JP3759151B1 - Power storage system - Google Patents

Power storage system Download PDF

Info

Publication number
JP3759151B1
JP3759151B1 JP2004333686A JP2004333686A JP3759151B1 JP 3759151 B1 JP3759151 B1 JP 3759151B1 JP 2004333686 A JP2004333686 A JP 2004333686A JP 2004333686 A JP2004333686 A JP 2004333686A JP 3759151 B1 JP3759151 B1 JP 3759151B1
Authority
JP
Japan
Prior art keywords
power
commercial
load
storage system
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004333686A
Other languages
Japanese (ja)
Other versions
JP2006149037A (en
Inventor
信行 江崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Electric Co Ltd
Original Assignee
Seiko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Electric Co Ltd filed Critical Seiko Electric Co Ltd
Priority to JP2004333686A priority Critical patent/JP3759151B1/en
Application granted granted Critical
Publication of JP3759151B1 publication Critical patent/JP3759151B1/en
Publication of JP2006149037A publication Critical patent/JP2006149037A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

【課題】負荷から出力容量以上の電力要求があった場合でも、夜間電力の有効利用と、デイタイム電力の使用を抑制することのできる電力貯蔵システムを提供する。
【解決手段】蓄電池30への充電時はコンバータとして、放電時はインバータとして機能する双方向電力変換器2と、商用電力と双方向電力変換器2と負荷40との間に設けられて電力の選択を行う電力選択手段1と、その電力選択手段1の制御を行う制御手段4と、太陽光発電A51を有し、夜間料金適用時間帯は商用電力から蓄電池30に充電を行うとともに負荷40に電力を供給し、デイタイムは、負荷40の消費電力に応じて蓄電池30からのみの電力供給を行うとともに太陽光発電A51の余剰電力を商用電力側に逆潮流させ、負荷の消費電力が所定の値以上のときは、その値までは蓄電池30から電力供給し、不足分は商用電原や太陽光発電A51から電力供給する電力貯蔵システム。
【選択図】 図1
Provided is a power storage system capable of suppressing the effective use of nighttime power and the use of daytime power even when there is a power demand exceeding the output capacity from a load.
SOLUTION: A bidirectional power converter 2 functioning as a converter when charging a storage battery 30 and functioning as an inverter when discharging, and is provided between a commercial power, the bidirectional power converter 2 and a load 40 to supply power. Power selection means 1 for selecting, control means 4 for controlling the power selection means 1, and solar power generation A 51, and charging the storage battery 30 from commercial power and load 40 during night charge application time zone In the daytime, power is supplied only from the storage battery 30 according to the power consumption of the load 40, and the surplus power of the photovoltaic power generation A51 is reversely flowed to the commercial power side so that the power consumption of the load is predetermined. When the value is greater than or equal to the value, the power storage system supplies power from the storage battery 30 up to that value, and supplies the shortage from the commercial power source or solar power generation A51.
[Selection] Figure 1

Description

本発明は、電力会社の時間帯別契約メニューを利用し、夜間電力を蓄電し、夜間電力の供給時間帯以外の時間帯に放電することによって、電気料金の削減および負荷平準化を図ることができ、また太陽光発電、風力発電等を蓄電でき、CO2削減に寄与できる電力貯蔵システムに関する。 The present invention makes it possible to reduce the electricity bill and level the load by using the contract menu for each time zone of the power company, storing the nighttime power, and discharging it in a time zone other than the nighttime power supply time zone. In addition, the present invention relates to a power storage system that can store solar power generation, wind power generation, and the like and contribute to CO 2 reduction.

電力会社においては、デイタイムや特定の時期の時間帯に消費されるピーク電力に対応できるように、原子力、水力、火力発電等による発電能力を設定し、電力需要量を予測しながら給電を制御している。電力の需要は、都市部においてはますます増加傾向にあり、ピーク電力の増加は、新たな発電設備の建設などの負担の増加につながっている。一方、夜間は、工場やオフィス等の電力利用が少なくなるため、電力の利用率が低下する。このようなデイタイムと夜間の電力需要量の大きな格差を平準化することを目的とした夜間電力利用促進割引制度が実施されている。夜間電力は、昼間電力に比べ安価で、化石燃料の使用割合が低いため二酸化炭素排出量が少なく、地球環境保全にも好都合である。   In electric power companies, power generation is controlled by predicting power demand by setting power generation capacity by nuclear power, hydropower, thermal power generation, etc. so that it can cope with peak power consumed during daytime or at specific times. is doing. The demand for electric power is increasing in urban areas, and the increase in peak electric power has led to an increase in the burden of constructing new power generation facilities. On the other hand, at night, the power usage rate decreases because the power usage in factories and offices decreases. A nighttime electricity use discount discount system is being implemented to equalize the large gap between daytime and nighttime electricity demand. Nighttime electricity is cheaper than daytime electricity and has a low use rate of fossil fuels, so it emits less carbon dioxide and is convenient for global environmental conservation.

夜間電力の利用技術としては、電力そのものを貯蔵する方法と、給湯設備や氷蓄熱のような熱エネルギーに変換して貯蔵する方法、あるいは揚水発電のように、位置のエネルギーとして貯蔵する方法等が考えられている。この中で、電力を貯蔵する方法の代表的なものは、夜間電力を蓄電池に貯蔵しておき、電力負荷の大きなデイタイムに蓄電池からの電力を消費する電力貯蔵システムである。この電力貯蔵システムによれば、需要者にとっての電力使用料金の低減効果があると共に、電力系統の夜間時のボトムアップ、デイタイムのピーク電力抑制による平準化が可能になる。   There are two methods for using nighttime electricity: a method of storing power itself, a method of storing it by converting it into thermal energy such as hot water supply equipment and ice heat storage, or a method of storing it as location energy, such as pumped-storage power generation. It is considered. Among them, a typical method for storing power is a power storage system that stores nighttime power in a storage battery and consumes the power from the storage battery during daytime when the power load is large. According to this power storage system, there is an effect of reducing the electricity usage fee for the consumer, and it is possible to level the power system at the bottom-up at night and by suppressing peak power during the daytime.

しかし、蓄電池の容量以上にデイタイムの電力消費が大きいことが当然起きる。
このような、蓄電容量以上の電力供給を負荷に行う場合の対策としては、例えば特開2000−308282号公報(特許文献1)や特開2000−295784号公報(特許文献2)に開示されているように系統切替手段を設け、負荷が蓄電池の容量を超えると、負荷への電力供給を蓄電池から商用電力に切り替えるものがある。
However, it naturally occurs that daytime power consumption is larger than the capacity of the storage battery.
As a countermeasure when such a power supply exceeding the storage capacity is performed on the load, it is disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-308282 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2000-295784 (Patent Document 2). If the system switching means is provided and the load exceeds the capacity of the storage battery, the power supply to the load is switched from the storage battery to the commercial power.

