JP5731913B2 - Storage battery charge / discharge control device, power control system, and storage battery charge / discharge control method - Google Patents

Storage battery charge / discharge control device, power control system, and storage battery charge / discharge control method Download PDF

Info

Publication number
JP5731913B2
JP5731913B2 JP2011134149A JP2011134149A JP5731913B2 JP 5731913 B2 JP5731913 B2 JP 5731913B2 JP 2011134149 A JP2011134149 A JP 2011134149A JP 2011134149 A JP2011134149 A JP 2011134149A JP 5731913 B2 JP5731913 B2 JP 5731913B2
Authority
JP
Japan
Prior art keywords
system voltage
time
storage battery
power
voltage threshold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011134149A
Other languages
Japanese (ja)
Other versions
JP2013005584A (en
Inventor
松岡 保静
保静 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP2011134149A priority Critical patent/JP5731913B2/en
Publication of JP2013005584A publication Critical patent/JP2013005584A/en
Application granted granted Critical
Publication of JP5731913B2 publication Critical patent/JP5731913B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、蓄電池の充放電制御に関する発明であり、より詳しくは、蓄電池充放電制御装置、電力制御システムおよび蓄電池充放電制御方法に関する。   The present invention relates to charge / discharge control of a storage battery, and more particularly to a storage battery charge / discharge control device, a power control system, and a storage battery charge / discharge control method.

近年、太陽光発電装置等の分散電源による電力系統への売電が増えつつある中で、分散電源による系統電圧の上昇によって、分散電源から電力系統への逆潮流ができなくなり、分散電源による発電電力が無駄になってしまうという問題がある。系統電圧は、低圧需要家の受電電圧が電気事業法で101±6Vと定められているものの、分散電源による逆潮流が増えると上限値の107Vを逸脱する可能性が出てくる。電圧上昇抑制策としては、系統電圧が上限値(107V)を超えた場合、分散電源による逆潮流の力率を進相力率にして進相無効電力を供給することによって系統電圧の上昇を抑えるが、逆潮流の力率が限界値を超えると、逆潮流ができなくなる。特に太陽光発電の場合は、各分散電源による逆潮流のタイミングが一致する可能性が高い。このため、各需要家が蓄電池を備え、逆潮流のタイミングを分散させることにより系統電圧の上昇抑制策につながり、余剰電力の発生を抑えることができる。   In recent years, power sales to the power system by distributed power sources such as solar power generation devices are increasing, and the reverse power flow from the distributed power source to the power system becomes impossible due to the increase of the system voltage by the distributed power source. There is a problem that power is wasted. Although the system voltage is set to 101 ± 6V by the Electric Power Business Law, the voltage received by low-voltage consumers is likely to deviate from the upper limit of 107V when the reverse power flow by the distributed power source increases. As a voltage rise suppression measure, when the system voltage exceeds the upper limit (107V), the power factor of the reverse power flow by the distributed power source is set to the phase advance power factor to suppress the rise of the system voltage. However, when the power factor of reverse power flow exceeds the limit value, reverse power flow is not possible. In particular, in the case of photovoltaic power generation, there is a high possibility that the timing of reverse power flow by each distributed power source will coincide. For this reason, each consumer is equipped with a storage battery, and it leads to the rise suppression measure of a system voltage by distributing the timing of a reverse power flow, and generation | occurrence | production of surplus electric power can be suppressed.

下記の特許文献1には、系統電圧を検出し、系統電圧が上昇している際には、太陽光発電の発電電力を蓄電池に蓄電させる構成が開示されている。このような蓄電池を各分散電源に導入することで、各分散電源から電力系統への逆潮流のタイミングをずらすことができ、電力系統の品質保持や余剰電力の発生抑制を実現することができる。   The following Patent Document 1 discloses a configuration in which system voltage is detected, and when the system voltage is rising, the generated power of solar power generation is stored in a storage battery. By introducing such a storage battery into each distributed power source, the timing of reverse power flow from each distributed power source to the power system can be shifted, and it is possible to maintain the quality of the power system and suppress the generation of surplus power.

特開2004−180467号公報JP 2004-180467 A

しかしながら、分散電源の発電電力を蓄電池に充電するためには、予め蓄電池をある程度放電させておく必要があり、特許文献1の発明には、系統電圧の上昇を予測しながら蓄電池の充放電制御を行う構成までは記載されていない。   However, in order to charge the storage battery with the generated power of the distributed power source, it is necessary to discharge the storage battery to some extent in advance. In the invention of Patent Document 1, charge / discharge control of the storage battery is performed while predicting an increase in system voltage. The configuration to be performed is not described.

また、現状では、太陽光発電装置を備えた一般の家庭に蓄電池を設置することはコスト的に難しい点もあるが、通信設備等では蓄電池を備えているため、この蓄電池を有効に活用し、分散電源の余剰電力を充電させることが有効であると考えられる。ところが、通信設備用の蓄電池は停電用に常備されているため、通常は満充電状態で運用されており、放電する機会はほとんど無い。   In addition, at present, it is difficult to install a storage battery in a general household equipped with a solar power generation device, but since communication equipment has a storage battery, the storage battery can be used effectively, It is considered effective to charge the surplus power of the distributed power source. However, since storage batteries for communication facilities are always available for power outages, they are normally operated in a fully charged state and have almost no chance of discharging.

本発明は、上記課題を解決するために成されたものであり、蓄電池を適切なタイミングで放電・充電させることによって、系統電圧の電圧上昇を抑制しつつ分散電源の余剰電力を充電可能とすることを目的とする。   The present invention has been made to solve the above-described problem. By discharging and charging the storage battery at an appropriate timing, it is possible to charge the surplus power of the distributed power supply while suppressing the voltage increase of the system voltage. For the purpose.

