送風流量BHS(i,time)、炉別・時間別混冷流量Air(i,time)」を、(22)式〜(24)式の右辺に与えて、予測区間701における炉別・サイクル別送風温度の予測値BTp(i,t)を算出する。
また、送風流量・温度決定部902cは、送風期間の終了時(送風終了時)に得られた炉別・サイクル別蓄熱煉瓦温度TCH(i,t)の中から珪石煉瓦下端部の温度を抽出し、抽出した温度を、炉別・サイクル別珪石煉瓦下端温度の予測値Tsi,p(i,t)とする。送風流量・温度決定部902cは、このような炉別・サイクル別珪石煉瓦下端温度の予測値Tsi,p(i,t)の抽出を、予測区間701における送風期間の終了時の夫々において行う。
そして、送風流量・温度決定部902cは、これらの「予測区間701における炉別・サイクル別送風温度の予測値BTp(i,t)、と、予測区間701における炉別・サイクル別珪石煉瓦下端温度の予測値Tsi,p(i,t)」を、各熱風炉100a〜100dのプロセス状態の予測値として最適追従制御部503に出力する。
図5の説明に戻り、最適追従制御部503は、以上のようにして、第2のプロセス状態予測部504から、予測区間701における炉別・サイクル別珪石煉瓦最低温度の予測値Tsi,p(i,n+d+g)〜Tsi,p(i,n+m+g)と、予測区間701における炉別・サイクル別送風温度の予測値BTp(i,n+d+g)〜BTp(i,n+m+g)とを入力すると、第3の目的関数の一例である前述した(11)式の炉別目的関数J1(i)の評価値の値を、(12)式及び(13)式の制約条件を満たす範囲で最小化するために、制御区間702における現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)の候補の値をそれぞれどれだけ変更すればよいのかを、統計的に判断する。最適追従制御部503は、(11)式の炉別目的関数J1(i)の評価値の値が最小となるまで、制御区間702における現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)の候補の値を変更し、その変更値を第2のプロセス状態予測部504に出力する。
そして、最適追従制御部503は、(11)式の炉別目的関数J1(i)の評価値の値が最小となったときの現時点以降の炉別・サイクル別投入熱量Qin,p(i,n)〜Qin,p(i,n+s+q−m)(の候補の値)を操業指令として実熱風炉プロセス510に対して指示する。
以上のような各熱風炉100a〜100dのプロセス状態の予測値の導出は、予測区間701と制御区間702をそれぞれ1サイクルずつ後ろにずらして順次行われる。例えば、予測区間701として、サイクル数n+d〜n+mのサイクルの区間を設定すると共に、制御区間702として、サイクル数n〜n+sのサイクルの区間をそれぞれ設定して、各熱風炉100a〜100dのプロセス状態の予測値を導出すると、予測区間701として、サイクル数n+d+1〜n+m+1のサイクルの区間を設定すると共に、制御区間702として、サイクル数n+1〜n+s+1のサイクルの区間をそれぞれ設定して、各熱風炉100a〜100dのプロセス状態の予測値を導出する。
そして、予測区間701の最後のサイクルが、サイクル数n+qに対応するサイクルになったときのプロセス状態の予測値が導出されると、プロセス状態の予測値の導出を終了する。このようにすることにより、サイクル数n〜n+q−mの各サイクルにおけるプロセス状態の予測値が導出される。ここで、同一のサイクルにおいて導出される複数のプロセス状態の予測値については、最新のプロセス状態の予測値が採用される。
(動作フローチャート)
次に、図10のフローチャートを参照しながら、各送風期間終了時の炉別・サイクル別目標珪石煉瓦最低温度を導出する際の熱風炉制御計算機301の処理の一例を説明する。
まず、ステップS1001において、蓄熱量目標軌道最適化部501は、炉別・サイクル別目標珪石煉瓦最低温度を導出する処理を開始するタイミングであるか否かを判定する。本実施形態では、現在時刻が属するサイクル(サイクル数n)から最適化時間範囲602が経過する時刻が属するサイクル(サイクル数n+q)が経過するまでの間に、操業目標値601が変動しているか否かを1[min]に判定することによりステップS1001の判定が行われる。
この判定の結果、炉別・サイクル別目標珪石煉瓦最低温度を導出する処理を開始するタイミングでない場合には、炉別・サイクル別目標珪石煉瓦最低温度を導出する処理を開始するタイミングになるまで待機する。そして、炉別・サイクル別目標珪石煉瓦最低温度を導出する処理を開始するタイミングになると、ステップS1002に進む。
ステップS1002に進むと、蓄熱量目標軌道最適化部501は、炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)の最適解が導出されたか否かを判定する。本実施形態では、(16)式の炉別目的関数J2(i)の評価値の値が最小であるか否かを判定することにより、ステップS1003の判定が行われる。
この判定の結果、炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)の最適解が導出された場合には、後述するステップS1012に進む。
一方、炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)の最適解が導出されていない場合には、ステップS1003に進む。
ステップS1003に進むと、蓄熱量目標軌道最適化部501は、炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)の候補を第1のプロセス状態予測部502に出力(設定)する。
次に、ステップS1004において、第1のプロセス状態予測部502は、予測区間701と制御区間702を定める変数gとして初期値(=0(ゼロ))を設定する。
次に、ステップS1005において、第1のプロセス状態予測部502は、現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)の最適解が導出されたか否かを判定する。本実施形態では、(11)式の炉別目的関数J1(i)の評価値の値が最小であるか否かを判定することにより、ステップS1005の判定が行われる。
この判定の結果、現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)の最適解が導出された場合には、後述するステップS1009に進む。
一方、現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)の最適解が導出されていない場合には、ステップS1006に進む。
ステップS1006に進むと、第1のプロセス状態予測部502は、制御区間702における現時点以降の炉別・サイクル別投入熱量Qin,p(i,n+g)〜Qin,p(i,n+s+g)の候補を設定する。
次に、ステップS1007において、第1のプロセス状態予測部502は、(3)式〜(10)式に示す線形時系列モデルを用いて、プロセス状態の予測値を導出する。具体的に本実施形態では、予測区間701における炉別・サイクル別珪石煉瓦最低温度の予測値Tsi,p(i,n+d+g)〜Tsi,p(i,n+m+g)と、予測区間701における炉別・サイクル別送風温度の予測値BTp(i,n+d+g)〜BTp(i,n+m+g)とが導出される。
次に、ステップS1008において、第1のプロセス状態予測部502は、制御区間702における現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)の候補の値の変更量を、GA、山登り法、及び線形計画法等の最適化手法を用いて判断する。具体的に本実施形態では、第1のプロセス状態予測部502は、(11)式〜(13)式を用いて説明した処理を行う。
そして、ステップS1005に戻り、第1のプロセス状態予測部502は、ステップS1008で判断した変更量に基づいて、現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)の最適解が導出されたか否かを判定する。
以上のようにして現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)の最適解が導出されると、ステップS1009に進む。
ステップS1009に進むと、第1のプロセス状態予測部502は、予測区間701と制御区間702を定める変数gがq−mとなったか否かを判定する。すなわち、予測区間701の最後のサイクルが最適化時間範囲602の最後のサイクルになったか否かを判定する。この判定の結果、予測区間701と制御区間702を定める変数gがq−mとなっていない場合には、ステップS1010に進む。
ステップS1010に進むと、第1のプロセス状態予測部502は、予測区間701と制御区間702を定める変数gに「1」を加算する。そして、ステップS1005以降の処理を行い、予測区間701と制御区間702とを1サイクルずつ後ろにずらして、現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)の最適解を導出する。
以上のようにして、予測区間701と制御区間702を定める変数gがq−mになると、ステップS1011に進む。
ステップS1011に進むと、蓄熱量目標軌道最適化部501は、炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)の候補の値の変更量を、GA、山登り法、及び線形計画法等の最適化手法を用いて判断する。具体的に本実施形態では、蓄熱量目標軌道最適化部501は、(16)式〜(18)式を用いて説明した処理を行う。
そして、ステップS1002に戻り、蓄熱量目標軌道最適化部501は、ステップS1011で判断した変更量に基づいて、炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)の最適解が導出されたか否かを判定する。
以上のようにして炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)の最適解が導出されると、ステップS1012に進む。
ステップS1012に進むと、蓄熱量目標軌道最適化部501は、炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)の最適解を記憶する。そして、ステップS1001に戻る。
図10のフローチャートによる処理は、熱風炉100a〜100d毎に個別に行われる。
次に、図11のフローチャートを参照しながら、現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)を導出する際の熱風炉制御計算機301の処理の一例を説明する。
まず、ステップS1101において、最適追従制御部503は、予測区間701と制御区間702を定める変数gとして初期値(=0(ゼロ))を設定する。
次に、ステップS1102において、最適追従制御部503は、現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)を導出する処理を開始するタイミングであるか否かを判定する。本実施形態では、熱風炉100a〜100d毎に、各サイクルの燃焼期間が開始する前の切り替え時間内の所定の時間になったか否かを判定することにより、このステップS1102の判定が行われる。
この判定の結果、現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)を導出する処理を開始するタイミングでない場合には、現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)を導出する処理を開始するタイミングになるまで待機する。そして、現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)を導出する処理を開始するタイミングになると、ステップS1103に進む。
ステップS1103に進むと、最適追従制御部503は、現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)の最適解が導出されたか否かを判定する。本実施形態では、(11)式の炉別目的関数J1(i)の評価値の値が最小であるか否かを判定することにより、ステップS1103の判定が行われる。
この判定の結果、現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)の最適解が導出された場合には、後述するステップS1107に進む。
一方、現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)の最適解が導出されていない場合には、ステップS1104に進む。
ステップS1104に進むと、最適追従制御部503は、制御区間702における現時点以降の炉別・サイクル別投入熱量Qin,p(i,n+g)〜Qin,p(i,n+s+g)の候補を第2のプロセス状態予測部504に出力(設定)する。
次に、ステップS1105において、第2のプロセス状態予測部504は、熱風炉シミュレータ処理を実行する。熱風炉シミュレータ処理により、予測区間701における炉別・サイクル別送風温度の予測値BTp(i,t)、と、予測区間701における炉別・サイクル別珪石煉瓦下端温度の予測値Tsi,p(i,t)とが導出される。尚、熱風炉シミュレータ処理の詳細については、図12を参照しながら後述する。
次に、ステップS1106において、最適追従制御部503は、制御区間702における現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)の候補の値の変更量を、GA、山登り法、及び線形計画法等の最適化手法を用いて判断する。具体的に本実施形態では、最適追従制御部503は、(11)式〜(13)式を用いて説明した処理を行う。
そして、ステップS1103に戻り、最適追従制御部503は、ステップS1106で判断した変更量に基づいて、現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)の最適解が導出されたか否かを判定する。
以上のようにして現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)の最適解が導出されると、ステップS1107に進む。
ステップS1107に進むと、最適追従制御部503は、予測区間701と制御区間702を定める変数gがq−mとなったか否かを判定する。すなわち、予測区間701の最後のサイクルが最適化時間範囲602の最後のサイクルになったか否かを判定する。この判定の結果、予測区間701と制御区間702を定める変数gがq−mとなっていない場合には、ステップS1108に進む。
ステップS1108に進むと、最適追従制御部503は、予測区間701と制御区間702を定める変数gに「1」を加算する。そして、ステップS1103以降の処理を行い、予測区間701と制御区間702とを1サイクルずつ後ろにずらして、現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)の最適解を導出する。
以上のようにして、予測区間701と制御区間702を定める変数gがq−mになると、ステップS1109に進む。ステップS1109に進むと、最適追従制御部503は、現時点以降の炉別・サイクル別投入熱量Qin,p(i,t)の最適解を操業指令として実熱風炉プロセス510に対して指示する。尚、同一のサイクルにおける最適解については、最新の値が採用される。そして、ステップS1101に戻る。
図11のフローチャートによる処理は、熱風炉100a〜100d毎に個別に行われる。
次に、図12のフローチャートを参照しながら、図11のステップS1105の熱風炉シミュレータ実行処理の一例を説明する。
まず、ステップS1201において、使用ガス容量算出部901aは、使用ガス容量算出部901aは、制御区間702における現時点以降の炉別・サイクル別投入熱量Qin,p(i,n+g)〜Qin,p(i,n+s+g)の候補を取得する。
次に、ステップS1202において、使用ガス容量算出部901aは、計算を行うサイクル数tとして最初のサイクルを示す「1」を指定する。
次に、ステップS1203において、使用ガス容量算出部901aは、BFG、COG、LDG、及び空気の各使用ガスの容量を算出する。
次に、ステップS1204において、モデル式計算部901bは、モデル式((19)式〜(21)式)を使用して、サイクル数tにおける燃焼開始から燃焼終了までの、熱風炉100a〜100dにおける熱収支の計算を行う。この計算により、サイクル数tのサイクルの燃焼終了の時点での「炉別・サイクル別蓄熱煉瓦温度TCH(i,t)、炉別・サイクル別炉壁煉瓦(の構成煉瓦)温度TWb(i,t)、炉別・サイクル別排ガス温度Tex(i,t)、炉別・サイクル別燃焼効率η(i,t)」が得られる。
次に、ステップS1205において、モデル式計算部901bは、サイクル数tのサイクルの燃焼終了の時点での「炉別・サイクル別蓄熱煉瓦温度TCH(i,t)、炉別・サイクル別炉壁煉瓦(の構成煉瓦)温度TWb(i,t)」を各炉運転内容指示部902aに出力する。
次に、ステップS1206において、送風流量・温度決定部902cは、操業目標値(目標送風温度BTref(time)、目標送風流量BVref(time)、目標送風時間BTimeref(time))を取得する。
次に、ステップS1207において、各炉運転内容指示部902aは、計算対象の時間timeとしてtime=1[秒]を設定する。
次に、ステップS1208において、各炉運転内容指示部902aは、計算対象の時間(time=1)の「炉別・時間別通過送風流量BHS(i,time)と、炉別・時間別混冷流量Air(i,time)」の初期値を決定し、モデル式計算部902bに与える。
次に、ステップS1209において、モデル式計算部902bは、モデル式((19)式〜(21)式)を使用して、送風期間における計算対象の時間timeでの熱収支の計算を行う。この計算により、送風期間における計算対象の時間timeでの「炉別・時間別ガス温度TG(i,time)、炉別・サイクル別蓄熱煉瓦温度TCH(i,time)」が得られる。
次に、ステップS1210において、モデル式計算部902bは、送風期間が終了したか否かを判定する。尚、前述したように、本実施形態では、目標送風期間BTimeref(i,n+j))を固定値としているので、この送風期間も固定値である。この判定の結果、送風期間が終了していない場合には、ステップS1211に進む。ステップS1211に進むと、送風流量・温度決定部902cは、計算対象の時間timeに「3[秒]」を加算する。
次に、ステップS1212において、送風流量・温度決定部902cは、(22)式〜(29)式により、目標送風温度BTref(time)及び目標送風流量BVref(time)が得られるように、「炉別・時間別送風流量BV(i,time)、炉別・時間別通過送風流量BHS(i,time)、炉別・時間別混冷流量Air(i,time)」を(決定)する。そして、送風流量・温度決定部902cは、各炉運転内容指示部902aを介して、計算対象の時間timeの「炉別・時間別通過送風流量BHS(i,time)と、炉別・時間別混冷流量Air(i,time)」をモデル式計算部902bに与える。そして、送風期間が終了するまでの3秒毎の「炉別・時間別送風流量BV(i,time)、炉別・時間別通過送風流量BHS(i,time)、炉別・時間別混冷流量Air(i,time)」が得られるまで、ステップS1209〜S1212の処理を繰り返し行う。
そして、ステップS1210において、送風期間が終了したと判定すると、ステップS1213に進む。ステップS1213に進むと、送風流量・温度決定部902cは、サイクル数tが、予測区間701の最後のサイクルに対応するサイクル数n+m+gとなったか否かを判定する。この判定の結果、サイクル数tが、予測区間701の最後のサイクルに対応するサイクル数n+m+gとなっていない場合には、ステップS1214に進む。ステップS1214に進むと、使用ガス容量算出部901aは、計算を行うサイクルtに「1」を加算する。そして、サイクル数tが、予測区間701の最後のサイクルに対応するサイクル数n+m+gとなるまで、ステップS1203〜S1214の処理を繰り返し行う。
そして、サイクル数tが、予測区間701の終最後のサイクルに対応するサイクル数n+m+gになると、ステップS1215に進む。ステップS1215に進むと、送風流量・温度決定部902cは、各予測区間701において得られた「炉別・時間別のガスの温度TG(i,time)、炉別・時間別通過送風流量BHS(i,time)、炉別・時間別混冷流量Air(i,time)」を、(22)式〜(24)式の右辺に与えて、各予測区間701における炉別・サイクル別送風温度の予測値BTp(i,t)を算出する。
また、送風流量・温度決定部902cは、各予測区間701における送風期間の終了時(送風終了時)に得られた炉別・サイクル別蓄熱煉瓦温度TCH(i,t)の中から珪石煉瓦下端部の温度を抽出し、抽出した温度を、炉別・サイクル別珪石煉瓦最低温度の予測値Tsi,p(i,t)とする。
そして、送風流量・温度決定部902cは、これらの「各予測区間701における送風期間終了時の炉別・サイクル別珪石煉瓦最低温度の予測値Tsi,p(i,t)と、各予測区間701における炉別・サイクル別送風温度の予測値BTp(i,t)」を、これらの情報を要求した最適追従制御部503に出力する。尚、予測値が重複する場合には、最新の値を採用して最適追従制御部503に出力する。これにより、図12のフローチャートによる処理が終了する。
(まとめ)
以上のように本実施形態では、予測区間701における珪石煉瓦最低温度の予測値Tsi,pが、最適化時間範囲602で設定した目標珪石煉瓦最低温度Tsi,refの候補に近く、且つ、制御区間702において隣接するサイクル間での炉別・サイクル別投入熱量Qinの差が小さいほど評価が高くなる炉別目的関数J1の値を最小化するような、制御区間702における現時点以降の投入熱量Qin,pを、熱風炉100の計算モデルであるプロセスモデルを用いて導出する。そして、現時点以降の投入熱量Qin,pの総和が小さいほど評価が高くなる炉別目的関数J2の値を最小化する目標珪石煉瓦最低温度Tsi,refが得られるまで、目標珪石煉瓦最低温度Tsi,refの候補を変更して、前述した処理を繰り返し行う。最適化時間範囲602は、熱風炉100の時定数よりも長い時間である。したがって、熱風炉100における蓄熱量を反映する物理量の時間変化の目標を、熱風炉100の時定数よりも長い時間に亘り設定することができる。
また、本実施形態では、予測区間701における珪石煉瓦最低温度の予測値Tsi,pが、以上のようにして導出した目標珪石煉瓦最低温度Tsi,refに近く、且つ、制御区間702において隣接するサイクル間での炉別・サイクル別投入熱量Qinの差が小さいほど評価が高くなる炉別目的関数J1の値を最小化するような、制御区間702における現時点以降の投入熱量Qin,pを、熱風炉100の計算モデルであるプロセスモデルを用いて導出する。そして、導出した制御区間702における現時点以降の投入熱量Qin,pを、実熱風炉プロセス510に対する操業指令値とする。したがって、熱風炉100における蓄熱量を反映する物理量の時間変化が目標に追従するように熱風炉100に対する投入熱量Qinを決定することができる。
また、本実施形態では、目標珪石煉瓦最低温度Tsi,refを導出する際に使用するプロセスモデルとして、プロセス状態の予測値を、サイクル毎に導出する線形時系列モデルを採用した。したがって、熱風炉100の時定数よりも長い時間の予測の計算負荷を低減することができる。
また、本実施形態では、投入熱量Qin,pの操業指令値を導出する際に使用するプロセスモデルとして、熱風炉100におけるガスの熱収支と煉瓦の熱収支の計算を行う熱風炉シミュレータを採用した。したがって、投入熱量Qin,pの計算精度を向上させることができる。
(変形例)
目標珪石煉瓦最低温度Tsi,refが導出されると、導出された目標珪石煉瓦最低温度Tsi,refを出力(表示)してもよい。オペレータは、この目標珪石煉瓦最低温度Tsi,refを見て、熱風炉100の操業条件を決定することもできるからである。このように、必ずしも、操業指令として、現時点以降の投入熱量Qin,pを導出する必要はない(最適追従制御部503及び第2のプロセス状態予測部504の機能は必ずしも必要ではない)。
また、所定時間(例えば、数時間)の周期が経過した場合に、目標珪石煉瓦最低温度Tsi,refを導出する処理を開始してもよい(図10のステップS1001でYesと判断されるようにしてもよい)。
また、目標珪石煉瓦最低温度Tsi,refを導出する際に使用するプロセスモデルは、線形時系列モデルに限定されない。例えば、線形時系列モデル以外の統計解析モデル等を使用してもよい。また、熱風炉100における操業実績から同定したプロセスモデル(ステップ応答モデルやインパルス応答モデル)を使用してもよい。プロセス状態の予測値を、サイクル毎に導出するプロセスモデルを採用すれば、前述したように計算負荷を低減できるので好ましいが、計算負荷の制約が小さい場合には、熱風炉シミュレータを使用してもよい。
また、(11)式の右辺の第2項を炉別目的関数に含めれば、同一の熱風炉100において相互に隣接するサイクルにおける炉別・サイクル別投入熱量Qin(i,t)の変動を小さくすることができるので好ましい。しかしながら、この項がなくても、(11)式の右辺の第1項により、予測区間701における炉別・サイクル別珪石煉瓦最低温度の予測値Tsi,p(i,t)を、炉別・サイクル別目標珪石煉瓦最低温度Tsi,ref(i,n+j)に良く追従させることができる。よって、必ずしも(11)式の右辺の第2項は必要ではない。
また、投入熱量Qin,pの操業指令値を導出する際に使用するプロセスモデルは、熱風炉シミュレータに限定されない。計算精度の制約が小さい場合には、例えば、前述した線形時系列モデル等の統計解析モデルを使用してもよい。
また、熱風炉100の蓄熱量を反映する物理量は、測定することが可能な物理量であれば、珪石煉瓦最低温度に限定されない。例えば、燃焼期間終了時の排ガス温度であってもよい。
また、スタッガードパラレル方式で操業せず、例えば、各熱風炉100a〜100dのサイクルが相互に重複しないように操業する場合には、操業目標値が、各炉において異なる値であってもよい(すなわち、炉別・時間別操業目標値であってもよい)。
また、熱風炉100の数は1基以上であれば、必ずしも4基である必要はない。
また、プロセス状態の予測値として、炉別・サイクル別送風温度の予測値BTp(i,t)の代わりに、炉別・サイクル別冷風バタフライ弁123の開度の最低値(送風期間終了時の炉別・サイクル別冷風バタフライ弁123の開度)の予測値KBp(i,t)を用いてもよい。線形時系列モデルにおいては、炉別・サイクル別冷風バタフライ弁123の開度の最低値の予測値KBp(i,t)を、以下の(25)式を用いることにより求められる。
Figure 0005733148
(25)式において、係数a2・x(i)、b2・x(i)、c2・x(i)は、入力装置312の操作に基づいて入力されるものである。これらの係数a2・x(i)、b2・x(i)、c2・x(i)も、係数a0・x(i)、b0・x(i)、c0・x(i)と同様にして予め求められるものである。
ΔKBp(i,n+j+1)は、以下の(26)式で表される。
ΔKBp(i,n+j+1)=KBp(i,n+j+1)−KBp(i,n+j) ・・・(26)
ΔKB(i,n+j−x)は、以下の(27)式で表される。
ΔKB(i,n+j−x)=KB(i,n+j−x)−KB(i,n+j−x−1) ・・・(27)
このように、炉別・サイクル別冷風バタフライ弁123の開度の最低値の予測値KBp(i,t)をプロセス状態の予測値とする場合、(17)式の制約条件の代わりに、以下の(28)式の制約条件を用いる。
KBp(i,t)≧Th4 ・・・(28)
Th4は、閾値であり、予め設定されているものである。
また、送風温度と冷風バタフライ弁123の開度とは相関関係を有する。よって、これらの関係を定式化することにより、熱風炉シミュレータを用いても、炉別・サイクル別送風温度の予測値BTp(i,t)から、炉別・サイクル別冷風バタフライ弁123の開度の最低値の予測値KBp(i,t)を求めることができる。
以上のように、制約条件も前述したものに限定されるものではない。
尚、以上説明した本発明の実施形態は、コンピュータがプログラムを実行することによって実現することができる。また、前記プログラムを記録したコンピュータ読み取り可能な記録媒体及び前記プログラム等のコンピュータプログラムプロダクトも本発明の実施形態として適用することができる。記録媒体としては、例えば、フレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD−ROM、磁気テープ、不揮発性のメモリカード、ROM等を用いることができる。
また、以上説明した本発明の実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
(請求項との関係)
目標蓄熱量導出手段は、例えば、蓄熱量目標軌道最適化部501により実現される。
第1のプロセス状態予測手段は、例えば、第1のプロセス状態予測部502により実現される。
第1のプロセスモデルは、例えば、(3)式〜(10)式に示される線形時系列モデルにより実現される。
第1の目的関数は、例えば、(11)式により実現される。
第2の目的関数は、例えば、(16)式により実現される。
第1の目的関数及び第2の目的関数の制約条件は、例えば、(12)式、(13)式、(17)式、(18)式により実現される。
最適追従制御手段は、例えば、最適追従制御部503により実現される。
第2のプロセス状態予測手段は、例えば、第2のプロセス状態予測部504により実現される。
第2のプロセスモデルは、例えば、熱風炉シミュレータにより実現される。
第3の目的関数は、例えば、(11)式により実現される。
第3の目的関数の制約条件は、例えば、(12)式、(13)式により実現される。
100 熱風炉
101 蓄熱室
102 燃焼室
103 混冷室
109 粘度煉瓦
110 ハイアルミナ煉瓦
111 珪石煉瓦
301 熱風炉制御計算機
501 蓄熱量目標軌道最適化部
502 第1のプロセス状態予測部
503 最適追従制御部
504 第2のプロセス状態予測部

Claims (31)

  1. 燃焼ガスにより蓄熱煉瓦を加熱して蓄熱する燃焼期間と、当該蓄熱煉瓦に冷風を通して当該蓄熱煉瓦との熱交換により熱風を生成して高炉に供給する送風期間とを含む期間を1サイクルとして稼働する熱風炉の操業を制御するための計算を行う熱風炉制御計算装置であって、
    前記熱風炉における蓄熱量を反映する物理量であって、測定することが可能な物理量の目標値を、前記熱風炉の時定数よりも長い期間である最適化時間範囲において導出する目標蓄熱量導出手段と、
    前記熱風炉に対する投入熱量を変数として有する計算式を含む複数の計算式であって、当該熱風炉のプロセス状態を計算するための複数の計算式を記憶し、当該複数の計算式による計算を実行することにより、当該熱風炉のプロセス状態の予測値を導出する第1のプロセス状態予測手段と、を有し、
    前記第1のプロセス状態予測手段は、前記熱風炉に対する投入熱量の候補を前記変数の値として代入して前記複数の計算式を実行することにより、前記熱風炉の時定数を下回る期間である予測区間における前記物理量の予測値を導出する手段と、
    前記予測区間における前記物理量の予測値が、前記最適化時間範囲において設定された前記物理量の目標値の候補に近いほど評価が高くなる第1の目的関数の値を最小化するときの、前記熱風炉に対する投入熱量の候補が、前記熱風炉に対する現時点以降の投入熱量として得られるまで、前記熱風炉に対する投入熱量の候補を設定し直して、前記熱風炉に対する現時点以降の投入熱量を決定する手段と、を更に有し、
    前記目標蓄熱量導出手段は、前記熱風炉への現時点以降の投入熱量が小さいほど評価が高くなる第2の目的関数の値を最小化するときの、前記物理量の目標値の候補が得られるまで、前記物理量の目標値の候補を設定し直して、前記物理量の目標値を決定することを特徴とする熱風炉制御計算装置。
  2. 前記第1の目的関数は、前記予測区間における前記物理量の予測値が、前記最適化時間範囲において設定された前記物理量の目標値の候補に近く、且つ、相互に隣接するサイクルにおける前記熱風炉に対する現時点以降の投入熱量の変動が小さいほど評価が高くなる目的関数であることを特徴とする請求項1に記載の熱風炉制御計算装置。
  3. 前記第1のプロセス状態予測手段において記憶される前記複数の計算式は、前記熱風炉のプロセス状態の予測値を、サイクル毎に計算するための計算であることを特徴とする請求項1又は2に記載の熱風炉制御計算装置。
  4. 前記第1のプロセス状態予測手段は、前記熱風炉のプロセス状態の予測値として、前記物理量の予測値と、前記熱風炉における送風温度の予測値又は前記熱風炉における冷風の流量を調節する弁の開度の最低値の予測値とを含む情報を導出することを特徴とする請求項1〜3の何れか1項に記載の熱風炉制御計算装置。
  5. 前記第1の目的関数の値と前記第2の目的関数の値を最小化する際の制約条件は、前記第1のプロセス状態予測手段により導出された前記熱風炉における送風温度の予測値の最低値と前記熱風炉における送風温度の目標との差の絶対値が閾値以下であることを含む制約条件、又は、前記第1のプロセス状態予測手段により導出された前記熱風炉における冷風の流量を調節する弁の開度の最低値の予測値が閾値以上であることを含む制約条件であることを特徴とする請求項4に記載の熱風炉制御計算装置。
  6. 前記制約条件は、前記物理量の目標値と、前記第1のプロセス状態予測手段により導出された前記物理量の予測値との差の絶対値が閾値以下であるという制約条件を更に含むことを特徴とする請求項5に記載の熱風炉制御計算装置。
  7. 前記最適化時間範囲と前記予測区間は、サイクル単位で定められる区間であり、
    前記現時点以降の投入熱量は、サイクル単位で定められる区間であって、その区間の最後のサイクルが前記予測区間の最初のサイクルよりも前のサイクルである制御区間において導出され、
    前記第1のプロセス状態予測手段は、前記予測区間と前記制御区間をサイクル単位で異ならせて、複数の前記予測区間における物理量の予測値を導出すると共に、複数の前記制御区間における前記熱風炉への現時点以降の投入熱量を決定し、
    前記第2の目的関数は、前記決定された複数の制御区間における前記熱風炉への現時点以降の投入熱量の総和が小さいほど評価が高くなる目的関数であることを特徴とする請求項1〜6の何れか1項に記載の熱風炉制御計算装置。
  8. 前記目標蓄熱量導出手段により前記物理量の目標値が導出された後に、前記熱風炉に対する投入熱量の操業指令値を導出する最適追従制御手段と、
    前記熱風炉に対する投入熱量を変数として有する計算式を含む複数の計算式であって、当該熱風炉のプロセス状態を計算するための複数の計算式を記憶し、当該複数の計算式による計算を実行することにより、当該熱風炉のプロセス状態の予測値を導出する第2のプロセス状態予測手段と、を有し、
    前記第2のプロセス状態予測手段は、前記熱風炉に対する投入熱量の候補を前記変数の値として代入して前記複数の計算式を実行することにより、前記予測区間における前記物理量の予測値を導出し、
    前記最適追従制御手段は、前記予測区間における前記物理量の予測値が、前記目標蓄熱量導出手段により決定された前記物理量の目標値に近いほど評価が高くなる第3の目的関数の値を最小化するときの、前記熱風炉に対する投入熱量の候補が、前記熱風炉に対する現時点以降の投入熱量として得られるまで、前記熱風炉に対する投入熱量の候補を設定し直して、前記熱風炉に対する現時点以降の投入熱量を決定することを特徴とする請求項1〜7の何れか1項に記載の熱風炉制御計算装置。
  9. 前記第3の目的関数は、前記予測区間における前記物理量の予測値が、前記最適化時間範囲において設定された前記物理量の目標値の候補に近く、且つ、相互に隣接するサイクルにおける前記熱風炉に対する現時点以降の投入熱量の変動が小さいほど評価が高くなる目的関数であることを特徴とする請求項8に記載の熱風炉制御計算装置。
  10. 前記第2のプロセス状態予測手段において記憶される前記複数の計算式は、前記熱風炉のプロセス状態の予測値を、前記1サイクルを下回る時間隔毎に計算するための計算であることを特徴とする請求項8又は9に記載の熱風炉制御計算装置。
  11. 前記第2のプロセス状態予測手段は、前記熱風炉のプロセス状態の予測値として、前記物理量の予測値と、前記熱風炉における送風温度の予測値又は前記熱風炉における冷風の流量を調節する弁の開度の最低値の予測値とを含む情報を導出することを特徴とする請求項8〜10の何れか1項に記載の熱風炉制御計算装置。
  12. 前記第3の目的関数の値を最小化する際の制約条件は、前記第2のプロセス状態予測手段により導出された前記熱風炉における送風温度の予測値の最低値と前記熱風炉における送風温度の目標との差の絶対値が閾値以下であることを含む制約条件、又は、前記第2のプロセス状態予測手段により導出された前記熱風炉における冷風の流量を調節する弁の開度の最低値の予測値が閾値以上であることを含む制約条件であることを特徴とする請求項11に記載の熱風炉制御計算装置。
  13. 前記制約条件は、前記物理量の目標値と、前記第2のプロセス状態予測手段により導出された前記物理量の予測値との差が閾値以下であるという制約条件を更に含むことを特徴とする請求項12に記載の熱風炉制御計算装置。
  14. 前記最適化時間範囲と前記予測区間は、サイクル単位で定められる区間であり、
    前記現時点以降の投入熱量は、サイクル単位で定められる区間であって、その区間の最後のサイクルが前記予測区間の最初のサイクルよりも前のサイクルである制御区間において導出され、
    前記第2のプロセス状態予測手段は、前記予測区間をサイクル単位で異ならせて、複数の前記予測区間における物理量の予測値を導出し、
    前記最適追従制御手段は、前記予測区間の変更に応じて前記制御区間をサイクル単位で異ならせて、複数の前記制御区間における前記熱風炉への現時点以降の投入熱量を決定し、
    前記第3の目的関数は、前記決定された複数の制御区間における前記熱風炉への現時点以降の投入熱量の総和が小さいほど評価が高くなる目的関数であることを特徴とする請求項8〜13の何れか1項に記載の熱風炉制御計算装置。
  15. 前記物理量は、前記送風期間の終了時における、前記蓄熱煉瓦の一部を構成する珪石煉瓦の最低温度、又は、前記燃焼期間の終了時における、前記熱風炉からの排ガスの温度であることを特徴とする請求項1〜14の何れか1項に記載の熱風炉制御計算装置。
  16. 燃焼ガスにより蓄熱煉瓦を加熱して蓄熱する燃焼期間と、当該蓄熱煉瓦に冷風を通して当該蓄熱煉瓦との熱交換により熱風を生成して高炉に供給する送風期間とを含む期間を1サイクルとして稼働する熱風炉の操業を制御するための計算を行う熱風炉操業指標導出方法であって、
    前記熱風炉における蓄熱量を反映する物理量であって、測定することが可能な物理量の目標値を、前記熱風炉の時定数よりも長い期間である最適化時間範囲において導出することを目標蓄熱量導出手段により行う目標蓄熱量導出工程と、
    前記熱風炉に対する投入熱量を変数として有する計算式を含む複数の計算式であって、当該熱風炉のプロセス状態を計算するための複数の計算式を記憶し、当該複数の計算式による計算を実行することにより、当該熱風炉のプロセス状態の予測値を導出することを第1のプロセス状態予測手段により行う第1のプロセス状態予測工程と、を有し、
    前記第1のプロセス状態予測工程は、前記熱風炉に対する投入熱量の候補を前記変数の値として代入して前記複数の計算式を実行することにより、前記熱風炉の時定数を下回る期間である予測区間における前記物理量の予測値を導出する工程と、
    前記予測区間における前記物理量の予測値が、前記最適化時間範囲において設定された前記物理量の目標値の候補に近いほど評価が高くなる第1の目的関数の値を最小化するときの、前記熱風炉に対する投入熱量の候補が、前記熱風炉に対する現時点以降の投入熱量として得られるまで、前記熱風炉に対する投入熱量の候補を設定し直して、前記熱風炉に対する現時点以降の投入熱量を決定する工程と、を更に有し、
    前記目標蓄熱量導出工程は、前記熱風炉への現時点以降の投入熱量が小さいほど評価が高くなる第2の目的関数の値を最小化するときの、前記物理量の目標値の候補が得られるまで、前記物理量の目標値の候補を設定し直して、前記物理量の目標値を決定することを特徴とする熱風炉操業指標導出方法。
  17. 前記第1の目的関数は、前記予測区間における前記物理量の予測値が、前記最適化時間範囲において設定された前記物理量の目標値の候補に近く、且つ、相互に隣接するサイクルにおける前記熱風炉に対する現時点以降の投入熱量の変動が小さいほど評価が高くなる目的関数であることを特徴とする請求項16に記載の熱風炉操業指標導出方法。
  18. 前記第1のプロセス状態予測工程において記憶される前記複数の計算式は、前記熱風炉のプロセス状態の予測値を、サイクル毎に計算するための計算であることを特徴とする請求項16又は17に記載の熱風炉操業指標導出方法。
  19. 前記第1のプロセス状態予測工程は、前記熱風炉のプロセス状態の予測値として、前記物理量の予測値と、前記熱風炉における送風温度の予測値又は前記熱風炉における冷風の流量を調節する弁の開度の最低値の予測値とを含む情報を導出することを特徴とする請求項16〜18の何れか1項に記載の熱風炉操業指標導出方法。
  20. 前記第1の目的関数の値と前記第2の目的関数の値を最小化する際の制約条件は、前記第1のプロセス状態予測工程により導出された前記熱風炉における送風温度の予測値の最低値と前記熱風炉における送風温度の目標との差の絶対値が閾値以下であることを含む制約条件、又は、前記第1のプロセス状態予測工程により導出された前記熱風炉における冷風の流量を調節する弁の開度の最低値の予測値が閾値以上であることを含む制約条件であることを特徴とする請求項19に記載の熱風炉操業指標導出方法。
  21. 前記制約条件は、前記物理量の目標値と、前記第1のプロセス状態予測工程により導出された前記物理量の予測値との差の絶対値が閾値以下であるという制約条件を更に含むことを特徴とする請求項20に記載の熱風炉操業指標導出方法。
  22. 前記最適化時間範囲と前記予測区間は、サイクル単位で定められる区間であり、
    前記現時点以降の投入熱量は、サイクル単位で定められる区間であって、その区間の最後のサイクルが前記予測区間の最初のサイクルよりも前のサイクルである制御区間において導出され、
    前記第1のプロセス状態予測工程は、前記予測区間と前記制御区間をサイクル単位で異ならせて、複数の前記予測区間における物理量の予測値を導出すると共に、複数の前記制御区間における前記熱風炉への現時点以降の投入熱量を決定し、
    前記第2の目的関数は、前記決定された複数の制御区間における前記熱風炉への現時点以降の投入熱量の総和が小さいほど評価が高くなる目的関数であることを特徴とする請求項16〜21の何れか1項に記載の熱風炉操業指標導出方法。
  23. 前記目標蓄熱量導出工程により前記物理量の目標値が導出された後に、前記熱風炉に対する投入熱量の操業指令値を導出することを最適追従制御手段により行う最適追従制御工程と、
    前記熱風炉に対する投入熱量を変数として有する計算式を含む複数の計算式であって、当該熱風炉のプロセス状態を計算するための複数の計算式を記憶し、当該複数の計算式による計算を実行することにより、当該熱風炉のプロセス状態の予測値を導出することを第2のプロセス状態予測手段により行う第2のプロセス状態予測工程と、を有し、
    前記第2のプロセス状態予測工程は、前記熱風炉に対する投入熱量の候補を前記変数の値として代入して前記複数の計算式を実行することにより、前記予測区間における前記物理量の予測値を導出し、
    前記最適追従制御工程は、前記予測区間における前記物理量の予測値が、前記目標蓄熱量導出工程により決定された前記物理量の目標値に近いほど評価が高くなる第3の目的関数の値を最小化するときの、前記熱風炉に対する投入熱量の候補が、前記熱風炉に対する現時点以降の投入熱量として得られるまで、前記熱風炉に対する投入熱量の候補を設定し直して、前記現時点以降の投入熱量を決定することを特徴とする請求項16〜22の何れか1項に記載の熱風炉操業指標導出方法。
  24. 前記第3の目的関数は、前記予測区間における前記物理量の予測値が、前記最適化時間範囲において設定された前記物理量の目標値の候補に近く、且つ、相互に隣接するサイクルにおける前記熱風炉に対する現時点以降の投入熱量の変動が小さいほど評価が高くなる目的関数であることを特徴とする請求項23に記載の熱風炉操業指標導出方法。
  25. 前記第2のプロセス状態予測工程において記憶される前記複数の計算式は、前記熱風炉のプロセス状態の予測値を、前記1サイクルを下回る時間隔毎に計算するための計算であることを特徴とする請求項23又は24に記載の熱風炉操業指標導出方法。
  26. 前記第2のプロセス状態予測工程は、前記熱風炉のプロセス状態の予測値として、前記物理量の予測値と、前記熱風炉における送風温度の予測値又は前記熱風炉における冷風の流量を調節する弁の開度の最低値の予測値とを含む情報を導出することを特徴とする請求項23〜25の何れか1項に記載の熱風炉操業指標導出方法。
  27. 前記第3の目的関数の値を最小化する際の制約条件は、前記第2のプロセス状態予測工程により導出された前記熱風炉における送風温度の予測値の最低値と前記熱風炉における送風温度の目標との差の絶対値が閾値以下であることを含む制約条件、又は、前記第2のプロセス状態予測工程により導出された前記熱風炉における冷風の流量を調節する弁の開度の最低値の予測値が閾値以上であることを含む制約条件であることを特徴とする請求項26に記載の熱風炉操業指標導出方法。
  28. 前記制約条件は、前記物理量の目標値と、前記第2のプロセス状態予測工程により導出された前記物理量の予測値との差が閾値以下であるという制約条件を更に含むことを特徴とする請求項27に記載の熱風炉操業指標導出方法。
  29. 前記最適化時間範囲と前記予測区間は、サイクル単位で定められる区間であり、
    前記現時点以降の投入熱量は、サイクル単位で定められる区間であって、その区間の最後のサイクルが前記予測区間の最初のサイクルよりも前のサイクルである制御区間において導出され、
    前記第2のプロセス状態予測工程は、前記予測区間をサイクル単位で異ならせて、複数の前記予測区間における物理量の予測値を導出し、
    前記最適追従制御工程は、前記予測区間の変更に応じて前記制御区間をサイクル単位で異ならせて、複数の前記制御区間における前記熱風炉への現時点以降の投入熱量を決定し、
    前記第3の目的関数は、前記決定された複数の制御区間における前記熱風炉への現時点以降の投入熱量の総和が小さいほど評価が高くなる目的関数であることを特徴とする請求項23〜28の何れか1項に記載の熱風炉操業指標導出方法。
  30. 前記物理量は、前記送風期間の終了時における、前記蓄熱煉瓦の一部を構成する珪石煉瓦の最低温度、又は、前記燃焼期間の終了時における、前記熱風炉からの排ガスの温度であることを特徴とする請求項16〜29の何れか1項に記載の熱風炉操業指標導出方法。
  31. 請求項1〜15の何れか1項に記載の熱風炉制御計算装置の各手段としてコンピュータを機能させることを特徴とするコンピュータプログラム。
JP2011225184A 2011-10-12 2011-10-12 熱風炉制御計算装置、熱風炉操業指標導出方法及びコンピュータプログラム Active JP5733148B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011225184A JP5733148B2 (ja) 2011-10-12 2011-10-12 熱風炉制御計算装置、熱風炉操業指標導出方法及びコンピュータプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011225184A JP5733148B2 (ja) 2011-10-12 2011-10-12 熱風炉制御計算装置、熱風炉操業指標導出方法及びコンピュータプログラム

Publications (2)

Publication Number Publication Date
JP2013082983A JP2013082983A (ja) 2013-05-09
JP5733148B2 true JP5733148B2 (ja) 2015-06-10

Family

ID=48528447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011225184A Active JP5733148B2 (ja) 2011-10-12 2011-10-12 熱風炉制御計算装置、熱風炉操業指標導出方法及びコンピュータプログラム

Country Status (1)

Country Link
JP (1) JP5733148B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6244875B2 (ja) * 2013-12-16 2017-12-13 新日鐵住金株式会社 熱風炉制御計算装置、熱風炉操業指標導出方法及びコンピュータプログラム
CN103993114B (zh) * 2014-04-21 2015-09-02 宁波职业技术学院 一种大型高炉热风炉控制方法
CN105157057B (zh) * 2015-08-28 2017-12-05 莱芜钢铁集团电子有限公司 热风炉燃烧控制方法和系统
CN108875118B (zh) * 2018-04-12 2021-06-25 中南大学 一种高炉铁水硅含量预测模型准确度评价方法和设备

Also Published As

Publication number Publication date
JP2013082983A (ja) 2013-05-09

Similar Documents

Publication Publication Date Title
JP5733148B2 (ja) 熱風炉制御計算装置、熱風炉操業指標導出方法及びコンピュータプログラム
Sardeshpande et al. Performance analysis for glass furnace regenerator
Zetterholm et al. Dynamic modelling for the hot blast stove
CN103728879B (zh) 一种电站锅炉烟气软测量方法
CN106906351B (zh) 一种板坯温度预报模型及炉温优化方法
CN103729569B (zh) 一种基于lssvm及在线更新的电站锅炉烟气软测量系统
Niederer et al. Nonlinear model predictive control of the strip temperature in an annealing furnace
Zetterholm et al. Model development of a blast furnace stove
JP6244875B2 (ja) 熱風炉制御計算装置、熱風炉操業指標導出方法及びコンピュータプログラム
JP5286729B2 (ja) 熱風炉の燃焼制御方法及びその燃焼制御装置
Strommer et al. Nonlinear observer for temperatures and emissivities in a strip annealing furnace
Lee et al. Optimum residence time for steel productivity and energy saving in a hot rolled reheating furnace
JP2009084636A (ja) 熱風炉の燃焼制御方法及びその燃焼制御装置
JP5494531B2 (ja) 熱風炉操業推算装置、熱風炉操業推算方法、及びコンピュータプログラム
JP6809350B2 (ja) 熱風炉制御計算装置、熱風炉制御計算方法、およびプログラム
Ghashghaee et al. Dynamic modeling and simulation of steam cracking furnaces
Prasolov et al. Development of a simulation model of the heat transfer process in the hot-blast stove checkerwork
EP3185203A1 (en) Method for predicting slagging production position and slagging production possibility in furnace
JP4203275B2 (ja) 連続鋼材加熱炉の燃焼制御方法、燃焼制御装置及び燃焼制御プログラム並びにコンピュータ読み取り可能な記録媒体
JP6809348B2 (ja) 熱風炉制御計算装置、熱風炉制御計算方法、及びプログラム
Hu et al. Zone modelling coupled with dynamic flow pattern for the prediction of transient performance of metal reheating
JP5418375B2 (ja) 熱風炉制御計算装置、熱風炉制御方法、及びコンピュータプログラム
Lukin et al. Simulation of the Thermal Performance of Regenerative Heat Exchanger for Recovering the Heat of Combustion of Converter Gas
JP2023039710A (ja) 重み係数決定装置、重み係数決定方法、およびプログラム
Dzyuzer et al. Fume heat recovery efficiency in high-capacity glassmaking furnaces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150330

R151 Written notification of patent or utility model registration

Ref document number: 5733148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350