他の対策としては、例えば特開2001−008385号公報(特許文献3)に開示されているように、一日の蓄電池放電パターンを予め数種類記憶しておいて、使用者がそのパターンを適宜選択することにより、蓄電池に充電される夜間電力を有効に、無駄なく使用するようにした電力貯蔵システムがある。   As another countermeasure, for example, as disclosed in Japanese Patent Application Laid-Open No. 2001-008385 (Patent Document 3), several types of storage battery discharge patterns for one day are stored in advance, and the user selects the pattern appropriately. By doing so, there is an electric power storage system that uses the nighttime electric power charged in the storage battery effectively and without waste.

また、特開平10−201129号公報(特許文献4)や特開平10−201130号公報(特許文献5)には、蓄電池への昼間の充電に太陽電池を用いることが開示されている。   Japanese Patent Application Laid-Open No. 10-201129 (Patent Document 4) and Japanese Patent Application Laid-Open No. 10-201130 (Patent Document 5) disclose the use of solar cells for daytime charging of storage batteries.

さらに、特許文献6には、風力発電装置、太陽光発電装置および燃料電池の少なくとも一つと、蓄電池と、商用交流電源とを用いて、双方向DC−DCコンバータおよび二巻線電子変圧器を経由してもしくは経由しないで交流専用負荷への分散給電を行う分散給電システムが開示されている。
このシステムでは、
(1)蓄電池の満充電時もしくは商用交流電源の停電時には、直流電力源および蓄電池からの直流電力を双方向DC−DCコンバータと二巻線電子変圧器を用いて正弦波交流出力を生成して交流専用負荷に供給し、
(2)蓄電池の放電進行時には風力発電装置、太陽光発電装置および燃料電池から蓄電池への電力補給を行い、
(3)夜間・深夜電力供給時間帯には商用交流電源からの交流電力を交流専用負荷へ供給するとともに、蓄電池の充電を行い、
(4)軽負荷時で蓄電池が満充電に近く且つ商用交流電源が停電でないときは直流電力を交流に変換して商用交流電源側に逆潮流させる
ようにしている。
Further, Patent Document 6 uses a bidirectional DC-DC converter and a two-winding electronic transformer using at least one of a wind power generator, a solar power generator, and a fuel cell, a storage battery, and a commercial AC power supply. In addition, a distributed power supply system that performs distributed power supply to an alternating-current dedicated load without or via it is disclosed.
In this system,
(1) At the time of full charge of the storage battery or power failure of the commercial AC power supply, DC power from the DC power source and the storage battery is generated by using a bidirectional DC-DC converter and a two-winding electronic transformer to generate a sine wave AC output. Supply to AC dedicated load,
(2) When the discharge of the storage battery proceeds, power is supplied from the wind power generator, the solar power generator and the fuel cell to the storage battery,
(3) During the night and midnight power supply hours, AC power from the commercial AC power source is supplied to the AC dedicated load and the storage battery is charged.
(4) When the storage battery is near full charge at light load and the commercial AC power supply is not a power outage, the DC power is converted to AC so as to flow backward to the commercial AC power supply side.

特開2000−308282号公報JP 2000-308282 A 特開2000−295784号公報JP 2000-295784 A 特開2001−008385号公報JP 2001-008385 A 特開平10−201129号公報JP-A-10-2011129 特開平10−201130号公報JP-A-10-201130 特開2004−80987号公報JP 2004-80987 A

以上のように、特許文献1〜5において提案された電力貯蔵システムにおいては、負荷に接続した蓄電池の蓄電電力が低下した場合、負荷の電力要求に応じられなくなるため、商用電力等に切り替えて負荷に電力を供給している。しかしながら、割安な夜間電気料金帯で蓄電した電力を有効に使い切らない事態が発生すると共にデイタイムの電気料金の電力を使用することとなり、電力貯蔵システムの目的が充分に達成されていなかった。
また、特許文献6において開示された分散給電システムでは、自然エネルギー系電力(風力発電装置、太陽光発電装置)及び燃料電池等の安定電力は蓄電池の充電のために用いられ、蓄電池が満充電になるまで自然エネルギー系電力による充電を行い、充電中は商用電力にて負荷供給し、商用交流電源側への逆潮流は、軽負荷時に蓄電池から行うようにしている。そのため、蓄電池からは、負荷への電力供給の他に逆潮流のための電力が消費され、日没後に負荷に供給すべき電力も消費することになる。そうすると、夜間電気料金帯に入る前のまだ通常料金の時間帯に、蓄電池の容量が低下して商用電力で賄わなければならない状況となり、デイタイム電力の使用量が多くなるという問題がある。また、現在、国内の売電契約の中では蓄電した夜間・深夜電力を商用へ逆潮流することは許容されていない。このため、自然エネルギー系電力や燃料電池等による蓄電電力と商用電力を同じ蓄電池に充電して、これを商用へ逆潮流することは認められない。
As described above, in the power storage systems proposed in Patent Documents 1 to 5, when the storage power of the storage battery connected to the load is reduced, it becomes impossible to meet the load power requirement, so the load is switched to commercial power or the like. Is supplying power. However, there has been a situation where the power stored in the cheap nighttime electricity rate zone cannot be used up effectively, and the power of the daytime electricity rate has been used, and the purpose of the power storage system has not been sufficiently achieved.
Further, in the distributed power supply system disclosed in Patent Document 6, stable power such as natural energy power (wind power generator, solar power generator) and fuel cell is used for charging the storage battery, and the storage battery is fully charged. The battery is charged with natural energy power until it reaches the load, and a load is supplied with commercial power during charging, and the reverse power flow to the commercial AC power source is performed from the storage battery at light load. Therefore, in addition to supplying power to the load, power for reverse power flow is consumed from the storage battery, and power to be supplied to the load after sunset is also consumed. If it does so, it will be in the situation where the capacity | capacitance of a storage battery falls and must be covered with commercial power in the time zone of a normal charge before going into a night electricity rate zone, and there exists a problem that the usage-amount of daytime electricity increases. Currently, it is not allowed to reverse the stored night / midnight power to commercial power in domestic power sale contracts. For this reason, it is not permitted to charge the same storage battery with the stored power and the commercial power from the natural energy power, the fuel cell, etc., and reversely flow it to the commercial power.

そこで本発明は、負荷から出力容量以上の電力要求があった場合でも、蓄電手段に蓄電された電力を有効に使い切ることにより、夜間電力の有効利用と、デイタイム電力の使用を抑制することができ、また太陽光発電手段を併設することにより、太陽光発電手段で発電した余剰電力を商用電力側に逆潮流させ、売電による電力使用ピーク時の電力平準化と経済的メリットを享有することのできる電力貯蔵システムを提供することを目的とする。   Therefore, the present invention suppresses the effective use of nighttime power and the use of daytime power by effectively using the power stored in the power storage means even when there is a power demand exceeding the output capacity from the load. In addition, by installing a solar power generation means, surplus power generated by the solar power generation means flows backward to the commercial power side, and enjoys power leveling and economic merit at the peak of power usage due to power sales. An object of the present invention is to provide a power storage system capable of performing the above.