本発明に係る蓄電池充放電制御装置は、電力系統から入力される交流電力を直流電力に整流し、整流後の直流電力を負荷へ出力するAC/DCコンバータと、蓄電池と、前記電力系統の系統電圧を検出し記録する系統電圧検出手段と、前記系統電圧検出手段により記録された系統電圧から、系統電圧が予め定められた閾値を次に超える時刻である次の系統電圧閾値超過時刻、および、前記次の系統電圧閾値超過時刻から系統電圧が前記閾値を超えている期間の長さである次の系統電圧閾値超過時間を予測する系統電圧予測手段と、前記系統電圧予測手段により予測された次の系統電圧閾値超過時刻および次の系統電圧閾値超過時間に基づいて、前記蓄電池から前記負荷への放電および前記電力系統から前記蓄電池への充電を制御する充放電制御手段と、を備え、前記充放電制御手段は、前記次の系統電圧閾値超過時刻から前記次の系統電圧閾値超過時間だけ遡った時刻、又は、当該次の系統電圧閾値超過時間だけ遡った時刻から更に所定時間だけ遡った時刻に、前記蓄電池を前記負荷に接続して前記蓄電池から前記負荷への放電を開始する。 A storage battery charge / discharge control device according to the present invention includes an AC / DC converter that rectifies AC power input from a power system into DC power and outputs the rectified DC power to a load, a storage battery, and a system of the power system. A system voltage detecting means for detecting and recording a voltage; a system voltage threshold value exceeding time that is a time when the system voltage next exceeds a predetermined threshold from the system voltage recorded by the system voltage detecting means; and A system voltage predicting means for predicting a next system voltage threshold excess time that is a length of a period during which the system voltage exceeds the threshold from the next system voltage threshold exceeding time, and a next predicted by the system voltage predicting means Charge / discharge control for controlling discharge from the storage battery to the load and charge from the power system to the storage battery based on a system voltage threshold excess time and a next system voltage threshold excess time And means, wherein the charge and discharge control means, the next system voltage time traced back by the next system voltage threshold over time from the threshold excess time or from time going back by the next system voltage threshold over time more time predated predetermined time, to connect the battery to the load you start discharging to the load from the battery.

上記蓄電池充放電制御装置では、系統電圧検出手段が電力系統の系統電圧を検出して記録しておき、系統電圧予測手段が、系統電圧検出手段により記録された系統電圧から、系統電圧が予め定められた閾値を次に超える時刻である「次の系統電圧閾値超過時刻」、および、当該次の系統電圧閾値超過時刻から系統電圧が前記閾値を超えている期間の長さである「次の系統電圧閾値超過時間」を予測する。そして、充放電制御手段が、予測された「次の系統電圧閾値超過時刻」および「次の系統電圧閾値超過時間」に基づいて、蓄電池から負荷への放電および電力系統から蓄電池への充電を制御する。   In the storage battery charge / discharge control device, the system voltage detecting means detects and records the system voltage of the power system, and the system voltage predicting means predetermines the system voltage from the system voltage recorded by the system voltage detecting means. “Next grid voltage threshold excess time”, which is the time when the next grid voltage threshold is exceeded, and “next grid,” which is the length of the period when the grid voltage exceeds the threshold from the next grid voltage threshold excess time Predict "voltage threshold exceeded time". Then, the charge / discharge control means controls the discharge from the storage battery to the load and the charging from the power system to the storage battery based on the predicted “next system voltage threshold excess time” and “next system voltage threshold excess time”. To do.

また、系統電圧予測手段は、過去に記録された系統電圧閾値超過時刻と系統電圧閾値超過時間と曜日情報等から、次の系統電圧閾値超過時刻および次の系統電圧閾値超過時間を予測してもよい。   Further, the system voltage predicting means may predict the next system voltage threshold excess time and the next system voltage threshold excess time from the system voltage threshold excess time, system voltage threshold excess time, day of week information, etc. recorded in the past. Good.

上記のような蓄電池充放電制御装置に係る発明は、電力系統と蓄電池充放電制御装置と負荷とを含んで構成される電力制御システムに係る発明、および、蓄電池充放電制御装置によって実行される蓄電池充放電制御方法に係る発明として捉えることができ、以下のように記述することができる。以下の電力制御システムに係る発明や蓄電池充放電制御方法に係る発明も、蓄電池充放電制御装置に係る発明と同様の作用・効果を奏する。   The invention related to the storage battery charge / discharge control apparatus as described above is an invention related to a power control system including an electric power system, a storage battery charge / discharge control apparatus, and a load, and a storage battery executed by the storage battery charge / discharge control apparatus. It can be understood as an invention relating to a charge / discharge control method, and can be described as follows. The invention relating to the following power control system and the invention relating to the storage battery charge / discharge control method also exhibit the same operations and effects as the invention relating to the storage battery charge / discharge control device.

