JP5730051B2 - Charging member - Google Patents

Charging member Download PDF

Info

Publication number
JP5730051B2
JP5730051B2 JP2011027345A JP2011027345A JP5730051B2 JP 5730051 B2 JP5730051 B2 JP 5730051B2 JP 2011027345 A JP2011027345 A JP 2011027345A JP 2011027345 A JP2011027345 A JP 2011027345A JP 5730051 B2 JP5730051 B2 JP 5730051B2
Authority
JP
Japan
Prior art keywords
resin
parts
mass
particles
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011027345A
Other languages
Japanese (ja)
Other versions
JP2012168259A (en
Inventor
雄彦 青山
雄彦 青山
谷口 智士
智士 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011027345A priority Critical patent/JP5730051B2/en
Publication of JP2012168259A publication Critical patent/JP2012168259A/en
Application granted granted Critical
Publication of JP5730051B2 publication Critical patent/JP5730051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C13/00Rolls, drums, discs, or the like; Bearings or mountings therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0208Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices by contact, friction or induction, e.g. liquid charging apparatus
    • G03G15/0216Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices by contact, friction or induction, e.g. liquid charging apparatus by bringing a charging member into contact with the member to be charged, e.g. roller, brush chargers
    • G03G15/0233Structure, details of the charging member, e.g. chemical composition, surface properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/54Surface roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/38Electrographic apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Rolls And Other Rotary Bodies (AREA)

Description

本発明は帯電部材に関する。   The present invention relates to a charging member.

電子写真装置において、電子写真感光体の接触帯電に用いられる帯電部材として、表面層に樹脂粒子を含有させ、表面に該樹脂粒子に由来する凸部を形成させて表面の粗さを調整してなる帯電部材が提案されている(特許文献1)。   In an electrophotographic apparatus, as a charging member used for contact charging of an electrophotographic photosensitive member, resin particles are contained in the surface layer, and convex portions derived from the resin particles are formed on the surface to adjust the surface roughness. A charging member is proposed (Patent Document 1).

特開2008−276026号公報JP 2008-276026 A

接触帯電用の帯電部材において、表面の凸部は、電子写真感光体とのニップ近傍における放電現象をより確実に生じさせるために重要な構成であると考えらえている。   In the charging member for contact charging, the convex portion on the surface is considered to be an important configuration for more reliably generating a discharge phenomenon in the vicinity of the nip with the electrophotographic photosensitive member.

しかしながら、近年の電子写真画像の高画質化に伴って、トナーの粒径がより小さくなってきている。また、トナーの高機能化に伴って様々な外添剤が使用されるようになってきている。その結果、表面に凸部を有する帯電部材の表面には、トナー等が付着し、汚れやすくなってきている。特に、本発明者らは、表面に凸部を形成してなる帯電部材を長期に亘って使用したときに、帯電部材表面の凸部間(谷間)にトナーや外添剤が堆積していくことを確認した。また、凸部間へのトナー等の堆積に伴って、電子写真画像へのスジ状あるいはドット状の欠陥が発生することを確認した。このことから、本発明者らは、凸部間へのトナー等の堆積は、帯電部材から感光体への放電を不安定化させる要因となっているものと推定した。   However, with the recent increase in image quality of electrophotographic images, the particle size of toner has become smaller. In addition, various external additives have come to be used as the function of the toner is enhanced. As a result, toner or the like adheres to the surface of the charging member having a convex portion on the surface, and it becomes easy to get dirty. In particular, the present inventors have accumulated toner and external additives between the convex portions (valleys) on the surface of the charging member when a charging member having convex portions formed on the surface is used for a long period of time. It was confirmed. Further, it was confirmed that a streak-like or dot-like defect occurred in the electrophotographic image with the accumulation of toner or the like between the convex portions. From this, the present inventors have estimated that the accumulation of toner or the like between the convex portions is a factor that destabilizes the discharge from the charging member to the photosensitive member.

そこで、本発明は、長期の使用によっても電子写真感光体を安定に帯電させることのできる帯電部材の提供に向けたものである。   Accordingly, the present invention is directed to providing a charging member that can stably charge an electrophotographic photosensitive member even after long-term use.

また、本発明は、長期に亘って高品位な電子写真画像を安定して提供し得る電子写真装置及びプロセスカートリッジの提供に向けたものである。   The present invention is also directed to providing an electrophotographic apparatus and a process cartridge that can stably provide high-quality electrophotographic images over a long period of time.

本発明によれば、導電性基体、弾性層、及び表面層をこの順に有する帯電部材であって、該表面層は、バインダー樹脂と、該バインダー樹脂に分散され、該表面層の表面に凸部を生じさせてなる中実の樹脂粒子とを含み、
該弾性層はバインダーとしてのゴムと、該ゴムに分散されている中空粒子とを含み、該中空粒子は熱可塑性樹脂を含むシェルを有し、かつ、気体を内包しており、
該弾性層及び該表面層の積層方向への該樹脂粒子の投影円の直径は、該積層方向への該中空粒子の投影円の直径よりも小さく、
該樹脂粒子の該積層方向への投影円の直径の3倍の直径を有し、かつ、該凸部の頂点を該積層方向に投影した点を中心とする円を該積層方向に投影したときに、該円の領域に含まれる該中空粒子の投影円の面積の総和が該円の面積の80%以上である帯電部材が提供される。
According to the present invention, there is provided a charging member having a conductive substrate, an elastic layer, and a surface layer in this order, the surface layer being dispersed in the binder resin and the binder resin, and a convex portion on the surface of the surface layer. Solid resin particles that are produced,
The elastic layer includes a rubber as a binder and hollow particles dispersed in the rubber, the hollow particles have a shell containing a thermoplastic resin, and enclose gas.
The diameter of the projected circle of the resin particles in the laminating direction of the elastic layer and the surface layer is smaller than the diameter of the projected circle of the hollow particles in the laminating direction,
When a circle having a diameter that is three times the diameter of the projected circle of the resin particles in the laminating direction and centering on a point obtained by projecting the apex of the convex portion in the laminating direction is projected in the laminating direction In addition, a charging member is provided in which the total area of the projected circles of the hollow particles contained in the circle region is 80% or more of the area of the circle.

また、本発明によれば、前記帯電部材と電子写真感光体とを備え、電子写真装置の本体に着脱可能に構成されているプロセスカートリッジが提供される。   According to the present invention, there is provided a process cartridge comprising the charging member and an electrophotographic photosensitive member and configured to be detachable from the main body of the electrophotographic apparatus.

更に、本発明によれば、前記帯電部材と電子写真感光体とを備えた電子写真装置が提供される。 Furthermore, according to the present invention, there is provided an electrophotographic apparatus provided with the charging member and an electrophotographic photosensitive member .

本発明によれば、長期の使用によっても凸部間にトナー等が堆積し難く、帯電性能が経時的に変化しにくい帯電部材を得ることができる。また、係る帯電部材を用いることで、高品位な電子写真画像を安定して形成し得る電子写真装置及びプロセスカートリッジを得ることができる。   According to the present invention, it is possible to obtain a charging member in which toner or the like hardly accumulates between convex portions even after long-term use, and the charging performance hardly changes with time. Further, by using such a charging member, an electrophotographic apparatus and a process cartridge that can stably form a high-quality electrophotographic image can be obtained.

(a)本発明に係る帯電部材の断面図である。(b)本発明に係る帯電部材の積層方向の投影図である。(A) It is sectional drawing of the charging member which concerns on this invention. (B) It is a projection figure of the lamination direction of the charging member which concerns on this invention. 樹脂粒子及び中空粒子の積層方向の投影円の概略図と、帯電部材の断面図である。It is the schematic of the projection circle | round | yen of the lamination direction of a resin particle and a hollow particle, and sectional drawing of a charging member. 樹脂粒子の投影円の直径の3倍円形領域に含まれる中空粒子の投影円の面積が、該3倍円形領域の面積に対し占める割合を示す概略図である。It is the schematic which shows the ratio for which the area of the projection circle | round | yen of the hollow particle contained in the 3 times circular area | region of the diameter of the projection circle | round | yen of the resin particle accounts to the area of this 3 times circular area | region. (a)弾性層を表面層用塗布溶液に浸漬した際の断面図である。(b)弾性層表面に表面層用塗布溶液を塗布し、乾燥過程の断面図である。(c)弾性層表面に表面層用塗布溶液を塗布し、乾燥後の断面図である。(A) It is sectional drawing at the time of immersing an elastic layer in the coating solution for surface layers. (B) It is sectional drawing of the drying process which apply | coats the coating solution for surface layers on the elastic layer surface. (C) It is sectional drawing after apply | coating the coating solution for surface layers on the elastic layer surface, and drying. (a)本発明に係るローラ形状の帯電部材の断面図である。(b)本発明に係る平板形状の帯電部材の断面図である。(A) It is sectional drawing of the roller-shaped charging member which concerns on this invention. (B) It is sectional drawing of the flat-shaped charging member which concerns on this invention. 本発明に係る帯電部材の電気抵抗値測定時における測定装置の概略図である。It is the schematic of the measuring apparatus at the time of the electrical resistance value measurement of the charging member which concerns on this invention. (a)単層クロスヘッド押出成形機の概略断面図である。(b)金型の断面模式図である。(A) It is a schematic sectional drawing of a single layer crosshead extrusion molding machine. (B) It is a cross-sectional schematic diagram of a metal mold | die. 本発明に係る帯電部材を備える電子写真装置の一例を表す断面概略図である。1 is a schematic cross-sectional view illustrating an example of an electrophotographic apparatus including a charging member according to the present invention.

本発明に係る帯電部材は、導電性基体、弾性層、及び表面層をこの順に有し、被帯電体を帯電するのに用いられる。該表面層は、バインダー樹脂と、該バインダー樹脂に分散され、該表面層の表面に凸部を生じさせてなる中実の樹脂粒子とを含む。該弾性層はバインダーとしてのゴムと、該ゴムに分散されている中空粒子とを含み、該中空粒子は熱可塑性樹脂を含むシェルを有し、かつ、気体を内包している。   The charging member according to the present invention has a conductive substrate, an elastic layer, and a surface layer in this order, and is used for charging a member to be charged. The surface layer includes a binder resin and solid resin particles that are dispersed in the binder resin and have convex portions formed on the surface of the surface layer. The elastic layer includes a rubber as a binder and hollow particles dispersed in the rubber. The hollow particles have a shell containing a thermoplastic resin and contain a gas.

また、該弾性層及び該表面層の積層方向への該樹脂粒子の投影円の直径は、該積層方向への該中空粒子の投影円の直径よりも小さい。   The diameter of the projected circle of the resin particles in the stacking direction of the elastic layer and the surface layer is smaller than the diameter of the projected circle of the hollow particles in the stacking direction.

更に、該樹脂粒子の該積層方向への投影円の直径の3倍の直径を有し、かつ、該凸部の頂点を該積層方向に投影した点を中心とする円を該積層方向に投影したときに、該円の領域に含まれる該中空粒子の投影円の面積の総和は、該円の面積の80%以上である。   Further, a circle having a diameter that is three times the diameter of the projected circle of the resin particles in the laminating direction and centering on a point obtained by projecting the apex of the convex portion in the laminating direction is projected in the laminating direction. Then, the total area of the projected circles of the hollow particles contained in the circle region is 80% or more of the area of the circle.

このような構成により、電子写真感光体と帯電部材とが当接する際に、樹脂粒子が弾性層側にめり込み、汚れが帯電部材表面の凹部に堆積するのを抑制することができる。弾性層中の中空粒子は気体を内包しており、変形が加わった時中空粒子の内圧が高まり、高い反発性を発現する。そのため、電子写真感光体と帯電部材との当接が開放されると迅速に形状が戻り、樹脂粒子による凸部が復元する。   With such a configuration, when the electrophotographic photosensitive member and the charging member come into contact with each other, it is possible to prevent the resin particles from sinking into the elastic layer side and depositing dirt on the concave portion of the charging member surface. The hollow particles in the elastic layer enclose a gas, and when deformation is applied, the internal pressure of the hollow particles increases and expresses high resilience. Therefore, when the contact between the electrophotographic photosensitive member and the charging member is released, the shape is quickly restored, and the convex portion due to the resin particles is restored.

このため、ニップの直前及び直後の、帯電部材の表面と電子写真感光体の表面とが近接し、放電が最も活発に生じる領域(放電領域)においては凸部の存在による帯電安定化の効果が発揮される。この結果、帯電部材表面におけるトナーや外添剤等の汚れの堆積が抑制されると同時に長期にわたり帯電均一化の効果が発揮され、高速、高耐久の電子写真装置に用いる場合にも、帯電部材表面の汚れに起因するスジやドットの発生が抑制される。本発明に係る帯電部材においては、前記樹脂粒子と前記中空粒子との関係を下記のように制御する。   Therefore, immediately before and after the nip, the surface of the charging member and the surface of the electrophotographic photosensitive member are close to each other, and in the region where the discharge occurs most actively (discharge region), there is an effect of charging stabilization due to the presence of the convex portion. Demonstrated. As a result, the accumulation of dirt such as toner and external additives on the surface of the charging member is suppressed, and at the same time, the effect of uniform charging is demonstrated over a long period of time. Generation of streaks and dots due to surface contamination is suppressed. In the charging member according to the present invention, the relationship between the resin particles and the hollow particles is controlled as follows.

図1(a)に本発明に係る帯電部材の一例の断面図を示す。本発明に係る帯電部材は、弾性層2と表面層5とを有する。弾性層2は中空粒子3を含有し、表面層5は樹脂粒子4を含有する。また図1(b)に、弾性層2及び表面層5の積層方向への中空粒子3の投影図8と樹脂粒子4の投影図7を示す。本発明においては、樹脂粒子4の投影円の直径は、中空粒子3の投影円の直径よりも小さい。すなわち、中空粒子3の投影円の直径に対する樹脂粒子4の投影円の直径の比が1未満である。なお、中空粒子3の投影円の直径及び樹脂粒子4の投影円の直径は以下の方法により算出する。   FIG. 1A shows a cross-sectional view of an example of a charging member according to the present invention. The charging member according to the present invention has an elastic layer 2 and a surface layer 5. The elastic layer 2 contains hollow particles 3 and the surface layer 5 contains resin particles 4. FIG. 1B shows a projection 8 of the hollow particles 3 and a projection 7 of the resin particles 4 in the stacking direction of the elastic layer 2 and the surface layer 5. In the present invention, the diameter of the projected circle of the resin particles 4 is smaller than the diameter of the projected circle of the hollow particles 3. That is, the ratio of the diameter of the projected circle of the resin particle 4 to the diameter of the projected circle of the hollow particle 3 is less than 1. The diameter of the projected circle of the hollow particles 3 and the diameter of the projected circle of the resin particles 4 are calculated by the following method.

帯電部材の弾性層2の任意の点を、500μmに亘って20nmずつ、表面層5の上から集束イオンビーム(商品名:FB−2000C、日立製作所社製)にて切り出し、その断面画像を撮影する。撮影した画像を組み合わせ、立体像を算出する。図2に示すように、前記中空粒子3の立体像から積層方向の投影図を作成し、その投影面積を求める。次に、該投影面積と等しい面積を有する円の直径を求める。同様に別の中空粒子3の投影面積を求め、該投影面積と等しい面積を有する円の直径を求め、これらの円の直径の算術平均を求める。この作業を視野内の中空粒子10個について行う。さらに、同様の測定を帯電部材の長手方向10点について行い、得られた計100個の平均値を算出し、中空粒子3の投影円の直径とする。   An arbitrary point of the elastic layer 2 of the charging member is cut out from the surface layer 5 by 20 nm over 500 μm by a focused ion beam (trade name: FB-2000C, manufactured by Hitachi, Ltd.), and a cross-sectional image is taken. To do. A three-dimensional image is calculated by combining the captured images. As shown in FIG. 2, a projection view in the stacking direction is created from the three-dimensional image of the hollow particles 3, and the projection area is obtained. Next, the diameter of a circle having an area equal to the projected area is obtained. Similarly, a projected area of another hollow particle 3 is obtained, a diameter of a circle having an area equal to the projected area is obtained, and an arithmetic average of the diameters of these circles is obtained. This operation is performed for 10 hollow particles in the field of view. Further, the same measurement is performed for 10 points in the longitudinal direction of the charging member, and an average value of a total of 100 obtained is calculated and set as the diameter of the projected circle of the hollow particles 3.

前記中空粒子3の体積平均粒径の測定と同様の方法で、表面層5中の樹脂粒子4の立体像を算出する。図2に示すように、樹脂粒子4の立体像から樹脂粒子4の投影図を作成し、前記中空粒子3の投影円の直径と同様にして、樹脂粒子4の投影円の直径を算出する。   A three-dimensional image of the resin particles 4 in the surface layer 5 is calculated by the same method as the measurement of the volume average particle diameter of the hollow particles 3. As shown in FIG. 2, a projection view of the resin particle 4 is created from the stereoscopic image of the resin particle 4, and the diameter of the projection circle of the resin particle 4 is calculated in the same manner as the diameter of the projection circle of the hollow particle 3.

また、図3に示すように、表面に凸部を生じさせる樹脂粒子4の積層方向への投影円の直径の3倍の直径を有し、かつ、該凸部の頂点を該積層方向に投影した点を中心とする円を該積層方向に投影した際の、該円の領域10を帯電部材表面に仮想的に設定する。ここで凸部の頂点とは、積層方向において凸部における弾性層2から最も離れた点を示す。以下、領域10を3倍円形領域とも示す。領域10は、電子写真感光体との当接により凸部を形成する樹脂粒子4を弾性層2にめり込ませるために、歪みを発生させる必要がある領域を想定している。本発明においては、領域10に含まれる中空粒子3の投影円の面積の総和が、領域10の面積の80%以上を占める。中空粒子3の特性をより発揮するために、領域10に含まれる中空粒子3の投影円の面積の総和が、領域10の面積の90%以上を占めることが好ましい。なお、前記面積割合は以下の方法で算出する。   Moreover, as shown in FIG. 3, it has a diameter three times the diameter of the projected circle in the laminating direction of the resin particles 4 causing the convex portions on the surface, and the apex of the convex portion is projected in the laminating direction. When a circle centered on the point is projected in the stacking direction, a region 10 of the circle is virtually set on the surface of the charging member. Here, the vertex of the convex portion indicates a point farthest from the elastic layer 2 in the convex portion in the stacking direction. Hereinafter, the region 10 is also referred to as a triple circular region. The region 10 is assumed to be a region that needs to be distorted in order to cause the resin particles 4 that form convex portions by contact with the electrophotographic photosensitive member to be embedded in the elastic layer 2. In the present invention, the total area of the projected circles of the hollow particles 3 included in the region 10 occupies 80% or more of the area of the region 10. In order to further exhibit the characteristics of the hollow particles 3, it is preferable that the total area of the projected circles of the hollow particles 3 included in the region 10 occupy 90% or more of the area of the region 10. The area ratio is calculated by the following method.