前記課題を解決するため、本発明の電力貯蔵システムは、商用電力を直流電力に変換する整流手段と、整流された直流電力を貯蔵する蓄電手段と、前記蓄電手段に蓄電された直流電力を前記商用電力の電圧および周波数にほぼ等しい交流電力に変換する電力変換手段と、前記商用電力と前記電力変換手段により変換された交流電力とを複数のスイッチを切り替えて選択的に負荷に供給する電力選択手段と、前記電力選択手段の複数のスイッチの制御を行う制御手段と、前記商用電力の受電装置と前記電力選択手段との間に接続され、太陽光発電による電力を前記商用電力の電圧および周波数にほぼ等しい交流電力に変換する太陽光発電手段を有し、前記制御手段は、夜間料金適用時間帯は前記商用電力から前記整流手段を介して前記蓄電手段に電力を供給するとともに前記負荷に電力を供給する夜間運転モードと、前記夜間料金適用時間帯以外の時間帯においては、前記負荷の消費電力が所定の値未満のときは前記蓄電手段からのみの前記負荷への電力供給を行うとともに、前記太陽光発電手段からの余剰電力を商用電力側に逆潮流させる放電運転モードと、前記負荷の消費電力が前記所定の値以上のときは、前記所定の値までの消費電力は前記蓄電手段から電力供給し、前記所定の値以上の消費電力は前記商用電力および前記太陽光発電手段から電力供給する系統補充運転モードの各モードに応じて前記複数のスイッチを制御するものである。   In order to solve the above problems, a power storage system according to the present invention includes a rectifying unit that converts commercial power into DC power, a power storage unit that stores rectified DC power, and a DC power stored in the power storage unit. Power conversion means for converting to AC power substantially equal to the voltage and frequency of commercial power, and power selection for selectively supplying the commercial power and the AC power converted by the power conversion means to a load by switching a plurality of switches Means, a control means for controlling a plurality of switches of the power selection means, and a power receiving device for the commercial power and the power selection means. Solar power generation means for converting into alternating-current power substantially equal to the power, and the control means is configured to store the power storage means from the commercial power via the rectification means during night charge application time zone. In a night operation mode for supplying power to the load and supplying power to the load, and in a time zone other than the night charge application time zone, when the power consumption of the load is less than a predetermined value, the power storage means only A discharge operation mode in which power is supplied to the load and surplus power from the solar power generation means flows backward to the commercial power side, and when the power consumption of the load is equal to or greater than the predetermined value, the predetermined value Power is supplied from the power storage means, and the plurality of switches are turned on in accordance with each mode of the system replenishment operation mode in which power consumption exceeding the predetermined value is supplied from the commercial power and the solar power generation means. It is something to control.

本発明においては、夜間料金適用時間帯以外の蓄電手段からの放電を行うときに、負荷から出力容量以上の電力要求があった場合でも、蓄電手段に蓄電された電力を有効に使い切ることにより、夜間電力の有効利用と、デイタイム電力の使用を抑制することができる。また、太陽光発電手段を併設したことにより、太陽光発電手段で発電した余剰電力を商用電力側に逆潮流させ、売電を行うことができる。これにより、安価な夜間電力を効果的に使用するとともに、売電により、電力使用ピーク時の電力平準化と経済的メリットを享有することができる。   In the present invention, when discharging from the power storage means other than the night charge applicable time zone, even when there is a power request from the load more than the output capacity, by effectively using the power stored in the power storage means, Effective use of nighttime power and daytime power can be suppressed. In addition, by providing the solar power generation means, surplus power generated by the solar power generation means can be reversely flowed to the commercial power side to be sold. Thereby, while using cheap night electric power effectively, the electric power leveling at the time of electric power use peak and economic merit can be enjoyed by electric power sale.

前記整流手段および前記電力変換手段を、両者の機能を備えた双方向電力変換器とすることにより、蓄電手段に対する充電動作時はコンバータとして動作するように、また、蓄電手段から負荷へ電力を放電動作時はインバータとして動作するように制御される。   By making the rectifying means and the power conversion means a bidirectional power converter having both functions, the power storage means operates as a converter during the charging operation, and discharges power from the power storage means to the load. During operation, it is controlled to operate as an inverter.

前記電力選択手段は、商用電力と前記電力変換手段との間に接続される第1のスイッチと、商用電力と負荷との間に接続される第2のスイッチと、前記電力変換手段と前記第1のスイッチとの間に設けられる電子スイッチ手段とからなり、前記電力変換手段は前記負荷に常時接続され、かつ前記制御手段により、前記各スイッチおよび電子スイッチ手段を前記各モードにしたがって切り替えるようにしたことにより、2つの電源からの電力を負荷に並列供給することができる。   The power selection means includes a first switch connected between commercial power and the power conversion means, a second switch connected between commercial power and a load, the power conversion means, and the first switch. The power conversion means is always connected to the load, and the control means switches the switches and electronic switch means according to the modes. As a result, power from two power sources can be supplied to the load in parallel.

また、前記蓄電手段の出力部と商用電力との接続点の商用電力側に電力変換手段と商用電力を遮断する電子スイッチ手段を設けることにより、商用電力の給電中は蓄電手段の出力と商用電力で電流を分担しながら、所定の負荷に給電し、商用電力の停電を検出し直ちに前記電子スイッチ手段を開路するとともに蓄電手段の出力制御を自立運転可能とし、自立運転開始後に所定の負荷の全負荷電流を前記蓄電手段で給電するように制御することができる。これにより、蓄電手段で自立運転をした場合に起こる商用系統への逆潮流を防止することができる。   Further, by providing an electronic switch means for cutting off the commercial power from the power conversion means and the commercial power side on the commercial power side of the connection point between the output section of the power storage means and the commercial power, the output of the power storage means and the commercial power are supplied during the commercial power supply. The electric power is supplied to a predetermined load while sharing the current at the same time, a power failure of the commercial power is detected, the electronic switch means is immediately opened, and the output control of the power storage means can be operated independently. The load current can be controlled to be supplied by the power storage means. As a result, it is possible to prevent a reverse power flow to the commercial system that occurs when the power storage means is operated independently.

前記蓄電手段に、太陽光発電、風力発電等の外部発電手段からの電力を供給する構成とすることができ、これにより、CO2の発生を抑制して地球環境の改善を図ることができる。 The power storage unit can be configured to supply power from an external power generation unit such as solar power generation or wind power generation, thereby suppressing the generation of CO 2 and improving the global environment.