本発明に係る電力制御システムは、電力系統と蓄電池充放電制御装置と負荷とを含んで構成される電力制御システムであって、前記蓄電池充放電制御装置は、前記電力系統から入力される交流電力を直流電力に整流し、整流後の直流電力を前記負荷へ出力するAC/DCコンバータと、蓄電池と、前記電力系統の系統電圧を検出し記録する系統電圧検出手段と、前記系統電圧検出手段により記録された系統電圧から、系統電圧が予め定められた閾値を次に超える時刻である次の系統電圧閾値超過時刻、および、前記次の系統電圧閾値超過時刻から系統電圧が前記閾値を超えている期間の長さである次の系統電圧閾値超過時間を予測する系統電圧予測手段と、前記系統電圧予測手段により予測された次の系統電圧閾値超過時刻および次の系統電圧閾値超過時間に基づいて、前記蓄電池から前記負荷への放電および前記電力系統から前記蓄電池への充電を制御する充放電制御手段と、を備え、前記充放電制御手段は、前記次の系統電圧閾値超過時刻から前記次の系統電圧閾値超過時間だけ遡った時刻、又は、当該次の系統電圧閾値超過時間だけ遡った時刻から更に所定時間だけ遡った時刻に、前記蓄電池を前記負荷に接続して前記蓄電池から前記負荷への放電を開始する。 The power control system according to the present invention is a power control system configured to include a power system, a storage battery charge / discharge control device, and a load, and the storage battery charge / discharge control device is an AC power input from the power system. An AC / DC converter that outputs the rectified DC power to the load, a storage battery, a system voltage detection unit that detects and records a system voltage of the power system, and a system voltage detection unit From the recorded grid voltage, the next grid voltage threshold excess time, which is the time when the grid voltage next exceeds a predetermined threshold, and the grid voltage exceeds the threshold from the next grid voltage threshold excess time A system voltage prediction means for predicting a next system voltage threshold excess time which is the length of the period, a next system voltage threshold excess time predicted by the system voltage prediction means and a next system power Based on the threshold over time, a charge and discharge control means for controlling the charging from the battery to the battery from the discharge and the electric power system to the load, wherein the charge and discharge control means, the next system voltage threshold The storage battery is connected to the load at a time that is traced back by the next grid voltage threshold excess time from an excess time, or a time that is traced back by a predetermined time from the time traced by the next grid voltage threshold excess time. start a discharge to the load from the battery.

本発明に係る蓄電池充放電制御方法は、電力系統から入力される交流電力を直流電力に整流し整流後の直流電力を負荷へ出力するAC/DCコンバータと、蓄電池と、を備える蓄電池充放電制御装置、によって実行される蓄電池充放電制御方法であって、前記電力系統の系統電圧を検出し記録する系統電圧検出ステップと、前記系統電圧検出ステップにて記録された系統電圧から、系統電圧が予め定められた閾値を次に超える時刻である次の系統電圧閾値超過時刻、および、前記次の系統電圧閾値超過時刻から系統電圧が前記閾値を超えている期間の長さである次の系統電圧閾値超過時間を予測する系統電圧予測ステップと、前記系統電圧予測ステップにて予測された次の系統電圧閾値超過時刻および次の系統電圧閾値超過時間に基づいて、前記蓄電池から前記負荷への放電および前記電力系統から前記蓄電池への充電を制御する充放電制御ステップと、を備え、前記充放電制御ステップでは、前記次の系統電圧閾値超過時刻から前記次の系統電圧閾値超過時間だけ遡った時刻、又は、当該次の系統電圧閾値超過時間だけ遡った時刻から更に所定時間だけ遡った時刻に、前記蓄電池を前記負荷に接続して前記蓄電池から前記負荷への放電を開始する。
A storage battery charge / discharge control method according to the present invention includes: an AC / DC converter that rectifies AC power input from a power system into DC power and outputs rectified DC power to a load; and a storage battery. A storage battery charge / discharge control method executed by an apparatus, wherein a system voltage is detected in advance from a system voltage detection step for detecting and recording a system voltage of the power system, and a system voltage recorded in the system voltage detection step. The next grid voltage threshold excess time that is the next time that exceeds the predetermined threshold, and the next grid voltage threshold that is the length of the period during which the grid voltage exceeds the threshold from the next grid voltage threshold excess time Based on the system voltage prediction step for predicting the excess time, the next system voltage threshold excess time and the next system voltage threshold excess time predicted in the system voltage prediction step, A discharge control step of controlling the charging of the battery from the discharge and the electric power system to the load from the serial accumulator, wherein the at charge and discharge control step, the next line from the next of the system voltage threshold exceeded time Discharge from the storage battery to the load by connecting the storage battery to the load at a time that is back by the voltage threshold excess time, or a time that is a predetermined time further from the time that is back by the next grid voltage threshold excess time start the.

本発明によれば、蓄電池を適切なタイミングで放電・充電させることによって、系統電圧の電圧上昇を抑制しつつ分散電源の余剰電力を充電することができる。例えば、分散電源の発電によって電力系統の電圧が上昇し余剰電力が発生した場合に、例えば通信設備内の蓄電池に余剰電力を充電できるようになり、太陽光発電装置等の分散電源が発電できなくなる事態を抑制でき、分散電源の電力を有効に利用できるようになる。   ADVANTAGE OF THE INVENTION According to this invention, the surplus electric power of a distributed power supply can be charged, suppressing the voltage rise of a system voltage by discharging and charging a storage battery at appropriate timing. For example, when the power system voltage rises due to the power generation of the distributed power source and surplus power is generated, for example, the storage battery in the communication facility can be charged with surplus power, and the distributed power source such as a solar power generation device cannot generate power The situation can be suppressed, and the power of the distributed power source can be used effectively.

発明の実施形態に係る電力制御システムの機能ブロック図である。1 is a functional block diagram of a power control system according to an embodiment of the invention. 系統電圧の時系列変化の一例を示す図である。It is a figure which shows an example of the time-sequential change of a system voltage. 蓄電池充放電制御装置により実行される処理内容を示すフロー図である。It is a flowchart which shows the processing content performed by the storage battery charging / discharging control apparatus. 蓄電池充放電制御装置のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions of a storage battery charging / discharging control apparatus.

以下、図面を参照しながら、本発明に係る実施形態を説明する。   Embodiments according to the present invention will be described below with reference to the drawings.