前記方法により求めた樹脂粒子4の投影円の直径の3倍の直径を有し、かつ、表面に凸部を形成する任意の樹脂粒子4の該凸部の頂点を積層方向へ投影した点を中心とする円を、積層方向に投影し、帯電部材表面に設定する。これを3倍円形領域とする。なお、凸部の頂点の位置は、前記立体像から決定することができる。中空粒子3の投影円の直径を算出する方法と同様の方法により、前記3倍円形領域を積層方向に20nmおきに切り出し、中空粒子3の立体像を算出する。この立体像中の全ての中空粒子3を積層方向に投影し、前記3倍円形領域に含まれる中空粒子3が投影された部分の面積を求め、前記3倍円形領域の面積に対する割合を算出する。さらに、同様の測定を帯電部材の長手方向10点について行い、その平均値を算出する。   The point which projected the vertex of the convex part of arbitrary resin particles 4 which has a diameter 3 times the diameter of the projected circle of resin particle 4 calculated by the above-mentioned method in the lamination direction on the surface. A center circle is projected in the stacking direction and set on the surface of the charging member. This is a triple circle region. In addition, the position of the vertex of a convex part can be determined from the said three-dimensional image. By a method similar to the method of calculating the diameter of the projected circle of the hollow particles 3, the threefold circular regions are cut out every 20 nm in the stacking direction, and a three-dimensional image of the hollow particles 3 is calculated. All the hollow particles 3 in this three-dimensional image are projected in the stacking direction, the area of the projected portion of the hollow particles 3 included in the triple circle region is obtained, and the ratio to the area of the triple circle region is calculated. . Further, the same measurement is performed for 10 points in the longitudinal direction of the charging member, and the average value is calculated.

本発明に係る帯電部材は表面層5の表面に凸部を有する。帯電部材と電子写真感光体とのニップの前後の、帯電部材の表面と電子写真感光体の表面とが所定の距離にあるときに、当該凸部から優先的に点放電が行われる。凸部がない場合と比較して、常に特定の位置から放電されることとなるため、帯電性能の均一化効果が得られる。本発明に係る帯電部材は、表面の十点平均粗さ(Rz)(μm)が2≦Rz≦100であることが好ましい。また、表面の凹凸平均間隔(Sm)(μm)が15≦Sm≦200であることが好ましい。帯電部材のRz、Smをこの範囲とすることにより、前記帯電均一効果がより確実に発現される。なお、Rz、Smは以下の方法で算出する。   The charging member according to the present invention has a convex portion on the surface of the surface layer 5. When the surface of the charging member and the surface of the electrophotographic photosensitive member are at a predetermined distance before and after the nip between the charging member and the electrophotographic photosensitive member, point discharge is preferentially performed from the convex portion. Compared with the case where there is no convex portion, the battery is always discharged from a specific position, so that the effect of equalizing the charging performance can be obtained. The charging member according to the present invention preferably has a surface ten-point average roughness (Rz) (μm) of 2 ≦ Rz ≦ 100. Moreover, it is preferable that surface uneven | corrugated average space | interval (Sm) (micrometer) is 15 <= Sm <= 200. By setting Rz and Sm of the charging member within this range, the charging uniformity effect is more reliably exhibited. Rz and Sm are calculated by the following method.

表面十点平均粗さ(Rz)は、表面粗さ測定器(商品名:SE−3500、小坂研究所社製)を用い、JIS B 0601−1994表面粗さの規格に準じて測定する。該測定を帯電部材の無作為の6箇所において行い、その平均値をRzとする。   The surface ten-point average roughness (Rz) is measured according to JIS B 0601-1994 surface roughness standards using a surface roughness measuring instrument (trade name: SE-3500, manufactured by Kosaka Laboratory Ltd.). The measurement is performed at six random locations on the charging member, and the average value is defined as Rz.

表面凹凸平均間隔(Sm)は、帯電部材の任意の箇所において10点の凹凸間隔を測定し、その平均を測定箇所のSmとする。帯電部材の無作為の6箇所に対し該測定を行い、その平均値をSmとする。   The surface unevenness average interval (Sm) is obtained by measuring 10 unevenness intervals at an arbitrary portion of the charging member, and taking the average as Sm of the measurement portion. The measurement is performed on six random portions of the charging member, and the average value is Sm.

凸部の頂点1を積層方向へ投影したとき、投影した点6の80%以上が、図1(b)に示すように、中空粒子3の投影図8内に含まれることが好ましい。これにより、電子写真感光体との当接において樹脂粒子4が弾性層2にめり込んだ際、開放時に形状が戻る効果をより確実に発現しやすくなる。なお、前記割合は以下の方法で算出する。   When the vertex 1 of the convex portion is projected in the stacking direction, 80% or more of the projected point 6 is preferably included in the projection diagram 8 of the hollow particle 3 as shown in FIG. As a result, when the resin particles 4 sink into the elastic layer 2 in contact with the electrophotographic photosensitive member, the effect of returning the shape when released is more surely exhibited. The ratio is calculated by the following method.

前記樹脂粒子4の投影円の直径を測定する方法と同様の方法により立体像を算出する。得られた樹脂粒子4の立体像より、表面に凸部を形成する任意の樹脂粒子の凸部の頂点1を決定する。該頂点1を積層方向へ投影した点6が、前記方法により測定した中空粒子3の投影図8内に含まれるか否かを確認する。このような作業を視野内の表面に凸部を形成する任意の樹脂粒子10個について行う。さらに同様の測定を、帯電部材の長手方向任意の10点について行う。得られた計100個の樹脂粒子4について、凸部の頂点1を積層方向へ投影した点6が中空粒子3の投影図8内に含まれる割合を算出する。   A three-dimensional image is calculated by a method similar to the method of measuring the diameter of the projected circle of the resin particles 4. From the three-dimensional image of the obtained resin particle 4, the vertex 1 of the convex part of the arbitrary resin particle which forms a convex part on the surface is determined. It is confirmed whether or not the point 6 obtained by projecting the vertex 1 in the stacking direction is included in the projection 8 of the hollow particle 3 measured by the above method. Such an operation is carried out for 10 arbitrary resin particles that form convex portions on the surface within the field of view. Further, the same measurement is performed for any 10 points in the longitudinal direction of the charging member. For a total of 100 resin particles 4 obtained, the ratio at which the point 6 obtained by projecting the apex 1 of the convex portion in the stacking direction is included in the projection 8 of the hollow particle 3 is calculated.

中空粒子3及び樹脂粒子4を特定の位置関係に制御する方法として、表面層5を形成する際の弾性層2に対する表面層5形成用塗布溶液中の溶剤の浸透量を調整する方法が挙げられる。これによって中空粒子3及び樹脂粒子4の位置関係を制御できるメカニズムについて本発明者らは以下のように考えている。   As a method for controlling the hollow particles 3 and the resin particles 4 to have a specific positional relationship, there is a method of adjusting the permeation amount of the solvent in the coating solution for forming the surface layer 5 with respect to the elastic layer 2 when the surface layer 5 is formed. . The present inventors consider the mechanism that can control the positional relationship between the hollow particles 3 and the resin particles 4 as follows.

弾性層2表面に対し表面層5形成用塗布溶液を塗布する工程において、弾性層2を表面層5形成用塗布溶液中に浸漬する。浸漬時に、該塗布溶液中の溶剤は、図4(a)のように、溶剤の流れ11が生じ、弾性層2に吸収される。このとき、弾性層2の溶剤の吸収量が、弾性層2中に中空粒子3が存在する部分において少なくなる。これは、中空粒子3に係る空孔が存在することで、溶剤を保持できる体積が相対的に小さくなるためである。   In the step of applying the coating solution for forming the surface layer 5 to the surface of the elastic layer 2, the elastic layer 2 is immersed in the coating solution for forming the surface layer 5. At the time of immersion, the solvent in the coating solution is absorbed into the elastic layer 2 as shown in FIG. At this time, the absorption amount of the solvent of the elastic layer 2 is reduced in the portion where the hollow particles 3 exist in the elastic layer 2. This is because the volume which can hold | maintain a solvent becomes relatively small because the void | hole which concerns on the hollow particle 3 exists.

塗布溶液を塗布した後の乾燥工程において、中空粒子3が存在する弾性層2上の塗布溶液は、弾性層2中に保持している溶剤量が少ない分、乾燥が速くなり、中空粒子3が存在する弾性層2上の塗布溶液中の固形分濃度が高まる。そのため、図4(b)のように、溶剤を多く含んだ中空粒子3の存在しない弾性層2上の塗布溶液から、溶剤保持量が少なく乾燥の速い中空粒子3が存在する弾性層2上の塗布溶液に向かって溶剤を補うように流れが生じる。この流れにより、塗布溶液乾燥後に、図4(c)のように、塗布溶液中に分散した樹脂粒子4が、中空粒子3が存在する弾性層2上に移動し、凸部を形成する。   In the drying step after the coating solution is applied, the coating solution on the elastic layer 2 in which the hollow particles 3 are present is dried faster because the amount of the solvent retained in the elastic layer 2 is small, and the hollow particles 3 are formed. The solid content concentration in the coating solution on the existing elastic layer 2 is increased. Therefore, as shown in FIG. 4B, from the coating solution on the elastic layer 2 in which the hollow particles 3 containing a large amount of the solvent are not present, the elastic particles 2 on the elastic layer 2 in which the hollow particles 3 with a low solvent retention amount and quick drying exist A flow occurs to supplement the solvent toward the coating solution. With this flow, after the coating solution is dried, as shown in FIG. 4C, the resin particles 4 dispersed in the coating solution move onto the elastic layer 2 where the hollow particles 3 are present, thereby forming convex portions.

中空粒子3の有無により上記したような溶剤の吸収量に差を出すために、塗布溶液中の溶剤として、中空粒子3の材料に比べ、弾性層2の材料に親和性が相対的に高く、浸透し易いものを選択することが好ましい。弾性層2に対する表面層5形成用塗布溶液中の溶剤の浸透量を調整するために、具体的に、以下のように調整する。   In order to make a difference in the amount of absorption of the solvent as described above depending on the presence or absence of the hollow particles 3, the solvent in the coating solution has a relatively high affinity for the material of the elastic layer 2 compared to the material of the hollow particles 3, It is preferable to select one that easily penetrates. In order to adjust the permeation amount of the solvent in the coating solution for forming the surface layer 5 with respect to the elastic layer 2, specifically, the following adjustment is performed.

弾性層2に用いられるバインダーとしてのゴムは、表面層5形成用塗布溶液中の溶剤の浸透性が高いゴムを用いるのが好ましい。例えば、ウレタンゴム、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、アクリルゴム及びエピクロルヒドリンゴム等。特に、エピクロルヒドリンゴム及びNBRがより好ましい。これらは単独で用いてもよいし、2種以上を混合して用いてもよい。   As the rubber used as the binder for the elastic layer 2, it is preferable to use a rubber having high solvent permeability in the coating solution for forming the surface layer 5. For example, urethane rubber, acrylonitrile butadiene rubber (NBR), chloroprene rubber (CR), acrylic rubber and epichlorohydrin rubber. In particular, epichlorohydrin rubber and NBR are more preferable. These may be used alone or in combination of two or more.

弾性層2中の中空粒子3のシェル材質は、表面層5形成用塗布溶液に用いる溶剤との親和性が低く、弾性層2に表面層5形成用塗布溶液が浸透するのを抑えるものが好ましい。具体的には、弾性層2のゴムに比べ、溶剤との溶解度パラメーター(以下「sp値」と称す)の差が大きいものが好ましい。例えば、アクリロニトリル樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、メタクリル酸樹脂、ウレタン樹脂、アミド樹脂、メタクリロニトリル樹脂等が挙げられる。特に、アクリロニトリル樹脂、塩化ビニリデン樹脂、メタクリロニトリル樹脂から選ばれる少なくとも1種の熱可塑性樹脂を用いることが好ましい。   The shell material of the hollow particles 3 in the elastic layer 2 has a low affinity with the solvent used for the coating solution for forming the surface layer 5 and preferably suppresses the penetration of the coating solution for forming the surface layer 5 into the elastic layer 2. . Specifically, those having a large difference in solubility parameter (hereinafter referred to as “sp value”) with the solvent are preferable as compared with the rubber of the elastic layer 2. Examples thereof include acrylonitrile resin, vinyl chloride resin, vinylidene chloride resin, methacrylic acid resin, urethane resin, amide resin, methacrylonitrile resin, and the like. In particular, it is preferable to use at least one thermoplastic resin selected from acrylonitrile resin, vinylidene chloride resin, and methacrylonitrile resin.

表面層5は、弾性層2を表面層5形成用塗布溶液に浸漬し塗布するディッピング塗布等の塗布法により形成することができる。   The surface layer 5 can be formed by a coating method such as dipping coating in which the elastic layer 2 is dipped in a coating solution for forming the surface layer 5 and coated.

表面層5形成用塗布溶液に用いられる溶剤としては、弾性層2に用いられるゴムに対して親和性が高く、中空粒子3のシェル材質に対して親和性が低いものを用いるのが好ましい。特に、弾性層2に用いるゴムとのsp値の差が小さく、弾性層2中の中空粒子3のシェル材質とのsp値の差が大きい溶剤が好ましい。具体的には、メチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸メチル、酢酸エチル等のエステル類、キシレン等の芳香族化合物等。これらは一種のみを用いてもよく、二種以上を併用してもよい。特に、メチルエチルケトン、メチルイソブチルケトン等が好ましい。   As the solvent used in the coating solution for forming the surface layer 5, it is preferable to use a solvent having high affinity for the rubber used for the elastic layer 2 and low affinity for the shell material of the hollow particles 3. In particular, a solvent having a small difference in sp value from the rubber used for the elastic layer 2 and a large difference in sp value from the shell material of the hollow particles 3 in the elastic layer 2 is preferable. Specifically, ketones such as methyl isobutyl ketone, methyl ethyl ketone, and cyclohexanone, esters such as methyl acetate and ethyl acetate, and aromatic compounds such as xylene. These may use only 1 type and may use 2 or more types together. In particular, methyl ethyl ketone, methyl isobutyl ketone and the like are preferable.

表面層5形成用塗布溶液に用いられるバインダー樹脂としては、上記溶剤に溶解されるバインダー樹脂であれば特に限定されない。   The binder resin used for the coating solution for forming the surface layer 5 is not particularly limited as long as it is a binder resin dissolved in the solvent.

更に、上記の効果をより確実に発現するために、以下のように調整することができる。   Furthermore, in order to express the above effects more reliably, the following adjustments can be made.

添加する樹脂粒子4及び中空粒子3の体積平均粒径を調整することができる。具体的には、樹脂粒子4の体積平均粒径を、中空粒子3の体積平均粒径より小さくする。樹脂粒子4及び中空粒子3の体積平均粒径を調整し用いることで、中空粒子3の投影円の直径を10μm以上、1200μm以下とし、樹脂粒子4の投影円の直径を5μm以上、120μm以下とすることが好ましい。更に、中空粒子3の投影円の直径に対する樹脂粒子4の投影円の直径の比は、0.15以上、1未満であることが好ましい。これにより、電子写真感光体との当接時に樹脂粒子4が弾性層2にめり込み、開放時に形状が戻る効果をより確実に発現しやすくなる。なお、中空粒子3の体積平均粒径及び樹脂粒子4の体積平均粒径は以下の方法で算出する。   The volume average particle diameter of the resin particles 4 and the hollow particles 3 to be added can be adjusted. Specifically, the volume average particle diameter of the resin particles 4 is made smaller than the volume average particle diameter of the hollow particles 3. By adjusting and using the volume average particle diameters of the resin particles 4 and the hollow particles 3, the diameter of the projected circle of the hollow particles 3 is 10 μm or more and 1200 μm or less, and the diameter of the projected circle of the resin particles 4 is 5 μm or more and 120 μm or less. It is preferable to do. Furthermore, the ratio of the diameter of the projected circle of the resin particle 4 to the diameter of the projected circle of the hollow particle 3 is preferably 0.15 or more and less than 1. As a result, the resin particles 4 sink into the elastic layer 2 at the time of contact with the electrophotographic photosensitive member, and the effect of returning the shape at the time of opening is more surely expressed. The volume average particle size of the hollow particles 3 and the volume average particle size of the resin particles 4 are calculated by the following method.

帯電部材の弾性層2の任意の点を、500μmに亘って20nmずつ、表面層5の上から集束イオンビーム(商品名:FB−2000C、日立製作所社製)にて切り出し、その断面画像を撮影する。撮影した画像を組み合わせ、立体像を算出する。この立体像から中空粒子3の体積を算出し、この体積と等しい体積を持つ球の直径を求める。この作業を視野内の中空粒子10個について行う。さらに、同様の測定を帯電部材の長手方向10点について行い、得られた計100個の平均値を算出し、中空粒子3の体積平均粒径とする。   An arbitrary point of the elastic layer 2 of the charging member is cut out from the surface layer 5 by 20 nm over 500 μm by a focused ion beam (trade name: FB-2000C, manufactured by Hitachi, Ltd.), and a cross-sectional image is taken. To do. A three-dimensional image is calculated by combining the captured images. The volume of the hollow particle 3 is calculated from this stereoscopic image, and the diameter of a sphere having a volume equal to this volume is obtained. This operation is performed for 10 hollow particles in the field of view. Furthermore, the same measurement is performed for 10 points in the longitudinal direction of the charging member, and an average value of a total of 100 obtained is calculated as the volume average particle diameter of the hollow particles 3.

前記中空粒子3の体積平均粒径の測定と同様の方法で、表面層5中の樹脂粒子4の立体像を算出する。この立体像から樹脂粒子4の体積を算出し、この体積と等しい体積を持つ球の直径を求める。この作業を視野内の樹脂粒子10個について行う。さらに、同様の測定を帯電部材の長手方向10点について行い、得られた計100個の平均値を算出し、樹脂粒子4の体積平均粒径とする。   A three-dimensional image of the resin particles 4 in the surface layer 5 is calculated by the same method as the measurement of the volume average particle diameter of the hollow particles 3. The volume of the resin particles 4 is calculated from this stereoscopic image, and the diameter of a sphere having a volume equal to this volume is obtained. This operation is performed for 10 resin particles in the field of view. Furthermore, the same measurement is performed for 10 points in the longitudinal direction of the charging member, and an average value of a total of 100 obtained is calculated as the volume average particle diameter of the resin particles 4.

また、弾性層2の空孔率を調整することができる。具体的には、中空粒子3の数及び体積平均粒径により弾性層2の空孔率を調整することができる。中空粒子3の数とは、弾性層2の単位体積中に存在する中空粒子3の個数を表す。空孔率とは、弾性層2の単位体積中に含まれる中空粒子3に内包されている気体の体積の割合(%)を示す。空孔率は50%以上、95%以下であることが好ましい。空孔率を該範囲とすることにより、電子写真感光体と帯電部材との当接時に表面層5の凸部が弾性層2側にめり込みやすく、当接が開放されると凸部が迅速に戻る特性をより効果的に付与することができる。なお、弾性層2の空孔率は以下の方法により算出する。   Further, the porosity of the elastic layer 2 can be adjusted. Specifically, the porosity of the elastic layer 2 can be adjusted by the number of the hollow particles 3 and the volume average particle diameter. The number of hollow particles 3 represents the number of hollow particles 3 present in a unit volume of the elastic layer 2. The porosity indicates the ratio (%) of the volume of the gas contained in the hollow particles 3 contained in the unit volume of the elastic layer 2. The porosity is preferably 50% or more and 95% or less. By setting the porosity within this range, the convex portion of the surface layer 5 tends to sink into the elastic layer 2 side when the electrophotographic photosensitive member and the charging member are in contact with each other, and when the contact is released, the convex portion is quickly formed. The returning characteristic can be imparted more effectively. The porosity of the elastic layer 2 is calculated by the following method.