以上のように、本発明によれば、夜間料金適用時間帯以外の時間帯において、負荷の消費電力が前記所定の値以上のときは前記商用電力と前記蓄電手段からの前記負荷への電力供給を並行して行う機能を備えたことにより、負荷から出力容量以上の電力要求があった場合でも、蓄電手段に蓄電された電力を有効に使い切ることにより、夜間電力の有効利用と、デイタイム電力の使用を抑制することができる。また、太陽光発電手段を併設したことにより、太陽光発電手段で発電した余剰電力を商用電力側に逆潮流させ、売電を行うことができる。これにより、安価な夜間電力を効果的に使用するとともに、売電により、電力使用ピーク時の電力平準化と経済的メリットを享有することができる。   As described above, according to the present invention, when the power consumption of the load is greater than or equal to the predetermined value in the time zone other than the nighttime charge application time zone, the commercial power and the power supply from the power storage means to the load By providing a function to perform the power in parallel, even when there is a power demand exceeding the output capacity from the load, by effectively using the power stored in the power storage means, it is possible to effectively use nighttime power and daytime power. Can be suppressed. In addition, by providing the solar power generation means, surplus power generated by the solar power generation means can be reversely flowed to the commercial power side to be sold. Thereby, while using cheap night electric power effectively, the electric power leveling at the time of electric power use peak and economic merit can be enjoyed by electric power sale.

整流手段および電力変換手段を、両者の機能を備えた双方向電力変換器とすることにより、蓄電手段に対する充電動作時はコンバータとして動作するように、また、蓄電手段から負荷へ電力を放電動作時はインバータとして動作するように制御される。   By making the rectifier means and the power converter means a bidirectional power converter having both functions, it operates as a converter during the charging operation of the power storage means, and also during the discharge operation of power from the power storage means to the load. Is controlled to operate as an inverter.

電力選択手段を、第1および第2のスイッチ並びに電子スイッチ手段で構成することにより、2つの電源からの電力を負荷に並列供給することができる。   By configuring the power selection means with the first and second switches and the electronic switch means, it is possible to supply power from two power sources in parallel to the load.

商用電力との間に商用電力を遮断する電子スイッチ手段を設けることにより、商用電力側で停電が発生した場合、電子スイッチ手段をオープンすることで、蓄電手段で自立運転をした場合に起こる商用系統への逆潮流を防止することができる。   A commercial system that occurs when a power failure occurs on the commercial power side by providing an electronic switch means that cuts off the commercial power between the commercial power and the power storage means when the power storage means operates independently. It is possible to prevent reverse power flow to

以下、本発明の電力貯蔵システムの実施の形態を、図1から図9を用いて説明する。   Hereinafter, embodiments of the power storage system of the present invention will be described with reference to FIGS.

図1は、本発明に係る電力貯蔵システムの実施の形態の構成を示すブロック図(単線図)である。同図において、本実施の形態の電力貯蔵システムは、商用電力から受電する受電装置50と蓄電手段3を構成する蓄電池30から分電盤10を介して負荷40への電力供給を切り替える電力選択手段1と、受電装置50からの交流電力(商用電力)を蓄電池30への充電のための直流電力に変換するコンバータと蓄電池30に蓄電された直流電力を交流電力に変換するインバータの両方の機能を有する双方向電力変換器2と、蓄電池30からなる蓄電手段3と、電力選択手段1と双方向電力変換器2を制御する制御手段4と、受電装置50と電力選択手段1との間に設けられた太陽光発電A51と、蓄電池30側から受電装置50を介して商用電力側への逆潮流を防止する逆潮流防止回路53を備えている。図中5はマグネットスイッチ、6はスイッチング駆動部、13はコンデンサ、14はトランス、15はスイッチング素子、52は太陽光発電B、54は太陽光充電回路である。   FIG. 1 is a block diagram (single line diagram) showing a configuration of an embodiment of a power storage system according to the present invention. In the figure, the power storage system according to the present embodiment includes a power receiving device 50 that receives power from commercial power and a power selection unit that switches power supply from a storage battery 30 constituting the power storage unit 3 to a load 40 via a distribution board 10. 1 and a converter that converts AC power (commercial power) from the power receiving device 50 into DC power for charging the storage battery 30 and an inverter that converts DC power stored in the storage battery 30 into AC power. Provided between the power receiving device 50 and the power selection means 1, the power storage means 3 comprising the storage battery 30, the control means 4 for controlling the power selection means 1 and the bidirectional power converter 2, And a reverse power flow prevention circuit 53 for preventing a reverse power flow from the storage battery 30 side to the commercial power side through the power receiving device 50. In the figure, 5 is a magnet switch, 6 is a switching drive unit, 13 is a capacitor, 14 is a transformer, 15 is a switching element, 52 is a photovoltaic power generation B, and 54 is a solar charging circuit.

電力選択手段1は、2系統の切替スイッチMS1およびMS2と、サイリスタ等のスイッチング素子で構成される電子スイッチQ5,6とを備えている。切替スイッチMS1とMS2は、マグネットスイッチ5により開閉制御される。マグネットスイッチ5と電子スイッチQ5,6は、制御手段4により制御される。   The power selection means 1 includes two systems of changeover switches MS1 and MS2 and electronic switches Q5 and Q6 formed of switching elements such as thyristors. The changeover switches MS1 and MS2 are controlled to be opened and closed by a magnet switch 5. The magnet switch 5 and the electronic switches Q5 and Q6 are controlled by the control means 4.

双方向電力変換器2の主変換部は、スイッチング素子15より構成され、蓄電池30に対する充電動作時はコンバータとして動作するように、また、蓄電池30から負荷40へ電力を放電動作で供給する時はインバータとして動作するように、制御手段4およびスイッチング駆動部6により制御される。このようにスイッチング素子15を制御することによって、双方向電力変換器2の交流電流波形を商用電圧の正弦波に一致させるように制御し、充電および放電ができる双方向電力変換を可能にする。   The main converter of the bidirectional power converter 2 is constituted by the switching element 15 so that it operates as a converter during the charging operation of the storage battery 30 and when power is supplied from the storage battery 30 to the load 40 in a discharging operation. It is controlled by the control means 4 and the switching drive unit 6 so as to operate as an inverter. By controlling the switching element 15 in this way, the alternating current waveform of the bidirectional power converter 2 is controlled to coincide with the sine wave of the commercial voltage, thereby enabling bidirectional power conversion that can be charged and discharged.

具体的には、次のようなスイッチング制御を行う。
(1)スイッチング素子15に入り切り指令を与えてスイッチング動作を行い、入力電圧をパルス状にする。
(2)このパルスが任意区間において正弦波になるように制御を行う。
(3)この正弦波は充電時にはスイッチングにより発生した波形をコンデンサ(図示せず)で平滑することで直流電流とし、放電時には出力電圧を正弦波にする。
(4)この制御により双方向電力変換器2において双方向の電力変換を可能にする。
Specifically, the following switching control is performed.
(1) Enter the switching element 15 and give a switching command to perform a switching operation to make the input voltage pulsed.
(2) Control is performed so that this pulse becomes a sine wave in an arbitrary interval.
(3) This sine wave is converted to a direct current by smoothing the waveform generated by switching at the time of charging with a capacitor (not shown), and the output voltage is changed to a sine wave at the time of discharging.
(4) This control enables bidirectional power conversion in the bidirectional power converter 2.