図1には、蓄電池充放電制御装置10を含んだ電力制御システム1の機能ブロック図を示す。この図1に示すように、電力制御システム1は、電力系統30と蓄電池充放電制御装置10と直流負荷20とを含んで構成される。このうち蓄電池充放電制御装置10は、蓄電池11、AC/DCコンバータ(整流器)12、充放電制御手段13、系統電圧予測手段14、および系統電圧検出手段15を備える。   In FIG. 1, the functional block diagram of the electric power control system 1 containing the storage battery charging / discharging control apparatus 10 is shown. As shown in FIG. 1, the power control system 1 includes a power system 30, a storage battery charge / discharge control device 10, and a DC load 20. Among these, the storage battery charge / discharge control device 10 includes a storage battery 11, an AC / DC converter (rectifier) 12, a charge / discharge control unit 13, a system voltage prediction unit 14, and a system voltage detection unit 15.

このうちAC/DCコンバータ12は、電力系統30から入力される交流電力を直流電力に整流し、整流後の直流電力を蓄電池11又は直流負荷20へ出力する。   Among these, the AC / DC converter 12 rectifies AC power input from the power system 30 into DC power, and outputs the DC power after rectification to the storage battery 11 or the DC load 20.

系統電圧検出手段15は、電力系統30の系統電圧を検出し、検出結果を図示しない内蔵メモリに記録する。即ち、電力系統30の電圧値の変化は各配電網によって様々であるため、系統電圧検出手段15は、時系列的な系統電圧の検出結果を内蔵メモリに記録する。   The system voltage detection means 15 detects the system voltage of the power system 30 and records the detection result in a built-in memory (not shown). That is, since the change in the voltage value of the power system 30 varies depending on each distribution network, the system voltage detection unit 15 records the detection result of the system voltage in time series in the built-in memory.

系統電圧予測手段14は、系統電圧検出手段15により記録された時系列的な系統電圧の検出結果を読み出し、得られた時系列的な系統電圧の検出結果から、系統電圧が予め定められた閾値を次に超える時刻である「次の系統電圧閾値超過時刻T」、および、当該次の系統電圧閾値超過時刻から系統電圧が上記の閾値を超えている期間の長さである「次の系統電圧閾値超過時間T3」を予測する。   The system voltage predicting unit 14 reads the time-series system voltage detection result recorded by the system voltage detecting unit 15, and from the obtained time-series system voltage detection result, the system voltage is set to a predetermined threshold value. “Next system voltage threshold excess time T”, which is the time when the next system voltage is exceeded, and “next system voltage, which is the length of the period when the system voltage exceeds the above threshold from the next system voltage threshold excess time” The threshold excess time T3 ”is predicted.

充放電制御手段13は、系統電圧予測手段14により予測された「次の系統電圧閾値超過時刻T」および「次の系統電圧閾値超過時間T3」に基づいて、例えば後述する処理によって、蓄電池11から直流負荷20への放電および電力系統30から蓄電池11への充電を制御する。制御の詳細については、図3を用いて後述する。   Based on the “next system voltage threshold value excess time T” and the “next system voltage threshold value excess time T3” predicted by the system voltage prediction unit 14, the charge / discharge control unit 13 performs, for example, a process described later from the storage battery 11. It controls the discharge to the DC load 20 and the charging from the power system 30 to the storage battery 11. Details of the control will be described later with reference to FIG.

図4には、蓄電池充放電制御装置10のハードウェア構成の一例を示す。蓄電池充放電制御装置10は、ハードウェア構成として、CPU10Aと、RAM10Bと、ROM10Cと、入力デバイスであるキーボードやマウス等の入力部10Dと、外部装置との通信を行う通信部10Eと、補助記憶部10Fと、出力デバイスであるディスプレイやプリンタ等の出力部10Gとを備える。前述した蓄電池充放電制御装置10の各機能ブロックの機能は、RAM10B等に所定のプログラムを読み込ませ、CPU10Aの制御の下で入力部10D、通信部10E、出力部10Gを動作させ、補助記憶部10F等に対しデータの読み書きを行うことで実現される。   In FIG. 4, an example of the hardware constitutions of the storage battery charging / discharging control apparatus 10 is shown. The storage battery charge / discharge control device 10 includes, as a hardware configuration, a CPU 10A, a RAM 10B, a ROM 10C, an input unit 10D such as a keyboard and a mouse that are input devices, a communication unit 10E that communicates with an external device, and an auxiliary storage. Unit 10F and an output unit 10G such as a display or a printer as an output device. The function of each functional block of the storage battery charging / discharging control device 10 described above causes the RAM 10B and the like to read a predetermined program and operate the input unit 10D, the communication unit 10E, and the output unit 10G under the control of the CPU 10A, and the auxiliary storage unit This is realized by reading / writing data from / to 10F.

ところで、蓄電池充放電制御装置10は、例えば、太陽光発電装置などの分散電源の内部に設けられてもよいし、通信設備の内部に設けられてもよい。もし、蓄電池充放電制御装置10が太陽光発電装置などの分散電源の内部に設けられた構成であれば、上記のAC/DCコンバータ12を双方向インバータにより構成することで、AC/DCコンバータ12に逆流防止ダイオードを介して接続された太陽光発電部(太陽電池)から、電力系統30への逆潮流が可能な構成とすることが望ましい。   By the way, the storage battery charging / discharging control apparatus 10 may be provided in distributed power supplies, such as a solar power generation device, for example, and may be provided in communication equipment. If the storage battery charging / discharging control device 10 is provided in a distributed power source such as a solar power generation device, the AC / DC converter 12 is configured by configuring the AC / DC converter 12 with a bidirectional inverter. It is desirable that the solar power generation unit (solar cell) connected to the power system 30 through the backflow prevention diode be configured to allow backflow to the power system 30.

