JPH025545B2 - - Google Patents

Info

Publication number
JPH025545B2
JPH025545B2 JP56176776A JP17677681A JPH025545B2 JP H025545 B2 JPH025545 B2 JP H025545B2 JP 56176776 A JP56176776 A JP 56176776A JP 17677681 A JP17677681 A JP 17677681A JP H025545 B2 JPH025545 B2 JP H025545B2
Authority
JP
Japan
Prior art keywords
cooling
bearing
rotating shaft
housing
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56176776A
Other languages
Japanese (ja)
Other versions
JPS5877430A (en
Inventor
Tadashi Rotsukaku
Noryuki Koreda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP56176776A priority Critical patent/JPS5877430A/en
Publication of JPS5877430A publication Critical patent/JPS5877430A/en
Publication of JPH025545B2 publication Critical patent/JPH025545B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/12Arrangements for cooling or lubricating parts of the machine
    • B23Q11/126Arrangements for cooling or lubricating parts of the machine for cooling only
    • B23Q11/127Arrangements for cooling or lubricating parts of the machine for cooling only for cooling motors or spindles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Description

【発明の詳細な説明】 本発明は、高速回転する回転軸の熱放散が良好
に行ない得るように企図した回転軸の冷却構造に
関し、特に工作機械のスピンドルに組み込んで好
適なものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling structure for a rotating shaft that is designed to efficiently dissipate heat from a rotating shaft that rotates at high speed, and is particularly suitable for being incorporated into a spindle of a machine tool.

工作機械のスピンドルの転がり軸受の温度上昇
は、これに伴う熱変形により被加工物の加工精度
を劣化させたり、場合によつては転がり軸受自体
の焼付きの原因となることもある。このため、軸
受の温度上昇を低くする方法として極微量のグリ
ースを軸受に封入し、軸受の転がり接触部でグリ
ースが受ける大きな変形速度に起因した軸受の発
熱量を小さくする方法が採用されている。
An increase in the temperature of the rolling bearing of the spindle of a machine tool may deteriorate the machining accuracy of the workpiece due to the accompanying thermal deformation, and in some cases may cause seizing of the rolling bearing itself. Therefore, as a method to reduce the temperature rise of the bearing, a method has been adopted in which a very small amount of grease is sealed in the bearing to reduce the amount of heat generated by the bearing due to the large deformation rate that the grease undergoes at the rolling contact part of the bearing. .

しかしながら、近年の工作機械におけるスピン
ドルの高速化に伴い、加工精度の確保のために軸
受の発熱を一層小さくする必要にせまられてお
り、軸受の外輪を支持するハウジング内を油や水
或いは空気等の流体で冷却する方法が多用されつ
つある。このような従来の工作機械のスピンドル
の冷却構造を表す第1図に示すように、スピンド
ル1は多数の軸受2を介してハウジング3に対し
て駆動回転自在に支持されており、これら軸受2
の周囲に位置するハウジング3内には、冷却油が
供給される給油口4と軸受2との間で熱交換して
高温となつた冷却油を排出する排油口5とを具え
た油溝6が形成されている。一般に、軸受2の外
輪はハウジング3に接触しているため、その内輪
よりも熱の放散性が良くて温度も低いのが普通で
ある。しかし、上述した冷却構造では更に外輪の
温度が内輪よりも下がる傾向にあるため、軸受の
内輪の膨張に反して外輪が収縮する結果、軸受の
転動体の予圧が過大となつて焼付ことがあつた。
However, as spindles in machine tools have become faster in recent years, it has become necessary to further reduce the heat generated by bearings in order to ensure machining accuracy. Cooling methods using fluids are increasingly being used. As shown in FIG. 1, which shows the spindle cooling structure of such a conventional machine tool, a spindle 1 is rotatably supported by a housing 3 via a number of bearings 2.
In the housing 3 located around the housing 3, there is an oil groove provided with an oil filler port 4 through which cooling oil is supplied and an oil drain port 5 through which the cooling oil that has become hot due to heat exchange between the bearing 2 is discharged. 6 is formed. Generally, since the outer ring of the bearing 2 is in contact with the housing 3, it generally has better heat dissipation properties and a lower temperature than the inner ring. However, in the above-mentioned cooling structure, the temperature of the outer ring tends to be lower than that of the inner ring, and as a result, the outer ring contracts while the inner ring of the bearing expands, resulting in excessive preload on the rolling elements of the bearing, which can lead to seizure. Ta.

スピンドルには工具交換装置の一部が装備され
ていることが多いため、スピンドル内部にヒート
パイプや冷却流体を通すことが困難である。そこ
で、軸受の内輪側の熱放散を良くするためにはス
ピンドルの外周部を冷却することも考えられる
が、軸受からの発熱はこの軸受の内輪を介して回
転軸の外周面から奪う必要があり、冷却液と軸受
との間の熱抵抗が大きいことから冷却効率を高め
るためには冷却の温度を充分下げ、熱の流路の温
度勾配を大きくしておかなければならない。しか
るに、冷却熱の温度を下げるとこの冷却液を回転
軸まで運んだり回収したりする流路が形成された
ハウジング内までも冷却してしまう結果、ハウジ
ングの熱変形を惹起して回転軸の回転精度を低下
させてしまうと共に軸方向変位を誘発し、例えば
工作機械主軸等ではワークの加工精度不良となつ
て表われる。
Since the spindle is often equipped with part of the tool changer, it is difficult to route heat pipes or cooling fluid inside the spindle. Therefore, cooling the outer periphery of the spindle may be considered to improve heat dissipation on the inner ring side of the bearing, but the heat generated from the bearing needs to be taken away from the outer periphery of the rotating shaft via the inner ring of the bearing. Since the thermal resistance between the cooling fluid and the bearing is large, in order to increase the cooling efficiency, the cooling temperature must be sufficiently lowered and the temperature gradient of the heat flow path must be increased. However, when the temperature of the cooling heat is lowered, the inside of the housing, where the flow path for transporting and collecting the coolant to the rotating shaft is formed, is also cooled, causing thermal deformation of the housing and hindering the rotation of the rotating shaft. This reduces accuracy and induces axial displacement, which manifests as poor machining accuracy of the workpiece, for example, in the main spindle of a machine tool.

一般に、工作機械主軸等では加工精度の向上を
目的として回転軸及びハウジングの熱変位を抑圧
するようにしており、回転軸の回転数に応じて冷
却液による冷却能力を変える必要がある。ところ
が、冷却液の温度制御により回転軸の冷却能力を
制御しようとしても応答性に問題があり、例えば
急激に高速回転をさせるクイツクスタートの際に
は、軸受内外輪の温度差の拡大を制御する効果が
不足し、軸受の焼付きを招来する場合があつた。
Generally, in machine tool spindles, etc., thermal displacement of the rotating shaft and housing is suppressed for the purpose of improving machining accuracy, and it is necessary to change the cooling capacity of the coolant depending on the rotation speed of the rotating shaft. However, even when trying to control the cooling capacity of the rotating shaft by controlling the temperature of the coolant, there is a problem with responsiveness.For example, when performing a quick start that rapidly rotates at high speed, it is necessary to control the expansion of the temperature difference between the inner and outer rings of the bearing. In some cases, the bearings were not sufficiently effective, leading to seizure of the bearings.

本発明は、二種の金属を組み合わせた回路に電
流を流すと両者の接合部で熱の吸収或いは発生が
起こるというペルチエ効果に着目し、上述した従
来の高速回転スピンドルの冷却装置における種々
の不具合に鑑みて効率の非常によい熱放散性に優
れた冷却構造を提供することを目的とする。
The present invention focuses on the Peltier effect, in which heat is absorbed or generated at the junction of two metals when a current is passed through a circuit made of a combination of two metals. In view of this, it is an object of the present invention to provide a cooling structure that is highly efficient and has excellent heat dissipation properties.

この目的を達成する本発明の回転軸の冷却構造
にかかる構成は、軸受を介してハウジングに駆動
回転自在に支持された回転軸において、熱電素子
を有し且つ外周側が発熱部で内周側が吸熱部とな
つた筒状の冷却装置を、これが前記回転軸に対し
隙間を隔てて取り囲むように前記軸受の近傍の前
記ハウジング内周壁に固定し、前記軸受の発熱を
前記回転軸を介して吸熱するこの冷却装置の外周
側の前記発熱部に臨む冷却手段を当該冷却装置と
前記ハウジングとの間に設けたことを特徴とする
ものである。
The configuration of the rotating shaft cooling structure of the present invention that achieves this objective is such that the rotating shaft is rotatably supported by a housing via a bearing, has a thermoelectric element, and has a heat generating part on the outer circumferential side and a heat absorbing part on the inner circumferential side. A cylindrical cooling device is fixed to the inner circumferential wall of the housing near the bearing so as to surround the rotating shaft with a gap therebetween, and absorb heat generated by the bearing through the rotating shaft. The cooling device is characterized in that a cooling means facing the heat generating portion on the outer peripheral side of the cooling device is provided between the cooling device and the housing.