前記中空粒子3の投影円の直径を測定する方法と同様の方法により立体像を算出する。立体像から画像中の空孔部の体積の総和を求める。画像中の弾性層2の体積に対し、該空孔部の体積の総和が占める割合を算出する。さらに、同様の測定を帯電部材の長手方向の任意の10点について行い、得られた値の平均値を算出する。これを、弾性層2の空孔率とする。   A three-dimensional image is calculated by a method similar to the method of measuring the diameter of the projected circle of the hollow particles 3. From the stereoscopic image, the total volume of the voids in the image is obtained. The ratio of the total volume of the pores to the volume of the elastic layer 2 in the image is calculated. Further, the same measurement is performed for any 10 points in the longitudinal direction of the charging member, and an average value of the obtained values is calculated. This is the porosity of the elastic layer 2.

ここで、中空粒子3の数と表面に凸部を形成する樹脂粒子4の数との関係は、中空粒子3の数に対する表面に凸部を形成する樹脂粒子4の数との比を3以上、50以下とすることが好ましい。表面に凸部を形成する樹脂粒子4の数とは、表面層5の単位体積に存在する表面に凸部を形成する樹脂粒子4の個数を表す。表面に凸部を形成する樹脂粒子4と中空粒子3の数との比を該範囲とすることにより、表面に凸部を形成する樹脂粒子4の弾性層2側へのめり込みを均一に安定化させる。これにより、電子写真感光体との当接時に表面に凸部を形成する樹脂粒子4が中空粒子3の変形によりめり込み、当接が開放されると迅速に凸形状が戻る本発明の特徴をより確実に発揮することができる。なお、中空粒子3の個数と表面に凸部を形成する樹脂粒子4の個数との比は以下の方法により算出する。   Here, the relationship between the number of hollow particles 3 and the number of resin particles 4 forming convex portions on the surface is such that the ratio of the number of resin particles 4 forming convex portions on the surface to the number of hollow particles 3 is 3 or more. 50 or less. The number of resin particles 4 that form convex portions on the surface represents the number of resin particles 4 that form convex portions on the surface existing in the unit volume of the surface layer 5. By setting the ratio between the number of the resin particles 4 that form the convex portions on the surface and the number of the hollow particles 3 within this range, the indentation of the resin particles 4 that form the convex portions on the surface to the elastic layer 2 side is uniformly stabilized. . As a result, the resin particles 4 that form convex portions on the surface at the time of contact with the electrophotographic photosensitive member are dented by deformation of the hollow particles 3, and the convex shape quickly returns when the contact is released. It can be demonstrated reliably. The ratio between the number of hollow particles 3 and the number of resin particles 4 that form convex portions on the surface is calculated by the following method.

前記樹脂粒子4及び中空粒子3の投影円の直径を算出する方法と同様の方法により、立体像を算出する。表面層5における立体像から表面に凸部を形成する樹脂粒子4の個数を数える。また、弾性層2における立体像から中空粒子3の個数を数える。これにより、表面に凸部を形成する樹脂粒子4の個数と、中空粒子3の個数との比を算出する。さらに、同様の測定を帯電部材の長手方向の任意の10点について行い、得られた値の平均値を算出する。これを、中空粒子3の個数と表面に凸部を形成する樹脂粒子4の個数との比とする。   A three-dimensional image is calculated by a method similar to the method of calculating the diameter of the projected circle of the resin particles 4 and the hollow particles 3. The number of resin particles 4 that form convex portions on the surface is counted from the three-dimensional image in the surface layer 5. Further, the number of the hollow particles 3 is counted from the stereoscopic image in the elastic layer 2. Thereby, the ratio of the number of resin particles 4 that form convex portions on the surface and the number of hollow particles 3 is calculated. Further, the same measurement is performed for any 10 points in the longitudinal direction of the charging member, and an average value of the obtained values is calculated. This is the ratio between the number of hollow particles 3 and the number of resin particles 4 that form convex portions on the surface.

<帯電部材>
図5(a)、(b)に本発明に係る帯電部材の一例の概略断面図を示す。図5(a)はローラ形状の帯電部材、図5(b)は平板形状の帯電部材を示す。以下、図5(a)に示すローラ形状の帯電部材、すなわち帯電ローラについて詳細に説明する。図5(a)に示す帯電ローラは、導電性基体12と、導電性基体12上に形成された弾性層2と、弾性層2上に形成された表面層5とを有する。弾性層2は中空粒子3を含有し、表面層5は樹脂粒子4を含有する。
<Charging member>
5A and 5B are schematic cross-sectional views of an example of the charging member according to the present invention. FIG. 5A shows a roller-shaped charging member, and FIG. 5B shows a flat plate-shaped charging member. Hereinafter, the roller-shaped charging member shown in FIG. 5A, that is, the charging roller will be described in detail. The charging roller shown in FIG. 5A has a conductive substrate 12, an elastic layer 2 formed on the conductive substrate 12, and a surface layer 5 formed on the elastic layer 2. The elastic layer 2 contains hollow particles 3 and the surface layer 5 contains resin particles 4.

導電性基体12と弾性層2、又は順次積層される層(例えば図5(a)に示す弾性層2と表面層5)は、接着剤を介して接着されてもよい。この場合、接着剤は導電性であることが好ましい。導電性を付与するために、接着剤には公知の導電剤が含まれてもよい。接着剤のバインダーとしては、熱硬化性樹脂や熱可塑性樹脂が挙げられる。例えば、ウレタン系、アクリル系、ポリエステル系、ポリエーテル系、エポキシ系等の公知のものを用いることができる。接着剤に導電性を付与するための導電剤としては、後に詳述する導電剤から適宜選択し、単独で又は2種類以上組み合わせて用いることができる。   The conductive substrate 12 and the elastic layer 2 or the layers sequentially laminated (for example, the elastic layer 2 and the surface layer 5 shown in FIG. 5A) may be bonded via an adhesive. In this case, the adhesive is preferably conductive. In order to impart conductivity, the adhesive may contain a known conductive agent. Examples of the binder for the adhesive include thermosetting resins and thermoplastic resins. For example, known materials such as urethane, acrylic, polyester, polyether, and epoxy can be used. As a conductive agent for imparting conductivity to the adhesive, it can be appropriately selected from conductive agents described in detail later, and can be used alone or in combination of two or more.

本発明に係る帯電ローラは、電子写真感光体の帯電を良好にするため、電気抵抗が温度23℃/湿度50%RH環境中において、1×103Ω以上、1×109Ω以下であることが好ましい。図6に帯電ローラ17の電気抵抗の測定方法を示す。導電性基体12の両端を、荷重のかかった軸受け14により電子写真感光体と同じ曲率の円柱形金属13に平行になるように当接させる。この状態でモータにより円柱形金属13を回転させ、当接した帯電ローラ17を従動回転させながら安定化電源15から直流電圧−200Vを印加する。この時に流れる電流を電流計16で測定し、帯電ローラ17の抵抗を計算する。荷重は各4.9Nとし、金属製円柱は直径30mm、金属製円柱の回転は周速45mm/secとする。 The charging roller according to the present invention has an electric resistance of 1 × 10 3 Ω or more and 1 × 10 9 Ω or less in an environment of a temperature of 23 ° C./humidity of 50% RH in order to improve the charging of the electrophotographic photosensitive member. It is preferable. FIG. 6 shows a method for measuring the electrical resistance of the charging roller 17. Both ends of the conductive substrate 12 are brought into contact with a cylindrical metal 13 having the same curvature as that of the electrophotographic photosensitive member by a bearing 14 under load. In this state, the cylindrical metal 13 is rotated by a motor, and a DC voltage of −200 V is applied from the stabilized power supply 15 while the charging roller 17 that is in contact with the rotation is driven. The current flowing at this time is measured by an ammeter 16 and the resistance of the charging roller 17 is calculated. The load is 4.9 N each, the diameter of the metal cylinder is 30 mm, and the rotation of the metal cylinder is 45 mm / sec.

本発明に係る帯電ローラは、前述したように表面の十点平均粗さ(Rz)(μm)が2≦Rz≦100であることが好ましい。また、表面の凹凸平均間隔(Sm)(μm)が15≦Sm≦200であることが好ましい。   As described above, the charging roller according to the present invention preferably has a surface ten-point average roughness (Rz) (μm) of 2 ≦ Rz ≦ 100. Moreover, it is preferable that surface uneven | corrugated average space | interval (Sm) (micrometer) is 15 <= Sm <= 200.

〔導電性基体〕
本発明に係る導電性基体12は、導電性を有し、その上に設けられる弾性層2等を支持する機能を有する。材質としては、例えば、鉄、銅、ステンレス、アルミニウム、ニッケル等の金属やその合金を挙げることができる。
[Conductive substrate]
The conductive substrate 12 according to the present invention is conductive and has a function of supporting the elastic layer 2 and the like provided thereon. Examples of the material include metals such as iron, copper, stainless steel, aluminum, nickel, and alloys thereof.

〔弾性層〕
本発明に係る弾性層2は、バインダーとしてのゴムと、該ゴムに分散されている中空粒子3とを含有する。
[Elastic layer]
The elastic layer 2 according to the present invention contains rubber as a binder and hollow particles 3 dispersed in the rubber.

弾性層2に用いられるバインダーとしてのゴムには、前述したように、表面層5形成用塗布溶液中の溶剤の浸透性が高いゴムを用いるのが好ましい。例えば、ウレタンゴム、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、アクリルゴム及びエピクロルヒドリンゴム等が挙げられる。これらは単独で用いてもよいし、2種以上を混合して用いてもよい。この中でも、表面層5形成用塗布溶液中の溶剤の浸透性が高く、抵抗調整が容易であるため、エピクロルヒドリンゴム及びNBRがより好ましい。これらは弾性層2の抵抗制御及び硬度制御をより行い易い利点がある。   As described above, it is preferable to use a rubber having high solvent permeability in the coating solution for forming the surface layer 5 as the rubber used as the binder for the elastic layer 2. Examples thereof include urethane rubber, acrylonitrile butadiene rubber (NBR), chloroprene rubber (CR), acrylic rubber, and epichlorohydrin rubber. These may be used alone or in combination of two or more. Among these, epichlorohydrin rubber and NBR are more preferable because of the high permeability of the solvent in the coating solution for forming the surface layer 5 and easy resistance adjustment. These have an advantage that resistance control and hardness control of the elastic layer 2 can be easily performed.

弾性層2の体積抵抗率は、温度23℃/湿度50%RH環境下で測定したときに、102Ω・cm以上、1010Ω・cm以下であることが好ましい。なお、弾性層2の体積抵抗率は以下の方法により求める。まず、帯電ローラから弾性層2を5mm×5mm程度の短冊形に切り出す。両面に金属を蒸着して電極とガード電極とを作製することで測定用サンプルを得る。得られた測定用サンプルについて微小電流計(商品名:ADVANTEST R8340A ULTRA HIGH RESISTANCE METER、アドバンテスト社製)を用いて200Vの電圧を印加する。30秒後の電流を測定し、サンプル厚と電極面積とから体積抵抗率を求める。 The volume resistivity of the elastic layer 2 is preferably 10 2 Ω · cm or more and 10 10 Ω · cm or less when measured in a temperature 23 ° C./humidity 50% RH environment. The volume resistivity of the elastic layer 2 is obtained by the following method. First, the elastic layer 2 is cut into a strip shape of about 5 mm × 5 mm from the charging roller. A sample for measurement is obtained by vapor-depositing metal on both sides to produce an electrode and a guard electrode. A voltage of 200 V is applied to the obtained measurement sample using a microammeter (trade name: ADVANTEST R8340A ULTRA HIGH RESISTANCE METER, manufactured by Advantest). The current after 30 seconds is measured, and the volume resistivity is obtained from the sample thickness and the electrode area.

本発明に係る弾性層2には、体積抵抗率を調整するため、公知の導電剤を適宜添加することができる。導電剤としては、イオン導電剤、電子導電剤を例示することができる。   A known conductive agent can be appropriately added to the elastic layer 2 according to the present invention in order to adjust the volume resistivity. Examples of the conductive agent include ionic conductive agents and electronic conductive agents.

イオン導電剤としては以下のものが挙げられる。過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸カルシウムの如き無機イオン物質、ラウリルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、オクタデシルトリメチルアンモニウムクロライド、ドデシルトリメチルアンモニウムクロライド、ヘキサデシルトリメチルアンモニウムクロライド、トリオクチルプロピルアンモニウムブロミド、変性脂肪族ジメチルエチルアンモニウムエトサルフェートの如き陽イオン性界面活性剤、ラウリルベタイン、ステアリルベタイン、ジメチルアルキルラウリルベタインの如き両性イオン界面活性剤、過塩素酸テトラエチルアンモニウム、過塩素酸テトラブチルアンモニウム、過塩素酸トリメチルオクタデシルアンモニウムの如き第四級アンモニウム塩、トリフルオロメタンスルホン酸リチウム等の有機酸リチウム塩等。これらは単独又は2種類以上組み合わせて用いることができる。これらのイオン導電剤の中でも、環境変化に対して抵抗が安定なことから特に過塩素酸4級アンモニウム塩が好適に用いられる。   Examples of the ion conductive agent include the following. Inorganic ionic substances such as lithium perchlorate, sodium perchlorate, calcium perchlorate, lauryltrimethylammonium chloride, stearyltrimethylammonium chloride, octadecyltrimethylammonium chloride, dodecyltrimethylammonium chloride, hexadecyltrimethylammonium chloride, trioctylpropylammonium Cationic surfactants such as bromide, modified aliphatic dimethylethylammonium ethosulphate, zwitterionic surfactants such as lauryl betaine, stearyl betaine, dimethylalkyl lauryl betaine, tetraethylammonium perchlorate, tetrabutylammonium perchlorate, Quaternary ammonium salts such as trimethyloctadecyl ammonium perchlorate, trifluoro Organic acid lithium salts such as lithium methanesulfonate or the like. These can be used alone or in combination of two or more. Among these ionic conductive agents, quaternary ammonium perchlorate is particularly preferably used because of its stable resistance to environmental changes.

電子導電剤としては以下のものが挙げられる。アルミニウム、パラジウム、鉄、銅、銀の如き金属系の微粒子や繊維、酸化チタン、酸化錫、酸化亜鉛の如き金属酸化物、金属系微粒子、繊維及び金属酸化物表面に、電解処理、スプレー塗工、混合振とうにより表面処理した複合粒子、カーボンブラック、及び、カーボン系微粒子等。これらは単独で又は2種以上組み合わせて用いることができる。なお、導電剤はその表面が表面処理されていてもよい。   Examples of the electronic conductive agent include the following. Electrolytic treatment and spray coating on metal fine particles and fibers such as aluminum, palladium, iron, copper and silver, metal oxides such as titanium oxide, tin oxide and zinc oxide, metal fine particles, fibers and metal oxide surfaces Composite particles surface-treated by mixed shaking, carbon black, carbon-based fine particles, and the like. These can be used alone or in combination of two or more. The surface of the conductive agent may be surface-treated.

また、弾性層2には、硬度等を調整するために、軟化油、可塑剤等の添加剤が添加されてもよい。更に、弾性層2には、種々な機能を付与する材料を適宜含有させてもよい。これらの例としては、老化防止剤、充填剤等が挙げられる。   In addition, additives such as softening oil and plasticizer may be added to the elastic layer 2 in order to adjust the hardness and the like. Furthermore, the elastic layer 2 may appropriately contain materials that impart various functions. Examples of these include anti-aging agents and fillers.

(中空粒子)
本発明に係る中空粒子3は熱可塑性樹脂を含むシェルを有し、かつ、気体を内包する。中空粒子3としては、粒子の内部が気泡となっている粒子を用いても良いし、粒子の内部に内包物質を含み、熱を加えることにより内包物質が気化して膨張し中空粒子3となるいわゆる熱膨張性マイクロカプセルを用いてもよい。熱膨張性マイクロカプセルを用いる場合には、弾性層2の加硫時の熱で熱可塑性樹脂を含むシェルが膨張する。成形時の温度条件を調節することで、カプセルが溶融したり、破裂したりすることなくシェル構造を維持した状態で成形することができる。
(Hollow particles)
The hollow particles 3 according to the present invention have a shell containing a thermoplastic resin and contain a gas. As the hollow particles 3, particles in which the inside of the particles are bubbles may be used, or the inclusion substance is included in the inside of the particles, and the inclusion substance is vaporized and expanded by applying heat to form the hollow particles 3. So-called thermally expandable microcapsules may be used. When the thermally expandable microcapsule is used, the shell containing the thermoplastic resin expands due to heat during vulcanization of the elastic layer 2. By adjusting the temperature conditions at the time of molding, the capsule can be molded with the shell structure maintained without melting or rupturing.

中空粒子3のシェルに用いる熱可塑性樹脂としては、前述したように、表面層5形成用塗布溶液に用いる溶剤との親和性が低く、弾性層2に表面層5形成用塗布溶液が浸透するのを抑えられるものが好ましい。例えば、アクリロニトリル樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、メタクリル酸樹脂、ウレタン樹脂、アミド樹脂、メタクリロニトリル樹脂等が挙げられる。この中でも、表面層5形成用塗布溶液に用いる溶剤との親和性が低く、高い反発弾性を示すものが好ましい。具体的には、弾性層2のゴムに比べ、溶剤との溶解度パラメーター(以下「sp値」と称す)の差が大きく、更にガス透過性が低いアクリロニトリル樹脂、塩化ビニリデン樹脂、メタクリロニトリル樹脂から選ばれる少なくとも1種の熱可塑性樹脂を用いることが好ましい。これらの熱可塑性樹脂は、単独で又は2種以上を組み合わせて用いることができる。更に、これら熱可塑性樹脂の単量体を共重合させ、共重合体として用いても良い。   As described above, the thermoplastic resin used for the shell of the hollow particle 3 has low affinity with the solvent used for the coating solution for forming the surface layer 5, and the coating solution for forming the surface layer 5 penetrates into the elastic layer 2. It is preferable to suppress this. Examples thereof include acrylonitrile resin, vinyl chloride resin, vinylidene chloride resin, methacrylic acid resin, urethane resin, amide resin, methacrylonitrile resin, and the like. Among these, those having low affinity with the solvent used for the coating solution for forming the surface layer 5 and exhibiting high impact resilience are preferable. Specifically, compared to the rubber of the elastic layer 2, the difference in solubility parameter (hereinafter referred to as “sp value”) with the solvent is large and the gas permeability is low. From acrylonitrile resin, vinylidene chloride resin, and methacrylonitrile resin. It is preferable to use at least one selected thermoplastic resin. These thermoplastic resins can be used alone or in combination of two or more. Furthermore, these thermoplastic resin monomers may be copolymerized and used as a copolymer.

熱膨張性マイクロカプセルを用いる場合、カプセルに内包させる内包物質としては、中空粒子3のシェル材料の軟化点以下の温度でガスになって膨張する物質を用いることができる。例えば、以下に示す物質を用いることができる。プロパン、プロピレン、ブテン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン等の低沸点液体、ノルマルヘキサン、イソヘキサン、ノルマルヘプタン、ノルマルオクタン、イソオクタン、ノルマルデカン、イソデカン等の高沸点液体等。これらは一種のみを用いてもよく、二種以上を組み合わせて用いることもできる。   In the case of using a thermally expandable microcapsule, a substance that expands as a gas at a temperature lower than the softening point of the shell material of the hollow particles 3 can be used as the inclusion substance to be included in the capsule. For example, the following substances can be used. Low boiling liquids such as propane, propylene, butene, normal butane, isobutane, normal pentane, and isopentane, and high boiling liquids such as normal hexane, isohexane, normal heptane, normal octane, isooctane, normal decane, and isodecane. These may be used alone or in combination of two or more.

熱膨張性マイクロカプセルは、懸濁重合法、界面重合法、界面沈殿法、液中乾燥法等の公知の製法により製造することができる。中空粒子3の体積平均粒径は特に限定されないが、中空粒子3の投影円の直径を前記範囲とするために、10〜1000μmであることが好ましく、50〜500μmであることがより好ましい。この範囲とすることで、表面に凸部を形成する樹脂粒子4が弾性層2に十分めり込み、かつ、めり込みに対する反発性を十分に発揮することができる。   The thermally expandable microcapsule can be produced by a known production method such as a suspension polymerization method, an interfacial polymerization method, an interfacial precipitation method, or a submerged drying method. The volume average particle diameter of the hollow particles 3 is not particularly limited, but is preferably 10 to 1000 μm and more preferably 50 to 500 μm in order to make the diameter of the projected circle of the hollow particles 3 be in the above range. By setting it as this range, the resin particle 4 which forms a convex part on the surface can fully sink into the elastic layer 2, and can fully exhibit the resilience with respect to sinking.

(弾性層の形成)
弾性層2の形成方法としては特に制限されず、公知の方法を適宜用いることができる。例えば、前記各種ゴム成分、その他の成分からなる組成物をリボンブレンダー、ナウターミキサー、ヘンシェルミキサー、スーパーミキサー、バンバリーミキサー、加圧ニーダー等で混合する等、公知の方法を用いて弾性層2形成用の未加硫ゴム組成物を得る。クロスヘッドを備えた押出機を用いて、導電性基体12と作製した未加硫ゴム組成物とを一体的に押出して弾性ローラ予備成形体を作製することができる。クロスヘッドとは、電線や針金の被覆層を構成するために用いられる、押出機のシリンダ先端に設置され使用される押出金型である。該弾性ローラ予備成形体を円筒状のキャビティを有する円筒型又は割型に設置して加熱発泡させ、所定の寸法の弾性層2を備える弾性ローラを得る。また、該弾性ローラ予備成形体を熱風炉等の高温雰囲気中にて自由発泡させた後、プランジカット式の円筒研磨機で研磨し所定の外径寸法を有する弾性ローラを得る方法も用いることができる。
(Formation of elastic layer)
A method for forming the elastic layer 2 is not particularly limited, and a known method can be appropriately used. For example, the elastic layer 2 is formed using a known method such as mixing the above-mentioned various rubber components and other components with a ribbon blender, Nauter mixer, Henschel mixer, super mixer, Banbury mixer, pressure kneader, etc. An unvulcanized rubber composition is obtained. Using an extruder equipped with a cross head, the conductive base 12 and the produced unvulcanized rubber composition can be integrally extruded to produce an elastic roller preform. The crosshead is an extrusion mold that is used at the tip of a cylinder of an extruder, which is used to form a coating layer for electric wires and wires. The elastic roller preform is placed in a cylindrical or split mold having a cylindrical cavity and heated and foamed to obtain an elastic roller having an elastic layer 2 of a predetermined size. Further, it is also possible to use a method in which the elastic roller preform is freely foamed in a high-temperature atmosphere such as a hot stove and then polished with a plunge cut type cylindrical polishing machine to obtain an elastic roller having a predetermined outer diameter. it can.

〔表面層〕
本発明に係る帯電部材は、弾性層2上に表面層5が形成されている。表面層5は、バインダー樹脂と該バインダー樹脂に分散され、表面層5の表面に凸部を生じさせてなる中実の樹脂粒子4とを含む。
[Surface layer]
In the charging member according to the present invention, the surface layer 5 is formed on the elastic layer 2. The surface layer 5 includes a binder resin and solid resin particles 4 that are dispersed in the binder resin and have convex portions formed on the surface of the surface layer 5.

表面層5の体積抵抗率は温度23℃/湿度50%RH環境において、1×103Ω・cm以上、1×1015Ω・cm以下であることが好ましい。表面層5の体積抵抗率が前記範囲より小さい場合、電子写真感光体にピンホールが発生した場合に、ピンホールに過大な電流が流れて印加電圧が降下し、ピンホール部の長手方向全域に帯状の画像ムラが発生する場合がある。一方、体積抵抗率が前記範囲より大きい場合、帯電ローラに電流が流れにくくなり、電子写真感光体を所定の電位に帯電することができず画像が所望する濃度にならない場合がある。 The volume resistivity of the surface layer 5 is preferably 1 × 10 3 Ω · cm or more and 1 × 10 15 Ω · cm or less in a temperature 23 ° C./humidity 50% RH environment. When the volume resistivity of the surface layer 5 is smaller than the above range, when a pinhole is generated in the electrophotographic photosensitive member, an excessive current flows through the pinhole and the applied voltage drops, and the entire length of the pinhole portion is reduced. Band-shaped image unevenness may occur. On the other hand, when the volume resistivity is larger than the above range, it is difficult for current to flow through the charging roller, and the electrophotographic photosensitive member cannot be charged to a predetermined potential, and the image may not have a desired density.

表面層5の体積抵抗率は以下の方法により求める。まず、帯電ローラから表面層5を剥がし、5mm×5mm程度の短冊形に切り出す。両面に金属を蒸着して電極とガード電極とを作製し、測定用サンプルを得る。又は、アルミシート上に塗布して表面層塗膜を形成し、塗膜面に金属を蒸着して測定用サンプルを得る。得られた測定用サンプルについて前記弾性層2の体積抵抗率の測定方法と同様にして、膜厚と電極面積とから体積抵抗率を算出する。表面層5の体積抵抗率は、前述したイオン導電剤、電子導電剤等の導電剤の添加により調整することができる。なお、導電剤には表面処理が施されていてもよい。また、表面層5の導電剤としてカーボンブラックを使用する場合には、金属酸化物系微粒子にカーボンブラックを被覆した複合導電性微粒子を使用してもよい。   The volume resistivity of the surface layer 5 is obtained by the following method. First, the surface layer 5 is peeled off from the charging roller and cut into a strip shape of about 5 mm × 5 mm. A metal is vapor-deposited on both surfaces to produce an electrode and a guard electrode, and a measurement sample is obtained. Alternatively, it is applied on an aluminum sheet to form a surface layer coating film, and a metal is deposited on the coating film surface to obtain a measurement sample. For the obtained measurement sample, the volume resistivity is calculated from the film thickness and the electrode area in the same manner as the volume resistivity measurement method of the elastic layer 2. The volume resistivity of the surface layer 5 can be adjusted by adding a conductive agent such as the above-described ionic conductive agent or electronic conductive agent. Note that the conductive agent may be subjected to a surface treatment. When carbon black is used as the conductive agent for the surface layer 5, composite conductive fine particles obtained by coating carbon black on metal oxide fine particles may be used.

表面層5は、0.1μm以上、100μm以下の膜厚を有することが好ましい。表面層5の膜厚は、1μm以上、50μm以下であることがより好ましい。なお、表面層5の膜厚は、帯電ローラ断面を鋭利な刃物で切り出して、光学顕微鏡や電子顕微鏡で観察することで測定できる。   The surface layer 5 preferably has a film thickness of 0.1 μm or more and 100 μm or less. The film thickness of the surface layer 5 is more preferably 1 μm or more and 50 μm or less. The film thickness of the surface layer 5 can be measured by cutting the charging roller section with a sharp blade and observing with an optical microscope or an electron microscope.

表面層5には、表面処理が施されていてもよい。表面処理としては、UVや電子線を用いた表面加工処理や、化合物等を表面に付着及び/又は含浸させる表面改質処理を挙げることができる。   The surface layer 5 may be subjected to a surface treatment. Examples of the surface treatment include a surface processing treatment using UV or electron beam, and a surface modification treatment for adhering and / or impregnating a compound or the like on the surface.

(表面層の形成)
表面層5は、弾性層2を表面層5形成用塗布溶液に浸漬し塗布するディッピング塗布等の塗布法により形成することができる。
(Formation of surface layer)
The surface layer 5 can be formed by a coating method such as dipping coating in which the elastic layer 2 is dipped in a coating solution for forming the surface layer 5 and coated.

表面層5形成用塗布溶液に用いる溶剤としては、前述したように、弾性層2に用いるゴムに対して親和性が高く、中空粒子3に対して親和性が低いものを用いることが好ましい。特に、弾性層2に用いるゴムとのsp値の差が小さく、弾性層2中の中空粒子3とのsp値の差が大きい溶剤が好ましい。具体的には以下に示す溶剤を用いることができる。メチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸メチル、酢酸エチル等のエステル類、キシレン等の芳香族化合物等。これらは一種のみを用いてもよく、二種以上を併用してもよい。特に、メチルエチルケトン、メチルイソブチルケトン等が好ましい。   As described above, it is preferable to use a solvent having a high affinity for the rubber used for the elastic layer 2 and a low affinity for the hollow particles 3 as the solvent used for the coating solution for forming the surface layer 5. In particular, a solvent having a small difference in sp value from the rubber used for the elastic layer 2 and a large difference in sp value from the hollow particles 3 in the elastic layer 2 is preferable. Specifically, the following solvents can be used. Ketones such as methyl isobutyl ketone, methyl ethyl ketone, and cyclohexanone; esters such as methyl acetate and ethyl acetate; and aromatic compounds such as xylene. These may use only 1 type and may use 2 or more types together. In particular, methyl ethyl ketone, methyl isobutyl ketone and the like are preferable.

表面層5形成用塗布溶液にバインダー、導電剤及び樹脂粒子等を分散させる方法としては、ボールミル、サンドミル、ペイントシェーカー、ダイノミル、パールミル等の公知の溶液分散手段を用いることができる。   As a method for dispersing the binder, the conductive agent, the resin particles and the like in the coating solution for forming the surface layer 5, known solution dispersing means such as a ball mill, a sand mill, a paint shaker, a dyno mill, and a pearl mill can be used.

表面層5に用いられるバインダー樹脂としては、前記溶剤に溶解するバインダー樹脂であれば特に限定されない。例えば、熱硬化性樹脂、熱可塑性樹脂等が使用できる。中でも、ポリアミド樹脂、アクリル樹脂、ポリウレタン樹脂、アクリルウレタン樹脂、シリコーン樹脂等が好ましい。これらは単独で用いてもよいし2種以上を混合して用いてもよい。また、これら樹脂の単量体を共重合させ、共重合体として用いても良い。   The binder resin used for the surface layer 5 is not particularly limited as long as it is a binder resin that dissolves in the solvent. For example, a thermosetting resin or a thermoplastic resin can be used. Of these, polyamide resin, acrylic resin, polyurethane resin, acrylic urethane resin, silicone resin and the like are preferable. These may be used alone or in combination of two or more. Further, monomers of these resins may be copolymerized and used as a copolymer.

(樹脂粒子)
本発明に係る中実の樹脂粒子4としては、高分子化合物からなる粒子が挙げられる。例えば、以下に示す化合物からなる粒子が挙げられる。ポリアミド樹脂、シリコーン樹脂、フッ素樹脂、(メタ)アクリル樹脂、スチレン樹脂、フェノール樹脂、ポリエステル樹脂、メラミン樹脂、ウレタン樹脂、オレフィン樹脂、エポキシ樹脂、これらの共重合体や変性物、誘導体等の樹脂、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエン共重合ゴム(SBR)、シリコーンゴム、ウレタンゴム、イソプレンゴム(IR)、ブチルゴム、クロロプレンゴム(CR)、ポリオレフィン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、フッ素ゴム系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリブタジエン系熱可塑性エラストマー、エチレン酢酸ビニル系熱可塑性エラストマー、ポリ塩化ビニル系熱可塑性エラストマー、塩素化ポリエチレン系熱可塑性エラストマー等の熱可塑性エラストマー等。
(Resin particles)
Examples of the solid resin particles 4 according to the present invention include particles made of a polymer compound. For example, the particle | grains which consist of a compound shown below are mentioned. Polyamide resin, silicone resin, fluororesin, (meth) acrylic resin, styrene resin, phenol resin, polyester resin, melamine resin, urethane resin, olefin resin, epoxy resin, resins such as copolymers, modified products, and derivatives, Ethylene-propylene-diene copolymer (EPDM), styrene-butadiene copolymer rubber (SBR), silicone rubber, urethane rubber, isoprene rubber (IR), butyl rubber, chloroprene rubber (CR), polyolefin-based thermoplastic elastomer, urethane-based Thermoplastic elastomer, polystyrene thermoplastic elastomer, fluoro rubber thermoplastic elastomer, polyester thermoplastic elastomer, polyamide thermoplastic elastomer, polybutadiene thermoplastic elastomer, ethylene vinyl acetate Thermoplastic elastomers, polyvinyl chloride thermoplastic elastomer, a thermoplastic elastomer such as chlorinated polyethylene based thermoplastic elastomer.

この中でも、(メタ)アクリル樹脂、スチレン樹脂、ウレタン樹脂、フッ素樹脂、シリコーン樹脂を用いることが好ましい。これらの樹脂粒子4は1種のみを使用しても、2種以上を組み合わせて用いてもよい。また、表面処理、変性、官能基や分子鎖の導入、コーティング等が施されたものでもよい。なお、本発明において中実の樹脂粒子4とは樹脂粒子4内部に気泡が実質的に含まれず、樹脂粒子4内部が樹脂により満たされている状態を示す。   Among these, it is preferable to use (meth) acrylic resin, styrene resin, urethane resin, fluorine resin, or silicone resin. These resin particles 4 may be used alone or in combination of two or more. Moreover, surface treatment, modification, introduction of a functional group or molecular chain, coating, or the like may be performed. In the present invention, the solid resin particle 4 indicates a state in which bubbles are not substantially contained in the resin particle 4 and the resin particle 4 is filled with resin.

帯電ローラ表面の凹凸形状を制御するため、樹脂粒子4の体積平均粒径は5μm以上、100μm以下であることが好ましい。樹脂粒子4の体積平均粒径は8μm以上、80μm以下であることがより好ましい。表面層5は、本発明の効果を損なわない範囲で他の粒子を含有することができる。   In order to control the uneven shape on the surface of the charging roller, the volume average particle diameter of the resin particles 4 is preferably 5 μm or more and 100 μm or less. The volume average particle diameter of the resin particles 4 is more preferably 8 μm or more and 80 μm or less. The surface layer 5 can contain other particles as long as the effects of the present invention are not impaired.

<プロセスカートリッジ、電子写真装置>
本発明に係る帯電部材を備える電子写真装置の一例の概略構成を図8に示す。図8に示す電子写真装置は、電子写真感光体23、電子写真感光体23を帯電する帯電装置、露光を行う潜像形成装置29、トナー像に現像する現像装置、転写材に転写する転写装置、電子写真感光体上の転写トナーを回収するクリーニング装置、トナー像を定着する定着装置により構成されている。
<Process cartridge, electrophotographic device>
FIG. 8 shows a schematic configuration of an example of an electrophotographic apparatus including the charging member according to the present invention. The electrophotographic apparatus shown in FIG. 8 includes an electrophotographic photosensitive member 23, a charging device that charges the electrophotographic photosensitive member 23, a latent image forming device 29 that performs exposure, a developing device that develops a toner image, and a transfer device that transfers to a transfer material. And a cleaning device for collecting the transfer toner on the electrophotographic photosensitive member and a fixing device for fixing the toner image.

電子写真感光体23は、導電性基体上に感光層を有する回転ドラム型である。電子写真感光体23は矢印の方向に所定の周速度(プロセススピード)で回転駆動される。帯電装置は、電子写真感光体23に所定の押圧力で当接されることにより接触配置される接触式の帯電ローラ17を有する。本発明に係る電子写真装置は、帯電ローラ17として本発明に係る帯電部材を用いる。帯電ローラ17は、電子写真感光体23の回転に従い従動回転し、帯電用電源31から所定の直流電圧が印加されることにより、電子写真感光体23を所定の電位に帯電する。電子写真感光体23に静電潜像を形成する潜像形成装置29には、例えばレーザービームスキャナー等の如き露光装置が用いられる。一様に帯電された電子写真感光体23に画像情報に対応した露光を行うことにより、静電潜像が形成される。   The electrophotographic photosensitive member 23 is a rotary drum type having a photosensitive layer on a conductive substrate. The electrophotographic photosensitive member 23 is rotationally driven at a predetermined peripheral speed (process speed) in the direction of the arrow. The charging device includes a contact-type charging roller 17 disposed in contact with the electrophotographic photosensitive member 23 by contacting with the electrophotographic photosensitive member 23 with a predetermined pressing force. The electrophotographic apparatus according to the present invention uses the charging member according to the present invention as the charging roller 17. The charging roller 17 is driven to rotate in accordance with the rotation of the electrophotographic photosensitive member 23, and a predetermined DC voltage is applied from the charging power supply 31 to charge the electrophotographic photosensitive member 23 to a predetermined potential. For the latent image forming device 29 that forms an electrostatic latent image on the electrophotographic photosensitive member 23, an exposure device such as a laser beam scanner is used. An electrostatic latent image is formed by exposing the uniformly charged electrophotographic photosensitive member 23 according to image information.

現像装置は、電子写真感光体23に近接又は接触して配設される現像スリーブ又は現像ローラ24を有する。電子写真感光体23の帯電極性と同極性に静電的処理されたトナーを反転現像することにより、静電潜像をトナー像として可視化現像する。転写装置は、接触式の転写ローラ26を有する。電子写真感光体23からトナー像を普通紙等の如き転写材25(転写材25は、搬送部材を有する給紙システムにより搬送される)に転写する。クリーニング装置は、ブレード型のクリーニング部材28、回収容器30を有し、転写後に電子写真感光体23上に残留する転写残トナーを機械的に掻き落として回収する。なお、現像装置にて転写残トナーを回収する現像同時クリーニング方式を採用することにより、クリーニング装置を省くことも可能である。定着装置27は、加熱されたロール等で構成され、転写されたトナー像を転写材25に定着させ、機外に排出する。   The developing device includes a developing sleeve or a developing roller 24 that is disposed close to or in contact with the electrophotographic photosensitive member 23. The toner electrostatically processed to the same polarity as the charged polarity of the electrophotographic photosensitive member 23 is reversely developed to visualize and develop the electrostatic latent image as a toner image. The transfer device has a contact-type transfer roller 26. The toner image is transferred from the electrophotographic photosensitive member 23 to a transfer material 25 such as plain paper (the transfer material 25 is conveyed by a paper feeding system having a conveying member). The cleaning device has a blade-type cleaning member 28 and a collection container 30 and mechanically scrapes off and collects the transfer residual toner remaining on the electrophotographic photosensitive member 23 after transfer. It is possible to omit the cleaning device by adopting a development simultaneous cleaning system in which the transfer residual toner is collected by the developing device. The fixing device 27 is composed of a heated roll or the like, and fixes the transferred toner image on the transfer material 25 and discharges it outside the apparatus.

なお、帯電部材が被帯電体と少なくとも一体化され、電子写真装置本体に着脱自在に構成されているプロセスカートリッジを用いることができる。例えば、電子写真感光体、帯電装置、現像装置、クリーニング装置等が一体化され、電子写真装置に着脱可能に設計されたプロセスカートリッジである。本発明に係るプロセスカートリッジは、帯電部材として本発明に係る帯電部材を備える。   A process cartridge in which the charging member is at least integrated with the member to be charged and is configured to be detachable from the main body of the electrophotographic apparatus can be used. For example, a process cartridge that is integrated with an electrophotographic photosensitive member, a charging device, a developing device, a cleaning device, and the like and is designed to be detachable from the electrophotographic device. The process cartridge according to the present invention includes the charging member according to the present invention as a charging member.

以下、本発明を具体的な実施例及び比較例を参照してより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to specific examples and comparative examples.

製造例1〔熱膨張性マイクロカプセル1の作製〕
重合反応容器にイオン交換水4000質量部と、分散安定剤としてコロイダルシリカ5質量部と、ポリビニルピロリドン0.15質量部とを添加し、水溶性分散媒体を調製した。シェル材質となる原料モノマーとしてのアクリロニトリル100質量部と、内包物質としてノルマルヘキサン13質量部と、重合開始剤としてジクミルパーオキシド0.8質量部と、架橋物質としてメチルメタアクリレート0.5質量部とからなる油性混合液を調製した。該油性混合液を該水溶性分散媒体に添加し、更に水酸化ナトリウム0.4質量部を添加することにより分散液を調製した。
Production Example 1 (Production of Thermally Expandable Microcapsule 1)
To the polymerization reaction vessel, 4000 parts by mass of ion-exchanged water, 5 parts by mass of colloidal silica as a dispersion stabilizer, and 0.15 parts by mass of polyvinylpyrrolidone were added to prepare a water-soluble dispersion medium. 100 parts by mass of acrylonitrile as a raw material monomer to be a shell material, 13 parts by mass of normal hexane as an inclusion substance, 0.8 part by mass of dicumyl peroxide as a polymerization initiator, and 0.5 part by mass of methyl methacrylate as a crosslinking substance An oily mixed solution consisting of The oily mixed solution was added to the water-soluble dispersion medium, and 0.4 parts by mass of sodium hydroxide was further added to prepare a dispersion.

得られた分散液を、ホモジナイザーを用いて攪拌混合し、窒素置換した重合反応容器内へ仕込み、加圧し、温度60℃で20時間反応させることにより反応生成物を調製した。得られた反応生成物についてろ過と水洗を繰り返した後、乾燥して熱膨張性マイクロカプセル1を得た。得られた熱膨張性マイクロカプセル1を分級することにより体積平均粒径を35μmとし、分級後の熱膨張性マイクロカプセル1を得た。   The resulting dispersion was stirred and mixed using a homogenizer, charged into a nitrogen-substituted polymerization reaction vessel, pressurized, and reacted at a temperature of 60 ° C. for 20 hours to prepare a reaction product. The obtained reaction product was repeatedly filtered and washed with water, and then dried to obtain thermally expandable microcapsules 1. By classifying the obtained thermally expandable microcapsules 1, the volume average particle diameter was set to 35 μm, and the thermally expanded microcapsules 1 after classification were obtained.

製造例2〔熱膨張性マイクロカプセル2の作製〕
製造例1において原料モノマーをメタクリロニトリルとした以外は、製造例1と同様の方法で熱膨張性マイクロカプセル2を作製した。得られた熱膨張性マイクロカプセル2を分級することにより体積平均粒径を65μmとし、分級後の熱膨張性マイクロカプセル2を得た。
Production Example 2 [Production of Thermally Expandable Microcapsule 2]
A thermally expandable microcapsule 2 was produced in the same manner as in Production Example 1, except that methacrylonitrile was used as the raw material monomer in Production Example 1. By classifying the obtained thermally expandable microcapsules 2, the volume average particle size was set to 65 μm, and the thermally expandable microcapsules 2 after classification were obtained.

製造例3〔熱膨張性マイクロカプセル3の作製〕
製造例1において原料モノマーを塩化ビニリデンとした以外は、製造例1と同様の方法で熱膨張性マイクロカプセル3を作製した。得られた熱膨張性マイクロカプセル3を分級することにより体積平均粒径を28μmとし、分級後の熱膨張性マイクロカプセル3を得た。
Production Example 3 (Production of Thermally Expandable Microcapsule 3)
A thermally expandable microcapsule 3 was produced in the same manner as in Production Example 1 except that the raw material monomer was vinylidene chloride in Production Example 1. By classifying the obtained thermally expandable microcapsules 3, the volume average particle size was set to 28 μm, and the thermally expanded microcapsules 3 after classification were obtained.

製造例4〔熱膨張性マイクロカプセル4の作製〕
製造例1において原料モノマーをスチレンとした以外は、製造例1と同様の方法で熱膨張性マイクロカプセル4を作製した。得られた熱膨張性マイクロカプセル4を分級することにより体積平均粒径を25μmとし、分級後の熱膨張性マイクロカプセル4を得た。
Production Example 4 (Production of Thermally Expandable Microcapsule 4)
A thermally expandable microcapsule 4 was produced in the same manner as in Production Example 1 except that styrene was used as the raw material monomer in Production Example 1. By classifying the obtained thermally expandable microcapsules 4, the volume average particle size was set to 25 μm, and the thermally expandable microcapsules 4 after classification were obtained.

製造例5〔熱膨張性マイクロカプセル5の作製〕
重合反応容器内にイオン交換水400質量部とドデシルベンゼンスルホン酸ナトリウム1質量部とを添加し、水溶性分散媒体を調製した。シェル材質となる原料モノマーとしての塩化ビニル100質量部、ノルマルヘキサン200質量部、n−ブチルアクリレート100質量部、トリメチロールプロパントリアクリレート2質量部、2,2−アゾビスイソブチロニトリル2質量部からなる油性混合液を調製した。該油性混合液を該水溶性分散媒体に添加し、分散液を調製した。
Production Example 5 (Production of Thermally Expandable Microcapsule 5)
In the polymerization reaction vessel, 400 parts by mass of ion-exchanged water and 1 part by mass of sodium dodecylbenzenesulfonate were added to prepare a water-soluble dispersion medium. 100 parts by mass of vinyl chloride as a raw material monomer to be a shell material, 200 parts by mass of normal hexane, 100 parts by mass of n-butyl acrylate, 2 parts by mass of trimethylolpropane triacrylate, 2 parts by mass of 2,2-azobisisobutyronitrile An oily mixture consisting of The oily mixture was added to the water-soluble dispersion medium to prepare a dispersion.

得られた分散液を、ホモジナイザーを用いて攪拌混合し、窒素置換した重合反応容器内へ仕込み、温度80℃で30分間反応させることで反応生成物を調製した。得られた反応生成物についてろ過と水洗を繰り返した後、乾燥して熱膨張性マイクロカプセル5を得た。得られた熱膨張性マイクロカプセル5を分級することにより体積平均粒径を35μmとし、分級後の熱膨張性マイクロカプセル5を得た。   The resulting dispersion was stirred and mixed using a homogenizer, charged into a nitrogen-substituted polymerization reaction vessel, and reacted at a temperature of 80 ° C. for 30 minutes to prepare a reaction product. The obtained reaction product was repeatedly filtered and washed with water, and then dried to obtain thermally expandable microcapsules 5. By classifying the obtained thermally expandable microcapsules 5, the volume average particle size was set to 35 μm, and the thermally expandable microcapsules 5 after classification were obtained.

製造例6〔熱膨張性マイクロカプセル6の作製〕
ポリエチレンテレフタラート650質量部にトルエン1000質量部と、イソホロンジイソシアネート(IPDI)142質量部とを添加し、トルエン還流下120℃で5時間反応を行った後、室温まで冷却した。更にヘキサメチレンジアミン25質量部と、ジエチレントリアミン20質量部とを添加し、60℃で5時間反応を行った。その後トルエンを減圧下に留去することで、両末端に水酸基を有し、ウレタン及びウレア結合を有するウレタン樹脂を得た。得られた樹脂400質量部と、黄酸化鉄12質量部と、ノルマルヘキサン62質量部と、酢酸エチル380質量部とを混合し、この混合液を予め作製したポリビニルアルコール0.5質量%水溶液2000質量部に滴下しながら分散させることで反応生成物を得た。得られた反応生成物についてろ過と水洗を繰り返した後、乾燥して熱膨張性マイクロカプセル6を得た。得られた熱膨張性マイクロカプセル6を分級することにより体積平均粒径を35μmとし、分級後の熱膨張性マイクロカプセル6を得た。
Production Example 6 [Production of Thermally Expandable Microcapsule 6]
1000 parts by mass of toluene and 142 parts by mass of isophorone diisocyanate (IPDI) were added to 650 parts by mass of polyethylene terephthalate, reacted at 120 ° C. for 5 hours under reflux of toluene, and then cooled to room temperature. Furthermore, 25 parts by mass of hexamethylenediamine and 20 parts by mass of diethylenetriamine were added, and the reaction was performed at 60 ° C. for 5 hours. Thereafter, toluene was distilled off under reduced pressure to obtain a urethane resin having hydroxyl groups at both ends and having urethane and urea bonds. 400 parts by mass of the obtained resin, 12 parts by mass of yellow iron oxide, 62 parts by mass of normal hexane, and 380 parts by mass of ethyl acetate were mixed, and a 0.5% by mass aqueous polyvinyl alcohol solution 2000 prepared in advance from this mixture. A reaction product was obtained by dispersing the solution while dropping in parts by mass. The obtained reaction product was repeatedly filtered and washed with water, and then dried to obtain thermally expandable microcapsules 6. By classifying the obtained thermally expandable microcapsules 6, the volume average particle diameter was set to 35 μm, and the thermally expandable microcapsules 6 after classification were obtained.

製造例7〜20〔熱膨張性マイクロカプセル7〜20の作製〕
前記製造例1〜6と同様の方法により作製した分級前の熱膨張性マイクロカプセル1〜6を分級することで、分級後の熱膨張性マイクロカプセル7〜20を調製した。分級前後の熱膨張性マイクロカプセル番号、シェル材質及び分級後の熱膨張性マイクロカプセルの体積平均粒径を表1に示す。
Production Examples 7 to 20 [Production of Thermally Expandable Microcapsules 7 to 20]
The thermally expandable microcapsules 7 to 20 after classification were prepared by classifying the thermally expandable microcapsules 1 to 6 that were prepared by the same method as in Production Examples 1 to 6. Table 1 shows the thermally expandable microcapsule numbers before and after classification, the shell material, and the volume average particle size of the thermally expandable microcapsules after classification.

Figure 0005730051
Figure 0005730051

[実施例1]
〔弾性層2形成用の未加硫ゴム組成物A−1の作製〕
表2に記載の材料を50℃に調節した密閉型ミキサーにて15分間混練した。
[Example 1]
[Preparation of unvulcanized rubber composition A-1 for forming elastic layer 2]
The materials listed in Table 2 were kneaded for 15 minutes in a closed mixer adjusted to 50 ° C.

Figure 0005730051
Figure 0005730051

これに、製造例1で作製した分級後の熱膨張性マイクロカプセル1を9.25質量部と、加硫剤として硫黄1.2質量部と、加硫促進剤としてテトラベンジルチウラムジスルフィド(商品名:パーカシットTBzTD、フレキシス社製)4.5質量部とを添加した。これを25℃に冷却した二本ロール機にて10分間混練し、弾性層2形成用の未加硫ゴム組成物A−1を得た。   To this, 9.25 parts by mass of the thermally expandable microcapsule 1 after classification prepared in Production Example 1, 1.2 parts by mass of sulfur as a vulcanizing agent, and tetrabenzyl thiuram disulfide (trade name) as a vulcanization accelerator. : Parkasit TBzTD, manufactured by Flexis Co., Ltd.) 4.5 parts by mass. This was kneaded for 10 minutes with a two-roll mill cooled to 25 ° C. to obtain an unvulcanized rubber composition A-1 for forming the elastic layer 2.

〔弾性ローラA−1の作製〕
直径6mm、長さ258mmのステンレス製棒に熱硬化性接着剤(商品名:メタロックU−20、東洋化学研究所社製)を塗布し、180℃の熱風炉内にて30分間静置して導電性基体12を得た。
[Production of Elastic Roller A-1]
A thermosetting adhesive (trade name: METALOC U-20, manufactured by Toyo Chemical Laboratory Co., Ltd.) is applied to a stainless steel rod having a diameter of 6 mm and a length of 258 mm, and left in a hot air oven at 180 ° C. for 30 minutes. A conductive substrate 12 was obtained.

図7(a)に示すクロスヘッド20を具備する押出成形装置を用いた。送りロール21により導電性基体12をクロスヘッド20に送り、導電性基体12を中心軸として押出機18により押出された前記未加硫ゴム組成物A−1を導電性基体12上に円筒状に被覆した。これにより、外径が10mmの弾性ローラ予備成形体19を得た。弾性ローラ予備成形体19の未加硫ゴム組成物層端部を除去し、導電性基体12端部を露出させた。   An extrusion apparatus provided with the crosshead 20 shown in FIG. The conductive substrate 12 is fed to the crosshead 20 by a feed roll 21 and the unvulcanized rubber composition A-1 extruded by the extruder 18 with the conductive substrate 12 as a central axis is formed on the conductive substrate 12 in a cylindrical shape. Covered. Thereby, an elastic roller preform 19 having an outer diameter of 10 mm was obtained. The end portion of the unvulcanized rubber composition layer of the elastic roller preform 19 was removed, and the end portion of the conductive base 12 was exposed.

次いで、図7(b)に示すように、弾性ローラ予備成形体19を内径が12mmの円筒形キャビティ22を有する金型に設置して、弾性ローラ予備成形体19を160℃で20分間加熱、発泡させてローラを得た。さらに得られたローラに熱風炉内で、160℃、30分間の条件で二次加硫を施し、外径が12mm、長さが224.2mmの弾性ローラA−1を得た。   Next, as shown in FIG. 7B, the elastic roller preform 19 is placed in a mold having a cylindrical cavity 22 having an inner diameter of 12 mm, and the elastic roller preform 19 is heated at 160 ° C. for 20 minutes. A roller was obtained by foaming. Further, the obtained roller was subjected to secondary vulcanization in a hot stove at 160 ° C. for 30 minutes to obtain an elastic roller A-1 having an outer diameter of 12 mm and a length of 224.2 mm.

〔表面層5形成用塗布溶液A−1の作製〕
カプロラクトン変性アクリルポリオール溶液(商品名:プラクセルDC2016、ダイセル化学工業社製)にメチルイソブチルケトン(MIBK)を加え、アクリルポリオール固形分が17質量%となるように調整した。この溶液588.24質量部(アクリルポリオール固形分100質量部)に表3に記載の材料を加え、混合溶液を調製した。なお、ブロックイソシアネート混合物の混合量はイソシアネート/ポリオールがNCO/OH=1.0となる量であった。
[Preparation of Coating Solution A-1 for Forming Surface Layer 5]
Methyl isobutyl ketone (MIBK) was added to a caprolactone-modified acrylic polyol solution (trade name: Plaxel DC2016, manufactured by Daicel Chemical Industries) to adjust the solid content of acrylic polyol to 17% by mass. The materials listed in Table 3 were added to 588.24 parts by mass of this solution (100 parts by mass of acrylic polyol solid content) to prepare a mixed solution. The mixed amount of the blocked isocyanate mixture was such that isocyanate / polyol was NCO / OH = 1.0.

Figure 0005730051
Figure 0005730051

内容積450mLのガラス瓶に前記混合溶液200gと、メディアとしての体積平均粒径0.8mmのガラスビーズ200gとを入れ、ペイントシェーカー分散機を用いて28時間分散した。分散後、樹脂粒子4として、体積平均粒子径が30μmのシリコーン樹脂粒子を、アクリルポリオール固形分100質量部に対して11質量部添加した。その後5分間分散し、ガラスビーズを除去して表面層5形成用塗布溶液A−1を得た。   200 g of the mixed solution and 200 g of glass beads having a volume average particle diameter of 0.8 mm as a medium were placed in a glass bottle having an internal volume of 450 mL, and dispersed for 28 hours using a paint shaker disperser. After dispersion, 11 parts by mass of silicone resin particles having a volume average particle diameter of 30 μm as resin particles 4 was added to 100 parts by mass of the acrylic polyol solid content. Thereafter, dispersion was performed for 5 minutes, and the glass beads were removed to obtain a coating solution A-1 for forming the surface layer 5.

〔帯電ローラA−1の作製〕
前記弾性ローラA−1に対し、前記表面層5形成用塗布溶液A−1を1回ディッピング塗布した。塗布後に常温で30分間以上風乾した後、熱風循環乾燥機にて80℃で1時間、更に160℃で1時間乾燥して、弾性層2上に表面層5が形成された帯電ローラA−1を得た。ディッピング塗布の条件としては、浸漬時間が9秒であり、ディッピング塗布引き上げ速度が、初期速度20mm/s、最終速度2mm/sであり、その間は時間に対して直線的に速度を変化させた。
[Production of Charging Roller A-1]
The coating solution A-1 for forming the surface layer 5 was dipped on the elastic roller A-1 once. After the coating, the roller is air-dried for 30 minutes or more at room temperature, and then dried with a hot air circulating dryer at 80 ° C. for 1 hour and further at 160 ° C. for 1 hour, and the charging roller A-1 having the surface layer 5 formed on the elastic layer 2 Got. As dipping coating conditions, the dipping time was 9 seconds, the dipping coating lifting speed was an initial speed of 20 mm / s, and a final speed of 2 mm / s, during which the speed was changed linearly with respect to time.

作製した帯電ローラA−1を下記の方法で評価した。   The produced charging roller A-1 was evaluated by the following method.

〔中空粒子3の体積平均粒径及び中空粒子3の投影円の直径の測定〕
帯電ローラA−1の弾性層2の任意の箇所を、500μmに亘って20nmずつ、表面層5の上から集束イオンビーム(商品名:FB−2000C、日立製作所社製)にて切り出し、その断面画像を撮影した。撮影した画像を組み合わせ、立体像を算出した。この立体像から中空粒子3の体積を算出し、この体積と等しい体積を持つ球の直径を求めた。この作業を視野内の中空粒子10個について行った。さらに、同様の測定を帯電ローラA−1の長手方向10点について行い、得られた計100個の平均値を算出し、中空粒子3の体積平均粒径とした。
[Measurement of the volume average particle diameter of the hollow particles 3 and the diameter of the projected circle of the hollow particles 3]
An arbitrary portion of the elastic layer 2 of the charging roller A-1 is cut out from the surface layer 5 by 20 nm over 500 μm by a focused ion beam (trade name: FB-2000C, manufactured by Hitachi, Ltd.), and its cross section An image was taken. The captured images were combined to calculate a stereoscopic image. The volume of the hollow particles 3 was calculated from this stereoscopic image, and the diameter of a sphere having a volume equal to this volume was determined. This operation was performed for 10 hollow particles in the field of view. Furthermore, the same measurement was performed for 10 points in the longitudinal direction of the charging roller A-1, and the average value of a total of 100 obtained was calculated as the volume average particle diameter of the hollow particles 3.

また、図2に示すように、前記中空粒子3の立体像から積層方向の投影図を作成し、その投影面積を求めた。次に、該投影面積と等しい面積を有する円の直径を求めた。同様に別の中空粒子3の投影面積を求め、該投影面積と等しい面積を有する円の直径を求め、これらの円の直径の算術平均を求めた。この作業を視野内の中空粒子10個について行った。さらに、同様の測定を帯電ローラA−1の長手方向10点について行い、得られた計100個の平均値を算出し、中空粒子3の投影円の直径とした。   Moreover, as shown in FIG. 2, the projection figure of the lamination direction was created from the three-dimensional image of the said hollow particle 3, and the projection area was calculated | required. Next, the diameter of a circle having an area equal to the projected area was determined. Similarly, the projected area of another hollow particle 3 was determined, the diameter of a circle having an area equal to the projected area was determined, and the arithmetic average of the diameters of these circles was determined. This operation was performed for 10 hollow particles in the field of view. Further, the same measurement was performed for 10 points in the longitudinal direction of the charging roller A-1, and an average value of a total of 100 obtained values was calculated as the diameter of the projected circle of the hollow particles 3.

〔樹脂粒子4の体積平均粒径及び樹脂粒子4の投影円の直径の測定〕
前記中空粒子3の体積平均粒径の測定と同様の方法で、表面層5中の樹脂粒子4の立体像を算出した。この立体像から樹脂粒子4の体積を算出し、この体積と等しい体積を持つ球の直径を求めた。この作業を視野内の樹脂粒子10個について行った。さらに、同様の測定を帯電ローラA−1の長手方向10点について行い、得られた計100個の平均値を算出し、樹脂粒子4の体積平均粒径とした。また、図2に示すように、樹脂粒子4の立体像から樹脂粒子4の投影図を作成し、前記中空粒子3の投影円の直径と同様にして、樹脂粒子の投影円の直径を算出した。
[Measurement of Volume Average Particle Diameter of Resin Particle 4 and Diameter of Projected Circle of Resin Particle 4]
A three-dimensional image of the resin particles 4 in the surface layer 5 was calculated by the same method as the measurement of the volume average particle diameter of the hollow particles 3. The volume of the resin particles 4 was calculated from this stereoscopic image, and the diameter of a sphere having a volume equal to this volume was determined. This operation was performed for 10 resin particles in the field of view. Furthermore, the same measurement was performed for 10 points in the longitudinal direction of the charging roller A-1, and the average value of a total of 100 obtained was calculated as the volume average particle diameter of the resin particles 4. Further, as shown in FIG. 2, a projection view of the resin particle 4 is created from the three-dimensional image of the resin particle 4, and the diameter of the projection circle of the resin particle is calculated in the same manner as the diameter of the projection circle of the hollow particle 3. .

〔表面十点平均粗さ及び表面凹凸平均間隔の測定〕
帯電ローラA−1の表面十点平均粗さ(Rz)は、表面粗さ測定器(商品名:SE−3500、小坂研究所社製)を用い、JIS B 0601−1994表面粗さの規格に準じて測定した。該測定を帯電ローラA−1の無作為の6箇所において行い、その平均値をRzとした。
[Measurement of surface ten-point average roughness and surface irregularity average interval]
The surface ten-point average roughness (Rz) of the charging roller A-1 is in accordance with the standard of JIS B 0601-1994 surface roughness using a surface roughness measuring instrument (trade name: SE-3500, manufactured by Kosaka Laboratory). Measured accordingly. The measurement was performed at six random locations on the charging roller A-1, and the average value was defined as Rz.

表面凹凸平均間隔(Sm)は、帯電ローラA−1の任意の箇所において10点の凹凸間隔を測定し、その平均を測定箇所のSmとした。帯電ローラA−1の無作為の6箇所に対し該測定を行い、その平均値を帯電ローラA−1のSmとした。   For the surface unevenness average interval (Sm), 10 unevenness intervals were measured at an arbitrary location on the charging roller A-1, and the average was defined as Sm of the measurement location. The measurement was performed on six random locations of the charging roller A-1, and the average value was taken as Sm of the charging roller A-1.

〔中空粒子3の投影円の直径と樹脂粒子4の投影円の直径との比〕
前記方法により求めた中空粒子3の投影円の直径及び樹脂粒子4の投影円の直径から、中空粒子3の投影円の直径と樹脂粒子4の投影円の直径の比を算出した。なお、表6においては、該比を樹脂粒子投影円直径/中空粒子投影円直径と表記する。
[Ratio of the diameter of the projected circle of the hollow particles 3 to the diameter of the projected circle of the resin particles 4]
From the diameter of the projected circle of the hollow particles 3 and the diameter of the projected circle of the resin particles 4 obtained by the above method, the ratio of the diameter of the projected circle of the hollow particles 3 and the diameter of the projected circle of the resin particles 4 was calculated. In Table 6, this ratio is expressed as resin particle projected circle diameter / hollow particle projected circle diameter.

〔樹脂粒子4の投影円の直径の3倍円形領域の面積に対する該3倍円形領域に含まれる中空粒子3の投影円の面積の割合の測定〕
前記方法により求めた樹脂粒子4の投影円の直径の3倍の直径を有し、かつ、表面に凸部を形成する任意の樹脂粒子4の該凸部の頂点を積層方向へ投影した点を中心とする円を、積層方向に投影し、帯電ローラA−1表面に設定した。なお、凸部の頂点の位置は、前記立体像から決定することができる。
[Measurement of the ratio of the area of the projected circle of the hollow particles 3 included in the triple circular area to the area of the circular area of the triple diameter of the projected circle of the resin particles 4]
The point which projected the vertex of the convex part of arbitrary resin particles 4 which has a diameter 3 times the diameter of the projected circle of resin particle 4 calculated by the above-mentioned method in the lamination direction on the surface. The center circle was projected in the stacking direction and set on the surface of the charging roller A-1. In addition, the position of the vertex of a convex part can be determined from the said three-dimensional image.

中空粒子3の投影円の直径を算出する方法と同様の方法により、前記3倍円形領域内を積層方向に20nmおきに切り出し、中空粒子3の立体像を算出した。この立体像中の全ての中空粒子3を積層方向に投影し、前記3倍円形領域に含まれる中空粒子3が投影された部分の面積を求め、前記3倍円形領域の面積に対する割合を算出した。さらに、同様の測定を帯電ローラA−1の長手方向10点について行い、平均値を算出した。この値を樹脂粒子4の投影円の直径の3倍円形領域の面積に対する該3倍円形領域に含まれる中空粒子3の投影円の面積の割合とした。なお、表6においては、該割合を3倍円形領域における中空粒子投影円が占める面積の割合と表記する。   By a method similar to the method of calculating the diameter of the projected circle of the hollow particles 3, the three-fold circular region was cut out every 20 nm in the stacking direction, and a three-dimensional image of the hollow particles 3 was calculated. All the hollow particles 3 in this three-dimensional image are projected in the stacking direction, the area of the projected portion of the hollow particles 3 included in the triple circular region is obtained, and the ratio to the area of the triple circular region is calculated. . Further, the same measurement was performed for 10 points in the longitudinal direction of the charging roller A-1, and the average value was calculated. This value was defined as the ratio of the area of the projected circle of the hollow particles 3 included in the triple circle area to the area of the triple circle area of the diameter of the projected circle of the resin particles 4. In Table 6, this ratio is expressed as the ratio of the area occupied by the hollow particle projection circle in the triple circle region.

〔樹脂粒子4の凸部の頂点を積層方向へ投影した点が中空粒子3の投影図内に含まれる割合の測定〕
前記樹脂粒子4の投影円の直径を測定する方法と同様の方法により立体像を算出した。得られた樹脂粒子4の立体像より、表面に凸部を形成する任意の樹脂粒子4の凸部の頂点を決定した。該頂点を積層方向へ投影した点が、前記方法により測定した中空粒子3の投影図内に含まれるか否かを確認した。このような作業を視野内の表面に凸部を形成する任意の樹脂粒子10個について行った。さらに同様の測定を、帯電ローラA−1の長手方向任意の10点について行った。得られた計100個の樹脂粒子4について、凸部の頂点を積層方向へ投影した点が中空粒子3の投影図内に含まれる割合を算出した。なお、表6においては該割合を、樹脂粒子凸部頂点を投影した点が中空粒子投影図内に含まれる割合と表記する。
[Measurement of ratio of point where projection of convex part of resin particle 4 is projected in stacking direction included in projected view of hollow particle 3]
A three-dimensional image was calculated by a method similar to the method of measuring the diameter of the projected circle of the resin particles 4. From the obtained three-dimensional image of the resin particles 4, the vertexes of the convex portions of the arbitrary resin particles 4 that form the convex portions on the surface were determined. It was confirmed whether the point which projected the vertex to the lamination direction was included in the projection figure of the hollow particle 3 measured by the said method. Such an operation was performed for 10 arbitrary resin particles that form convex portions on the surface within the field of view. Further, the same measurement was performed for any 10 points in the longitudinal direction of the charging roller A-1. For a total of 100 resin particles 4 obtained, the ratio of the points at which the vertices of the projections were projected in the stacking direction was included in the projection diagram of the hollow particles 3 was calculated. In Table 6, this ratio is expressed as the ratio at which the points where the resin particle convex portions are projected are included in the hollow particle projection diagram.

〔表面に凸部を形成する樹脂粒子4の個数と、中空粒子3の個数との比の測定〕
樹脂粒子4及び中空粒子3の投影円の直径を算出する方法と同様の方法により、立体像を算出した。表面層5における立体像から表面に凸部を形成する樹脂粒子4の個数を数えた。また、弾性層2における立体像から中空粒子3の個数を数えた。これにより、表面に凸部を形成する樹脂粒子4の個数と、中空粒子3の個数との比を算出した。さらに、同様の測定を帯電ローラA−1の長手方向の任意の10点について行い、得られた値の平均値を算出した。これを、表面に凸部を形成する樹脂粒子4の個数と、中空粒子3の個数との比とした。なお、表6においては該比を、凸部形成樹脂粒子/中空粒子と表記する。
[Measurement of ratio between the number of resin particles 4 forming convex portions on the surface and the number of hollow particles 3]
A three-dimensional image was calculated by a method similar to the method of calculating the diameters of the projected circles of the resin particles 4 and the hollow particles 3. The number of resin particles 4 forming convex portions on the surface was counted from the three-dimensional image in the surface layer 5. Further, the number of the hollow particles 3 was counted from the stereoscopic image in the elastic layer 2. Thereby, the ratio between the number of the resin particles 4 forming the convex portions on the surface and the number of the hollow particles 3 was calculated. Furthermore, the same measurement was performed for any 10 points in the longitudinal direction of the charging roller A-1, and the average value of the obtained values was calculated. This was defined as the ratio of the number of resin particles 4 forming convex portions on the surface and the number of hollow particles 3. In Table 6, this ratio is expressed as convexity-forming resin particles / hollow particles.

〔弾性層2の空孔率の測定〕
前記中空粒子3の投影円の直径を測定する方法と同様の方法により立体像を算出した。立体像から画像中の空孔部の体積の総和を求めた。画像中の弾性層2の体積に対し、該空孔部の体積の総和が占める割合を算出した。さらに、同様の測定を帯電ローラA−1の長手方向の任意の10点について行い、得られた値の平均値を算出した。これを、弾性層2の空孔率とした。なお、表6においては該値を、弾性層空孔率と表記する。
[Measurement of porosity of elastic layer 2]
A three-dimensional image was calculated by a method similar to the method of measuring the diameter of the projected circle of the hollow particles 3. From the stereoscopic image, the total volume of the voids in the image was obtained. The ratio of the total volume of the pores to the volume of the elastic layer 2 in the image was calculated. Furthermore, the same measurement was performed for any 10 points in the longitudinal direction of the charging roller A-1, and the average value of the obtained values was calculated. This was defined as the porosity of the elastic layer 2. In Table 6, this value is expressed as elastic layer porosity.

〔耐久評価〕
図8に示す電子写真装置の構成を有するカラーレーザープリンタ(商品名:HP Colar LaserJet 4700dn、ヒューレット・パッカード社製)及びプリンタ用プロセスカートリッジを使用し、耐久評価を行った。前記プリンタを200mm/sec(A4縦出力)で記録メディアを出力できるようにして使用した。1次帯電の出力は、直流電圧(Vdc)が−1100Vであった。画像の解像度は600dpiであった。前記プロセスカートリッジから帯電ローラを取り外し、作製した帯電ローラA−1をセットした。また、電子写真感光体に対し帯電ローラA−1を、一端で4.9N、両端で合計9.8Nのバネによる押し圧力で当接させた。
[Durability evaluation]
Durability evaluation was performed using a color laser printer (trade name: HP Color LaserJet 4700dn, manufactured by Hewlett-Packard) having the configuration of the electrophotographic apparatus shown in FIG. 8 and a printer process cartridge. The printer was used so that it could output the recording medium at 200 mm / sec (A4 portrait output). The primary charging output was a DC voltage (Vdc) of −1100V. The resolution of the image was 600 dpi. The charging roller was removed from the process cartridge, and the manufactured charging roller A-1 was set. Further, the charging roller A-1 was brought into contact with the electrophotographic photosensitive member with a pressing force of a spring of 4.9 N at one end and a total of 9.8 N at both ends.

帯電ローラA−1をセットしたプロセスカートリッジを温度15℃/湿度10%RH環境(環境1)、温度23℃/湿度50%RH環境(環境2)、及び温度30℃/湿度80%RH環境(環境3)に24時間放置した後、それぞれの環境にて耐久評価を行った。具体的には、印字濃度1%画像をプロセススピード200mm/secで2枚間欠耐久試験(2枚ごとにプリンタの回転を3秒停止して耐久)を行った。初期及び耐久試験途中(初期画出し時、18000枚終了時、36000枚終了時)で、ハーフトーン画像(電子写真感光体の回転方向と垂直方向に幅1ドット、間隔2ドットの横線を描く画像)を出力し、評価した。なお、評価は得られたハーフトーン画像を目視にて観察し、帯電ローラA−1の表面の汚れに起因するスジ状およびドット状の画像欠陥の有無を下記基準で判定した。
ランク1;スジ状およびドット状の画像欠陥が認められない。
ランク2;スジ状またはドット状の画像欠陥がわずかに認められる。
ランク3;スジ状またはドット状の画像欠陥が認められる。
ランク4;スジ状またはドット状の画像欠陥が顕著に認められる。
The process cartridge in which the charging roller A-1 is set has a temperature of 15 ° C./humidity of 10% RH environment (environment 1), a temperature of 23 ° C./humidity of 50% RH environment (environment 2), and a temperature of 30 ° C./humidity of 80% RH environment ( After being left in the environment 3) for 24 hours, durability evaluation was performed in each environment. Specifically, a two-sheet intermittent endurance test (endurance after stopping the rotation of the printer for 3 seconds for every two sheets) was performed on a 1% print density image at a process speed of 200 mm / sec. During the initial and endurance tests (at the time of initial image output, at the end of 18000 sheets, and at the end of 36000 sheets), a halftone image (horizontal line with a width of 1 dot and an interval of 2 dots in the direction perpendicular to the rotation direction of the electrophotographic photoreceptor) Image) was output and evaluated. In the evaluation, the obtained halftone image was visually observed, and the presence or absence of streak-like and dot-like image defects caused by the contamination on the surface of the charging roller A-1 was determined according to the following criteria.
Rank 1: No streak-like or dot-like image defects are observed.
Rank 2: Slight or dot image defects are slightly observed.
Rank 3: streak-like or dot-like image defects are observed.
Rank 4: A streak-like or dot-like image defect is noticeable.

[実施例2]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル6を用いた。それ以外は実施例1と同様にして帯電ローラA−2を作製し、評価した。
[Example 2]
As the thermally expandable microcapsule, the thermally expanded microcapsule 6 after classification was used. Otherwise, the charging roller A-2 was prepared and evaluated in the same manner as in Example 1.

[実施例3]
樹脂粒子として、メタクリル酸メチル粒子を用いた。それ以外は実施例1と同様にして帯電ローラA−3を作製し、評価した。
[Example 3]
As the resin particles, methyl methacrylate particles were used. Otherwise, the charging roller A-3 was prepared and evaluated in the same manner as in Example 1.

[実施例4]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル7を用い、添加部数を28質量部とした。また、樹脂粒子の添加部数を31質量部とした。それ以外は実施例1と同様にして帯電ローラA−4を作製し、評価した。
[Example 4]
The thermally expandable microcapsule 7 after classification was used as the thermally expandable microcapsule, and the added part was 28 parts by mass. Moreover, the addition part number of the resin particle was 31 mass parts. Otherwise, the charging roller A-4 was prepared and evaluated in the same manner as in Example 1.

[実施例5]
〔弾性層2形成用の未加硫ゴム組成物A−5の作製〕
表4に記載の材料を50℃に調節した密閉型ミキサーにて10分間混練した。
[Example 5]
[Production of unvulcanized rubber composition A-5 for forming elastic layer 2]
The materials listed in Table 4 were kneaded for 10 minutes in a closed mixer adjusted to 50 ° C.

Figure 0005730051
Figure 0005730051

これに、製造例7において作製した分級後の熱膨張性マイクロカプセル7を28質量部と、加硫剤として硫黄0.8質量部とを添加した。さらに、加硫促進剤としてジベンゾチアジルスルフィド(商品名:ノクセラーDM、大内新興化学工業社製)1質量部と、テトラメチルチウラムモノスルフィド(商品名:ノクセラーTS、大内新興化学工業社製)0.5質量部とを添加した。これを25℃に冷却した二本ロール機にて10分間混練し、弾性層2形成用の未加硫ゴム組成物A−5を得た。   To this, 28 parts by mass of the thermally expandable microcapsule 7 after classification produced in Production Example 7 and 0.8 part by mass of sulfur as a vulcanizing agent were added. Furthermore, as a vulcanization accelerator, 1 part by mass of dibenzothiazyl sulfide (trade name: Noxeller DM, manufactured by Ouchi Shinsei Chemical Co., Ltd.) and tetramethylthiuram monosulfide (trade name: Noxeller TS, manufactured by Ouchi New Chemical Co., Ltd.) ) 0.5 parts by weight was added. This was kneaded for 10 minutes with a two-roll mill cooled to 25 ° C. to obtain an unvulcanized rubber composition A-5 for forming the elastic layer 2.

前記未加硫ゴム組成物A−5を用いた以外は実施例4と同様にして帯電ローラA−5を作製し、評価した。   A charging roller A-5 was prepared and evaluated in the same manner as in Example 4 except that the unvulcanized rubber composition A-5 was used.

[実施例6]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル8を用い、添加部数を5質量部とした。また、樹脂粒子の添加部数を20質量部とした。それ以外は実施例1と同様にして帯電ローラA−6を作製し、評価した。
[Example 6]
As the thermally expandable microcapsule, the thermally expanded microcapsule 8 after classification was used, and the number of added parts was 5 parts by mass. Moreover, the addition part number of the resin particle was 20 mass parts. Otherwise, the charging roller A-6 was prepared and evaluated in the same manner as in Example 1.

[実施例7]
樹脂粒子として、ウレタン樹脂粒子を用いた。それ以外は実施例6と同様にして帯電ローラA−7を作製し、評価した。
[Example 7]
Urethane resin particles were used as the resin particles. Otherwise, a charging roller A-7 was prepared and evaluated in the same manner as in Example 6.

[実施例8]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル9を用い、添加部数を8質量部とした。また、樹脂粒子の添加部数を25質量部とした。それ以外は実施例1と同様にして帯電ローラA−8を作製し、評価した。
[Example 8]
The thermally expandable microcapsule 9 after classification was used as the thermally expandable microcapsule, and the number of added parts was 8 parts by mass. Moreover, the addition part number of the resin particle was 25 mass parts. Otherwise, a charging roller A-8 was prepared and evaluated in the same manner as in Example 1.

[実施例9]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル3を用いた。それ以外は実施例8と同様にして帯電ローラA−9を作製し、評価した。
[Example 9]
As the thermally expandable microcapsule, the thermally expanded microcapsule 3 after classification was used. Otherwise, a charging roller A-9 was prepared and evaluated in the same manner as in Example 8.

[実施例10]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル10を用い、添加部数を9質量部とした。また、樹脂粒子としてメタクリル酸メチル粒子を用い、添加部数を10質量部とした。それ以外は実施例1と同様にして帯電ローラA−10を作製し、評価した。
[Example 10]
The thermally expandable microcapsule 10 after classification was used as the thermally expandable microcapsule, and the number of added parts was 9 parts by mass. Moreover, the methyl methacrylate particle | grains were used as a resin particle, and the addition part number was 10 mass parts. Otherwise, a charging roller A-10 was prepared and evaluated in the same manner as in Example 1.

[実施例11]
〔弾性層2形成用の未加硫ゴム組成物A−11の作製〕
表5に記載の材料を80℃に調節した密閉型ミキサーにて15分間混練した。
[Example 11]
[Preparation of unvulcanized rubber composition A-11 for forming elastic layer 2]
The materials listed in Table 5 were kneaded for 15 minutes in a closed mixer adjusted to 80 ° C.

Figure 0005730051
Figure 0005730051

これに、製造例10において作製した分級後の熱膨張性マイクロカプセル10を9質量部と、加硫剤として硫黄1質量部とを添加した。さらに、加硫促進剤としてジベンゾチアジルスルフィド(商品名:ノクセラーDM、大内新興化学工業社製)1質量部と、テトラメチルチウラムモノスルフィド(商品名:ノクセラーTS、大内新興化学工業社製)1質量部とを添加した。これを25℃に冷却した二本ロール機にて10分間混練し、弾性層2形成用の未加硫ゴム組成物A−11を得た。   To this, 9 parts by mass of the thermally expandable microcapsule 10 after classification produced in Production Example 10 and 1 part by mass of sulfur as a vulcanizing agent were added. Furthermore, as a vulcanization accelerator, 1 part by mass of dibenzothiazyl sulfide (trade name: Noxeller DM, manufactured by Ouchi Shinsei Chemical Co., Ltd.) and tetramethylthiuram monosulfide (trade name: Noxeller TS, manufactured by Ouchi New Chemical Co., Ltd.) ) 1 part by mass was added. This was kneaded for 10 minutes with a two-roll mill cooled to 25 ° C. to obtain an unvulcanized rubber composition A-11 for forming the elastic layer 2.

前記未加硫ゴム組成物A−11を用いた以外は実施例10と同様にして帯電ローラA−11を作製し、評価した。   A charging roller A-11 was prepared and evaluated in the same manner as in Example 10 except that the unvulcanized rubber composition A-11 was used.

[実施例12]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル11を用い、添加部数を30質量部とした。また、樹脂粒子の添加部数を20質量部とした。それ以外は実施例1と同様にして帯電ローラA−12を作製し、評価した。
[Example 12]
The thermally expandable microcapsule 11 after classification was used as the thermally expandable microcapsule, and the number of added parts was 30 parts by mass. Moreover, the addition part number of the resin particle was 20 mass parts. Otherwise, a charging roller A-12 was prepared and evaluated in the same manner as in Example 1.

[実施例13]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル4を用いた。それ以外は実施例12と同様にして帯電ローラA−13を作製し、評価した。
[Example 13]
As the thermally expandable microcapsule, the thermally expanded microcapsule 4 after classification was used. Otherwise, a charging roller A-13 was prepared and evaluated in the same manner as in Example 12.

[実施例14]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル11を用い、添加部数を25質量部とした。また、樹脂粒子の添加部数を10質量部とした。それ以外は実施例1と同様にして帯電ローラA−14を作製し、評価した。
[Example 14]
The thermally expandable microcapsule 11 after classification was used as the thermally expandable microcapsule, and the number of added parts was 25 parts by mass. Moreover, the addition part number of the resin particle was 10 mass parts. Otherwise, a charging roller A-14 was prepared and evaluated in the same manner as in Example 1.

[実施例15]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル7を用い、添加部数を16質量部とした。また、樹脂粒子の添加部数を5質量部とした。それ以外は実施例1と同様にして帯電ローラA−15を作製し、評価した。
[Example 15]
The thermally expandable microcapsule 7 after classification was used as the thermally expandable microcapsule, and the added part was 16 parts by mass. Moreover, the addition part number of the resin particle was 5 mass parts. Otherwise, a charging roller A-15 was prepared and evaluated in the same manner as in Example 1.

[実施例16]
中空粒子の添加部数を16質量部とし、樹脂粒子の添加部数を5質量部とした。それ以外は実施例5と同様にして帯電ローラA−16を作製し、評価した。
[Example 16]
The added part of the hollow particles was 16 parts by mass, and the added part of the resin particles was 5 parts by mass. Otherwise, a charging roller A-16 was prepared and evaluated in the same manner as in Example 5.

[実施例17]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル12を用い、添加部数を13質量部とした。また、樹脂粒子の添加部数を20質量部とした。それ以外は実施例1と同様にして帯電ローラA−17を作製し、評価した。
[Example 17]
As the thermally expandable microcapsule, the thermally expanded microcapsule 12 after classification was used, and the number of added parts was 13 parts by mass. Moreover, the addition part number of the resin particle was 20 mass parts. Otherwise, a charging roller A-17 was prepared and evaluated in the same manner as in Example 1.

[実施例18]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル2を用いた。それ以外は実施例17と同様にして帯電ローラA−18を作製し、評価した。
[Example 18]
As the thermally expandable microcapsule, the thermally expanded microcapsule 2 after classification was used. Otherwise, a charging roller A-18 was produced in the same manner as in Example 17, and evaluated.

[実施例19]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル8を用い、添加部数を14質量部とした。また、樹脂粒子としてメタクリル酸メチル樹脂粒子を用い、添加部数を30質量部とした。それ以外は実施例1と同様にして帯電ローラA−19を作製し、評価した。
[Example 19]
The thermally expandable microcapsule 8 after classification was used as the thermally expandable microcapsule, and the number of added parts was 14 parts by mass. Moreover, the methyl methacrylate resin particle was used as a resin particle, and the addition part number was 30 mass parts. Otherwise, a charging roller A-19 was prepared and evaluated in the same manner as in Example 1.

[実施例20]
樹脂粒子としてスチレン樹脂粒子を用いた。それ以外は実施例19と同様にして帯電ローラA−20を作製し、評価した。
[Example 20]
Styrene resin particles were used as the resin particles. Otherwise, a charging roller A-20 was prepared and evaluated in the same manner as in Example 19.

[実施例21]
中空粒子の添加部数を5.5質量部とし、樹脂粒子の添加部数を17質量部とした。それ以外は実施例1と同様にして帯電ローラA−21を作製し、評価した。
[Example 21]
The added part of the hollow particles was 5.5 parts by mass, and the added part of the resin particles was 17 parts by mass. Otherwise, the charging roller A-21 was prepared and evaluated in the same manner as in Example 1.

[実施例22]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル5を用いた。それ以外は実施例21と同様にして帯電ローラA−22を作製し、評価した。
[Example 22]
As the thermally expandable microcapsule, the thermally expanded microcapsule 5 after classification was used. Otherwise, a charging roller A-22 was prepared and evaluated in the same manner as in Example 21.

[実施例23]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル11を用い、添加部数を12質量部とした。また、樹脂粒子の添加部数を35質量部とした。それ以外は実施例1と同様にして帯電ローラA−23を作製し、評価した。
[Example 23]
The thermally expandable microcapsule 11 after classification was used as the thermally expandable microcapsule, and the number of added parts was 12 parts by mass. Moreover, the addition part number of the resin particle was 35 mass parts. Otherwise, the charging roller A-23 was prepared and evaluated in the same manner as in Example 1.

[実施例24]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル7を用い、添加部数を6.5質量部とした。また、樹脂粒子の添加部数を18質量部とした。それ以外は実施例1と同様にして帯電ローラA−24を作製し、評価した。
[Example 24]
The thermally expandable microcapsule 7 after classification was used as the thermally expandable microcapsule, and the added part was 6.5 parts by mass. Moreover, the addition part number of the resin particle was 18 mass parts. Otherwise, a charging roller A-24 was prepared and evaluated in the same manner as in Example 1.

[実施例25]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル13を用いた。それ以外は実施例24と同様にして帯電ローラA−25を作製し、評価した。
[Example 25]
As the thermally expandable microcapsule, the thermally expanded microcapsule 13 after classification was used. Otherwise, a charging roller A-25 was prepared and evaluated in the same manner as in Example 24.

[実施例26]
中空粒子の添加部数を6.5質量部とし、樹脂粒子の添加部数を18質量部とした。それ以外は実施例5と同様にして帯電ローラA−26を作製し、評価した。
[Example 26]
The added part of the hollow particles was 6.5 parts by mass, and the added part of the resin particles was 18 parts by mass. Otherwise, a charging roller A-26 was prepared and evaluated in the same manner as in Example 5.

[実施例27]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル12を用い、添加部数を6質量部とした。また、樹脂粒子の添加部数を30質量部とした。それ以外は実施例1と同様にして帯電ローラA−27を作製し、評価した。
[Example 27]
The thermally expandable microcapsule 12 after classification was used as the thermally expandable microcapsule, and the added part was 6 parts by mass. Moreover, the addition part number of the resin particle was 30 mass parts. Otherwise, a charging roller A-27 was prepared and evaluated in the same manner as in Example 1.

[実施例28]
樹脂粒子としてスチレン樹脂粒子を用いた。それ以外は実施例27と同様にして帯電ローラA−28を作製し、評価した。
[Example 28]
Styrene resin particles were used as the resin particles. Otherwise, a charging roller A-28 was prepared in the same manner as in Example 27 and evaluated.

[実施例29]
中空粒子の添加部数を3.5質量部とし、樹脂粒子の添加部数を25質量部とした。それ以外は実施例1と同様にして帯電ローラA−29を作製し、評価した。
[Example 29]
The added part of the hollow particles was 3.5 parts by mass, and the added part of the resin particles was 25 parts by mass. Otherwise, a charging roller A-29 was prepared and evaluated in the same manner as in Example 1.

[実施例30]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル1を用い、添加部数を3.5質量部とした。また、樹脂粒子としてシリコーン樹脂粒子を用い、添加部数を25質量部とした。それ以外は実施例11と同様にして帯電ローラA−30を作製し、評価した。
[Example 30]
As the thermally expandable microcapsule, the thermally expanded microcapsule 1 after classification was used, and the number of added parts was 3.5 parts by mass. Moreover, the silicone resin particle was used as the resin particle, and the addition part was 25 mass parts. Otherwise, a charging roller A-30 was prepared and evaluated in the same manner as in Example 11.

[実施例31]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル8を用い、添加部数を18質量部とした。また、樹脂粒子の添加部数を8質量部とした。それ以外は実施例1と同様にして帯電ローラA−31を作製し、評価した。
[Example 31]
The thermally expandable microcapsule 8 after classification was used as the thermally expandable microcapsule, and the added part was 18 parts by mass. Moreover, the addition part number of the resin particle was 8 mass parts. Otherwise, a charging roller A-31 was prepared and evaluated in the same manner as in Example 1.

[実施例32]
樹脂粒子としてメタクリル酸メチル樹脂粒子を用いた。それ以外は実施例31と同様にして帯電ローラA−32を作製し、評価した。
[Example 32]
Methyl methacrylate resin particles were used as the resin particles. Otherwise, a charging roller A-32 was prepared and evaluated in the same manner as in Example 31.

[実施例33]
中空粒子の添加部数を6質量部とし、樹脂粒子の添加部数を30質量部とした。それ以外は実施例1と同様にして帯電ローラA−33を作製し、評価した。
[Example 33]
The added part of the hollow particles was 6 parts by mass, and the added part of the resin particles was 30 parts by mass. Otherwise, the charging roller A-33 was prepared and evaluated in the same manner as in Example 1.

[実施例34]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル14を用いた。それ以外は実施例33と同様にして帯電ローラA−34を作製し、評価した。
[Example 34]
As the thermally expandable microcapsule, the thermally expanded microcapsule 14 after classification was used. Otherwise, a charging roller A-34 was prepared and evaluated in the same manner as in Example 33.

[実施例35]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル6を用いた。それ以外は実施例33と同様にして帯電ローラA−35を作製し、評価した。
[Example 35]
As the thermally expandable microcapsule, the thermally expanded microcapsule 6 after classification was used. Otherwise, a charging roller A-35 was prepared and evaluated in the same manner as in Example 33.

[実施例36]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル8を用い、添加部数を4質量部とした。また、樹脂粒子の添加部数を40質量部とした。それ以外は実施例1と同様にして帯電ローラA−36を作製し、評価した。
[Example 36]
The thermally expandable microcapsule 8 after classification was used as the thermally expandable microcapsule, and the added part was 4 parts by mass. Moreover, the addition part number of the resin particle was 40 mass parts. Otherwise, a charging roller A-36 was prepared and evaluated in the same manner as in Example 1.

[実施例37]
樹脂粒子としてウレタン樹脂粒子を用いた。それ以外は実施例36と同様にして帯電ローラA−37を作製し、評価した。
[Example 37]
Urethane resin particles were used as the resin particles. Otherwise, a charging roller A-37 was prepared and evaluated in the same manner as in Example 36.

[実施例38]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル15を用い、添加部数を3.5質量部とした。また、樹脂粒子としてメタクリル酸メチル樹脂粒子を用い、添加部数を20質量部とした。それ以外は実施例1と同様にして帯電ローラA−38を作製し、評価した。
[Example 38]
As the thermally expandable microcapsule, the thermally expanded microcapsule 15 after classification was used, and the number of added parts was 3.5 parts by mass. Moreover, the methyl methacrylate resin particle was used as a resin particle, and the addition part number was 20 mass parts. Otherwise, a charging roller A-38 was prepared and evaluated in the same manner as in Example 1.

[実施例39]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル15を用い、添加部数を3.5質量部とした。また、樹脂粒子としてメタクリル酸メチル樹脂粒子を用い、添加部数を20質量部とした。それ以外は実施例5と同様にして帯電ローラA−39を作製し、評価した。
[Example 39]
As the thermally expandable microcapsule, the thermally expanded microcapsule 15 after classification was used, and the number of added parts was 3.5 parts by mass. Moreover, the methyl methacrylate resin particle was used as a resin particle, and the addition part number was 20 mass parts. Otherwise, a charging roller A-39 was prepared and evaluated in the same manner as in Example 5.

[実施例40]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル12を用い、添加部数を30質量部とした。また、樹脂粒子としてメタクリル酸メチル樹脂粒子を用い、添加部数を2質量部とした。それ以外は実施例1と同様にして帯電ローラA−40を作製し、評価した。
[Example 40]
The thermally expandable microcapsule 12 after classification was used as the thermally expandable microcapsule, and the number of added parts was 30 parts by mass. Moreover, the methyl methacrylate resin particle was used as a resin particle, and the addition part number was 2 mass parts. Otherwise, the charging roller A-40 was prepared and evaluated in the same manner as in Example 1.

[実施例41]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル16を用いた。それ以外は実施例40と同様にして帯電ローラA−41を作製し、評価した。
[Example 41]
As the thermally expandable microcapsule, the thermally expanded microcapsule 16 after classification was used. Otherwise, a charging roller A-41 was prepared and evaluated in the same manner as in Example 40.

[実施例42]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル17を用いた。それ以外は実施例40と同様にして帯電ローラA−42を作製し、評価した。
[Example 42]
As the thermally expandable microcapsule, the thermally expanded microcapsule 17 after classification was used. Otherwise, a charging roller A-42 was prepared and evaluated in the same manner as in Example 40.

[実施例43]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル7を用い、添加部数を3.5質量部とした。また、樹脂粒子の添加部数を25質量部とした。それ以外は実施例1と同様にして帯電ローラA−43を作製し、評価した。
[Example 43]
The thermally expandable microcapsule 7 after classification was used as the thermally expandable microcapsule, and the number of added parts was 3.5 parts by mass. Moreover, the addition part number of the resin particle was 25 mass parts. Otherwise, a charging roller A-43 was prepared and evaluated in the same manner as in Example 1.

[実施例44]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル7を用い、添加部数を3.5質量部とした。また、樹脂粒子としてシリコーン樹脂粒子を用い、添加部数を25質量部とした。それ以外は実施例11と同様にして帯電ローラA−44を作製し、評価した。
[Example 44]
The thermally expandable microcapsule 7 after classification was used as the thermally expandable microcapsule, and the number of added parts was 3.5 parts by mass. Moreover, the silicone resin particle was used as the resin particle, and the addition part was 25 mass parts. Otherwise, a charging roller A-44 was prepared and evaluated in the same manner as in Example 11.

[実施例45]
中空粒子の添加部数を3質量部とし、樹脂粒子の添加部数を30質量部とした。それ以外は実施例1と同様にして帯電ローラA−45を作製し、評価した。
[Example 45]
The added part of the hollow particles was 3 parts by mass, and the added part of the resin particles was 30 parts by mass. Otherwise, a charging roller A-45 was prepared and evaluated in the same manner as in Example 1.

[実施例46]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル6を用いた。それ以外は実施例45と同様にして帯電ローラA−46を作製し、評価した。
[Example 46]
As the thermally expandable microcapsule, the thermally expanded microcapsule 6 after classification was used. Otherwise, a charging roller A-46 was prepared and evaluated in the same manner as in Example 45.

[実施例47]
樹脂粒子としてウレタン樹脂粒子を用いた。それ以外は実施例45と同様にして帯電ローラA−47を作製し、評価した。
[Example 47]
Urethane resin particles were used as the resin particles. Otherwise, a charging roller A-47 was prepared and evaluated in the same manner as in Example 45.

[実施例48]
中空粒子の添加部数を3.25質量部とし、樹脂粒子の添加部数を45質量部とした。それ以外は実施例1と同様にして帯電ローラA−48を作製し、評価した。
[Example 48]
The added part of the hollow particles was 3.25 parts by mass, and the added part of the resin particles was 45 parts by mass. Otherwise, a charging roller A-48 was prepared and evaluated in the same manner as in Example 1.

[実施例49]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル1を用い、添加部数を3.25質量部とした。また、樹脂粒子の添加部数を45質量部とした。それ以外は実施例5と同様にして帯電ローラA−49を作製し、評価した。
[Example 49]
The thermally expandable microcapsule 1 after classification was used as the thermally expandable microcapsule, and the number of parts added was 3.25 parts by mass. Moreover, the addition part number of the resin particle was 45 mass parts. Otherwise, a charging roller A-49 was prepared and evaluated in the same manner as in Example 5.