さて、図2には、系統電圧の時系列変化の一例を示す。太陽光発電装置などの分散電源が多い場合、系統電圧が上昇するのは一日のうちで昼間になるため、系統電圧閾値超過時刻Tは昼間になり、周期的な特徴を持つことが多い。図2に示すように、系統電圧の閾値は例えば106Vに設定され、系統電圧予測手段14は、系統電圧検出手段15により記録された時系列的な系統電圧の検出結果から、系統電圧が閾値(106V)を超えた系統電圧閾値超過時刻と、当該系統電圧閾値超過時刻から系統電圧が閾値(106V)を超えている期間の長さ(系統電圧閾値超過時間)とを求め、得られた結果を図示しない内蔵メモリに記録する。そして、系統電圧予測手段14は、このような系統電圧の時系列変化の特徴に基づいて、次の系統電圧閾値超過時刻と次の系統電圧閾値超過時間とを予測する。   Now, FIG. 2 shows an example of the time series change of the system voltage. When there are many distributed power sources such as photovoltaic power generation devices, the system voltage rises during the daytime, so the system voltage threshold excess time T is during the daytime and often has periodic characteristics. As shown in FIG. 2, the system voltage threshold is set to 106 V, for example, and the system voltage predicting unit 14 determines that the system voltage is the threshold (from the time-series system voltage detection result recorded by the system voltage detecting unit 15. 106V) exceeding the system voltage threshold time and the length of the period when the system voltage exceeds the threshold (106V) from the system voltage threshold excess time (system voltage threshold excess time). Records in a built-in memory (not shown). Then, the system voltage predicting unit 14 predicts the next system voltage threshold excess time and the next system voltage threshold excess time based on the characteristics of such time series change of the system voltage.

例えば、系統電圧予測手段14は、過去数回分の系統電圧閾値超過時刻を平均することで次の系統電圧閾値超過時刻を算出し、過去数回分の系統電圧閾値超過時間を平均することで次の系統電圧閾値超過時間を算出してもよい。   For example, the system voltage predicting means 14 calculates the next system voltage threshold excess time by averaging the past several system voltage threshold excess times, and averages the past several system voltage threshold excess times to obtain the next The grid voltage threshold excess time may be calculated.

充放電制御手段13は、系統電圧予測手段14によって記録された予測結果(次の系統電圧閾値超過時刻Tおよび次の系統電圧閾値超過時間T3)を読み出し、「次の系統電圧閾値超過時刻T」を開始時刻とし、そこから「次の系統電圧閾値超過時間T3」に相当する期間だけ蓄電池11への充電ができるように、事前準備として、蓄電池11を直流負荷20に接続することで蓄電池11からの放電を行う。例えば、充放電制御手段13は、予測された「次の系統電圧閾値超過時刻T」から「次の系統電圧閾値超過時間T3」だけ遡った時刻(T−T3)に、蓄電池11を直流負荷20に接続して蓄電池11から直流負荷20への放電を開始する。また別の例として、充放電制御手段13は、余裕を持たせるべく、上記の時刻(T−T3)より少し早い時刻(即ち、時刻(T−T3)より更に所定時間だけ遡った時刻)に、蓄電池11を直流負荷20に接続して蓄電池11から直流負荷20への放電を開始してもよい。   The charge / discharge control means 13 reads the prediction results (the next system voltage threshold excess time T and the next system voltage threshold excess time T3) recorded by the system voltage prediction means 14 and reads “next system voltage threshold excess time T”. From the storage battery 11 by connecting the storage battery 11 to the DC load 20 as advance preparation so that the storage battery 11 can be charged only for a period corresponding to the “next system voltage threshold excess time T3”. Discharge. For example, the charging / discharging control means 13 connects the storage battery 11 to the DC load 20 at a time (T−T3) that is back by “next system voltage threshold excess time T3” from the predicted “next system voltage threshold excess time T”. To start the discharge from the storage battery 11 to the DC load 20. As another example, the charging / discharging control means 13 has a time slightly earlier than the above time (T-T3) (that is, a time further back by a predetermined time than the time (T-T3)) so as to have a margin. Alternatively, the storage battery 11 may be connected to the DC load 20 to start discharging from the storage battery 11 to the DC load 20.

充放電制御手段13は、このような事前準備(蓄電池11から直流負荷20への放電)の後、系統電圧が系統電圧閾値を超えたとき、電力系統30からの電力で蓄電池11を充電するように制御する。   After such advance preparation (discharge from the storage battery 11 to the DC load 20), the charge / discharge control means 13 charges the storage battery 11 with power from the power system 30 when the system voltage exceeds the system voltage threshold. To control.

次に、図3を用いて、蓄電池充放電制御装置により実行される処理内容を説明する。図3の処理の前提として、系統電圧検出手段15は、電力系統30の系統電圧を検出・記録し、系統電圧予測手段14は、系統電圧検出手段15により記録された時系列的な系統電圧の検出結果から、系統電圧が閾値(ここでは図2に示すように106V)を超えた系統電圧閾値超過時刻と、当該系統電圧閾値超過時刻から系統電圧が閾値(106V)を超えている期間の長さ(系統電圧閾値超過時間)とを求め、得られた結果を内蔵メモリに記録しているとする。   Next, the processing content executed by the storage battery charge / discharge control device will be described with reference to FIG. As a premise of the processing of FIG. 3, the system voltage detection unit 15 detects and records the system voltage of the power system 30, and the system voltage prediction unit 14 determines the time-series system voltage recorded by the system voltage detection unit 15. From the detection result, the system voltage threshold excess time when the system voltage exceeds the threshold (here 106V as shown in FIG. 2), and the length of the period when the system voltage exceeds the threshold (106V) from the system voltage threshold excess time Suppose that (system voltage threshold value excess time) is obtained and the obtained result is recorded in the built-in memory.