以下、本発明による回転軸の冷却構造を高速回
転し得る工作機械のスピンドルに組み込んだ一実
施例について、第2図〜第5図を参照しながら詳
細に説明する。本実施例の全体の構造を表す第2
図に示すように、先端部に図示しない工具が嵌合
されるテーパ穴11を形成したスピンドル12内
には、スピンドル12に対して工具の固定及び固
定解除を行うドローバ13がスピンドル12の中
心軸に沿つて移動自在に取り付けられている。前
記スピンドル12は前後一対の軸受14,15を
介してハウジング16に駆動回転自在に支持され
ており、これら軸受14,15はそれぞれ軸受押
え17,18及びナツト19,20等によりスピ
ンドル12とハウジング16との間に固定されて
いる。
Hereinafter, an embodiment in which a rotating shaft cooling structure according to the present invention is incorporated into a spindle of a machine tool that can rotate at high speed will be described in detail with reference to FIGS. 2 to 5. The second part representing the overall structure of this example
As shown in the figure, a drawbar 13 for fixing and releasing a tool from the spindle 12 is installed in the spindle 12, which has a tapered hole 11 formed at its tip into which a tool (not shown) is fitted. It is attached so that it can be moved freely along the The spindle 12 is rotatably supported by a housing 16 via a pair of front and rear bearings 14 and 15, and these bearings 14 and 15 are connected to the spindle 12 and the housing 16 by bearing holders 17 and 18 and nuts 19 and 20, respectively. It is fixed between.

一方、これら軸受14,15の間のハウジング
16の内周壁にはスピンドル12の外周面に対し
微小な隙間を隔ててこのスピンドル12を取り囲
む筒状の冷却装置21が設けられており、この冷
却装置21を拡大した第3図及びその―矢視
断面を表す第4図に示すように、本実施例では一
端部が切り欠かれた環状をなすN型のテルル化ビ
スマス22と同形状のP型のテルル化ビスマス2
3とが交互に樹脂板24を介して配置され、この
樹脂板24により一つおきに仕切られる筒状の内
部銅板25と外部銅板26とがN型のテルル化ビ
スマス22の内周面とP型のテルル化ビスマス2
3の外周面とに当接している。これらは樹脂板2
4と同様な熱伝導率や導電率が小さなエポキシ樹
脂や四フツ化エチレン樹脂等の樹脂フランジ27
で一体化されており、これらの内周面や外周面は
比較的熱伝導率の良いセラミツク等の絶縁層28
でコーテイングされている。第4図中の―矢
視断面を表す第5図に示すように、内部銅板25
の両端部にはハウジング16の外部から導かれた
リード線29が電気的に接続し、内部銅板25が
吸熱側となり且つ外部銅板26が発熱側となるよ
うに第5図中、右端の内部銅板25が正電位に接
続し且つ左端の内部銅板25が負電位に接続して
いる。本実施例では熱電素子としてN型のテルル
化ビスマス22とP型のテルル化ビスマス23と
を使用しているが、ペルチエ効果のあるものであ
れば他のPN接合素子等を任意に使うことが可能
である。
On the other hand, a cylindrical cooling device 21 is provided on the inner circumferential wall of the housing 16 between these bearings 14 and 15, and surrounds the spindle 12 with a small gap from the outer circumferential surface of the spindle 12. As shown in FIG. 3, which is an enlarged view of 21, and FIG. bismuth telluride 2
3 are arranged alternately through resin plates 24, and cylindrical internal copper plates 25 and external copper plates 26, which are partitioned every other by the resin plates 24, are connected to the inner circumferential surface of the N-type bismuth telluride 22 and P Type of bismuth telluride 2
It is in contact with the outer peripheral surface of No. 3. These are resin plates 2
Resin flange 27 made of epoxy resin, tetrafluoroethylene resin, etc. with low thermal conductivity and electrical conductivity similar to 4.
These inner and outer peripheral surfaces are covered with an insulating layer 28 made of ceramic or the like with relatively good thermal conductivity.
It is coated with. As shown in FIG. 5, which shows a cross section in the direction of the − arrow in FIG. 4, the internal copper plate 25
A lead wire 29 led from the outside of the housing 16 is electrically connected to both ends of the housing 16, and the inner copper plate at the right end in FIG. 25 is connected to a positive potential, and the leftmost internal copper plate 25 is connected to a negative potential. In this example, N-type bismuth telluride 22 and P-type bismuth telluride 23 are used as thermoelectric elements, but other PN junction elements etc. can be used arbitrarily as long as they have a Peltier effect. It is possible.