また、スイッチング制御時のパルス幅を大きくすると電流、電圧は大きくなり、パルス幅を小さくすると電流、電圧は小さくなる。蓄電手段3には、任意の電流で定電流充電を行う。充電電気量に近くなるとパルス幅を小さくして充電電流を小さくし、充電電気量完了まで充電を行う。このように段階的に充電電流値を制御して蓄電池30への最適蓄電量を制御する。放電電力及び負荷電力を監視しパルス幅を変化させてインバータ出力電圧を変化させて蓄電手段3の放電を制御することができる。   Further, when the pulse width during switching control is increased, the current and voltage increase, and when the pulse width is decreased, the current and voltage decrease. The power storage means 3 is charged with a constant current with an arbitrary current. When the amount of electricity is close to charging, the pulse width is reduced to reduce the charging current, and charging is performed until the amount of charging electricity is completed. In this manner, the charging current value is controlled step by step to control the optimum amount of electricity stored in the storage battery 30. The discharge power and the load power can be monitored, the pulse width can be changed, and the inverter output voltage can be changed to control the discharge of the power storage means 3.

双方向電力変換器2には、平滑コンデンサ(図示せず)が設けられており、充電電流を平滑して蓄電池30へ充電を行う。また、電力選択手段1と双方向電力変換器2との間には、蓄電池30への充電時には降圧し、蓄電池30からの放電時には昇圧するトランス14が設けられている。また、このトランスの漏れリアクタスを利用してコンデンサ13とフィルタ構成し、双方向電力変換器2による電力変換時に発生する高次の高調波を低減させる。   The bidirectional power converter 2 is provided with a smoothing capacitor (not shown), and charges the storage battery 30 by smoothing the charging current. In addition, a transformer 14 is provided between the power selection unit 1 and the bidirectional power converter 2 so that the voltage is reduced when the storage battery 30 is charged and increased when the storage battery 30 is discharged. In addition, this transformer leak reactance is used to form a filter with the capacitor 13 to reduce higher-order harmonics generated during power conversion by the bidirectional power converter 2.

蓄電池30には、太陽光発電B52が設けられているが、風力発電、水素電池等の外部発電を接続することもできる。これにより、自然エネルギーである太陽光発電電力、風力発電電力等を蓄電でき、またクリーンエネルギーである水素電池等を使用することにより、CO2削減に寄与することができる。 The storage battery 30 is provided with solar power generation B52, but external power generation such as wind power generation and hydrogen battery can also be connected. Thereby, it is possible to store solar power, wind power, etc., which are natural energy, and to contribute to CO 2 reduction by using a hydrogen battery, etc., which is clean energy.

制御手段4は、本実施の形態ではCPUにより構成され、商用電力の電圧と電流、出力の電圧と電流および蓄電池の電圧と、内部タイマーの時刻情報に基づいて電力選択手段1の各スイッチを制御し、また双方向電力変換器2のインバータ機能およびコンバータ機能を制御する。   The control means 4 is constituted by a CPU in this embodiment, and controls each switch of the power selection means 1 based on the voltage and current of commercial power, the output voltage and current, the voltage of the storage battery, and the time information of the internal timer. In addition, the inverter function and the converter function of the bidirectional power converter 2 are controlled.

商用運転、充電運転モードの場合は、切替スイッチMS1と電子スイッチ手段Q5,6は閉じている。商用運転モードでは双方向電力変換器2を動作させないので、電力は負荷側へと供給されるだけとなる。充電運転モードでは双方向電力変換器2をコンバータとして動作させ、充電を行うので蓄電池30と負荷へ電力が供給される。放電運転モードの場合は、電子スイッチ手段Q5,6が開放するので、双方向電力変換器2からのみの給電となる。   In the commercial operation and charging operation modes, the changeover switch MS1 and the electronic switch means Q5, 6 are closed. Since the bidirectional power converter 2 is not operated in the commercial operation mode, power is only supplied to the load side. In the charging operation mode, the bidirectional power converter 2 is operated as a converter for charging, so that power is supplied to the storage battery 30 and the load. In the discharge operation mode, since the electronic switch means Q5 and 6 are opened, power is fed only from the bidirectional power converter 2.

系統補充運転モードでは、家庭内負荷40が例えば3kW未満の場合は、電力貯蔵システムの自立運転で電力を供給する。このとき、太陽光発電A51は切替スイッチMS1で電力貯蔵システムと切り離され、発電電力は全て系統へ売電される。また、電力貯蔵システムは、減った蓄電電力を、別の太陽光発電B52を設置し、太陽光充電回路54を経由して蓄電池30に接続し、充電することができる。さらに家庭内負荷40が例えば3kW以上になると、切替スイッチMS2を「入り」として、電力貯蔵システムからの不足する電力分を太陽光発電A51から供給する。この場合、電力貯蔵システムが放電する電力は、逆潮流防止回路53により商用側へ流出させない。さらに負荷電力が不足する場合は、商用電源より電力を供給する。このように太陽光発電A51およびB52の発電電力と電力貯蔵システムの蓄電電力を有効利用して、節電効果および電気料金削減効果を高めることができる。   In the grid replenishment operation mode, when the domestic load 40 is less than 3 kW, for example, power is supplied by the autonomous operation of the power storage system. At this time, the photovoltaic power generation A51 is disconnected from the power storage system by the changeover switch MS1, and all generated power is sold to the system. The power storage system can charge the reduced stored power by installing another photovoltaic power generation B52 and connecting it to the storage battery 30 via the solar charging circuit 54. Furthermore, when the household load 40 becomes 3 kW or more, for example, the changeover switch MS2 is set to “ON”, and the insufficient power from the power storage system is supplied from the photovoltaic power generation A51. In this case, the power discharged from the power storage system is not discharged to the commercial side by the reverse power flow prevention circuit 53. Further, when the load power is insufficient, power is supplied from a commercial power source. Thus, the power saving effect and the electricity charge reduction effect can be enhanced by effectively using the generated power of the solar power generation A51 and B52 and the stored power of the power storage system.

次に、本実施の形態における動作について、図2のフローチャートおよび図3、図4の系統接続図を用いて説明する。なお、図3及び図4において、55は太陽光発電A51のための太陽電池モジュールアレイ、56は太陽電池モジュールアレイ55において発電した直流電力を負荷用の交流電圧に変換するパワーコンディショナーである。   Next, the operation in the present embodiment will be described with reference to the flowchart of FIG. 2 and the system connection diagrams of FIGS. 3 and 4, 55 is a solar cell module array for the photovoltaic power generation A51, and 56 is a power conditioner that converts the DC power generated in the solar cell module array 55 into an AC voltage for load.

図2に示すステップ600において、放電開始時間帯、すなわち夜間料金時間帯以外の時間帯かどうかを判断する。これは、制御手段4のCPU内部のタイマー(図示せず)を用いて計時を行うことで可能である。放電開始時間帯であれば、ステップ610において、放電開始条件を満たしているかどうかを判断する。放電開始条件は、本例では蓄電池電力残量、蓄電池温度、放電時間帯である。   In step 600 shown in FIG. 2, it is determined whether or not it is a discharge start time zone, that is, a time zone other than the night charge time zone. This is possible by measuring time using a timer (not shown) inside the CPU of the control means 4. If it is the discharge start time zone, it is determined in step 610 whether or not the discharge start condition is satisfied. In this example, the discharge start conditions are the remaining battery power, the storage battery temperature, and the discharge time zone.

条件が成立しているときは、ステップ620で負荷電力が設定値(本例では3kW)以上かどうかを判定する。設定値未満であれば、ステップ630で電力選択手段1の切替スイッチMS1と電子スイッチQ5,6を開放し、蓄電池30からのみの放電運転モードとする(図3)。このとき、太陽光発電Aは電力貯蔵システムと切り離され、発電電力は全て系統へ逆潮流して売電される。負荷電力が設定値(本例では3kW)以上であれば、ステップ640で電力選択手段1の切替スイッチMS1と電子スイッチQ5,6を全て投入し、放電運転に対し商用電力/太陽光/電池からの電力を供給する系統補充運転モードとする(図4)。運転モードが決まると、ステップ650の放電運転出力制御を行う。   If the condition is satisfied, it is determined in step 620 whether the load power is equal to or greater than a set value (3 kW in this example). If it is less than the set value, in step 630, the changeover switch MS1 and the electronic switches Q5, 6 of the power selection means 1 are opened, and the discharge operation mode only from the storage battery 30 is set (FIG. 3). At this time, the photovoltaic power generation A is disconnected from the power storage system, and all the generated power is sold in reverse power to the system. If the load power is equal to or higher than the set value (3 kW in this example), in step 640, all the selector switches MS1 and the electronic switches Q5 and 6 of the power selection means 1 are turned on, and from the commercial power / solar power / battery for the discharge operation. It is set as the system replenishment operation mode which supplies the electric power (FIG. 4). When the operation mode is determined, discharge operation output control in step 650 is performed.

ステップ660では、蓄電池残量、蓄電池温度、放電時間帯などの放電運転継続条件を監視する。不成立になると、ステップ670で放電運転停止および放電量記録処理を行う。これには、ステップ680の放電量監視処理を常時行っておく。ステップ690では、電力選択手段1の切替スイッチMS1及び電子スイッチQ5,6を閉じたままインバータ出力を停止して、電力分配切替を商用/太陽光発電Aによる電力供給とする。
なお、太陽光発電B52は、商用/太陽光発電A51による運転とは切り離して、日照条件を満たすときに、常時蓄電池30に充電を行うことができる。
In step 660, the discharge operation continuation conditions such as the remaining battery capacity, storage battery temperature, and discharge time zone are monitored. If not established, in step 670, discharge operation stop and discharge amount recording processing are performed. For this, the discharge amount monitoring process in step 680 is always performed. In step 690, the inverter output is stopped while the changeover switch MS1 and the electronic switches Q5 and 6 of the power selection means 1 are closed, and the power distribution switching is set as the power supply by the commercial / solar power generation A.
Note that the photovoltaic power generation B52 can always charge the storage battery 30 when the sunshine condition is satisfied separately from the operation by the commercial / solar power generation A51.

2.非定常運転
図5に示すステップ200において、停電が発生すると、ステップ210で現在の運転状況を判定する。充電モードであれば、ステップ220で充電運転時非定常処理を行う。放電モード(系統補充運転モードも含む)であれば、ステップ230で放電運転時非定常処理を行う。商用運転モードであれば、ステップ240で商用運転時非定常処理を行う。ステップ250では、放電深度を判断する。放電深度が超過であれば、ステップ260で均等充電要求フラグをセットする。
2. Unsteady operation When a power failure occurs in step 200 shown in FIG. 5, the current operation state is determined in step 210. If it is in the charging mode, in step 220, a non-stationary process is performed during charging operation. If it is in the discharge mode (including the system replenishment operation mode), in step 230, non-stationary processing during discharge operation is performed. If the operation mode is the commercial operation mode, in step 240, unsteady processing during commercial operation is performed. In step 250, the depth of discharge is determined. If the depth of discharge is exceeded, the equal charge request flag is set at step 260.

すなわち、
(1)非定常運転において、蓄電池より負荷へ電力供給することで蓄電容量が減り、放電深度まで達するとステップ260の動作を実行する。この間、商用は停電中である。
(2)商用電力が停電から復帰した場合、本システムは非定常運転から定常運転(商用運転)へ移行する。この時フラグがセットされている場合、充電時間帯に充電を行う。
ステップ270では、停電発生記録を行う。
That is,
(1) In unsteady operation, the power storage capacity is reduced by supplying power from the storage battery to the load, and the operation of step 260 is executed when the depth of discharge is reached. During this time, commercial use is out of service.
(2) When commercial power returns from a power failure, the system shifts from unsteady operation to steady operation (commercial operation). If the flag is set at this time, charging is performed during the charging time period.
In step 270, the occurrence of a power failure is recorded.

3.充電制御(1)
図6に示すステップ300において、充電時間帯かどうかを判定する。充電時間帯であれば、ステップ310で充電の要否を判定し、充電要であればステップ320で電力選択手段1の切替スイッチMS1、電子スイッチQ5,6を投入して双方向電力変換器2を介して商用電力からの充電を行う。
3. Charge control (1)
In step 300 shown in FIG. 6, it is determined whether it is a charging time zone. If it is in the charging time zone, it is determined whether charging is required in step 310. If charging is required, in step 320, the changeover switch MS1 and the electronic switches Q5, 6 of the power selection means 1 are turned on to turn on the bidirectional power converter 2. Charging from commercial power via

4.電池温度監視
図7のステップ400において、充電開始時の温度を記録する。ステップ410において、温度センサ(図示せず)で計測した電池温度現在値と充電開始時の温度とを比較する。
ステップ420では充電終了かどうかを判断し、充電未終了の場合は、6℃以上の温度上昇があったかどうかを判定し、温度上昇があれば、ステップ440で充電停止フラグをセットし、充電を停止する。
4). Battery Temperature Monitoring In step 400 of FIG. 7, the temperature at the start of charging is recorded. In step 410, the current battery temperature value measured by a temperature sensor (not shown) is compared with the temperature at the start of charging.
In step 420, it is determined whether charging has been completed. If charging has not been completed, it is determined whether there has been a temperature increase of 6 ° C. or more. If there is a temperature increase, a charge stop flag is set in step 440 to stop charging. To do.