まず、各日の所定時刻(例えば午前0時)に、系統電圧予測手段14は、次の系統電圧閾値超過時刻Tと次の系統電圧閾値超過時間T3とを予測する(図3のステップS1)。ここで例えば、系統電圧予測手段14は、過去数回分の系統電圧閾値超過時刻を平均することで次の系統電圧閾値超過時刻を算出し、過去数回分の系統電圧閾値超過時間を平均することで次の系統電圧閾値超過時間を算出してもよい。即ち、図2に示すように、過去2回分の系統電圧閾値超過時間T1、T2を加算平均することで、次の系統電圧閾値超過時間T3を算出してもよい。   First, at a predetermined time of each day (for example, midnight), the system voltage prediction means 14 predicts the next system voltage threshold excess time T and the next system voltage threshold excess time T3 (step S1 in FIG. 3). . Here, for example, the system voltage predicting means 14 calculates the next system voltage threshold excess time by averaging the past several system voltage threshold excess times, and averages the past several system voltage threshold excess times. The next grid voltage threshold excess time may be calculated. That is, as shown in FIG. 2, the next system voltage threshold excess time T3 may be calculated by averaging the system voltage threshold excess times T1 and T2 for the past two times.

その後、現在時刻が、次の系統電圧閾値超過時刻Tから次の系統電圧閾値超過時間T3だけ遡った時刻(T−T3)になるまで待機し(ステップS2、S3)、現在時刻が時刻(T−T3)になったら(ステップS3で肯定判定)、充放電制御手段13は、蓄電池11を直流負荷20に接続して蓄電池11から直流負荷20への放電を開始する(ステップS4)。このとき別の例として、充放電制御手段13は、余裕を持たせるべく、上記の時刻(T−T3)より少し早い時刻(即ち、時刻(T−T3)より更に所定時間だけ遡った時刻)に、蓄電池11を直流負荷20に接続して蓄電池11から直流負荷20への放電を開始してもよい。   After that, the system waits until the current time reaches a time (T-T3) that is back from the next grid voltage threshold excess time T by the next grid voltage threshold excess time T3 (steps S2, S3), and the current time is the time (T -T3) (Yes in step S3), the charge / discharge control means 13 connects the storage battery 11 to the DC load 20 and starts discharging from the storage battery 11 to the DC load 20 (step S4). At this time, as another example, the charging / discharging control means 13 is a little earlier than the above time (T-T3) (ie, a time that is further back by a predetermined time from the time (T-T3)) in order to provide a margin. Alternatively, the storage battery 11 may be connected to the DC load 20 to start discharging from the storage battery 11 to the DC load 20.

その後、充放電制御手段13は、系統電圧検出手段15により検出される系統電圧が系統電圧閾値(106V)を超えたか否かを監視する(ステップS5、S6)。そして、系統電圧が系統電圧閾値(106V)を超えたら(ステップS6で肯定判定)、充放電制御手段13は、電力系統30からの電力で蓄電池11を充電するように制御する(ステップS7、S8)。また、直流負荷20についても電力系統30から電力が供給されるように制御する。   Thereafter, the charge / discharge control means 13 monitors whether or not the system voltage detected by the system voltage detection means 15 exceeds the system voltage threshold (106 V) (steps S5 and S6). Then, when the system voltage exceeds the system voltage threshold (106 V) (positive determination in step S6), the charge / discharge control means 13 controls to charge the storage battery 11 with the power from the power system 30 (steps S7, S8). ). The DC load 20 is also controlled so that power is supplied from the power system 30.

そして、蓄電池11への充電が完了したら(ステップS8で肯定判定)、図3の処理を終了する。なお、図3では省略したが、充放電制御手段13は、蓄電池11への充電中における系統電圧を監視し、系統電圧が下がりすぎた場合には、充電完了を待たずに充電を終了させた方が望ましい。   And if the charge to the storage battery 11 is completed (Yes determination at step S8), the process of FIG. 3 will be complete | finished. Although not shown in FIG. 3, the charge / discharge control means 13 monitors the system voltage during charging of the storage battery 11, and if the system voltage is too low, the charge / discharge control means 13 terminates the charging without waiting for the completion of charging. Is preferable.

以上説明した発明の実施形態によれば、蓄電池を適切なタイミングで放電・充電させることによって、系統電圧の電圧上昇を抑制しつつ分散電源の余剰電力を充電することができる。例えば、分散電源の発電によって電力系統の電圧が上昇し余剰電力が発生した場合に、通信設備の蓄電池に余剰電力を充電できるようになり、太陽光発電装置等の分散電源が発電できなくなる事態を抑制でき、分散電源の電力を有効に利用できるようになる。   According to the embodiment of the invention described above, the surplus power of the distributed power supply can be charged while suppressing the voltage increase of the system voltage by discharging and charging the storage battery at an appropriate timing. For example, when the power system voltage rises due to the power generation of the distributed power source and surplus power is generated, the surplus power can be charged in the storage battery of the communication facility, and the situation where the distributed power source such as the solar power generation device cannot generate power The power of the distributed power source can be effectively used.

1…電力制御システム、10…蓄電池充放電制御装置、10A…CPU、10B…RAM、10C…ROM、10D…入力部、10E…通信部、10F…補助記憶部、10G…出力部、11…蓄電池、12…AC/DCコンバータ、13…充放電制御手段、14…系統電圧予測手段、15…系統電圧検出手段、20…直流負荷、30…電力系統。   DESCRIPTION OF SYMBOLS 1 ... Electric power control system, 10 ... Storage battery charge / discharge control apparatus, 10A ... CPU, 10B ... RAM, 10C ... ROM, 10D ... Input part, 10E ... Communication part, 10F ... Auxiliary storage part, 10G ... Output part, 11 ... Storage battery , 12 ... AC / DC converter, 13 ... charge / discharge control means, 14 ... system voltage prediction means, 15 ... system voltage detection means, 20 ... DC load, 30 ... power system.

