JP5732739B2 - Ball screw device - Google Patents

Ball screw device Download PDF

Info

Publication number
JP5732739B2
JP5732739B2 JP2010090389A JP2010090389A JP5732739B2 JP 5732739 B2 JP5732739 B2 JP 5732739B2 JP 2010090389 A JP2010090389 A JP 2010090389A JP 2010090389 A JP2010090389 A JP 2010090389A JP 5732739 B2 JP5732739 B2 JP 5732739B2
Authority
JP
Japan
Prior art keywords
hole
cross
insertion member
ball screw
nut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010090389A
Other languages
Japanese (ja)
Other versions
JP2011220446A (en
Inventor
水口 淳二
淳二 水口
信朝 雅弘
雅弘 信朝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2010090389A priority Critical patent/JP5732739B2/en
Priority to PCT/JP2010/005236 priority patent/WO2011024450A1/en
Priority to US13/058,124 priority patent/US8752446B2/en
Priority to CN2010800022890A priority patent/CN102124251A/en
Priority to EP10805567.4A priority patent/EP2461072A4/en
Publication of JP2011220446A publication Critical patent/JP2011220446A/en
Application granted granted Critical
Publication of JP5732739B2 publication Critical patent/JP5732739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission Devices (AREA)

Description

本発明は、ボールねじ装置に関し、特に、ナットを冷却可能なボールねじ装置に関する。   The present invention relates to a ball screw device, and more particularly to a ball screw device capable of cooling a nut.

従来より、ねじ軸と、該ねじ軸に螺合して相対的に回転可能とされた送りナットとを有するねじ装置では、回転時に点接触又は面接触が生じるため、熱源(例えば、前記送りナット)に冷却手段が設けられることがあった。
このような前記送りナットを冷却する技術としては、特許文献1に示されているねじ装置(ボール・スクリュー)がある。具体的には、送りナットの軸方向に設けた貫通穴に冷却媒体を通し、該送りナットを冷却する技術である。
2. Description of the Related Art Conventionally, in a screw device having a screw shaft and a feed nut that is screwed into the screw shaft and is relatively rotatable, point contact or surface contact occurs during rotation. ) May be provided with cooling means.
As a technique for cooling the feed nut, there is a screw device (ball screw) disclosed in Patent Document 1. Specifically, this is a technique of passing a cooling medium through a through hole provided in the axial direction of the feed nut and cooling the feed nut.

特開2002−310258号公報JP 2002-310258 A

千輝淳二(1981)、伝熱計算法、工学図書株式会社Senki Shinji (1981), Heat transfer calculation method, Engineering Books Co., Ltd.

しかしながら、発明者らは、特許文献1に開示されたねじ装置(ボール・スクリュー)のナットを冷却する場合、その冷却液を通す貫通穴の径によって冷却効果が大きく変化することを、非特許文献1に示されているNusseltの方法で推定し、実験によって上記冷却効果の変化について確認した。
この実験によって得られた結論は、冷却媒体の種類、流量が同一であれば、貫通穴の径を小さくすればするほど熱伝導率が上がり冷却効果が高くなることである。
However, the inventors have found that when cooling the nut of the screw device (ball screw) disclosed in Patent Document 1, the cooling effect varies greatly depending on the diameter of the through hole through which the coolant passes. It was estimated by the Nusselt method shown in Fig. 1, and the change in the cooling effect was confirmed by experiments.
The conclusion obtained by this experiment is that if the type and flow rate of the cooling medium are the same, the smaller the diameter of the through hole, the higher the thermal conductivity and the higher the cooling effect.

しかし、高い冷却効果を得る目的で貫通穴の径を小さくすると、以下に示す2つの問題点が生じることがあった。
(1)貫通穴の加工が小径かつ長穴の加工となることから、加工効率が落ち、ボールねじ装置のコストアップに繋がる。
(2)冷却媒体を通すときの圧力損失が大きくなってしまう。
However, when the diameter of the through hole is reduced for the purpose of obtaining a high cooling effect, the following two problems may occur.
(1) Since the processing of the through hole is a small diameter and long hole processing, the processing efficiency is lowered and the cost of the ball screw device is increased.
(2) Pressure loss when passing the cooling medium increases.