5.充電制御(2)
図8のステップ500において、電池電圧検出、電池温度検出処理を行う。ステップ510で充電諸量をセットする。
ここで、充電諸量とは、充電運転を行う場合、充電電気量に達するまでに段階的に充電電流値を減らして充電を行うときの電流値設定のことをいう。
次いで、ステップ520で定電流充電を行う。ステップ530では充電電気量に到達したかどうかを判定し、到達したら、ステップ540で電池電圧判定処理を行う。
5. Charge control (2)
In step 500 of FIG. 8, battery voltage detection and battery temperature detection processing is performed. In step 510, various charging amounts are set.
Here, the various charging amounts refer to current value settings when charging is performed by gradually reducing the charging current value until the amount of charging electricity is reached when performing the charging operation.
Next, constant current charging is performed in step 520. In step 530, it is determined whether or not the amount of charged electricity has been reached. If it has been reached, battery voltage determination processing is performed in step 540.

図9は、太陽光発電の余剰電力を比較したものであり、(a)は従来例、(b)は本実施の形態を使用した場合の余剰電力の時間変化を示している。このように、太陽光発電A51,B52を併用することで、余剰電力が著しく大きくなり、これを蓄電池の充電に用いたり、売電することで、電力料金削減効果と負荷平準化に大きく寄与することができる。   FIG. 9 is a comparison of surplus power of solar power generation, where (a) shows a conventional example, and (b) shows a time change of surplus power when this embodiment is used. As described above, the combined use of the solar power generation A51 and B52 significantly increases the surplus power. By using this for charging the storage battery or selling the power, the power charge reduction effect and the load leveling are greatly contributed. be able to.

本発明は、夜間電力を蓄電し、夜間電力の供給時間帯以外の時間帯に放電することによって、電気料金の削減および負荷平準化を図ることができ、さらに太陽光発電による余剰電流を商用電力側に逆潮流することができる電力貯蔵システムとして利用することができる。   The present invention can store electric power at night and discharge it in a time zone other than the supply time zone of night electric power, thereby reducing the electricity bill and leveling the load. It can be used as a power storage system that can flow backward to the side.

本発明に係る電力貯蔵システムの実施の形態の構成を示すブロック図(単線図)である。1 is a block diagram (single line diagram) showing a configuration of an embodiment of a power storage system according to the present invention. 本発明の実施の形態における制御手段の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the control means in embodiment of this invention. 本発明の実施の形態における各運転モードの説明図である。It is explanatory drawing of each operation mode in embodiment of this invention. 本発明の実施の形態における各運転モードの説明図である。It is explanatory drawing of each operation mode in embodiment of this invention. 本発明の実施の形態における制御手段の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the control means in embodiment of this invention. 本発明の実施の形態における制御手段の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the control means in embodiment of this invention. 本発明の実施の形態における制御手段の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the control means in embodiment of this invention. 本発明の実施の形態における制御手段の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the control means in embodiment of this invention. 従来と、本発明の実施の形態における太陽光発電の余剰電力を比較した説明図である。It is explanatory drawing which compared the surplus electric power of the solar power generation in the former and embodiment of this invention.

符号の説明Explanation of symbols

1 電力選択手段
2 双方向電力変換器
3 蓄電手段
4 制御手段
5 マグネットスイッチ
6 スイッチング駆動部
10 分電盤
13 コンデンサ
14 トランス
15 スイッチング素子
30 蓄電池
40 負荷
50 受電装置
51 太陽光発電A
52 太陽光発電B
53 逆潮流防止回路
54 太陽光充電回路
55 太陽電池モジュールアレイ
56 パワーコンディショナー
DESCRIPTION OF SYMBOLS 1 Electric power selection means 2 Bidirectional power converter 3 Power storage means 4 Control means 5 Magnet switch 6 Switching drive part 10 Distribution board 13 Capacitor 14 Transformer 15 Switching element 30 Storage battery 40 Load 50 Power receiving apparatus 51 Solar power generation A
52 Solar Power B
53 Reverse Power Flow Prevention Circuit 54 Solar Charging Circuit 55 Solar Cell Module Array 56 Power Conditioner

Claims (5)

商用電力を直流電力に変換する整流手段と、整流された直流電力を貯蔵する蓄電手段と、前記蓄電手段に蓄電された直流電力を前記商用電力の電圧および周波数にほぼ等しい交流電力に変換する電力変換手段と、前記商用電力と前記電力変換手段により変換された交流電力とを複数のスイッチを切り替えて選択的に負荷に供給する電力選択手段と、前記電力選択手段の複数のスイッチの制御を行う制御手段と、前記商用電力の受電装置と前記電力選択手段との間に接続され、太陽光発電による電力を前記商用電力の電圧および周波数にほぼ等しい交流電力に変換する太陽光発電手段を有し、
前記制御手段は、夜間料金適用時間帯は前記商用電力から前記整流手段を介して前記蓄電手段に電力を供給するとともに前記負荷に電力を供給する夜間運転モードと、前記夜間料金適用時間帯以外の時間帯においては、前記負荷の消費電力が所定の値未満のときは前記蓄電手段からのみの前記負荷への電力供給を行うとともに、前記太陽光発電手段からの余剰電力を商用電力側に逆潮流させる放電運転モードと、前記負荷の消費電力が前記所定の値以上のときは、前記所定の値までの消費電力は前記蓄電手段から電力供給し、前記所定の値以上の消費電力は前記商用電力および前記太陽光発電手段から電力供給する系統補充運転モードの各モードに応じて前記複数のスイッチを制御するものであることを特徴とする電力貯蔵システム。
Rectifying means for converting commercial power into DC power, power storage means for storing the rectified DC power, and power for converting DC power stored in the power storage means into AC power substantially equal to the voltage and frequency of the commercial power Controlling the conversion means, the power selection means for selectively supplying the commercial power and the AC power converted by the power conversion means to a load by switching a plurality of switches, and controlling the plurality of switches of the power selection means A photovoltaic power generation means connected between the control means, the commercial power receiving device and the power selection means, for converting the power generated by the photovoltaic power into alternating current power substantially equal to the voltage and frequency of the commercial power. ,
The control means includes a night operation mode for supplying power from the commercial power to the power storage means via the rectifying means and supplying power to the load during the night charge application time zone, and other than the night charge application time zone. In the time zone, when the power consumption of the load is less than a predetermined value, power is supplied to the load only from the power storage means, and surplus power from the solar power generation means is reversely flowed to the commercial power side. And when the power consumption of the load is greater than or equal to the predetermined value, the power consumption up to the predetermined value is supplied from the power storage means, and the power consumption greater than or equal to the predetermined value is the commercial power And a power storage system that controls the plurality of switches in accordance with each mode of a system replenishment operation mode in which power is supplied from the solar power generation means.
前記整流手段および前記電力変換手段は、両者の機能を備えた双方向電力変換器である請求項1記載の電力貯蔵システム。   The power storage system according to claim 1, wherein the rectifying means and the power conversion means are bidirectional power converters having both functions. 前記電力選択手段は、商用電力と前記電力変換手段との間に接続される第1のスイッチと、商用電力と負荷との間に接続される第2のスイッチと、前記電力変換手段と前記第1のスイッチとの間に設けられる電子スイッチ手段とからなり、前記電力変換手段は前記負荷に常時接続され、かつ前記制御手段により、前記各スイッチおよび電子スイッチ手段を前記各モードにしたがって切り替えるようにしたことを特徴とする請求項1または2に記載の電力貯蔵システム。   The power selection means includes a first switch connected between commercial power and the power conversion means, a second switch connected between commercial power and a load, the power conversion means, and the first switch. The power conversion means is always connected to the load, and the control means switches the switches and electronic switch means according to the modes. The power storage system according to claim 1, wherein the power storage system is a power storage system. 前記蓄電手段の出力部と商用電力との接続点の商用電力側に電力変換手段と商用電力を遮断する電子スイッチ手段を設けたことを特徴とする請求項1から3のいずれかの項に記載の電力貯蔵システム。   4. The electronic switch unit that cuts off the power conversion unit and the commercial power is provided on the commercial power side of the connection point between the output unit of the power storage unit and the commercial power. 5. Power storage system. 前記蓄電手段に、太陽光発電、風力発電等の外部発電手段からの電力を供給する構成としたことを特徴とする請求項1から4のいずれかの項に記載の電力貯蔵システム。   The power storage system according to any one of claims 1 to 4, wherein the power storage unit is configured to supply electric power from an external power generation unit such as solar power generation or wind power generation.
JP2004333686A 2004-11-17 2004-11-17 Power storage system Active JP3759151B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004333686A JP3759151B1 (en) 2004-11-17 2004-11-17 Power storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004333686A JP3759151B1 (en) 2004-11-17 2004-11-17 Power storage system