Claims (3)

電力系統から入力される交流電力を直流電力に整流し、整流後の直流電力を負荷へ出力するAC/DCコンバータと、
蓄電池と、
前記電力系統の系統電圧を検出し記録する系統電圧検出手段と、
前記系統電圧検出手段により記録された系統電圧から、系統電圧が予め定められた閾値を次に超える時刻である次の系統電圧閾値超過時刻、および、前記次の系統電圧閾値超過時刻から系統電圧が前記閾値を超えている期間の長さである次の系統電圧閾値超過時間を予測する系統電圧予測手段と、
前記系統電圧予測手段により予測された次の系統電圧閾値超過時刻および次の系統電圧閾値超過時間に基づいて、前記蓄電池から前記負荷への放電および前記電力系統から前記蓄電池への充電を制御する充放電制御手段と、
を備え
前記充放電制御手段は、
前記次の系統電圧閾値超過時刻から前記次の系統電圧閾値超過時間だけ遡った時刻、又は、当該次の系統電圧閾値超過時間だけ遡った時刻から更に所定時間だけ遡った時刻に、前記蓄電池を前記負荷に接続して前記蓄電池から前記負荷への放電を開始する、蓄電池充放電制御装置。
An AC / DC converter that rectifies AC power input from the power system into DC power and outputs the rectified DC power to a load;
A storage battery,
System voltage detection means for detecting and recording the system voltage of the power system;
From the system voltage recorded by the system voltage detection means, the next system voltage threshold exceeding time, which is the time when the system voltage next exceeds a predetermined threshold, and the system voltage from the next system voltage threshold exceeding time System voltage prediction means for predicting the next system voltage threshold excess time that is the length of the period exceeding the threshold;
A charge for controlling the discharge from the storage battery to the load and the charging from the power system to the storage battery based on the next system voltage threshold excess time and the next system voltage threshold excess time predicted by the system voltage prediction means. Discharge control means;
Equipped with a,
The charge / discharge control means includes
The storage battery is stored at a time that is traced back by the next grid voltage threshold excess time from the next grid voltage threshold exceeded time, or a time that is further traced back by a predetermined time from the time traced by the next grid voltage threshold excess time. A storage battery charge / discharge control device connected to a load and starting discharge from the storage battery to the load .
電力系統と蓄電池充放電制御装置と負荷とを含んで構成される電力制御システムであって、
前記蓄電池充放電制御装置は、
前記電力系統から入力される交流電力を直流電力に整流し、整流後の直流電力を前記負荷へ出力するAC/DCコンバータと、
蓄電池と、
前記電力系統の系統電圧を検出し記録する系統電圧検出手段と、
前記系統電圧検出手段により記録された系統電圧から、系統電圧が予め定められた閾値を次に超える時刻である次の系統電圧閾値超過時刻、および、前記次の系統電圧閾値超過時刻から系統電圧が前記閾値を超えている期間の長さである次の系統電圧閾値超過時間を予測する系統電圧予測手段と、
前記系統電圧予測手段により予測された次の系統電圧閾値超過時刻および次の系統電圧閾値超過時間に基づいて、前記蓄電池から前記負荷への放電および前記電力系統から前記蓄電池への充電を制御する充放電制御手段と、
を備え
前記充放電制御手段は、
前記次の系統電圧閾値超過時刻から前記次の系統電圧閾値超過時間だけ遡った時刻、又は、当該次の系統電圧閾値超過時間だけ遡った時刻から更に所定時間だけ遡った時刻に、前記蓄電池を前記負荷に接続して前記蓄電池から前記負荷への放電を開始する、
ことを特徴とする電力制御システム。
An electric power control system including an electric power system, a storage battery charge / discharge control device, and a load,
The storage battery charge / discharge control device comprises:
AC / DC converter that rectifies AC power input from the power system into DC power and outputs the DC power after rectification to the load;
A storage battery,
System voltage detection means for detecting and recording the system voltage of the power system;
From the system voltage recorded by the system voltage detection means, the next system voltage threshold exceeding time, which is the time when the system voltage next exceeds a predetermined threshold, and the system voltage from the next system voltage threshold exceeding time System voltage prediction means for predicting the next system voltage threshold excess time that is the length of the period exceeding the threshold;
A charge for controlling the discharge from the storage battery to the load and the charging from the power system to the storage battery based on the next system voltage threshold excess time and the next system voltage threshold excess time predicted by the system voltage prediction means. Discharge control means;
Equipped with a,
The charge / discharge control means includes
The storage battery is stored at a time that is traced back by the next grid voltage threshold excess time from the next grid voltage threshold exceeded time, or a time that is further traced back by a predetermined time from the time traced by the next grid voltage threshold excess time. you start discharging to the load from the battery connected to a load,
A power control system characterized by that.
電力系統から入力される交流電力を直流電力に整流し整流後の直流電力を負荷へ出力するAC/DCコンバータと、蓄電池と、を備える蓄電池充放電制御装置、によって実行される蓄電池充放電制御方法であって、
前記電力系統の系統電圧を検出し記録する系統電圧検出ステップと、
前記系統電圧検出ステップにて記録された系統電圧から、系統電圧が予め定められた閾値を次に超える時刻である次の系統電圧閾値超過時刻、および、前記次の系統電圧閾値超過時刻から系統電圧が前記閾値を超えている期間の長さである次の系統電圧閾値超過時間を予測する系統電圧予測ステップと、
前記系統電圧予測ステップにて予測された次の系統電圧閾値超過時刻および次の系統電圧閾値超過時間に基づいて、前記蓄電池から前記負荷への放電および前記電力系統から前記蓄電池への充電を制御する充放電制御ステップと、
を備え
前記充放電制御ステップでは、
前記次の系統電圧閾値超過時刻から前記次の系統電圧閾値超過時間だけ遡った時刻、又は、当該次の系統電圧閾値超過時間だけ遡った時刻から更に所定時間だけ遡った時刻に、前記蓄電池を前記負荷に接続して前記蓄電池から前記負荷への放電を開始する、蓄電池充放電制御方法。
A storage battery charge / discharge control method executed by an AC / DC converter that rectifies AC power input from the power system into DC power and outputs the rectified DC power to a load, and a storage battery. Because
A system voltage detection step of detecting and recording a system voltage of the power system;
From the system voltage recorded in the system voltage detection step, the next system voltage threshold excess time, which is the time when the system voltage next exceeds a predetermined threshold, and the system voltage from the next system voltage threshold excess time A system voltage prediction step for predicting the next system voltage threshold excess time, which is the length of the period during which the threshold is exceeded,
Based on the next system voltage threshold exceeded time and the next system voltage threshold exceeded time predicted in the system voltage prediction step, the discharging from the storage battery to the load and the charging from the power system to the storage battery are controlled. A charge / discharge control step;
Equipped with a,
In the charge / discharge control step,
The storage battery is stored at a time that is traced back by the next grid voltage threshold excess time from the next grid voltage threshold exceeded time, or a time that is further traced back by a predetermined time from the time traced by the next grid voltage threshold excess time. A storage battery charge / discharge control method for connecting to a load and starting discharging from the storage battery to the load .
JP2011134149A 2011-06-16 2011-06-16 Storage battery charge / discharge control device, power control system, and storage battery charge / discharge control method Expired - Fee Related JP5731913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011134149A JP5731913B2 (en) 2011-06-16 2011-06-16 Storage battery charge / discharge control device, power control system, and storage battery charge / discharge control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011134149A JP5731913B2 (en) 2011-06-16 2011-06-16 Storage battery charge / discharge control device, power control system, and storage battery charge / discharge control method