そこで、本発明は上記の問題点に着目してなされたものであり、その目的は、ナット内の軸方向に設けた貫通穴に冷却媒体を通すことで冷却を行なうボールねじ装置において、冷却効果をできるだけ高くし、過度な加工効率の低下や圧力損失の増加を招くことのないボールねじ装置を提供することを目的とする。   Therefore, the present invention has been made paying attention to the above-mentioned problems, and the object thereof is to provide a cooling effect in a ball screw device that performs cooling by passing a cooling medium through a through hole provided in an axial direction in a nut. It is an object of the present invention to provide a ball screw device in which the height is made as high as possible without causing excessive reduction in processing efficiency and increase in pressure loss.

前記課題を解決するため、本発明者らが鋭意検討を重ねた結果、ナットの軸方向に設けた貫通穴に冷却媒体を通すことで冷却を行なうボールねじにおいて、貫通穴に内挿部材を配設することによって貫通穴の流路の断面積を小さくし、貫通穴に通る冷却媒体と貫通穴が接する面積を大きく確保することにより、冷却効果をできるだけ高くし、過度な加工効率の低下を招くことのないことを知見した。   In order to solve the above-mentioned problems, the present inventors have made extensive studies and as a result, in a ball screw that cools by passing a cooling medium through a through hole provided in the axial direction of the nut, an insertion member is arranged in the through hole. By reducing the cross-sectional area of the flow path of the through hole and ensuring a large area where the cooling medium passing through the through hole is in contact with the through hole, the cooling effect is increased as much as possible and excessive processing efficiency is reduced. I found out that there was nothing.

本発明は、本発明者らによる前記知見に基づくものであり、上記課題を解決するための本発明の請求項1に係るボールねじ装置は、ねじ軸と、複数の転動体を介して前記ねじ軸に螺合するナットと、該ナットの軸方向に設けた貫通穴に冷却媒体を通して前記ナットを冷却する冷却手段とを備えたボールねじ装置において、
前記貫通穴内で冷却媒体を循環させるための循環装置が前記ナットに備えられ、
前記貫通穴の長さ方向に延び、前記貫通孔の内周面に対向する外周面が前記長さ方向に一様の曲面をなして前記貫通穴の流路の断面形状を略円形又は楕円形とする内挿部材が前記貫通穴に配設されたことを特徴としている。
また、本発明の請求項2に係るボールねじ装置は、請求項1に記載のボールねじ装置において、前記内挿部材が、前記貫通穴をその長さ方向に複数の流路に分ける断面形状を有することを特徴としている。
This invention is based on the said knowledge by the present inventors, The ball screw apparatus which concerns on Claim 1 of this invention for solving the said subject is a screw shaft and the said screw | thread via several rolling elements. In a ball screw device comprising: a nut screwed into a shaft; and a cooling means for cooling the nut through a cooling medium in a through hole provided in an axial direction of the nut.
A circulating device for circulating a cooling medium in the through hole is provided in the nut;
The outer peripheral surface extending in the length direction of the through hole and facing the inner peripheral surface of the through hole forms a uniform curved surface in the length direction, and the cross-sectional shape of the flow path of the through hole is substantially circular or elliptical The insertion member is arranged in the through hole.
A ball screw device according to claim 2 of the present invention is the ball screw device according to claim 1, wherein the insertion member has a cross-sectional shape that divides the through hole into a plurality of flow paths in the length direction. It is characterized by having.

本発明の請求項1に係るボールねじ装置によれば、前記貫通穴の長さ方向に延びる内挿部材を前記貫通穴に配設することで、冷却媒体と貫通穴が接触する面積を大きく確保しながら前記貫通穴の流路の断面積を小さくすることができる。従って、冷却効果ができるだけ高くなり、過度な加工効率の低下を招くことのないボールねじ装置を提供することができる。
また、本発明の請求項2に係るボールねじ装置によれば、前記内挿部材が、前記貫通穴をその長さ方向に複数の流路に分ける断面形状を有することで、冷却媒体と貫通穴が接する面積を大きく確保したまま、断面積が小さくされた前記貫通穴の流路が複数形成されるので、冷却液の流速が高まり、過度な加工効率の低下をより効率的に低減することができる。
According to the ball screw device of the first aspect of the present invention, by arranging the insertion member extending in the length direction of the through hole in the through hole, a large area where the cooling medium and the through hole come into contact is ensured. However, the cross-sectional area of the flow path of the through hole can be reduced. Therefore, it is possible to provide a ball screw device that has as high a cooling effect as possible and does not cause an excessive decrease in processing efficiency.
In the ball screw device according to claim 2 of the present invention, the insertion member has a cross-sectional shape that divides the through hole into a plurality of flow paths in the length direction thereof, so that the cooling medium and the through hole are formed. Since a plurality of through-hole passages having a reduced cross-sectional area are formed while ensuring a large area in contact with each other, the flow rate of the cooling liquid is increased, and an excessive reduction in processing efficiency can be more efficiently reduced. it can.