[実施例50]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル12を用い、添加部数を3.25質量部とした。また、樹脂粒子の添加部数を20質量部とした。それ以外は実施例1と同様にして帯電ローラA−50を作製し、評価した。
[Example 50]
The thermally expandable microcapsule 12 after classification was used as the thermally expandable microcapsule, and the number of parts added was 3.25 parts by mass. Moreover, the addition part number of the resin particle was 20 mass parts. Otherwise, a charging roller A-50 was prepared and evaluated in the same manner as in Example 1.

[実施例51]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル17を用いた。それ以外は実施例50と同様にして帯電ローラA−51を作製し、評価した。
[Example 51]
As the thermally expandable microcapsule, the thermally expanded microcapsule 17 after classification was used. Otherwise, a charging roller A-51 was prepared and evaluated in the same manner as in Example 50.

[実施例52]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル7を用い、添加部数を6質量部とした。また、樹脂粒子の添加部数を50質量部とした。それ以外は実施例1と同様にして帯電ローラA−52を作製し、評価した。
[Example 52]
The thermally expandable microcapsule 7 after classification was used as the thermally expandable microcapsule, and the number of added parts was 6 parts by mass. Moreover, the addition part number of the resin particle was 50 mass parts. Otherwise, a charging roller A-52 was prepared and evaluated in the same manner as in Example 1.

[実施例53]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル7を用い、添加部数を6質量部とした。また、樹脂粒子の添加部数を50質量部とした。それ以外は実施例1と同様にして帯電ローラA−53を作製し、評価した。
[Example 53]
The thermally expandable microcapsule 7 after classification was used as the thermally expandable microcapsule, and the number of added parts was 6 parts by mass. Moreover, the addition part number of the resin particle was 50 mass parts. Otherwise, a charging roller A-53 was prepared and evaluated in the same manner as in Example 1.

[実施例54]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル1を用いた。それ以外は実施例52と同様にして帯電ローラA−54を作製し、評価した。
[Example 54]
As the thermally expandable microcapsule, the thermally expanded microcapsule 1 after classification was used. Otherwise, a charging roller A-54 was prepared and evaluated in the same manner as in Example 52.

[実施例55]
中空粒子の添加部数を13質量部とした。また、樹脂粒子としてメタクリル酸メチル樹脂粒子を用い、添加部数を2質量部とした。それ以外は実施例1と同様にして帯電ローラA−55を作製し、評価した。
[Example 55]
The number of added parts of the hollow particles was 13 parts by mass. Moreover, the methyl methacrylate resin particle was used as a resin particle, and the addition part number was 2 mass parts. Otherwise, a charging roller A-55 was produced and evaluated in the same manner as in Example 1.

[実施例56]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル1を用い、添加部数を13質量部とした。また、樹脂粒子としてメタクリル酸メチル樹脂粒子を用い、添加部数を2質量部とした。それ以外は実施例5と同様にして帯電ローラA−56を作製し、評価した。
[Example 56]
As the thermally expandable microcapsule, the thermally expanded microcapsule 1 after classification was used, and the number of added parts was 13 parts by mass. Moreover, the methyl methacrylate resin particle was used as a resin particle, and the addition part number was 2 mass parts. Otherwise, a charging roller A-56 was prepared and evaluated in the same manner as in Example 5.

[実施例57]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル12を用い、添加部数を30質量部とした。また、樹脂粒子の添加部数を2質量部とした。それ以外は実施例1と同様にして帯電ローラA−57を作製し、評価した。
[Example 57]
The thermally expandable microcapsule 12 after classification was used as the thermally expandable microcapsule, and the number of added parts was 30 parts by mass. Moreover, the addition part of the resin particle was 2 mass parts. Otherwise, a charging roller A-57 was prepared and evaluated in the same manner as in Example 1.

[実施例58]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル18を用いた。それ以外は実施例57と同様にして帯電ローラA−58を作製し、評価した。
[Example 58]
As the thermally expandable microcapsule, the thermally expanded microcapsule 18 after classification was used. Otherwise, a charging roller A-58 was prepared and evaluated in the same manner as in Example 57.

[実施例59]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル7を用い、添加部数を30質量部とした。また、樹脂粒子の添加部数を1質量部とした。それ以外は実施例1と同様にして帯電ローラA−59を作製し、評価した。
[Example 59]
As the thermally expandable microcapsule, the thermally expanded microcapsule 7 after classification was used, and the number of added parts was 30 parts by mass. Moreover, the addition part number of the resin particle was 1 mass part. Otherwise, a charging roller A-59 was prepared and evaluated in the same manner as in Example 1.

[実施例60]
樹脂粒子としてスチレン樹脂粒子を用いた。それ以外は実施例59と同様にして帯電ローラA−60を作製し、評価した。
[Example 60]
Styrene resin particles were used as the resin particles. Otherwise, a charging roller A-60 was prepared and evaluated in the same manner as in Example 59.

[実施例61]
中空粒子の添加部数を30質量部とし、樹脂粒子の添加部数を8質量部とした。それ以外は実施例1と同様にして帯電ローラA−61を作製し、評価した。
[Example 61]
The added part of the hollow particles was 30 parts by mass, and the added part of the resin particles was 8 parts by mass. Otherwise, a charging roller A-61 was prepared and evaluated in the same manner as in Example 1.

[実施例62]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル5を用いた。それ以外は実施例61と同様にして帯電ローラA−62を作製し、評価した。
[Example 62]
As the thermally expandable microcapsule, the thermally expanded microcapsule 5 after classification was used. Otherwise, the charging roller A-62 was prepared and evaluated in the same manner as in Example 61.

[実施例63]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル19を用いた。それ以外は実施例61と同様にして帯電ローラA−63を作製し、評価した。
[Example 63]
As the thermally expandable microcapsule, the thermally expanded microcapsule 19 after classification was used. Otherwise, a charging roller A-63 was produced in the same manner as in Example 61 and evaluated.

[実施例64]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル10を用い、添加部数を3.5質量部とした。また、樹脂粒子としてメタクリル酸メチル樹脂粒子を用い、添加部数を5質量部とした。それ以外は実施例1と同様にして帯電ローラA−64を作製し、評価した。
[Example 64]
The thermally expandable microcapsule 10 after classification was used as the thermally expandable microcapsule, and the number of added parts was 3.5 parts by mass. Moreover, the methyl methacrylate resin particle was used as a resin particle, and the addition part number was 5 mass parts. Otherwise, the charging roller A-64 was prepared and evaluated in the same manner as in Example 1.

[実施例65]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル10を用い、添加部数を3.5質量部とした。また、樹脂粒子としてメタクリル酸メチル樹脂粒子を用い、添加部数を5質量部とした。それ以外は実施例1と同様にして帯電ローラA−65を作製し、評価した。
[Example 65]
The thermally expandable microcapsule 10 after classification was used as the thermally expandable microcapsule, and the number of added parts was 3.5 parts by mass. Moreover, the methyl methacrylate resin particle was used as a resin particle, and the addition part number was 5 mass parts. Otherwise, the charging roller A-65 was prepared and evaluated in the same manner as in Example 1.

[比較例1]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル20を用い、添加部数を1質量部とした。また、樹脂粒子の添加部数を20質量部とした。それ以外は実施例1と同様にして帯電ローラB−1を作製し、評価した。
[Comparative Example 1]
The thermally expandable microcapsule 20 after classification was used as the thermally expandable microcapsule, and the number of added parts was 1 part by mass. Moreover, the addition part number of the resin particle was 20 mass parts. Otherwise, the charging roller B-1 was prepared and evaluated in the same manner as in Example 1.

[比較例2]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル8を用い、添加部数を0.3質量部とした。また、樹脂粒子の添加部数を30質量部とした。それ以外は実施例1と同様にして帯電ローラB−2を作製し、評価した。
[Comparative Example 2]
The thermally expandable microcapsule 8 after classification was used as the thermally expandable microcapsule, and the number of added parts was 0.3 parts by mass. Moreover, the addition part number of the resin particle was 30 mass parts. Otherwise, the charging roller B-2 was prepared and evaluated in the same manner as in Example 1.

[比較例3]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル9を用い、添加部数を3質量部とした。また、樹脂粒子の添加部数を50質量部とした。それ以外は実施例1と同様にして帯電ローラB−3を作製し、評価した。
[Comparative Example 3]
The thermally expandable microcapsule 9 after classification was used as the thermally expandable microcapsule, and the added part was 3 parts by mass. Moreover, the addition part number of the resin particle was 50 mass parts. Otherwise, the charging roller B-3 was prepared and evaluated in the same manner as in Example 1.

[比較例4]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル20を用い、添加部数を0.05質量部とした。また、樹脂粒子の添加部数を80質量部とした。それ以外は実施例1と同様にして帯電ローラB−4を作製し、評価した。
[Comparative Example 4]
The thermally expandable microcapsule 20 after classification was used as the thermally expandable microcapsule, and the number of added parts was 0.05 parts by mass. Moreover, the addition part number of the resin particle was 80 mass parts. Otherwise, the charging roller B-4 was prepared and evaluated in the same manner as in Example 1.

[比較例5]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル20を用い、添加部数を0.1質量部とした。また、樹脂粒子の添加部数を90質量部とした。それ以外は実施例1と同様にして帯電ローラB−5を作製し、評価した。
[Comparative Example 5]
The thermally expandable microcapsule 20 after classification was used as the thermally expandable microcapsule, and the number of added parts was 0.1 parts by mass. Moreover, the addition part number of the resin particle was 90 mass parts. Otherwise, a charging roller B-5 was prepared and evaluated in the same manner as in Example 1.

[比較例6]
熱膨張性マイクロカプセルとして、分級後の熱膨張性マイクロカプセル20を用い、添加部数を0.2質量部とした。また、樹脂粒子の添加部数を100質量部とした。それ以外は実施例1と同様にして帯電ローラB−6を作製し、評価した。
[Comparative Example 6]
As the thermally expandable microcapsule, the thermally expanded microcapsule 20 after classification was used, and the number of added parts was 0.2 parts by mass. Moreover, the addition part number of the resin particle was 100 mass parts. Otherwise, the charging roller B-6 was prepared and evaluated in the same manner as in Example 1.

[比較例7]
熱膨張性マイクロカプセルを添加しなかった。また、樹脂粒子としてメタクリル酸メチル樹脂粒子を用い、添加部数を10質量部とした。それ以外は実施例1と同様にして帯電ローラB−7を作製し、評価した。
[Comparative Example 7]
No thermally expandable microcapsules were added. Moreover, the methyl methacrylate resin particle was used as a resin particle, and the addition part number was 10 mass parts. Otherwise, a charging roller B-7 was prepared and evaluated in the same manner as in Example 1.

実施例1〜65、比較例1〜7に係る帯電ローラの各種測定結果を表6及び表7に示す。また、実施例1〜65および比較例1〜7に係る帯電ローラを各種環境下において長期に亘って使用した結果として得られた電子写真画像の評価の結果を表8及び表9に示す。   Tables 6 and 7 show various measurement results of the charging rollers according to Examples 1 to 65 and Comparative Examples 1 to 7. Tables 8 and 9 show the results of evaluation of electrophotographic images obtained as a result of using the charging rollers according to Examples 1 to 65 and Comparative Examples 1 to 7 for a long time under various environments.

Figure 0005730051
Figure 0005730051

Figure 0005730051
Figure 0005730051

Figure 0005730051
Figure 0005730051

Figure 0005730051
Figure 0005730051

1 表面に凸部を形成する樹脂粒子の該凸部の頂点
2 弾性層
3 中空粒子
4 樹脂粒子
5 表面層
6 表面に凸部を形成する樹脂粒子の該凸部の頂点を積層方向に投影した点
7 樹脂粒子の投影図
8 中空粒子の投影図
DESCRIPTION OF SYMBOLS 1 The vertex of the convex part of the resin particle which forms a convex part on the surface 2 Elastic layer 3 Hollow particle 4 Resin particle 5 Surface layer 6 The vertex of the convex part of the resin particle which forms a convex part on the surface was projected in the lamination direction Point 7 Projection of resin particles 8 Projection of hollow particles

Claims (6)

導電性基体、弾性層、及び表面層をこの順に有する帯電部材であって、
該表面層は、
バインダー樹脂と、
該バインダー樹脂に分散され、該表面層の表面に凸部を生じさせてなる中実の樹脂粒子とを含み、
該弾性層は
バインダーとしてのゴムと、
該ゴムに分散されている中空粒子とを含み、該中空粒子は熱可塑性樹脂を含むシェルを有し、かつ、気体を内包しており、
該弾性層及び該表面層の積層方向への該樹脂粒子の投影円の直径は、該積層方向への該中空粒子の投影円の直径よりも小さく、
該樹脂粒子の該積層方向への投影円の直径の3倍の直径を有し、かつ、該凸部の頂点を該積層方向に投影した点を中心とする円を該積層方向に投影したときに、該円の領域に含まれる該中空粒子の投影円の面積の総和が該円の面積の80%以上であることを特徴とする帯電部材。
A charging member having a conductive substrate, an elastic layer, and a surface layer in this order,
The surface layer is
A binder resin,
Solid resin particles dispersed in the binder resin and formed with convex portions on the surface of the surface layer,
The elastic layer,
Rubber as a binder,
Hollow particles dispersed in the rubber, the hollow particles have a shell containing a thermoplastic resin, and contain a gas,
The diameter of the projected circle of the resin particles in the laminating direction of the elastic layer and the surface layer is smaller than the diameter of the projected circle of the hollow particles in the laminating direction,
When a circle having a diameter that is three times the diameter of the projected circle of the resin particles in the laminating direction and centering on a point obtained by projecting the apex of the convex portion in the laminating direction is projected in the laminating direction And the total area of the projected circles of the hollow particles contained in the region of the circle is 80% or more of the area of the circle.
該中空粒子の投影円の直径が10μm以上、1200μm以下である請求項1に記載の帯電部材。The charging member according to claim 1, wherein a diameter of a projected circle of the hollow particles is 10 μm or more and 1200 μm or less. 該樹脂粒子の投影円の直径が5μm以上、120μm以下である請求項1または2に記載の帯電部材。The charging member according to claim 1 or 2, wherein a diameter of a projected circle of the resin particles is 5 µm or more and 120 µm or less. 該中空粒子の投影円の直径に対する該樹脂粒子の投影円の直径の比が、0.15以上1未満である請求項1乃至3のいずれか一項に記載の帯電部材。The charging member according to any one of claims 1 to 3, wherein a ratio of a diameter of the projected circle of the resin particles to a diameter of the projected circle of the hollow particles is 0.15 or more and less than 1. 請求項1乃至4のいずれか一項に記載の帯電部材と電子写真感光体とを備え、電子写真装置の本体に着脱可能に構成されていることを特徴とするプロセスカートリッジ。 A process cartridge comprising the charging member according to any one of claims 1 to 4 and an electrophotographic photosensitive member , wherein the process cartridge is configured to be detachable from a main body of the electrophotographic apparatus . 請求項1乃至4のいずれか一項に記載の帯電部材と電子写真感光体とを備えることを特徴とする電子写真装置。 Electrophotographic apparatus characterized in that it comprises a charging member and an electrophotographic photosensitive member according to any one of claims 1 to 4.
JP2011027345A 2011-02-10 2011-02-10 Charging member Active JP5730051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011027345A JP5730051B2 (en) 2011-02-10 2011-02-10 Charging member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011027345A JP5730051B2 (en) 2011-02-10 2011-02-10 Charging member

Publications (2)

Publication Number Publication Date
JP2012168259A JP2012168259A (en) 2012-09-06
JP5730051B2 true JP5730051B2 (en) 2015-06-03

Family

ID=46972500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011027345A Active JP5730051B2 (en) 2011-02-10 2011-02-10 Charging member

Country Status (1)

Country Link
JP (1) JP5730051B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5936595B2 (en) * 2012-12-12 2016-06-22 キヤノン株式会社 Charging member, process cartridge, and electrophotographic apparatus
JP5570670B1 (en) * 2013-01-29 2014-08-13 キヤノン株式会社 Charging member, process cartridge, and electrophotographic apparatus
JP5777665B2 (en) * 2013-01-29 2015-09-09 キヤノン株式会社 Charging member, process cartridge, and electrophotographic apparatus
JP6053538B2 (en) * 2013-01-29 2016-12-27 キヤノン株式会社 Process cartridge and electrophotographic apparatus
US9256153B2 (en) * 2014-04-18 2016-02-09 Canon Kabushiki Kaisha Charging member, process cartridge and electrophotographic apparatus
US9904199B2 (en) * 2015-10-26 2018-02-27 Canon Kabushiki Kaisha Charging member having outer surface with concave portions bearing exposed elastic particles, and electrophotographic apparatus
JP2018084653A (en) * 2016-11-22 2018-05-31 エスプリンティンソリューション株式会社 Charging member
US11656558B2 (en) 2019-08-26 2023-05-23 Nok Corporation Charging roll
JP7337176B2 (en) * 2019-08-26 2023-09-01 Nok株式会社 charging roll

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283149A (en) * 1999-03-30 2000-10-13 Tokai Rubber Ind Ltd Manufacturing method of electrically conductive roll and electrically conductive roll provided thereby
JP2006091312A (en) * 2004-09-22 2006-04-06 Bridgestone Corp Method for manufacturing conductive roller and conductive roller manufactured by the method
JP4721940B2 (en) * 2006-03-29 2011-07-13 東海ゴム工業株式会社 Charging roll

Also Published As

Publication number Publication date
JP2012168259A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
JP5730051B2 (en) Charging member
JP6180272B2 (en) Charging member, method for manufacturing the same, process cartridge, and electrophotographic apparatus
EP3051358B1 (en) Electrophotographic conductive member, process cartridge, and electrophotographic device
JP6415222B2 (en) Conductive member for electrophotography, process cartridge, and electrophotographic apparatus
US9958802B2 (en) Electroconductive member for electrophotography, process cartridge, and electrophotographic apparatus
JP6198548B2 (en) Electrophotographic conductive member, process cartridge, and electrophotographic apparatus
JP5936595B2 (en) Charging member, process cartridge, and electrophotographic apparatus
WO2010050615A1 (en) Charging member, process cartridge, and electrophotographic apparatus
JP5451514B2 (en) Charging member, process cartridge, and electrophotographic apparatus
JP4732920B2 (en) Charging roll
WO2011135808A1 (en) Charging member, process cartridge, and electrophotographic device
EP2787394B1 (en) Roller member for electrophotography, process cartridge and electrophotographic apparatus
JP5915491B2 (en) Cleaning member, charging device, assembly, and image forming apparatus
JP6136862B2 (en) Charging member, charging device, process cartridge, and image forming apparatus
JP6303573B2 (en) Charging device, process cartridge, and image forming apparatus
JP5679799B2 (en) Charging roller and electrophotographic apparatus
JP5793044B2 (en) Charging roller and charging device
JP6727887B2 (en) Electrophotographic roller, process cartridge, and electrophotographic image forming apparatus
JP5641903B2 (en) Charging member, process cartridge, and electrophotographic apparatus
JP2012103337A (en) Charging member, process cartridge and electrophotographic device
JP2012230306A (en) Electrifying member
JP2006162856A (en) Charging member and electrophotographic apparatus
JP2005181429A (en) Developing roller
JP2005173329A (en) Developing roller and developing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140210

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150407

R151 Written notification of patent or utility model registration

Ref document number: 5730051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151