Publications (2)

Publication Number Publication Date
JP2013005584A JP2013005584A (en) 2013-01-07
JP5731913B2 true JP5731913B2 (en) 2015-06-10

Family

ID=47673563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011134149A Expired - Fee Related JP5731913B2 (en) 2011-06-16 2011-06-16 Storage battery charge / discharge control device, power control system, and storage battery charge / discharge control method

Country Status (1)

Country Link
JP (1) JP5731913B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5709910B2 (en) * 2013-01-21 2015-04-30 三菱重工業株式会社 Control apparatus and method, program, and natural energy power generation apparatus including the same
CN106169745B (en) * 2013-12-18 2018-12-18 杨洁如 Solar DC generates electricity by way of merging two or more grid systems dedicated control method
JP6690449B2 (en) * 2016-07-15 2020-04-28 住友電気工業株式会社 Power conditioner, operating method thereof, and distributed power supply system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3316771B2 (en) * 1993-03-26 2002-08-19 株式会社日立製作所 Power system voltage control method and device
DE19539928C2 (en) * 1995-10-26 1997-11-20 Siemens Ag Device for buffering the DC voltage at the output of a power supply
JP3791188B2 (en) * 1998-06-22 2006-06-28 株式会社日立製作所 Voltage reactive power control device
JP2007236085A (en) * 2006-02-28 2007-09-13 Ntt Facilities Inc Power system stabilizer

Also Published As

Publication number Publication date
JP2013005584A (en) 2013-01-07

Similar Documents

Publication Publication Date Title
US8571720B2 (en) Supply-demand balance controller
US9148020B2 (en) Method of controlling a battery, computer readable recording medium, electric power generation system and device controlling a battery
US9641021B2 (en) Photovoltaic power generation system including apparatus and method to buffer power fluctuations
JP5520365B2 (en) System stabilization system, power supply system, centralized management device control method, and centralized management device program
JP6198034B2 (en) Power control apparatus, power control method, program, and energy management system
US9866028B2 (en) Power control apparatus, power control method, program, and energy management system
US20120228939A1 (en) Power supply method, a recording medium which is computer readable and a power generation system
WO2011122672A1 (en) Power supply system, power supply method, and control program for power supply system
WO2011122669A1 (en) Power supply system, power supply method, and control program for power supply system
JP3759151B1 (en) Power storage system
EP2717413A1 (en) Power supply apparatus and power supply control method
JP6248720B2 (en) Power supply device and control method thereof
JP5731913B2 (en) Storage battery charge / discharge control device, power control system, and storage battery charge / discharge control method
JP2017085781A (en) Power supply system
JP2016167913A (en) Power supply system and power supply method
JP5820984B2 (en) Power distribution system
JP6478032B2 (en) Control device and power distribution system using the same
JP6532349B2 (en) Controller of DC power supply system
US20120223579A1 (en) Electrical charging and discharging system and charge and discharge control device
JP6532274B2 (en) Control device and control method for DC power supply system
JP2014103819A (en) Charging device, charging method, power supply system and residual stored power amount measuring method thereof
JP2019193317A (en) Power storage system, charge/discharge control device, control method thereof, and program
JP6708475B2 (en) DC power supply system controller
JP5355721B2 (en) Charge / discharge system and charge / discharge control device
JP5879559B2 (en) Power distribution system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150410

R150 Certificate of patent or registration of utility model

Ref document number: 5731913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees