JP3352024B2 - Lead screw cooling system - Google Patents

Lead screw cooling system

Info

Publication number
JP3352024B2
JP3352024B2 JP10574298A JP10574298A JP3352024B2 JP 3352024 B2 JP3352024 B2 JP 3352024B2 JP 10574298 A JP10574298 A JP 10574298A JP 10574298 A JP10574298 A JP 10574298A JP 3352024 B2 JP3352024 B2 JP 3352024B2
Authority
JP
Japan
Prior art keywords
screw shaft
cooling
heat
heat radiating
radiating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10574298A
Other languages
Japanese (ja)
Other versions
JPH11287306A (en
Inventor
孝彌 土肥
猛 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Machine Industries Co Ltd
Original Assignee
Koyo Machine Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14415727&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3352024(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Koyo Machine Industries Co Ltd filed Critical Koyo Machine Industries Co Ltd
Priority to JP10574298A priority Critical patent/JP3352024B2/en
Publication of JPH11287306A publication Critical patent/JPH11287306A/en
Application granted granted Critical
Publication of JP3352024B2 publication Critical patent/JP3352024B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transmission Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、送りねじの冷却装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a feed screw cooling device.

【0002】[0002]

【従来の技術】例えば工作機械におけるツールやワーク
等の送り装置として、ねじ軸とこのねじ軸にボールを介
して螺合するナットとを備えたボールねじ等の送りねじ
が使用されている。この送りねじでツールやワーク等の
高速送りをする場合、騒音や発熱が生じるため、その対
策が必要となってくる。送りねじにおいて、熱の発生源
は主にねじ軸の軸受及びボールの循環部分であり、これ
らで熱が発生すれば、ねじ軸の熱膨張を招き、送り装置
の位置決め精度に悪影響を及ぼすことになる。例えば、
60m/min以上の速度で高速送りをすると、少なく
とも10℃以上の温度上昇がある。従って、ねじ軸の長
さが1mで、その熱膨張係数が12×10-6/℃と仮定
した場合、ねじ軸に120μmもの軸方向の熱膨張があ
り、これによって送り装置の位置決め精度が大きく変化
する。このためねじ軸の冷却対策が不可欠となる。
2. Description of the Related Art For example, as a feeder for a tool or a work in a machine tool, a feed screw such as a ball screw having a screw shaft and a nut screwed to the screw shaft via a ball is used. When high-speed feeding of a tool or a workpiece is performed by the feed screw, noise or heat is generated, so that a countermeasure is required. In the feed screw, the source of heat is mainly the bearing of the screw shaft and the circulating portion of the ball.If heat is generated by these, the thermal expansion of the screw shaft will be caused, which will adversely affect the positioning accuracy of the feed device. Become. For example,
When high speed feeding is performed at a speed of 60 m / min or more, there is a temperature rise of at least 10 ° C. Therefore, assuming that the length of the screw shaft is 1 m and its coefficient of thermal expansion is 12 × 10 −6 / ° C., the screw shaft has an axial thermal expansion of as much as 120 μm, thereby increasing the positioning accuracy of the feeder. Change. For this reason, cooling measures for the screw shaft are indispensable.

【0003】一般に回転軸又はねじ軸の冷却装置として
は、従来、実開平2−45号公報に記載のように空冷方
式を採用したものと、特開昭60−220257号公報
に記載のように水冷方式を採用したものとがある。即
ち、実開平2−45号公報に記載の冷却装置は、回転軸
の中心に軸方向に軸孔を形成し、この軸孔を冷却通路と
して、その一端側から他端側に冷却空気を通して、その
冷却空気により回転軸を冷却する空冷方式を採用してい
る。また特開昭60−220257号公報に記載の冷却
装置は、ねじ軸内に、その中心に軸方向に形成された軸
孔と、この軸孔に挿入された中空管とを設け、軸孔内の
中空管の内外で冷却水の冷却通路を形成し、この冷却通
路に冷却水を通してねじ軸を冷却する水冷方式を採用し
ている。
[0003] Generally, as a cooling device for a rotating shaft or a screw shaft, a cooling device employing an air cooling system as described in Japanese Utility Model Application Laid-Open No. 2-45 and a cooling device as disclosed in JP-A-60-220257 have been known. Some use a water-cooled system. That is, the cooling device described in Japanese Utility Model Laid-Open Publication No. 2-45 has an axial hole formed in the center of the rotating shaft in the axial direction, and the axial hole is used as a cooling passage, and cooling air is passed from one end to the other end. An air cooling system that cools the rotating shaft with the cooling air is adopted. Further, the cooling device described in Japanese Patent Application Laid-Open No. 60-220257 is provided with a shaft hole formed in the center of the screw shaft in the axial direction and a hollow tube inserted into the shaft hole. A cooling water cooling passage is formed inside and outside of the inner hollow tube, and a water cooling system is used in which the screw shaft is cooled by passing the cooling water through the cooling passage.

【0004】[0004]

【発明が解決しようとする課題】従来の冷却装置では、
中空管を使用するか否かを問わず、ねじ軸内の軸孔が平
滑状であるため、ねじ軸の内周側の放熱面積が少なくな
り、冷却流体の流量を増やさない限り、ねじ軸を十分に
冷却できない欠点がある。しかし、冷却流体の流量を増
やした場合には、冷却流体の供給装置、その他の付属機
器類が大型化し、製作コストがアップすると共に、その
付属機器類の設置場所が問題となる。本発明は、このよ
うな従来の課題に鑑み、ねじ軸内での放熱面積を増大で
き、付属機器類の大型化を招くことなくねじ軸を効率的
に冷却できる送りねじの冷却装置を提供することを目的
とするものである。
SUMMARY OF THE INVENTION In a conventional cooling device,
Regardless of whether or not a hollow tube is used, the shaft hole in the screw shaft is smooth, so the heat dissipation area on the inner peripheral side of the screw shaft is reduced, and unless the flow rate of cooling fluid is increased, the screw shaft Has the disadvantage that it cannot be cooled sufficiently. However, when the flow rate of the cooling fluid is increased, the supply device of the cooling fluid and other accessories are increased in size, the manufacturing cost is increased, and the location of the accessories is problematic. The present invention has been made in view of such conventional problems, and provides a cooling device for a feed screw that can increase a heat radiation area in a screw shaft and efficiently cool the screw shaft without increasing the size of attached devices. The purpose is to do so.

【0005】[0005]

【課題を解決するための手段】本発明は、回転自在に支
持されたねじ軸と、ねじ軸に螺合するナットとを備えた
送りねじにおいて、ねじ軸に、冷却流体を流すための冷
却通路を軸方向に形成し、冷却通路内に、一部がねじ軸
の内周面に接触するように放熱部材を設けている。
SUMMARY OF THE INVENTION The present invention relates to a feed screw having a screw shaft rotatably supported and a nut screwed to the screw shaft, and a cooling passage for flowing a cooling fluid through the screw shaft. Are formed in the axial direction, and a heat radiating member is provided in the cooling passage so that a part thereof contacts the inner peripheral surface of the screw shaft.

【0006】[0006]

【発明の実施の形態】以下、本考案の実施例を図面に基
づいて詳述する。図1乃至図4は2条ねじ式のボールね
じに採用した第1の実施形態を示す。この送りねじは、
図1に示すように、回転自在に支持されたねじ軸1 と、
ねじ軸1 に螺合するナット2 とを備え、ねじ軸1 に、冷
却流体を流すための冷却通路3 が軸方向に形成され、そ
の冷却通路3 内に、一部がねじ軸1 の内周面に接触する
ように放熱部材4 が設けられている。ねじ軸1 は、軸方
向の両端で軸受5 及び軸受ケース6 を介してベッド7 上
に回転自在に支持されている。ねじ軸1 には、その外周
に軸方向の両端側の軸受5 間にねじ溝8 が螺旋状に形成
されると共に、略中心部分に軸方向の全長に亘って冷却
通路3 が形成されている。ねじ溝8 は、同一リードで2
条設けられているが、1条であっても良い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. FIGS. 1 to 4 show a first embodiment adopted for a double thread type ball screw. This lead screw is
As shown in FIG. 1, a screw shaft 1 rotatably supported,
A nut 2 screwed to the screw shaft 1, and a cooling passage 3 for flowing a cooling fluid is formed in the screw shaft 1 in the axial direction, and a part of the cooling passage 3 is formed in the inner periphery of the screw shaft 1. A heat radiating member 4 is provided so as to contact the surface. The screw shaft 1 is rotatably supported on a bed 7 via a bearing 5 and a bearing case 6 at both ends in the axial direction. A screw groove 8 is spirally formed between the bearings 5 on both ends in the axial direction on the outer periphery of the screw shaft 1, and a cooling passage 3 is formed in a substantially central portion over the entire length in the axial direction. . Screw groove 8 is 2 with the same lead
Although an article is provided, one article may be provided.

【0007】冷却通路3 は真円状の丸孔であって、この
冷却通路3 の一端側が冷却流体の入口9 となり、他端側
が冷却流体の出口10となっている。そして、冷却通路3
の入口9 に冷却流体供給装置からの供給管が、出口10に
排出管が夫々管継ぎ手等を介して着脱自在に接続され、
入口9 側から出口10側へと冷却通路3 内に冷却流体を矢
印方向に流すようになっている。なお、冷却流体には、
冷却水、冷却油等の冷却液体、又は冷却空気等の冷却気
体の何れを用いても良い。防錆剤等を含む冷却水、冷却
油等の冷却液体を使用する場合には、冷却液体の供給装
置側にタンク、クーラー等を設け、排出管から出た冷却
液体を供給装置側のタンク、クーラー等を経て供給管か
ら冷却通路3 側に戻す循環方式を採用することが望まし
い。しかし、単なる冷却水を使用する場合には、冷却後
の冷却水をそのまま捨てるようにしても良い。また冷却
流体に冷却空気等の冷却気体を使用する場合には、冷却
空気を排出しても問題にならない場所まで排出管を導く
が、排出管を省略して出口10側から直接冷却空気を排出
するようにしても良い。
The cooling passage 3 is a perfect circular round hole. One end of the cooling passage 3 serves as a cooling fluid inlet 9 and the other end serves as a cooling fluid outlet 10. And cooling passage 3
A supply pipe from the cooling fluid supply device is connected to the inlet 9 of the cooling fluid supply unit, and a discharge pipe is connected to the outlet 10 via a pipe joint so as to be detachable.
A cooling fluid flows in the cooling passage 3 in the direction of the arrow from the inlet 9 side to the outlet 10 side. The cooling fluid includes
Either a cooling liquid such as cooling water or cooling oil, or a cooling gas such as cooling air may be used. When using a cooling liquid such as cooling water or cooling oil containing a rust inhibitor or the like, a tank, a cooler, or the like is provided on the cooling liquid supply device side, and the cooling liquid discharged from the discharge pipe is supplied to the tank on the supply device side. It is desirable to adopt a circulation system in which the water is returned from the supply pipe to the cooling passage 3 via a cooler or the like. However, when mere cooling water is used, the cooling water after cooling may be discarded as it is. Also, when using a cooling gas such as cooling air as the cooling fluid, the discharge pipe is guided to a place where there is no problem even if the cooling air is discharged, but the discharge pipe is omitted and the cooling air is discharged directly from the outlet 10 side. You may do it.

【0008】放熱部材4 は、図2に示すように、断面円
形状の線材11により適宜ピッチの螺旋コイル状に成形さ
れ、そのコイル部分の外周側がねじ軸1 の内周面に内接
するように、冷却通路3 の略全長に亘って軸方向に嵌合
されている。放熱部材4 は、熱伝導率の大きい金属等の
材料、例えば銅、又は銅系の金属材料が使用されてい
る。放熱部材4 は、少なくともねじ軸1 の両側の軸受5
に対応する範囲に亘っており、この実施形態では軸受5
を越えてねじ軸1 の両端側に達するように設けられてい
る。なお、放熱部材4 は、その線材11の線径a と間隔b
とが1対1で略同じになるようにすることが望ましい。
但し、1対1以外の比率でも問題ではない。また放熱部
材4 は、コイル部分の外径をねじ軸1 の冷却通路3 の内
径よりも若干大きくしておき、螺旋方向に沿って放熱部
材4 を廻しながら冷却通路3 内に挿入することにより、
外周の全体をねじ軸1 の内周に螺旋状に確実に内接させ
ることができる。
As shown in FIG. 2, the heat dissipating member 4 is formed into a spiral coil shape with an appropriate pitch by a wire 11 having a circular cross section, so that the outer peripheral side of the coil portion is inscribed in the inner peripheral surface of the screw shaft 1. The cooling passage 3 is fitted in the axial direction over substantially the entire length. The heat radiating member 4 is made of a material such as a metal having a high thermal conductivity, for example, copper or a copper-based metal material. The heat dissipating members 4 are at least bearings 5 on both sides of the screw shaft 1.
In this embodiment, the bearing 5
The screw shaft 1 is provided so as to reach both ends of the screw shaft 1. The heat radiating member 4 has a wire diameter a of the wire 11 and an interval b.
Is desirably set to be substantially the same on a one-to-one basis.
However, a ratio other than 1 to 1 is not a problem. The heat radiation member 4 has a coil part whose outer diameter is slightly larger than the inner diameter of the cooling passage 3 of the screw shaft 1 and is inserted into the cooling passage 3 while rotating the heat radiation member 4 along the spiral direction.
The entire outer circumference can be securely inscribed in a spiral shape on the inner circumference of the screw shaft 1.

【0009】ナット2 は2条ねじ用であって、図2乃至
図4に示すように、内周面にねじ軸1 のねじ溝8 と同一
リードのねじ溝12が形成され、そのねじ溝12とねじ軸1
側のねじ溝8 に転動自在に多数のボール13が嵌合されて
いる。ナット2 は、ねじ軸1の2条のねじ溝8 に対応す
る2個一組のリターンチューブ14を両側に備え、ねじ軸
1 の回転時に、各ねじ溝8,12内のボール5 を各リターン
チューブ14を介して順次循環させるようになっている。
ナット2 の外周には円筒状のスリーブ15が套嵌され、こ
のスリーブ15がハウジング16に嵌合されている。ナット
2 及びスリーブ15は、軸方向の一端にフランジ17,18 を
有し、そのフランジ17,18 がボルト19によってハウジン
グ16に着脱自在に固定されている。なお、ハウジング16
は、可動テーブルに固定されている。
The nut 2 is for a double thread, and as shown in FIGS. 2 to 4, a screw groove 12 having the same lead as the screw groove 8 of the screw shaft 1 is formed on the inner peripheral surface. And screw shaft 1
A large number of balls 13 are fitted into the thread groove 8 on the side so as to freely roll. The nut 2 has a pair of return tubes 14 on both sides corresponding to the two thread grooves 8 of the screw shaft 1.
At the time of rotation of 1, the balls 5 in the thread grooves 8 and 12 are sequentially circulated through the return tubes 14.
A cylindrical sleeve 15 is fitted around the outer periphery of the nut 2, and the sleeve 15 is fitted to the housing 16. nut
The sleeve 2 and the sleeve 15 have flanges 17 and 18 at one end in the axial direction, and the flanges 17 and 18 are detachably fixed to the housing 16 by bolts 19. The housing 16
Is fixed to a movable table.

【0010】スリーブ15には外周面に螺旋溝20が形成さ
れ、この螺旋溝20によってハウジング16の内周側に冷却
通路21が形成されている。ハウジング16には、冷却通路
21の一端側に連通する入口22と、他端側に連通する出口
23とが形成され、その入口22に供給装置からの供給管
が、出口23に排出管が夫々管継ぎ手等を介して着脱自在
に接続され、入口22側から出口23側へと冷却通路21内に
冷却流体を流すようになっている。スリーブ15の軸方向
の両端側には、Oリング等のシール手段24が設けられて
いる。なお、冷却流体には、前述と同様に冷却水、冷却
油等の冷却液体、又は冷却空気等の冷却気体の何れを使
用しても良い。また冷却液体を使用する場合には、前述
と同様に冷却液体を循環させる循環方式を採用しても良
いし、冷却後の冷却液体をそのまま捨てるようにしても
良い。
[0010] A spiral groove 20 is formed on the outer peripheral surface of the sleeve 15, and a cooling passage 21 is formed on the inner peripheral side of the housing 16 by the spiral groove 20. The housing 16 has a cooling passage
Inlet 22 communicating with one end of 21 and outlet communicating with the other end
A supply pipe from a supply device is formed at an inlet 22, and a discharge pipe is detachably connected to an outlet 23 via a pipe joint or the like. The cooling fluid is caused to flow through. At both ends of the sleeve 15 in the axial direction, sealing means 24 such as O-rings are provided. As the cooling fluid, any of a cooling liquid such as cooling water and cooling oil or a cooling gas such as cooling air may be used as described above. When a cooling liquid is used, a circulation system for circulating the cooling liquid may be employed as described above, or the cooled cooling liquid may be discarded as it is.

【0011】冷却通路3 に冷却流体を供給する供給装置
と、冷却通路21に冷却流体を供給する供給装置は、共通
にしても良いし、夫々に対応して別々に設けても良い。
この送りねじでは、ねじ軸1 を正転又は逆転させると、
ボール13を介してナット2 がねじ軸1 の軸方向に移動
し、ツール、ワーク等が移動する。このとき、ボール13
がねじ軸1 とナット2 とのねじ溝8,12内で転動し、リタ
ーンチューブ14を介して循環する。ねじ軸1 を回転させ
た場合、一般にねじ軸1 の両端を支持する軸受5 のボー
ル13の循環部分で発熱が生じる。そこで、ねじ軸1 は、
その冷却通路3 内を流れる冷却流体により冷却し、また
ナット2 は冷却通路21内を流れる冷却流体により冷却し
て、夫々の温度上昇を防止する。
A supply device for supplying the cooling fluid to the cooling passage 3 and a supply device for supplying the cooling fluid to the cooling passage 21 may be provided in common, or may be provided separately for each.
In this feed screw, when the screw shaft 1 is rotated forward or backward,
The nut 2 moves in the axial direction of the screw shaft 1 via the ball 13, and the tool, the work, and the like move. At this time, ball 13
Rolls in the screw grooves 8 and 12 between the screw shaft 1 and the nut 2 and circulates through the return tube 14. When the screw shaft 1 is rotated, heat is generally generated in a circulating portion of the ball 13 of the bearing 5 that supports both ends of the screw shaft 1. Therefore, screw shaft 1 is
The nut 2 is cooled by the cooling fluid flowing through the cooling passage 21 to prevent the respective temperatures from rising.

【0012】ねじ軸1 の冷却通路3 内に冷却流体を通す
と、この冷却流体が放熱部材4 の略全周面に接触すると
共、その放熱部材4 のコイル部間で冷却流体がねじ軸1
の内周面に直接接触して、この冷却流体によってねじ軸
1 の内周側から直接又は間接的に熱を奪いねじ軸1 を冷
却できる。即ち、ねじ軸1 の冷却通路3 内の冷却流体
は、その多くがコイル状の放熱部材4 の内側の中心近く
を速い流速で軸方向に流れ、また一部がコイル状の放熱
部材4 側で乱流状態になりながら流れて行く。このため
冷却流体が放熱部材4 の略全周面に接触して、ねじ軸1
側から放熱部材4 側に伝わる熱を放熱部材4 の略全周面
で奪う。一方、放熱部材4 のコイル部間では冷却流体が
ねじ軸1 の内周面に直接接触して、ねじ軸1 の熱をその
内周面から直接奪う。従って、冷却流体によってねじ軸
1 を内周側から冷却できる。
When a cooling fluid is passed through the cooling passage 3 of the screw shaft 1, the cooling fluid contacts substantially the entire peripheral surface of the heat radiating member 4, and the cooling fluid flows between the coil portions of the heat radiating member 4.
The cooling fluid is in direct contact with the inner peripheral surface of the screw shaft.
The screw shaft 1 can be cooled by directly or indirectly removing heat from the inner peripheral side of the screw shaft 1. That is, most of the cooling fluid in the cooling passage 3 of the screw shaft 1 flows in the axial direction at a high flow velocity near the center inside the coiled heat radiating member 4, and a part of the cooling fluid flows on the coiled heat radiating member 4 side. It flows while becoming turbulent. As a result, the cooling fluid comes into contact with substantially the entire peripheral surface of the heat dissipating member 4, and the screw shaft 1
The heat transmitted from the side to the heat dissipating member 4 side is taken over substantially the entire peripheral surface of the heat dissipating member 4. On the other hand, between the coil portions of the heat radiating member 4, the cooling fluid comes into direct contact with the inner peripheral surface of the screw shaft 1 and directly removes the heat of the screw shaft 1 from the inner peripheral surface. Therefore, screw shaft by cooling fluid
1 can be cooled from the inner circumference side.

【0013】そして、放熱部材4 及びねじ軸1 の内周面
に接触して熱を奪った乱流状態の冷却流体は、放熱部材
4 の中心部分を速い速度で流れる冷却流体側に引き込ま
れて下流側へと流れ、新たな冷却流体と順次交換されて
行く。このため乱流状態の冷却流体が放熱部材4 の近傍
で滞留したままとなることはなく、乱流状態で順次流れ
る冷却流体によって冷却できる。特にねじ軸1 の内周面
に内接する放熱部材4 を使用しているため、ねじ軸1 に
冷却通路3 を形成したのみの場合に比較して放熱面積が
著しく増大し、冷却流体が冷却気体又は冷却液体の何れ
の場合であっても、そのねじ軸1 を内周側から効率的に
冷却できる。しかも放熱部材4 に熱伝導率の大きい金属
材料を使用しているので、ねじ軸1から放熱部材4 側へ
の熱伝導も良くなり、これによってねじ軸1 の冷却効率
が更に向上する。
The turbulent cooling fluid, which has taken heat by contacting the heat radiating member 4 and the inner peripheral surface of the screw shaft 1,
4 is drawn into the cooling fluid side flowing at a high speed and flows downstream, and is sequentially exchanged with new cooling fluid. Therefore, the cooling fluid in the turbulent state does not stay in the vicinity of the heat radiating member 4, and can be cooled by the cooling fluid that flows sequentially in the turbulent state. In particular, since the heat dissipating member 4 insulated on the inner peripheral surface of the screw shaft 1 is used, the heat dissipating area is significantly increased as compared with the case where only the cooling passage 3 is formed in the screw shaft 1, and the cooling fluid is cooled by the cooling gas. In any case of the cooling liquid, the screw shaft 1 can be efficiently cooled from the inner peripheral side. In addition, since a metal material having a high thermal conductivity is used for the heat radiating member 4, the heat conduction from the screw shaft 1 to the heat radiating member 4 side is improved, and the cooling efficiency of the screw shaft 1 is further improved.

【0014】また放熱部材4 は螺旋コイル状であるた
め、ねじ軸1 の冷却通路3 内に放熱部材4 を容易に挿入
でき、しかも放熱部材4 をねじ軸1 の内周面に圧接させ
ることによって、冷却通路3 内で放熱部材4 を容易且つ
確実に固定できる。冷却通路3 内の冷却流体の多くは放
熱部材4 の中心部分を流れるので、ねじ軸1 を正逆の何
れに回転させた場合にも、螺旋コイル状の放熱部材4 に
よって冷却流体の流れが大きく損なわれることはなく、
ねじ軸1 の回転方向に関係なく所定の冷却効果を確保で
きる。このため、冷却通路3 内に螺旋コイル状の放熱部
材4を設けているにも拘わらず、ねじ軸1 の回転方向に
よって冷却流体の流れ方向を切り換える必要もない。ナ
ット2 の冷却通路21内に冷却流体を流すと、この冷却流
体がスリーブ15の外周を螺旋状に流れるので、この冷却
流体によってナット2 の熱をスリーブ15を介して奪い、
ナット2 側を冷却できる。また冷却流体に冷却液体を使
用する場合には、ボール13の転動時に発生する微振動を
冷却液体で減衰させて、外部に洩れる振動音の音圧を下
げ、騒音の発生を低減させることができる。
Further, since the heat radiating member 4 has a spiral coil shape, the heat radiating member 4 can be easily inserted into the cooling passage 3 of the screw shaft 1, and the heat radiating member 4 is pressed against the inner peripheral surface of the screw shaft 1. In addition, the heat radiating member 4 can be easily and reliably fixed in the cooling passage 3. Since most of the cooling fluid in the cooling passage 3 flows through the central portion of the heat radiating member 4, the flow of the cooling fluid is large due to the spiral coil-shaped heat radiating member 4 regardless of whether the screw shaft 1 is rotated forward or reverse. Without being impaired,
A predetermined cooling effect can be ensured regardless of the rotation direction of the screw shaft 1. Therefore, it is not necessary to switch the flow direction of the cooling fluid depending on the rotation direction of the screw shaft 1, despite the provision of the helical coil-shaped heat radiating member 4 in the cooling passage 3. When a cooling fluid flows through the cooling passage 21 of the nut 2, the cooling fluid spirally flows around the outer periphery of the sleeve 15, so that the heat of the nut 2 is removed by the cooling fluid through the sleeve 15,
Nut 2 side can be cooled. When a cooling liquid is used as the cooling fluid, fine vibrations generated when the ball 13 rolls can be attenuated by the cooling liquid to reduce the sound pressure of vibration noise leaking to the outside, thereby reducing noise generation. it can.

【0015】図5は本発明の第2の実施形態を例示し、
断面角形の線材11を使用し、この線材11を螺旋コイル状
に成形して放熱部材4 を構成し、この放熱部材4 を外周
面がねじ軸1 の内周面に内接するように冷却通路3 内に
挿入したものである。なお、放熱部材4 には、第1の実
施形態と同様に熱伝導率の大きい金属材料が使用されて
いる。この実施形態では、放熱部材4 の外周面が略円筒
面状になっており、その外周面がねじ軸1 の内周面に接
触するので、ねじ軸1 と放熱部材4 との接触面積が増大
して、ねじ軸1 から放熱部材4 への熱伝導が良くなる。
このため放熱部材4 により効率的に放熱できる。
FIG. 5 illustrates a second embodiment of the present invention,
A wire 11 having a rectangular cross section is used, and the wire 11 is formed into a spiral coil shape to form a heat radiating member 4. The heat radiating member 4 is cooled so that its outer peripheral surface is inscribed in the inner peripheral surface of the screw shaft 1. It has been inserted in. Note that a metal material having a high thermal conductivity is used for the heat radiating member 4 as in the first embodiment. In this embodiment, the outer peripheral surface of the heat radiating member 4 is substantially cylindrical, and the outer peripheral surface contacts the inner peripheral surface of the screw shaft 1, so that the contact area between the screw shaft 1 and the heat radiating member 4 increases. As a result, heat conduction from the screw shaft 1 to the heat radiation member 4 is improved.
Therefore, heat can be efficiently dissipated by the heat dissipating member 4.

【0016】図6乃至図8は本発明の第3の実施形態を
例示し、丸棒材、角棒材等の棒状の放熱芯部25と、この
放熱芯部25の外周に軸方向に所要間隔をおいて固定され
た複数個の支持部26とにより放熱部材4 を構成し、これ
を放熱芯部25が略中心に位置するようにねじ軸1 の冷却
通路3 内に挿入したものである。各支持部26は外周面が
ねじ軸1 の内周面に内接する円板状であって、周方向に
1個又は複数個の通孔26a が形成され、この通孔26a を
介して冷却通路3 内を冷却流体が流れるようになってい
る。通孔26a は開口面積を極力大きくできるように円弧
状の長孔になっている。なお、放熱芯部25及び支持部26
は、第1の実施形態と同様に熱伝導率の大きい金属材料
が使用されている。また支持部26の数及び通孔26a の大
きさは、ねじ軸1 の長さ、ねじ軸1 から放熱部材4 への
熱伝導等を考慮して、冷却通路3 内の冷却流体の流れに
支障を来さないように適宜決定すれば良い。この実施形
態でも、放熱芯部25と支持部26とによって構成される放
熱部材4 の放熱面積が増えるので、ねじ軸1 の冷却通路
3 に冷却流体を流すことによって、ねじ軸1 を効率的に
冷却できる。
FIGS. 6 to 8 illustrate a third embodiment of the present invention, in which a rod-shaped heat-dissipating core 25 such as a round bar or a square bar and an outer periphery of the heat-dissipating core 25 are axially required. The heat radiating member 4 is constituted by a plurality of support portions 26 fixed at intervals and inserted into the cooling passage 3 of the screw shaft 1 so that the heat radiating core portion 25 is located substantially at the center. . Each of the support portions 26 has a disk shape having an outer peripheral surface inscribed in the inner peripheral surface of the screw shaft 1, and has one or a plurality of through holes 26a formed in a circumferential direction, and a cooling passage through the through holes 26a. Cooling fluid flows through the inside of 3. The through hole 26a is an arc-shaped long hole so that the opening area can be made as large as possible. Note that the radiation core 25 and the support 26
As in the first embodiment, a metal material having high thermal conductivity is used. Also, the number of the support portions 26 and the size of the through holes 26a may interfere with the flow of the cooling fluid in the cooling passage 3 in consideration of the length of the screw shaft 1, heat conduction from the screw shaft 1 to the heat radiating member 4, and the like. May be appropriately determined so as not to come. Also in this embodiment, since the heat radiating area of the heat radiating member 4 formed by the heat radiating core portion 25 and the supporting portion 26 increases, the cooling passage of the screw shaft 1 is formed.
By allowing the cooling fluid to flow through 3, the screw shaft 1 can be cooled efficiently.

【0017】図9及び図10は本発明の第4の実施形態
を例示し、放熱部材4 に、丸棒状、角棒状等の棒状の放
熱芯部25と、この放熱芯部25の外周側に軸方向の略全長
に亘って設けられた周方向に複数個の放熱フィン27とを
備え、この放熱部材4 をねじ軸1 の冷却通路3 内に軸方
向の略全長に亘って挿入し、各放熱フィン27の外端面を
ねじ軸1 の内周面に内接させたものである。放熱芯部25
と放熱フィン27は一体に成形しても良いし、又は別体に
構成して両者を固定しても良い。放熱フィン27は、放熱
部材4 の大きさ、ねじ軸1 からの熱伝導を考慮して、そ
の数を4個前後の複数個に決定すれば良い。また複数個
の放熱フィン27を中心部分で一体化できる場合には、放
熱フィン27は省略しても良い。なお、放熱芯部25及び放
熱フィン27は、第1の実施形態と同様に熱伝導率の大き
い金属材料が使用されている。
FIGS. 9 and 10 illustrate a fourth embodiment of the present invention, in which a heat radiating member 4 is provided with a rod-shaped heat radiating core 25 such as a round bar or a square bar, and an outer peripheral side of the heat radiating core 25. A plurality of heat dissipating fins 27 are provided in the circumferential direction provided over substantially the entire length in the axial direction.The heat dissipating member 4 is inserted into the cooling passage 3 of the screw shaft 1 over substantially the entire length in the axial direction. The outer end surface of the radiation fin 27 is inscribed in the inner peripheral surface of the screw shaft 1. Heat dissipation core 25
The radiating fins 27 and the radiating fins 27 may be formed integrally, or may be formed separately to fix them. The number of the heat radiation fins 27 may be determined to be about four in consideration of the size of the heat radiation member 4 and the heat conduction from the screw shaft 1. When a plurality of heat radiation fins 27 can be integrated at the center, the heat radiation fins 27 may be omitted. The heat radiation core 25 and the heat radiation fins 27 are made of a metal material having a high thermal conductivity as in the first embodiment.

【0018】この実施形態でも、放熱芯部25と放熱フィ
ン27とによって構成される放熱部材4 の放熱面積が増え
るので、ねじ軸1 の冷却通路3 に冷却流体を流すことに
よって、ねじ軸1 を効率的に冷却できる。また周方向に
複数個の放熱フィン27が軸方向の略全長にあるため、ね
じ軸1 から放熱部材4 側への熱伝導も良くなり、放熱部
材4 を介して効率的に冷却できる。しかも放熱部材4
は、放熱芯部25の外周側に複数個の放熱フィン27が軸方
向にあり、この放熱部材4 をねじ軸1 の冷却通路3 内に
軸方向に挿入しているので、冷却流体が冷却通路3 を円
滑に流れ、ねじ軸1 を効率的に冷却できる。更に放熱芯
部25の外周に周方向に複数個の放熱フィン27を軸方向に
備えているので、第3の実施形態に比較して放熱部材4
の製作が容易であり、またその挿入も容易である。
Also in this embodiment, since the heat radiation area of the heat radiation member 4 composed of the heat radiation core portion 25 and the heat radiation fins 27 increases, the cooling fluid flows through the cooling passage 3 of the screw shaft 1 so that the screw shaft 1 is It can be cooled efficiently. In addition, since the plurality of radiating fins 27 are provided along the entire length in the axial direction in the circumferential direction, heat conduction from the screw shaft 1 to the radiating member 4 is improved, and cooling can be efficiently performed via the radiating member 4. Moreover, heat dissipation member 4
Since a plurality of radiating fins 27 are provided in the axial direction on the outer peripheral side of the radiating core portion 25 and the radiating member 4 is inserted in the cooling passage 3 of the screw shaft 1 in the axial direction, the cooling fluid 3 flows smoothly, and the screw shaft 1 can be cooled efficiently. Further, since a plurality of radiating fins 27 are provided in the circumferential direction on the outer periphery of the radiating core portion 25 in the axial direction, compared with the third embodiment, the radiating members 4
Is easy to manufacture, and its insertion is also easy.

【0019】以上、本発明の各実施形態について詳述し
たが、本発明はこの各実施形態に限定されるものではな
い。例えば、放熱部材4 は、冷却通路3 内での冷却流体
の流通が可能であって、放熱面積を増大できるものであ
れば良く、各実施形態に例示の構造以外の構造を採用し
ても良い。またねじ軸1 の冷却通路3 側に冷却空気を供
給し、ナット2 の冷却通路21側に冷却液体を供給する
か、又は冷却空気と冷却液体とを逆にする等、ねじ軸1
側とナット2 側とで使用する冷却流体を変えても良い。
送りねじは、ボールねじに限定されるものではない。
Although the embodiments of the present invention have been described in detail, the present invention is not limited to the embodiments. For example, the heat dissipating member 4 only needs to be able to flow the cooling fluid in the cooling passage 3 and increase the heat dissipating area, and a structure other than the structure exemplified in each embodiment may be adopted. . Also, the cooling air is supplied to the cooling passage 3 side of the screw shaft 1 and the cooling liquid is supplied to the cooling passage 21 side of the nut 2, or the cooling air and the cooling liquid are reversed.
The cooling fluid used between the nut side and the nut 2 side may be changed.
The feed screw is not limited to a ball screw.

【0020】[0020]

【発明の効果】本発明によれば、回転自在に支持された
ねじ軸と、ねじ軸に螺合するナットとを備えた送りねじ
において、ねじ軸に、冷却流体を流すための冷却通路を
軸方向に形成し、冷却通路内に、一部がねじ軸の内周面
に接触するように放熱部材を設けているので、ねじ軸内
での放熱面積が増大し、付属機器類の大型化を招くこと
なく、冷却流体によってねじ軸を効率的に冷却できる利
点がある。また放熱部材を熱伝導率の大きい材料により
構成しているので、ねじ軸側の熱を放熱部材側へと効率
的に伝達でき、放熱部材による放熱効率が向上する。し
かも放熱部材をコイル状に構成してねじ軸の内周に内接
させているので、放熱部材を容易に製作できると共に、
放熱部材をねじ軸の冷却通路内に容易に挿入でき、また
ねじ軸側の熱を放熱部材側に確実に伝達できる。更に放
熱部材をねじ軸の軸方向の略全長に亘って設けているの
で、ねじ軸の軸方向の略全長に亘って効率的に冷却でき
る。
According to the present invention, in a feed screw having a screw shaft rotatably supported and a nut screwed to the screw shaft, a cooling passage for flowing a cooling fluid through the screw shaft is provided. The heat radiation member is provided in the cooling passage so that a part of it contacts the inner peripheral surface of the screw shaft, so the heat radiation area in the screw shaft increases, and the size of accessory devices increases. There is an advantage that the screw shaft can be efficiently cooled by the cooling fluid without inviting. Further, since the heat radiating member is made of a material having a high thermal conductivity, the heat on the screw shaft side can be efficiently transmitted to the heat radiating member side, and the heat radiating efficiency of the heat radiating member is improved. Moreover, since the heat radiation member is formed in a coil shape and is inscribed in the inner periphery of the screw shaft, the heat radiation member can be easily manufactured,
The heat radiating member can be easily inserted into the cooling passage of the screw shaft, and the heat on the screw shaft side can be reliably transmitted to the heat radiating member side. Further, since the heat radiating member is provided over substantially the entire length of the screw shaft in the axial direction, cooling can be efficiently performed over substantially the entire length of the screw shaft in the axial direction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態を示す送りねじの一部
切り欠き断面図である。
FIG. 1 is a partially cutaway sectional view of a feed screw according to a first embodiment of the present invention.

【図2】本発明の第1の実施形態を示す要部の拡大断面
図である。
FIG. 2 is an enlarged sectional view of a main part showing the first embodiment of the present invention.

【図3】本発明の第1の実施形態を示すナット側の一部
切り欠き断面図である。
FIG. 3 is a partially cutaway sectional view on the nut side showing the first embodiment of the present invention.

【図4】本発明の第1の実施形態を示すナット側の断面
図である。
FIG. 4 is a sectional view on the nut side showing the first embodiment of the present invention.

【図5】本発明の第2の実施形態を示す要部の拡大断面
図である。
FIG. 5 is an enlarged sectional view of a main part showing a second embodiment of the present invention.

【図6】本発明の第3の実施形態を示すねじ軸の概略断
面図である。
FIG. 6 is a schematic sectional view of a screw shaft according to a third embodiment of the present invention.

【図7】本発明の第3の実施形態を示す要部の拡大断面
図である。
FIG. 7 is an enlarged sectional view of a main part showing a third embodiment of the present invention.

【図8】本発明の第3の実施形態を示す要部の拡大断面
図である。
FIG. 8 is an enlarged sectional view of a main part showing a third embodiment of the present invention.

【図9】本発明の第4の実施形態を示すねじ軸の拡大断
面図である。
FIG. 9 is an enlarged sectional view of a screw shaft according to a fourth embodiment of the present invention.

【図10】本発明の第4の実施形態を示す放熱部材の斜
視図である。
FIG. 10 is a perspective view of a heat radiating member showing a fourth embodiment of the present invention.

【符合の説明】[Description of sign]

1 ねじ軸 2 ナット 3 冷却通路 4 放熱部材 11 線材 1 Screw shaft 2 Nut 3 Cooling passage 4 Heat radiating member 11 Wire

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F16H 25/20 - 25/24 B23Q 11/12 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) F16H 25/20-25/24 B23Q 11/12

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 回転自在に支持されたねじ軸と、前記ね
じ軸に螺合するナットとを備えた送りねじにおいて、前
記ねじ軸に、冷却流体を流すための冷却通路を軸方向に
形成し、前記冷却通路内に、一部が前記ねじ軸の内周面
に接触するように放熱部材を設けたことを特徴とする送
りねじの冷却装置。
1. A feed screw having a screw shaft rotatably supported and a nut screwed to the screw shaft, wherein a cooling passage for flowing a cooling fluid is formed in the screw shaft in the axial direction. A cooling device for a feed screw, wherein a heat radiating member is provided in the cooling passage so that a part thereof contacts an inner peripheral surface of the screw shaft.
【請求項2】 前記放熱部材を熱伝導率の大きい材料に
より構成したことを特徴とする請求項1に記載の送りね
じの冷却装置。
2. The feed screw cooling device according to claim 1, wherein the heat radiating member is made of a material having high thermal conductivity.
【請求項3】 前記放熱部材をコイル状に構成して前記
ねじ軸の内周面に内接させたことを特徴とする請求項1
又は2に記載の送りねじの冷却装置。
3. The heat dissipation member according to claim 1, wherein the heat dissipation member has a coil shape and is inscribed in an inner peripheral surface of the screw shaft.
Or the cooling device for a feed screw according to 2.
【請求項4】 前記放熱部材を前記ねじ軸の軸方向の略
全長に亘って設けたことを特徴とする請求項1乃至3の
何れかに記載の送りねじの冷却装置。
4. The feed screw cooling device according to claim 1, wherein the heat radiating member is provided over substantially the entire length of the screw shaft in the axial direction.
JP10574298A 1998-03-31 1998-03-31 Lead screw cooling system Expired - Lifetime JP3352024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10574298A JP3352024B2 (en) 1998-03-31 1998-03-31 Lead screw cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10574298A JP3352024B2 (en) 1998-03-31 1998-03-31 Lead screw cooling system

Publications (2)

Publication Number Publication Date
JPH11287306A JPH11287306A (en) 1999-10-19
JP3352024B2 true JP3352024B2 (en) 2002-12-03

Family

ID=14415727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10574298A Expired - Lifetime JP3352024B2 (en) 1998-03-31 1998-03-31 Lead screw cooling system

Country Status (1)

Country Link
JP (1) JP3352024B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100740776B1 (en) 2006-06-17 2007-07-19 두산인프라코어 주식회사 Ball screw support part cooling apparatus for machine
CN102124251A (en) 2009-08-31 2011-07-13 日本精工株式会社 Ball screw device
JP5732739B2 (en) * 2010-04-09 2015-06-10 日本精工株式会社 Ball screw device
ES2440080B2 (en) * 2012-07-27 2014-11-06 Shuton, S.A. Cooling module for a linear motion device and ball screw
TWI512220B (en) * 2013-10-29 2015-12-11 Hiwin Tech Corp Linear drive module with cooling device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210856Y2 (en) * 1984-10-22 1990-03-16
JPH0344260U (en) * 1989-09-08 1991-04-24

Also Published As

Publication number Publication date
JPH11287306A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
US6817260B2 (en) Ball screw with cooling means
TWI477039B (en) Cooling jacket
JP4786702B2 (en) Cooling structure of rotating electric machine
TW592880B (en) Spindle apparatus
TW201322607A (en) Cooling jacket
JP3352024B2 (en) Lead screw cooling system
US6681842B2 (en) Cooling apparatus
JP2010221360A (en) Machine tool
US20020152822A1 (en) Ball screw having a cooling channel
JPH06254944A (en) Device and method for cooling extruder cylinder
JP2002310258A (en) Ball screw provided with cooling passage
US20040016532A1 (en) Cooling apparatus
JP2005214545A (en) Heat exchanger
JP2006189249A (en) Double pipe heat exchanger
CN110601394B (en) Stator cooling structure, stator assembly and motor with same
JP2002166361A (en) Roller journaling device
JPH10100041A (en) Feed screw device
JP2002168319A (en) Feed screw device
JPH025545B2 (en)
JPH11118370A (en) Double tube type heat exchanger
CN213004201U (en) Heat dissipation type grinding wheel suitable for pipeline grinding
JP2560153Y2 (en) Feed nut cooling system
KR19980042219A (en) Heat exchanger and its manufacturing method
US5745343A (en) Cubicle for inverter
JPS601961Y2 (en) Rotating shaft cooling system