この冷却装置21の外周とハウジング16との
間には、冷却油が送給される冷却油供給路30と
この冷却油を排出する冷却油排出路31とに連通
する油溝32が形成されており、この油溝32を
流れる冷却油が高温となる外部銅板26を冷却す
るようになつている。本実施例では冷却装置21
の冷却手段としてその周囲に冷却油を流すように
したが、他の周知の冷却手段を用いてもよいこと
は当然である。
An oil groove 32 is formed between the outer periphery of the cooling device 21 and the housing 16, which communicates with a cooling oil supply path 30 through which cooling oil is supplied and a cooling oil discharge path 31 through which the cooling oil is discharged. The cooling oil flowing through this oil groove 32 cools the external copper plate 26 which becomes hot. In this embodiment, the cooling device 21
Although cooling oil is flowed around the cooling means, it is of course possible to use other known cooling means.

従つて、内部銅板25及び外部銅板26を介し
てN型のテルル化ビスマス22及びP型のテルル
化ビスマス23に通電すると、ペルチエ効果によ
り内部銅板25に吸熱作用が発生し、高速回転す
るスピンドル12からの熱を吸収するため、スピ
ンドル12及び軸受14,15が高温化する虞は
ない。一方、これと並行して外部銅板26が発熱
するが、油溝32を流れる冷却油が外部銅板26
との間で熱交換を行い、外部銅板26が冷却され
て高温となつた冷却油が冷却油排出路31からハ
ウジング16外に導き出される。このつまり、軸
受14,15の内外輪と回転体との摩擦熱のう
ち、軸受14,15の内輪を介してスピンドル1
2に伝わる熱は、スピンドル12と内部銅板25
との間の微小な空気層を介して吸熱作用を有する
内部銅板25に吸収され、そして外部銅板26が
発熱することとなるが、外部銅板26は油溝32
を流れる冷却油により冷却され、熱がこもること
がない。一方、軸受14,15の外輪を介してハ
ウジング16に伝わる熱は、大気接触するハウジ
ング自体の自然放熱と油溝32内を流れる冷却油
により冷却される結果、軸受14,15の内外輪
の温度差が少なくなる上に外部銅板26自体の冷
却により内部銅板25の吸熱効率が高まるため、
スピンドル12及び軸受14,15の冷却が一層
促進される。
Therefore, when electricity is applied to the N-type bismuth telluride 22 and the P-type bismuth telluride 23 via the internal copper plate 25 and the external copper plate 26, an endothermic action occurs in the internal copper plate 25 due to the Peltier effect, causing the spindle 12 to rotate at high speed. Since the spindle 12 and the bearings 14, 15 absorb heat from On the other hand, in parallel with this, the external copper plate 26 generates heat, but the cooling oil flowing through the oil groove 32 causes the external copper plate 26 to generate heat.
The external copper plate 26 is cooled and the high temperature cooling oil is led out of the housing 16 from the cooling oil discharge path 31. In other words, some of the frictional heat between the inner and outer rings of the bearings 14 and 15 and the rotating body is transferred to the spindle through the inner rings of the bearings 14 and 15.
The heat transferred to the spindle 12 and the internal copper plate 25
The heat is absorbed into the internal copper plate 25 which has an endothermic effect through a minute air gap between the oil grooves 32 and the external copper plate 26 generates heat.
It is cooled by the cooling oil flowing through it, so no heat builds up. On the other hand, the heat transmitted to the housing 16 via the outer rings of the bearings 14 and 15 is cooled by the natural heat radiation of the housing itself in contact with the atmosphere and the cooling oil flowing in the oil groove 32, resulting in the temperature of the inner and outer rings of the bearings 14 and 15. In addition to reducing the difference, the cooling of the external copper plate 26 itself increases the heat absorption efficiency of the internal copper plate 25.
Cooling of the spindle 12 and bearings 14, 15 is further promoted.

このように本発明の回転軸の冷却構造による
と、高速回転するスピンドルの周囲を熱電素子を
有する冷却装置で取り囲み、ペルチエ効果を利用
してスピンドルの熱を冷却手段で吸熱するように
したので、軸受内輪側からの熱放散性が良くて熱
的応答性に優れているので、クイツクスタート又
はコールドスタート等の回転軸の急激な立ち上が
りによる高速回転の場合でも、軸受内外輪の温度
差の拡大が抑制されて軸受の焼付きを防止でき
る。又、熱電素子の発熱部を冷却する冷却液の温
度を室温と等しくしておいた場合でも、熱電素子
の吸熱部の温度を充分低くできるので、軸受発熱
部との間の温度勾配を大きく取ることが可能であ
り、充分な冷却能力が確保される。更に、回転軸
そのものを直接冷却するようにしているため、例
えばハウジング等には殆ど熱的悪影響を与えるこ
とがなく、回転軸の回転数に応じた発熱量に基づ
いて冷却装置の冷却能力を制御することにより、
回転軸の先端部の熱変位を極めて小さく(例えば
15マイクロメートル以下)に制御することができ
る。このことは、例えば本発明を工作機械の主軸
に適応した場合には、加工対象物の加工精度の安
定化、高精度化を図る上で極めて有利となる。
As described above, according to the rotating shaft cooling structure of the present invention, the spindle rotating at high speed is surrounded by a cooling device having a thermoelectric element, and the heat of the spindle is absorbed by the cooling means using the Peltier effect. Since the heat dissipation from the inner ring side of the bearing is good and the thermal response is excellent, the temperature difference between the inner and outer rings of the bearing will not increase even in the case of high-speed rotation due to a sudden start-up of the rotating shaft such as a quick start or cold start. is suppressed and seizure of the bearing can be prevented. In addition, even if the temperature of the coolant that cools the heat generating part of the thermoelectric element is kept equal to room temperature, the temperature of the heat absorbing part of the thermoelectric element can be sufficiently lowered, so the temperature gradient between it and the heat generating part of the bearing can be increased. This ensures sufficient cooling capacity. Furthermore, since the rotating shaft itself is directly cooled, there is almost no adverse thermal effect on the housing, etc., and the cooling capacity of the cooling device is controlled based on the amount of heat generated according to the rotation speed of the rotating shaft. By doing so,
Thermal displacement at the tip of the rotating shaft is extremely small (e.g.
15 micrometers or less). For example, when the present invention is applied to the main axis of a machine tool, this is extremely advantageous in stabilizing and increasing the machining accuracy of the workpiece.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のスピンドルの冷却構造の概略を
表す断面図、第2図は本発明を工作機械のスピン
ドルに応用した一実施例の概略構造を表す断面
図、第3図はその冷却装置の一部の詳細構造を拡
大した断面図、第4図はその―矢視断面図、
第5図はその―矢視断面図であり、図中の符
号で、 12はスピンドル、14,15は軸受、16は
ハウジング、21は冷却装置、22はN型のテル
ル化ビスマス、23はP型のテルル化ビスマス、
24は樹脂板、25は内部銅板、26は外部銅
板、29はリード線、30は冷却油供給部、31
は冷却油排出路、32は油溝である。
Fig. 1 is a sectional view schematically showing a conventional spindle cooling structure, Fig. 2 is a sectional view showing a schematic structure of an embodiment in which the present invention is applied to a spindle of a machine tool, and Fig. 3 is a sectional view of the cooling device. An enlarged sectional view of a part of the detailed structure, Figure 4 is a sectional view taken in the direction of the arrow.
Fig. 5 is a cross-sectional view taken along the arrow, and the reference numbers in the figure are: 12 is the spindle, 14, 15 are the bearings, 16 is the housing, 21 is the cooling device, 22 is N type bismuth telluride, 23 is P type of bismuth telluride,
24 is a resin plate, 25 is an internal copper plate, 26 is an external copper plate, 29 is a lead wire, 30 is a cooling oil supply section, 31
3 is a cooling oil discharge path, and 32 is an oil groove.

Claims (1)

【特許請求の範囲】[Claims] 1 軸受を介してハウジングに駆動回転自在に支
持された回転軸において、熱電素子を有し且つ外
周側が発熱部で内周側が吸熱部となつた筒状の冷
却装置を、これが前記回転軸に対し隙間を隔てて
取り囲むように前記軸受の近傍の前記ハウジング
内周壁に固定し、前記軸受の発熱を前記回転軸を
介して吸熱するこの冷却装置の外周側の前記発熱
部に臨む冷却手段を当該冷却装置と前記ハウジン
グとの間に設けたことを特徴とする回転軸の冷却
構造。
1. On a rotating shaft that is rotatably supported by a housing via a bearing, a cylindrical cooling device having a thermoelectric element and having a heat generating part on the outer circumference and a heat absorbing part on the inner circumference is connected to the rotating shaft. The cooling device is fixed to the inner circumferential wall of the housing near the bearing so as to surround it with a gap therebetween, and absorbs heat generated by the bearing via the rotating shaft. A cooling structure for a rotating shaft, characterized in that it is provided between a device and the housing.
JP56176776A 1981-11-04 1981-11-04 Cooling unit for rotary shaft Granted JPS5877430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56176776A JPS5877430A (en) 1981-11-04 1981-11-04 Cooling unit for rotary shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56176776A JPS5877430A (en) 1981-11-04 1981-11-04 Cooling unit for rotary shaft

Publications (2)

Publication Number Publication Date
JPS5877430A JPS5877430A (en) 1983-05-10
JPH025545B2 true JPH025545B2 (en) 1990-02-02

Family

ID=16019626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56176776A Granted JPS5877430A (en) 1981-11-04 1981-11-04 Cooling unit for rotary shaft

Country Status (1)

Country Link
JP (1) JPS5877430A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0314280Y2 (en) * 1984-10-08 1991-03-29
JPS6239955U (en) * 1985-08-28 1987-03-10
DE102013105830A1 (en) * 2013-06-06 2014-12-11 Bilz Werkzeugfabrik Gmbh & Co. Kg Tool clamping system
CN108942398A (en) * 2018-07-08 2018-12-07 深圳市爱贝科精密机械有限公司 A kind of electro spindle cooling body
CN109412325A (en) * 2018-11-16 2019-03-01 江苏思维福特机械科技股份有限公司 A kind of electric machine main shaft

Also Published As

Publication number Publication date
JPS5877430A (en) 1983-05-10

Similar Documents

Publication Publication Date Title
US7614853B2 (en) Composite shaft
US10378587B2 (en) Magnetic fluid seal
JP3083364U (en) High-speed radiator
JPH09317778A (en) Main spindle bearing cooling device
CN111112655B (en) Compact electric spindle
JPH0989119A (en) Shaft sealing device for liquid apparatus
JPH025545B2 (en)
CN212598904U (en) Cooling structure of high-speed electric spindle
CN110026818B (en) Control system of electric spindle thermoelectric cooling device
JPS601961Y2 (en) Rotating shaft cooling system
JPS58131430A (en) Cooling device of static pressure bearing
JPH05208339A (en) Temperature control device for spindle of machine tool
JP4280383B2 (en) Spindle cooling structure for spindle stock with built-in motor
JPH10100041A (en) Feed screw device
JPH0525802Y2 (en)
JPH02101944A (en) Control method for thermal displacement of rotating shaft
CN111843605A (en) Main shaft cooling body and lathe
CN112996618A (en) Spindle device with built-in motor
JP7489763B2 (en) Bearing device and machine tool
WO2022151617A1 (en) Motor spindle and machine tool
JPS63140121A (en) Cooling device for fluid bearing
JP2553295Y2 (en) Spindle of machine tool
JP2002168319A (en) Feed screw device
CN114850514B (en) Heat dissipation balance type ultra-high speed numerical control machine tool mandrel and heat dissipation optimization method thereof
Kajikawa et al. Cooling of spindle shaft for machining center using heat exchangers