本発明に係るボールねじ装置の一実施形態における構成を示す側面図である。It is a side view showing composition in one embodiment of a ball screw device concerning the present invention. 本発明に係るボールねじ装置の一実施形態における構成を示す断面図であり、(a)は図1の2a−2a線に沿う断面図、(b)は(a)のA部拡大図である。It is sectional drawing which shows the structure in one Embodiment of the ball screw apparatus which concerns on this invention, (a) is sectional drawing which follows the 2a-2a line of FIG. 1, (b) is the A section enlarged view of (a). . 本発明に係るボールねじ装置の一実施形態における内挿部材の構成を示す斜視図である。It is a perspective view which shows the structure of the insertion member in one Embodiment of the ball screw apparatus which concerns on this invention.

以下、本発明に係るボールねじ装置の実施形態について図面を参照して説明する。
図1は、本発明に係るボールねじ装置の一実施形態における構成を示す側面図である。また、図2は、本実施形態における構成を示す断面図であり、(a)は図1の2a−2a線に沿う断面図、(b)は(a)のA部拡大図である。また、図3(a)〜(f)は、本実施形態における内挿部材の構成を示す斜視図である。
Embodiments of a ball screw device according to the present invention will be described below with reference to the drawings.
FIG. 1 is a side view showing the configuration of an embodiment of a ball screw device according to the present invention. 2 is a cross-sectional view showing the configuration of the present embodiment, (a) is a cross-sectional view taken along line 2a-2a in FIG. 1, and (b) is an enlarged view of part A in (a). Moreover, Fig.3 (a)-(f) is a perspective view which shows the structure of the insertion member in this embodiment.

図1に示すように、本実施形態のボールねじ装置1は、ねじ軸10と、ナット20とを有する。ねじ軸10及びナット20は、複数の転動体30を介して螺合している。ナット20は、ねじ軸10の外径より大きい内径で筒状に形成されている。ナット20の内周面には、ねじ軸10の外周面に螺旋状に形成されたねじ溝10aに対向するようにねじ溝20aが形成されている。ねじ溝10aとねじ溝20aとによって形成された転動路において転動体30は転動可能とされている。   As shown in FIG. 1, the ball screw device 1 of this embodiment includes a screw shaft 10 and a nut 20. The screw shaft 10 and the nut 20 are screwed together via a plurality of rolling elements 30. The nut 20 is formed in a cylindrical shape with an inner diameter larger than the outer diameter of the screw shaft 10. A screw groove 20 a is formed on the inner peripheral surface of the nut 20 so as to face the screw groove 10 a formed in a spiral shape on the outer peripheral surface of the screw shaft 10. The rolling element 30 can roll on the rolling path formed by the thread groove 10a and the thread groove 20a.

また、ナット20には、軸方向に貫通する貫通穴20bが形成されている(図1ではナット20の軸方向に3つの貫通穴20bが形成されている。)。この貫通穴20bは、冷却媒体の通路として用いられ、貫通穴20b内で冷却媒体を循環させるための循環装置(図示せず)がボールねじ装置1に接続されている。この循環装置及び貫通穴20bが冷却手段40を構成する。冷却手段40は、前記循環装置と貫通穴20bとを連結して冷却媒体を貫通穴20bに流入される管41及び貫通穴20bから冷却媒体を流出させる管41を含む。このように、図示しない循環装置によって貫通穴20b内を冷却媒体が循環することによって、ナット20が冷却される。   The nut 20 is formed with through holes 20b penetrating in the axial direction (in FIG. 1, three through holes 20b are formed in the axial direction of the nut 20). The through hole 20 b is used as a passage for the cooling medium, and a circulation device (not shown) for circulating the cooling medium in the through hole 20 b is connected to the ball screw device 1. The circulation device and the through hole 20b constitute the cooling means 40. The cooling means 40 includes a pipe 41 that connects the circulation device and the through hole 20b to allow the cooling medium to flow into the through hole 20b, and a pipe 41 that allows the cooling medium to flow out of the through hole 20b. Thus, the nut 20 is cooled by circulating the cooling medium in the through hole 20b by a circulation device (not shown).

また、図1及び図2(a)に示すように、貫通穴20bには、該貫通穴20bの長さ方向に延びる内挿部材50が内部に配設されている。この内挿部材50の断面形状は、貫通穴20bの流路の断面積を小さくし、かつ貫通穴20bの内周面との接触面積を可能な限り小さくするように形成されている。具体的には、図2(b)に示すように、菱形形状の断面形状を有する内挿部材50が貫通穴20bの内部に配設されている。この菱形形状の断面形状を有する内挿部材50は、貫通穴20bの長さ方向に延び、貫通穴20bの断面において貫通穴20bの内面に4点で接触している。
なお、この内挿部材50の形状は、貫通穴20bの長さ方向に延び、貫通穴20bの流路の断面積を小さくし、かつ貫通穴20bの内周面との接触面積が可能な限り小さければ、特に限定されない。
As shown in FIGS. 1 and 2A, an insertion member 50 extending in the length direction of the through hole 20b is disposed inside the through hole 20b. The cross-sectional shape of the insertion member 50 is formed so as to reduce the cross-sectional area of the flow path of the through hole 20b and to reduce the contact area with the inner peripheral surface of the through hole 20b as much as possible. Specifically, as shown in FIG. 2B, an insertion member 50 having a diamond-shaped cross-sectional shape is disposed inside the through hole 20b. The insertion member 50 having a diamond-shaped cross section extends in the length direction of the through hole 20b, and contacts the inner surface of the through hole 20b at four points in the cross section of the through hole 20b.
The shape of the insertion member 50 extends in the length direction of the through hole 20b, reduces the cross-sectional area of the flow path of the through hole 20b, and has a contact area with the inner peripheral surface of the through hole 20b as much as possible. If it is small, it will not specifically limit.

また、内挿部材50は、貫通穴20bをその長さ方向に複数の流路に分ける断面形状を有してもよい。
図3(a)〜(f)に、内挿部材50の具体的な形状を示す。
図3(a)に示す内挿部材50は、断面形状を円形とし、貫通穴20bの長さ方向に延び、貫通穴20bの断面において貫通穴20bの内面に接触しないように貫通穴20bの内部に配設されている。なお、この内挿部材50によっては貫通穴20b内に複数の流路は形成されない。
The insertion member 50 may have a cross-sectional shape that divides the through hole 20b into a plurality of flow paths in the length direction thereof.
The specific shape of the insertion member 50 is shown to Fig.3 (a)-(f).
The insertion member 50 shown in FIG. 3 (a) has a circular cross-sectional shape, extends in the length direction of the through hole 20b, and does not contact the inner surface of the through hole 20b in the cross section of the through hole 20b. It is arranged. Depending on the insertion member 50, a plurality of flow paths are not formed in the through hole 20b.

図3(b)に示す内挿部材50は、断面形状を円形とし、貫通穴20bの長さ方向に延び、貫通穴20bの断面において貫通穴20bの内面に1点で接触するように貫通穴20bの内部に配設されている。なお、この内挿部材50によっては貫通穴20b内に複数の流路は形成されない。
図3(c)に示す内挿部材50は、断面形状を矩形とし、貫通穴20bの長さ方向に延び、貫通穴20bの断面において貫通穴20bの内面に4点で接触して4つの流路を形成するように貫通穴20bの内部に配設されている。
The insertion member 50 shown in FIG. 3B has a circular cross-sectional shape, extends in the length direction of the through hole 20b, and contacts the inner surface of the through hole 20b at one point in the cross section of the through hole 20b. 20b is disposed inside. Depending on the insertion member 50, a plurality of flow paths are not formed in the through hole 20b.
The insertion member 50 shown in FIG. 3C has a rectangular cross-sectional shape, extends in the length direction of the through hole 20b, and contacts the inner surface of the through hole 20b at four points in the cross section of the through hole 20b. It arrange | positions inside the through-hole 20b so that a path | route may be formed.

図3(d)に示す内挿部材50は、断面形状を三角形とし、貫通穴20bの長さ方向に延び、貫通穴20bの断面において貫通穴20bの内面に3点で接触して3つの流路を形成するように貫通穴20bの内部に配設されている。
図3(e)に示す内挿部材50は、図2(b)に示された断面形状の内挿部材50であ断面形状を菱形形状とし、貫通穴20bの長さ方向に延び、貫通穴20bの断面において貫通穴20bの内面に4点で接触して4つの流路を形成するように貫通穴20bの内部に配設されている。
The insertion member 50 shown in FIG. 3 (d) has a triangular cross-sectional shape, extends in the length direction of the through hole 20b, and contacts the inner surface of the through hole 20b at three points in the cross section of the through hole 20b. It arrange | positions inside the through-hole 20b so that a path | route may be formed.
The insertion member 50 shown in FIG. 3 (e) is the insertion member 50 having the cross-sectional shape shown in FIG. 2 (b), the cross-sectional shape of which is a rhombus shape, and extends in the length direction of the through hole 20b. In the cross section of 20b, it arrange | positions inside the through-hole 20b so that four flow paths may be formed by contacting the inner surface of the through-hole 20b at four points.

図3(f)に示す内挿部材50は、断面形状を2つの円形が接触した形状とし、貫通穴20bの長さ方向に延び、貫通穴20bの断面において貫通穴20bの内面に2点で接触して2つの流路を形成するように貫通穴20bの内部に配設されている。
図3(a)〜(f)で示される内挿部材50のうち、図3(c)〜(f)で示した内挿部材50は、貫通穴20b内に小さな断面の流路を複数形成するので、冷却液の流速を高める効果がある。ただし、循環装置(図示せず)の圧送容量が小さい場合には、内挿部材50の断面積を大きくしすぎることで、配管抵抗によって流速を上げることができなくなるため、前記循環装置の圧送容量に応じて内挿部材50の形状(断面形状及び貫通穴20bの内周面への接触面積)を決定する必要がある。
The insertion member 50 shown in FIG. 3 (f) has a cross-sectional shape in which two circles are in contact with each other, extends in the length direction of the through hole 20b, and has two points on the inner surface of the through hole 20b in the cross section of the through hole 20b. It arrange | positions in the inside of the through-hole 20b so that it may contact and may form two flow paths.
Among the insertion members 50 shown in FIGS. 3A to 3F, the insertion members 50 shown in FIGS. 3C to 3F form a plurality of small cross-sectional flow paths in the through holes 20b. Therefore, there is an effect of increasing the flow rate of the coolant. However, when the circulation capacity of the circulation device (not shown) is small, the flow rate cannot be increased due to the pipe resistance by making the cross-sectional area of the insertion member 50 too large. Accordingly, it is necessary to determine the shape of the insertion member 50 (cross-sectional shape and contact area with the inner peripheral surface of the through hole 20b).

また、被冷却物(ナット20)と、貫通穴20b内の冷却媒体との熱交換は、貫通穴20bの内面で行われるため、内挿部材50の形状は、できるだけ貫通穴20bの内周面に接触する部分が少ない形状が好ましい。すなわち、図3(c),(e)に示す形状の内挿部材50よりも図3(d)に示す形状の内挿部材50が好ましく、図3(f)に示す形状の内挿部材50がより好ましく、図3(b)に示す形状の内挿部材50がさらに好ましく、図3(a)に示す形状の内挿部材50が特に好ましい。   In addition, heat exchange between the object to be cooled (nut 20) and the cooling medium in the through hole 20b is performed on the inner surface of the through hole 20b. A shape having a small number of parts in contact with is preferable. That is, the insertion member 50 having the shape shown in FIG. 3D is preferable to the insertion member 50 having the shape shown in FIGS. 3C and 3E, and the insertion member 50 having the shape shown in FIG. The insertion member 50 having the shape shown in FIG. 3B is more preferable, and the insertion member 50 having the shape shown in FIG.

ここで、一般に、冷却効果を左右するレイノルズ数Reは、
:冷却媒体の流速
v:冷却媒体の動粘度
a:冷却媒体の温度伝導率
としたとき、下記式(1)で表される。
Here, in general, the Reynolds number Re m that affects the cooling effect is
u m : Flow velocity of the cooling medium v: Kinematic viscosity of the cooling medium a: The temperature conductivity of the cooling medium is expressed by the following formula (1).

Figure 0005732739
Figure 0005732739

ここで、冷却媒体の流速uは、
w:冷却媒体の流量
A:貫通穴20bの断面積
としたとき、下記式(2)で表される。
Here, the flow velocity u m of the cooling medium is
w: Flow rate of cooling medium A: When the cross-sectional area of the through hole 20b is used, it is represented by the following formula (2).

Figure 0005732739
Figure 0005732739

なお、貫通穴20bの断面積Aは下記式(3)で表される。   The cross-sectional area A of the through hole 20b is represented by the following formula (3).

Figure 0005732739
Figure 0005732739

以上の式(2)及び(3)を、式(1)に代入して整理すると、レイノルズ数Reは、下記式(4)で表される。 When the above formulas (2) and (3) are substituted into the formula (1) and rearranged, the Reynolds number Re m is expressed by the following formula (4).

Figure 0005732739
Figure 0005732739

これにより、式(4)で示されるレイノルズ数Reは、冷却媒体の流量wを一定とした場合、貫通穴20bの径Dが小さい方が高くなることがわかる。ただし、貫通穴20bの径Dの縮小にあっては、過度な圧力損失が生じない範囲としなければならない。
一方、被冷却物(ナット20)と、貫通穴20b内の冷却媒体との熱交換は、被冷却物(ナット20)と、貫通穴20b内の冷却媒体との接触面積に比例する。
Thus, it can be seen that the Reynolds number Re m represented by the equation (4) is higher when the diameter D of the through hole 20b is smaller when the flow rate w of the cooling medium is constant. However, in reducing the diameter D of the through hole 20b, it must be in a range in which excessive pressure loss does not occur.
On the other hand, the heat exchange between the object to be cooled (nut 20) and the cooling medium in the through hole 20b is proportional to the contact area between the object to be cooled (nut 20) and the cooling medium in the through hole 20b.

これらを考慮すると、レイノルズ数Reを上げるためには、貫通穴20bの径Dを小さくし、前記接触面積を増やすために、貫通穴20bの数を多くすることが被冷却物(ナット20)を効率的に冷却する方法であることがわかる。しかし、断面積が小さい貫通穴20bを形成し、かつその貫通穴20bの数を増やすことは、加工効率の低下を招き、結果として加工コストの大幅な増加に繋がる。
そこで、本実施形態では、貫通穴20bの内部に内挿部材50を配設し、該内挿部材50の配設によって小さな径の貫通穴を形成し、かつ前記接触面積を増やすことで、レイノルズ数Reを上げる構成を実現した。
In view of these, in order to increase the Reynolds number Re m is to reduce the diameter D of the through hole 20b, in order to increase the contact area, the number of many it is the object to be cooled in the through hole 20b (nut 20) It can be seen that this is a method of efficiently cooling. However, forming the through holes 20b having a small cross-sectional area and increasing the number of the through holes 20b causes a reduction in processing efficiency, resulting in a significant increase in processing costs.
Therefore, in the present embodiment, the insertion member 50 is disposed inside the through hole 20b, a through hole having a small diameter is formed by the arrangement of the insertion member 50, and the contact area is increased, so that Reynolds is increased. and realize the configuration to increase the number Re m.

この構成を用いることによって、上記貫通穴20bの径Dは、相当直径Dに置き換えられ、下記式(5)のように表される。ここで、下記式(5)において、相当直径Dは、冷却液の流路の断面積を同じ断面積の円を考えた場合の、その円の直径を指す。すなわち、内挿部材の断面積が大きければ大きい程、相当直径Dが小さくなり、この相当直径Dを上記式(4)のDに代入することによって求められるレイノルズ数Reが上がる(冷却効果が上がる)ことになる。なお、ナットに設けられる貫通穴径Dは変わらないので、加工効率は同等である。また、Aは流路の断面積である。また、Lwetは、貫通穴の円周長さから、内挿部材が貫通穴の内面に接している接触部分の長さを引いた長さを指す。すなわち、図3(a)〜(f)で示される内挿部材の設置態様においては、図3(a)の態様でLwetは、貫通穴の円周長さに等しく、図3(b),(f)の態様でLwetは、貫通穴の円周長さにほぼ等しく、図3(c),(e)の態様でLwetは、貫通穴の円周長さから、内挿部材が貫通穴の内面に接している4箇所の接触部分の長さを引いた長さに等しく、図3(d)の態様でLwetは、貫通穴の円周長さから、内挿部材が貫通穴の内面に接している3箇所の接触部分の長さを引いた長さに等しい。 By using this configuration, the diameter D of the through hole 20b is replaced with the equivalent diameter De , and is expressed as the following formula (5). Here, in the following formula (5), the equivalent diameter D e in the case where the cross-sectional area of the flow path of the cooling fluid is considered a circle having the same cross-sectional area refers to the diameter of the circle. That is, the greater the cross-sectional area of the inner insertion member, the equivalent diameter D e is small, the Reynolds number Re m obtained by substituting the D of the equivalent diameter D e of the equation (4) is raised (cooled The effect will increase). In addition, since the through-hole diameter D provided in a nut does not change, processing efficiency is equivalent. Ad is the cross-sectional area of the flow path. L wet indicates a length obtained by subtracting the length of the contact portion where the insertion member is in contact with the inner surface of the through hole from the circumferential length of the through hole. That is, in the installation mode of the insertion member shown in FIGS. 3A to 3F , L wet is equal to the circumferential length of the through hole in the mode of FIG. 3A, and FIG. , (F), L wet is substantially equal to the circumferential length of the through hole, and in the modes of FIGS. 3C and 3E, L wet is determined from the circumferential length of the through hole as an insertion member. Is equal to the length obtained by subtracting the length of the four contact portions that are in contact with the inner surface of the through hole. In the embodiment shown in FIG. 3 (d), L wet is calculated based on the circumferential length of the through hole. It is equal to the length obtained by subtracting the lengths of the three contact portions in contact with the inner surface of the through hole.

Figure 0005732739
Figure 0005732739

以上説明したように、本実施形態のボールねじ装置1によれば、貫通穴20bの長さ方向に延びる内挿部材50を貫通穴20bに配設したので、貫通穴20bの流路の断面積を小さくし、貫通穴20bに通る冷却媒体と貫通穴が接する面積を大きく確保できる。従って、冷却効果ができるだけ高くなり、過度な加工効率の低下を招くことのないボールねじ装置1を提供することができる。   As described above, according to the ball screw device 1 of the present embodiment, since the insertion member 50 extending in the length direction of the through hole 20b is disposed in the through hole 20b, the sectional area of the flow path of the through hole 20b. The area where the cooling medium passing through the through hole 20b and the through hole come into contact can be ensured. Therefore, it is possible to provide the ball screw device 1 that has as high a cooling effect as possible and does not cause excessive reduction in processing efficiency.

また、本実施形態のボールねじ装置1では、内挿部材50が、貫通穴20bをその長さ方向に複数の流路に分ける断面形状を有することによって、冷却媒体と貫通穴が接する面積を大きく確保したまま、断面積が小さくされた貫通穴20bの流路が複数形成されるので、冷却液の流速が高まり、過度な加工効率の低下をより効率的に低減することができる。   Further, in the ball screw device 1 of the present embodiment, the insertion member 50 has a cross-sectional shape that divides the through hole 20b into a plurality of flow paths in the length direction thereof, thereby increasing an area where the cooling medium and the through hole are in contact with each other. Since a plurality of flow paths of the through holes 20b having a reduced cross-sectional area are formed while ensuring, the flow rate of the coolant is increased, and an excessive reduction in processing efficiency can be more efficiently reduced.

以上、本発明の実施形態について説明してきたが、本発明はこれに限定されずに、種々の変更、改良を行うことができる。例えば、上記実施形態では、ナット内に1本の貫通穴を形成し、その貫通穴に冷却媒体を通すことで冷却した場合について述べてきたが、ナット内に形成した複数の貫通穴を連結して冷却するボールねじ装置についても上記と同様の構成を適用することによって予想し得ない効果を奏する。   As mentioned above, although embodiment of this invention has been described, this invention is not limited to this, A various change and improvement can be performed. For example, in the above-described embodiment, a case where one through hole is formed in the nut and the cooling medium is cooled through the through hole has been described, but a plurality of through holes formed in the nut are connected. The ball screw device that is cooled in this manner also has an unexpected effect by applying the same configuration as described above.

1 ボールねじ装置
10 ねじ軸
20 ナット
30 転動体
40 冷却装置
41 管
50 内挿部材
DESCRIPTION OF SYMBOLS 1 Ball screw apparatus 10 Screw shaft 20 Nut 30 Rolling body 40 Cooling device 41 Pipe 50 Insertion member

Claims (2)

ねじ軸と、複数の転動体を介して前記ねじ軸に螺合するナットと、該ナットの軸方向に設けた貫通穴に冷却媒体を通して前記ナットを冷却する冷却手段とを備えたボールねじ装置において、
前記貫通穴内で冷却媒体を循環させるための循環装置が前記ナットに備えられ、
前記貫通穴の長さ方向に延び、前記貫通孔の内周面に対向する外周面が前記長さ方向に一様の曲面をなして前記貫通穴の流路の断面形状を略円形又は楕円形とする内挿部材が前記貫通穴に配設されたことを特徴とするボールねじ装置。
A ball screw device comprising: a screw shaft; a nut screwed into the screw shaft through a plurality of rolling elements; and a cooling means for cooling the nut through a cooling medium in a through hole provided in an axial direction of the nut. ,
A circulating device for circulating a cooling medium in the through hole is provided in the nut;
The outer peripheral surface extending in the length direction of the through hole and facing the inner peripheral surface of the through hole forms a uniform curved surface in the length direction, and the cross-sectional shape of the flow path of the through hole is substantially circular or elliptical A ball screw device, wherein an insertion member is disposed in the through hole.
前記内挿部材が、前記貫通穴をその長さ方向に複数の流路に分ける断面形状を有することを特徴とする請求項1に記載のボールねじ装置。   The ball screw device according to claim 1, wherein the insertion member has a cross-sectional shape that divides the through hole into a plurality of flow paths in a length direction thereof.
JP2010090389A 2009-08-31 2010-04-09 Ball screw device Active JP5732739B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010090389A JP5732739B2 (en) 2010-04-09 2010-04-09 Ball screw device
PCT/JP2010/005236 WO2011024450A1 (en) 2009-08-31 2010-08-25 Ball screw device
US13/058,124 US8752446B2 (en) 2009-08-31 2010-08-25 Ball screw device
CN2010800022890A CN102124251A (en) 2009-08-31 2010-08-25 Ball screw device
EP10805567.4A EP2461072A4 (en) 2009-08-31 2010-08-25 Ball screw device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010090389A JP5732739B2 (en) 2010-04-09 2010-04-09 Ball screw device

Publications (2)

Publication Number Publication Date
JP2011220446A JP2011220446A (en) 2011-11-04
JP5732739B2 true JP5732739B2 (en) 2015-06-10

Family

ID=45037682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010090389A Active JP5732739B2 (en) 2009-08-31 2010-04-09 Ball screw device

Country Status (1)

Country Link
JP (1) JP5732739B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3352024B2 (en) * 1998-03-31 2002-12-03 光洋機械工業株式会社 Lead screw cooling system
JP2002310258A (en) * 2001-04-12 2002-10-23 Shangyin Sci & Technol Co Ltd Ball screw provided with cooling passage
JP2002372119A (en) * 2001-06-12 2002-12-26 Nsk Ltd Ball screw device

Also Published As

Publication number Publication date
JP2011220446A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
JP6412098B2 (en) Trailing edge cooling bearing
US20130126143A1 (en) Cooling jacket
US9207022B2 (en) Cooling jacket
EP2351978A2 (en) Pipe in pipe heat exchanger with vibration reduction
US20100101899A1 (en) Brake caliper including heat pipes
WO2011024450A1 (en) Ball screw device
WO2013118869A1 (en) Semiconductor cooling device
JP3203322U (en) Heat tube with fibrous capillary structure
JP2005180907A (en) Internally enhanced tube with smaller groove top
JPWO2021124582A5 (en)
JP5653950B2 (en) Cooling system
JP2010133556A (en) Ball screw device
KR101815437B1 (en) Heat transfer pipe for heat exchanger
JP5732739B2 (en) Ball screw device
JP2010256000A (en) Internally-grooved pipe for heat pipe, and heat pipe
JP2009243864A (en) Inner surface grooved pipe for heat pipe, and heat pipe
JP2017078476A (en) Tilting pad bearing device
TW201843912A (en) Liquid-cooled cooling device with channel
JP4135960B2 (en) Heat sink cooling device
JP2009243863A (en) Internally grooved pipe for heat pipe, and heat pipe
JP2010133581A (en) Inner helically grooved tube for heat pipe and the heat pipe
KR20110114067A (en) Air cooled heat exchanger
JP5243831B2 (en) Inner grooved tube for heat pipe and heat pipe
JP2008064457A (en) Heat exchanger
WO2015114015A1 (en) Sectional uneven inner grooved tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150330

R150 Certificate of patent or registration of utility model

Ref document number: 5732739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150