Publications (2)

Publication Number Publication Date
JP3759151B1 true JP3759151B1 (en) 2006-03-22
JP2006149037A JP2006149037A (en) 2006-06-08

Family

ID=36165344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004333686A Active JP3759151B1 (en) 2004-11-17 2004-11-17 Power storage system

Country Status (1)

Country Link
JP (1) JP3759151B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124811A (en) * 2005-10-28 2007-05-17 Seiko Electric Co Ltd Power storage system, route generatiing device and route generation method
CN102270884A (en) * 2010-06-01 2011-12-07 三星Sdi株式会社 Energy storage system and method of controlling the same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041311A1 (en) * 2006-10-02 2008-04-10 Otaki Gas Corporation Hybrid type electric power generation system
EP2515412A1 (en) * 2009-12-14 2012-10-24 Sanyo Electric Co., Ltd. Charge/discharge system
KR101097459B1 (en) * 2010-02-10 2011-12-23 한국전기연구원 Building micro-grid system and operation method thereof
JP2011200101A (en) 2010-02-25 2011-10-06 Sanyo Electric Co Ltd Energy storage system
JP2011200102A (en) 2010-02-25 2011-10-06 Sanyo Electric Co Ltd Power storage system
JP2011182503A (en) 2010-02-26 2011-09-15 Sanyo Electric Co Ltd Energy storage system
JP5782233B2 (en) * 2010-06-14 2015-09-24 大和ハウス工業株式会社 Energy management system and energy management method
EP2717412B1 (en) * 2011-05-31 2017-07-12 Panasonic Intellectual Property Management Co., Ltd. Power supply system
KR101570944B1 (en) * 2011-09-13 2015-11-20 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Peak cut system
JP5845408B2 (en) * 2011-09-26 2016-01-20 パナソニックIpマネジメント株式会社 Photovoltaic power supply system
JP5680525B2 (en) * 2011-12-22 2015-03-04 株式会社正興電機製作所 Power storage system, power storage control device, and power control method
JP2013143895A (en) * 2012-01-12 2013-07-22 Sharp Corp Charge/discharge control device, power storage system, power supply system and charge/discharge control method
JP6050052B2 (en) * 2012-08-23 2016-12-21 未来工業株式会社 Power management system
JP6190224B2 (en) * 2013-09-19 2017-08-30 株式会社エヌエフ回路設計ブロック Power storage system
KR101539728B1 (en) * 2015-02-16 2015-07-28 주식회사 티팩토리 energy management system for solar generation
JP6541081B2 (en) * 2015-07-28 2019-07-10 パナソニックIpマネジメント株式会社 Power supply system
KR102558178B1 (en) * 2021-06-16 2023-07-21 (주)에스엔디파워닉스 Independent-type microgrid system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124811A (en) * 2005-10-28 2007-05-17 Seiko Electric Co Ltd Power storage system, route generatiing device and route generation method
CN102270884A (en) * 2010-06-01 2011-12-07 三星Sdi株式会社 Energy storage system and method of controlling the same
JP2011254696A (en) * 2010-06-01 2011-12-15 Samsung Sdi Co Ltd Power storage system and method for controlling the same
CN102270884B (en) * 2010-06-01 2015-12-16 三星Sdi株式会社 Energy-storage system and control method thereof

Also Published As

Publication number Publication date
JP2006149037A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
JP3759151B1 (en) Power storage system
JP4856692B2 (en) Power supply system and power switching device
US9099893B2 (en) Power control device for a power grid, comprising a control unit for controlling an energy flow between the power generation unit, the energy storage unit, the consumer unit and/or the power grid
RU2298867C2 (en) Power load equalizing system and batched energy storage
KR101265645B1 (en) Photovoltaic power generation system
JP3964852B2 (en) Distributed power generation system
US9252599B2 (en) Method for controlling energy management system
WO2011162025A1 (en) Dc power distribution system
US9030048B2 (en) Uninterruptible power supply systems and methods for communications systems
US11689118B2 (en) Converter with power management system for household users to manage power between different loads including their electric vehicle
JP2003079054A (en) Solar power generation system having storage battery
KR20130066100A (en) Power consumption control apparatus and method
JP2011250673A (en) Energy controller and control method
JP4660422B2 (en) Energy supply system
JP2010259303A (en) Distributed power generation system
KR20200005862A (en) Energy management system and energy storage system having the energy management system
JP3827676B2 (en) Power storage system
KR20150085227A (en) The control device and method for Energy Storage System
KR102222560B1 (en) An energy storage system
JP2003153448A (en) Power generation system
Teo et al. Modelling and optimisation of stand alone power generation at rural area
JP2002298887A (en) Power management device
JP2003092831A (en) Power supply system and its operation method
KR101256376B1 (en) Energy storage apparatus for using different charging/discharging path, and energy storage system thereof
JP4628074B2 (en) Electricity consumption equipment and cogeneration system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20051208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3759151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170113

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250