JP5729875B2 - Dipping tube for vacuum degassing of molten steel - Google Patents

Dipping tube for vacuum degassing of molten steel Download PDF

Info

Publication number
JP5729875B2
JP5729875B2 JP2011217671A JP2011217671A JP5729875B2 JP 5729875 B2 JP5729875 B2 JP 5729875B2 JP 2011217671 A JP2011217671 A JP 2011217671A JP 2011217671 A JP2011217671 A JP 2011217671A JP 5729875 B2 JP5729875 B2 JP 5729875B2
Authority
JP
Japan
Prior art keywords
pipe
reflux gas
gas
reflux
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011217671A
Other languages
Japanese (ja)
Other versions
JP2013076141A (en
Inventor
藤井 哲郎
哲郎 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2011217671A priority Critical patent/JP5729875B2/en
Publication of JP2013076141A publication Critical patent/JP2013076141A/en
Application granted granted Critical
Publication of JP5729875B2 publication Critical patent/JP5729875B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は高清浄度鋼を製造する際に使用する真空脱ガス炉の浸漬管であり、溶鋼循環のための循環ガス配管を設けた浸漬管に関する。   The present invention relates to a dip tube of a vacuum degassing furnace used when manufacturing high cleanliness steel, and relates to a dip tube provided with a circulation gas pipe for circulating molten steel.

転炉等により脱炭素されたのちの溶鋼から高清浄度鋼を製造するに際しては、真空脱ガス炉において、その真空炉部分に通じる上昇管と下降管からなる浸漬管を溶鋼中へ浸漬し、上昇管内に設けた配管から不活性ガスを吹き込み、溶鋼を循環させて脱ガスを行う。   When manufacturing high cleanliness steel from molten steel after decarbonized by a converter, etc., in a vacuum degassing furnace, immersing a dip pipe consisting of a riser pipe and a downcomer pipe leading to the vacuum furnace part into the molten steel, Degassing is performed by blowing an inert gas from a pipe provided in the riser and circulating the molten steel.

真空脱ガス炉の浸漬管は、耐熱性金属よりなる筒状の芯金と芯金の内側及び外側に耐火材を配し、さらに、溶鋼が流れる内筒部を備えた基本構造を有する。   The dip tube of the vacuum degassing furnace has a basic structure including a cylindrical cored bar made of a heat-resistant metal, a refractory material inside and outside the cored bar, and an inner cylindrical part through which molten steel flows.

図7は真空脱ガス炉に取り付けられた従来の浸漬管の垂直断面を示し、図8は、図7のA−A線から見た水平断面を示し、図9は浸漬管の環流ガスを吹き込む環流ガス配管5を平面状に展開した図である。   7 shows a vertical cross section of a conventional dip tube attached to a vacuum degassing furnace, FIG. 8 shows a horizontal cross section seen from the line AA in FIG. 7, and FIG. 9 blows a reflux gas in the dip tube. It is the figure which developed the reflux gas piping 5 planarly.

図7と図8において、浸漬管の中心位置に配置した円筒状の芯金1の内外周には、耐火れんが2が不定形材3を介して金物によって固定、支持されている。   7 and 8, a refractory brick 2 is fixed and supported by a hardware through an indefinite shape material 3 on the inner and outer circumferences of a cylindrical cored bar 1 arranged at the center position of the dip tube.

環流ガス配管5は、浸漬管の内側へ芯金1に沿って略均一に耐火れんが2内に形成された複数の孔に挿入された複数本の耐熱鋼製のパイプが配置され、それぞれのパイプ先端からアルゴンガスなどの環流ガスを溶鋼内に吐出する。   The reflux gas pipe 5 has a plurality of heat-resistant steel pipes inserted into a plurality of holes formed in the refractory brick 2 substantially uniformly along the core 1 inside the dip pipe, and each pipe is arranged. A reflux gas such as argon gas is discharged from the tip into the molten steel.

そして、複数本の環流ガス配管5は、浸漬管を真空脱ガス炉へセットする際の作業性から、その基部を1個所に集めた集合管6を形成して、それぞれの環流ガス配管5への外部からの環流ガスの取り込み口を集合した構造となっている。   The plurality of reflux gas pipes 5 form collecting pipes 6 whose bases are collected in one place from the workability when the dip pipe is set in the vacuum degassing furnace, and are connected to the respective reflux gas pipes 5. It has a structure in which intakes of reflux gas from outside are assembled.

このような環流ガス配管構造を有する真空脱ガス炉において、効率良く溶融鋼の脱ガスを行うためには、環流ガスによって溶融鋼の均一な流れを形成することが必要であり、そのためには複数本設けられた環流ガス配管からのガスは、それぞれの吐出孔から均一に吐出させる必要性がある。     In a vacuum degassing furnace having such a circulating gas piping structure, in order to efficiently degas molten steel, it is necessary to form a uniform flow of molten steel with the circulating gas. It is necessary to uniformly discharge the gas from the circulating gas piping provided in the respective discharge holes.

ところが、この必要性からいうと、従来の浸漬管には種々の問題がある。   However, in view of this necessity, the conventional dip tube has various problems.

その第1は、図9に示す集合管構造では、環流ガス配管5の配置からいうと、環流ガス取り入れ位置に対して吐出孔5aの向きが0°から180°位置にまで変わることになり、それぞれの環流ガス配管5の長さが異なることになるため、環流ガス配管毎の圧力損失に差が生じ、吐出孔5aの位置によって環流ガスの吐出量が異なる現象が生じることである。     First, in the collecting pipe structure shown in FIG. 9, in terms of the arrangement of the reflux gas pipe 5, the direction of the discharge hole 5 a changes from 0 ° to 180 ° with respect to the reflux gas intake position. Since the lengths of the respective reflux gas pipes 5 are different, there is a difference in the pressure loss for each of the reflux gas pipes, and a phenomenon in which the discharge amount of the reflux gas varies depending on the position of the discharge hole 5a.

一方、処理中の浸漬管の温度は内外周ともに溶融鋼と接しているため、1600℃以上の温度に晒される。環流ガス配管は浸漬管内へ埋設した構造をとることから、環流ガスは配管内を流れるにつれて温度が上昇する。とくに、図9に示す環流ガス配管構造では、配管毎に配管長が異なるため溶鋼処理中の受ける熱量が場所により異なる。また、配管周囲の雰囲気温度差も大きくなることもあって、その温度差に伴って、配管内から吐出される循環ガスの粘性に差が生じ、そのため、吐出孔位置によって環流ガスの吐出量が異なる現象が発生する。     On the other hand, the temperature of the dip tube during the treatment is exposed to a temperature of 1600 ° C. or higher because the inner and outer circumferences are in contact with the molten steel. Since the reflux gas pipe has a structure embedded in the dip pipe, the temperature of the reflux gas rises as it flows through the pipe. In particular, in the circulating gas piping structure shown in FIG. 9, since the piping length differs for each piping, the amount of heat received during the molten steel processing varies depending on the location. In addition, the ambient temperature difference around the pipe may increase, and with this temperature difference, a difference occurs in the viscosity of the circulating gas discharged from the pipe. A different phenomenon occurs.

これらの現象により集合管を構成する環流ガス配管毎に環流ガスの吐出量が異なり、これによって環流する溶鋼流が乱れて偏流を生じ、耐火物の不均一な損傷が発生する原因になっている。   Due to these phenomena, the circulating gas discharge amount differs for each circulating gas pipe constituting the collecting pipe, and this causes the molten steel flow to be turbulent, resulting in uneven flow, which causes uneven damage to the refractory. .

この問題に対して、種々の対策が提案されている。例えば、特許文献1には、環流ガス配管を2重管構造とし、内筒側に炭化水素ガスを、外筒側に断熱ガスとなるArガスを吹き込むようにし、Arとプロパンの混合比を調整することにより、環流ガスは1〜4倍の間で連続的にガス吹き込み羽口からの吹き込みガス量を制御し、脱ガス効率を上げることが提案されている。しかしながら、精錬される鋼種によっては鋼中水素や炭素の上昇が懸念される。また、配管長が異なる場合、配管位置によって溶鋼処理中に受ける熱量が異なることは変わらず、配管長が長い部分においては、環流ガスの温度が上昇し、ガスの粘性が向上してしまうことが懸念される。     Various countermeasures have been proposed for this problem. For example, in Patent Document 1, the reflux gas pipe has a double-pipe structure, hydrocarbon gas is blown into the inner cylinder side, and Ar gas serving as heat insulation gas is blown into the outer cylinder side, and the mixing ratio of Ar and propane is adjusted. By doing so, it has been proposed that the reflux gas continuously controls the amount of gas blown from the tuyere between 1 to 4 times to increase the degassing efficiency. However, depending on the type of steel to be refined, there is a concern that hydrogen and carbon in steel will rise. In addition, when the pipe length is different, the amount of heat received during the molten steel process does not change depending on the pipe position, and in the portion where the pipe length is long, the temperature of the reflux gas rises and the gas viscosity may be improved. Concerned.

また、特許文献2,3,4には、鉄皮周囲へ断熱モルタル等の断熱体の施工について記載されているが、あくまでも芯金温度上昇に伴う変形防止を目的としたものであるため、吹込み不活性ガスの流量均一化の効果は期待できない。   In addition, Patent Documents 2, 3 and 4 describe the construction of a heat insulator such as a heat insulating mortar around the iron skin. The effect of equalizing the flow rate of the mixed inert gas cannot be expected.

特開2000−45013号公報JP 2000-45013 A 特開平7−224319号公報JP 7-224319 A 特開2001−33174号公報JP 2001-33174 A 特開2010−168600号公報JP 2010-168600 A

ここで、本発明は、真空脱ガス装置の浸漬管内の均一な溶融鋼の流れを形成させるため、真空脱ガス装置の浸漬管の環流ガス配管構造において、それぞれの環流ガス配管からの環流ガスの吐出量を均一とし、環流する溶鋼流の乱れによる耐火物の不均一な損傷の発生を防止することができる真空脱ガス装置の浸漬管を提供するものである。   Here, in the present invention, in order to form a uniform molten steel flow in the dip pipe of the vacuum degassing apparatus, in the circulatory gas piping structure of the dip pipe of the vacuum degassing apparatus, the circulating gas from each of the circulated gas pipes It is an object of the present invention to provide a dip tube for a vacuum degassing apparatus capable of making the discharge amount uniform and preventing the occurrence of non-uniform damage to the refractory due to the turbulence of the flowing molten steel flow.

本発明は、環流ガス配管から吐出される環流ガス流は、環流ガス配管の管長に伴う圧力損失差と、金属溶湯からの熱による吐出ガス流の粘性の変化に影響されるという点に着目して完成した。   The present invention pays attention to the fact that the recirculation gas flow discharged from the recirculation gas piping is affected by the pressure loss difference accompanying the length of the recirculation gas piping and the change in the viscosity of the discharge gas flow due to the heat from the molten metal. And completed.

すなわち、本発明の特徴は、真空脱ガス炉の浸漬管内の環流ガス配管の配管長さが異なることによる圧力損失によるガス流量差を抑え、更に環流ガス配管の吐出孔における断熱機能を強化し、これによって、環流ガス配管内の環流ガスの温度上昇を防ぐことで環流ガスの粘性が上がることを抑制することにより、それぞれの環流ガス配管のガス流量バランスをとった点にある。   That is, the feature of the present invention is to suppress the gas flow rate difference due to the pressure loss due to the difference in the pipe length of the reflux gas pipe in the dip pipe of the vacuum degassing furnace, and to further enhance the heat insulation function in the discharge hole of the reflux gas pipe, Thus, by preventing an increase in the temperature of the reflux gas by preventing the temperature of the reflux gas in the reflux gas pipe from increasing, the gas flow rate balance of each of the reflux gas pipes is achieved.

環流ガスの圧力損失に伴う環流ガス流量差抑制手段の第1の手段は、環流ガス吐出孔位置によって環流ガスを吹き込む配管長さが異なる構造の浸漬管において、配管長が短い環流ガス配管の断熱性よりも、配管長が長い環流ガス配管の断熱性を増大させたことである。   The first means of the recirculation gas flow rate difference suppressing means accompanying the pressure loss of the recirculation gas is a heat insulation of the recirculation gas pipe having a short pipe length in a dip pipe having a structure in which the recirculation gas is blown into a different length depending on the position of the recirculation gas discharge hole. This is that the heat insulation of the reflux gas pipe having a long pipe length is increased rather than the performance.

具体的には、本発明の浸漬管には、環流ガスの吐出孔位置が異なることによって、環流ガス配管の長さがそれぞれ異なる構造の浸漬管において、集合管から遠い位置に配置する環流ガス配管及び吐出孔周辺の断熱を強化する。浸漬管によっては、芯金の熱膨張と変形の抑制を目的として芯金と耐火材の間に内筒側、外筒側のいずれの箇所にも断熱材を施工する場合がある。この場合においても、集合管から遠い位置に配置する環流ガス配管及び環流ガス吐出孔周辺の断熱を強化する。そのために集合管から遠い位置に配置された環流ガス配管と環流ガス吐出孔周辺の断熱には、熱伝導率が更に低い部材を用いることが望ましい。   Specifically, in the dip pipe of the present invention, in the dip pipe having a structure in which the length of the reflux gas pipe is different due to the position of the discharge hole of the reflux gas, the reflux gas pipe arranged at a position far from the collecting pipe. And heat insulation around the discharge hole. Depending on the dip tube, there is a case where a heat insulating material is applied to either the inner cylinder side or the outer cylinder side between the core metal and the refractory material for the purpose of suppressing thermal expansion and deformation of the core metal. Even in this case, the heat insulation around the circulating gas pipe and the circulating gas discharge hole arranged at a position far from the collecting pipe is strengthened. Therefore, it is desirable to use a member having a lower thermal conductivity for heat insulation around the circulating gas pipe and the circulating gas discharge hole arranged at a position far from the collecting pipe.

集合管から遠い位置に配置する環流ガス配管及び環流ガス吐出孔周辺の断熱の強化を行う方法としては、環流ガス配管へ直接断熱材を塗布したり、断熱テープを巻いたりすることも可能である。また、断熱材としてシリカ、アルミナなどの中空粒子を使用した断熱キャスタブルやモルタル、断熱ウール、断熱シートを使用してもよい。   As a method of strengthening the heat insulation around the reflux gas pipe and the reflux gas discharge hole arranged at a position far from the collecting pipe, it is also possible to apply a heat insulating material directly to the reflux gas pipe or wrap a heat insulation tape. . Moreover, you may use the heat insulation castable, mortar, heat insulation wool, and heat insulation sheet which use hollow particles, such as a silica and an alumina, as a heat insulating material.

環流ガス流量差抑制手段の第2の手段は、環流ガス吐出孔位置によって環流ガスを吹き込む配管長さが異なる構造の浸漬管において、配管長が短い環流ガス配管の内断面積よりも、配管長が長い環流ガス配管の内断面積を大きくする。   The second means of the circulating gas flow rate difference suppressing means is a pipe length longer than the inner cross-sectional area of the reflux gas pipe having a short pipe length in a dip pipe having a structure in which the pipe length for blowing the reflux gas differs depending on the position of the reflux gas discharge hole. Increase the inner cross-sectional area of the long reflux gas pipe.

具体的には、配管長が長い環流ガス配管には内径断面積が大きな配管を使用し、配管長が短い環流ガスの配管には内径断面積がそれよりも小さい配管を使用することにより、配管長が長いためによる圧力損失を低減し、配管長が短い配管との環流ガス流量差を抑えて環流ガス流を均一にする。   Specifically, pipes with a large inner diameter cross-section are used for reflux gas pipes with a long pipe length, and pipes with a smaller inner diameter cross-section are used for pipes with a short pipe length and with a smaller inner diameter cross-section. The pressure loss due to the long length is reduced, and the difference in the flow rate of the recirculation gas from that of the short pipe length is suppressed to make the recirculation gas flow uniform.

環流ガス流量差抑制手段の第3の手段は、浸漬管の内筒側吐出孔部位置から浸漬管の外筒側に存在する溶融金属の湯面位置までの距離が、最短になるように環流ガス配管を配置した。これにより、浸漬管内の外筒側に存在する溶融金属から環流ガス配管への受熱は最低限となることで、環流ガスの年度上昇を抑え配管長が短い配管との環流ガス流量差を抑えて環流ガス流を均一にする。 The third means of the recirculation gas flow rate difference suppression means is to recirculate so that the distance from the inner cylinder side discharge hole position of the dip tube to the molten metal surface position of the molten metal existing on the outer tube side of the dip tube is minimized. Gas piping was arranged. This minimizes the heat reception from the molten metal present on the outer cylinder side in the dip tube to the reflux gas piping, thereby suppressing the annual increase of the reflux gas and reducing the difference in the reflux gas flow rate with the piping having a short piping length. Make the reflux gas flow uniform.

環流ガス流量差抑制手段の第4の手段は、環流ガス配管の長さが、配管元吹込み部から吐出孔までの各配管の圧損差が10%以内となる長さであり、真空脱ガス装置の浸漬管を溶融金属へ浸漬した際の浸漬管外筒側に存在する溶融金属の湯面の高さ位置と、浸漬管内筒側吐出孔部高さ位置までの距離が最短になるように配管配置する。これにより、配管長の差による圧力損失差が少なくなり、又浸漬管内の外筒側に存在する溶融金属から環流ガス配管への受熱は最低限となることで、環流ガスの温度上昇に伴う環流ガス粘度の上昇を抑え、環流ガス流量への影響を抑える。   The fourth means of the recirculation gas flow rate difference suppressing means is that the length of the recirculation gas pipe is such that the pressure loss difference of each pipe from the pipe former blow-in part to the discharge hole is within 10%. When the immersion pipe of the device is immersed in the molten metal, the distance from the molten metal surface level on the outer cylinder side of the immersion pipe to the height position of the discharge hole inside the immersion pipe is minimized. Install piping. As a result, the difference in pressure loss due to the difference in pipe length is reduced, and the heat flow from the molten metal present on the outer cylinder side in the dip pipe to the reflux gas pipe is minimized, so that Suppresses the increase in gas viscosity and suppresses the effect on the reflux gas flow rate.

本発明は、集合管から遠い位置に配置された環流ガス配管、あるいは、吐出孔に近い部位の環流ガス配管の断熱を強化することによって集合管から遠い位置に配置された環流ガス配管内のアルゴンガス等環流ガスの温度の上昇を防ぐことで、環流ガスの粘性の上昇を防ぎ、浸漬管に配置された環流ガス配管の環流ガス流量バランスをとって均一な環流ガスの吐出量とすることを可能とした。   The present invention relates to argon gas in a recirculation gas pipe disposed at a position far from the collecting pipe by reinforcing the heat insulation of the recirculating gas pipe disposed at a position far from the collecting pipe, or at a position close to the discharge hole. By preventing the temperature of the reflux gas such as gas from rising, the viscosity of the reflux gas is prevented from increasing, and the circulation gas flow balance of the reflux gas piping arranged in the dip pipe is balanced to make the discharge amount of the reflux gas uniform. It was possible.

これによって、浸漬管の内周面に開口する複数のガス吐出孔から吐出される環流ガス流は均一化されて、偏流の形成はなくなり、その周囲に形成される耐火物の不均一の摩耗の発生をなくすことができる。   As a result, the circulating gas flow discharged from the plurality of gas discharge holes that open to the inner peripheral surface of the dip tube is made uniform, and the formation of drift is eliminated, resulting in uneven wear of the refractory formed around the periphery. Occurrence can be eliminated.

本発明の真空脱ガス炉に取り付けられた浸漬管の垂直断面図である。It is a vertical sectional view of a dip tube attached to the vacuum degassing furnace of the present invention. 図1のB−B線から見た水平断面である。It is the horizontal cross section seen from the BB line of FIG. 実施例1の浸漬管の環流ガス配管を平面状に展開した図である。It is the figure which developed the reflux gas piping of the dip tube of Example 1 in the shape of a plane. 実施例2の浸漬管の環流ガス配管を平面状に展開した図である。It is the figure which developed the reflux gas piping of the dip tube of Example 2 in the shape of a plane. 実施例3の浸漬管の環流ガス配管を平面状に展開した図である。It is the figure which expand | deployed the reflux gas piping of the dip tube of Example 3 planarly. 実施例4の浸漬管の環流ガス配管を平面状に展開した図である。It is the figure which expand | deployed the reflux gas piping of the dip tube of Example 4 planarly. 従来のRH炉の上昇管における環流ガス配管部分の縦断面を示す。The longitudinal cross-section of the reflux gas piping part in the riser pipe of the conventional RH furnace is shown. 図8のA−A線に沿った水平断面図である。It is a horizontal sectional view along the AA line of FIG. 図8の浸漬管の環流ガス配管を平面状に展開した図である。It is the figure which developed the recirculation gas piping of the dip tube of Drawing 8 in the shape of a plane. 本発明の浸漬管を想定した実験装置である。It is an experimental apparatus assuming the dip tube of the present invention. 本発明の浸漬管を想定した実験装置である。It is an experimental apparatus assuming the dip tube of the present invention.

図1に本発明の真空脱ガス炉の浸漬管の垂直断面を示し、図2に図1のB−B線から見た水平断面を示す。   FIG. 1 shows a vertical cross section of a dip tube of a vacuum degassing furnace of the present invention, and FIG. 2 shows a horizontal cross section seen from the line BB in FIG.

真空脱ガス炉の浸漬管は、図8及び図9の従来の浸漬管と同様に、浸漬管の中心位置に配置した円筒状の芯金1の内外周には、耐火れんが2が不定形材3を介して固定、支持されている。環流ガス配管5は、浸漬管の内側へ芯金1に沿って略均一に耐火れんが2内に形成された複数の孔に挿入された複数本の耐熱鋼製のパイプが配置され、それぞれの環流ガス配管5の先端の吐出口5aからアルゴンガスなどの環流ガスを溶鋼内に吐出する。   As with the conventional dip tube shown in FIGS. 8 and 9, the dip tube of the vacuum degassing furnace is provided with refractory bricks 2 on the inner and outer circumferences of the cylindrical cored bar 1 arranged at the center position of the dip tube. 3 is fixed and supported. The reflux gas pipe 5 is provided with a plurality of heat-resistant steel pipes inserted into a plurality of holes formed in the refractory brick 2 substantially uniformly along the core 1 inside the dip pipe, A circulating gas such as argon gas is discharged into the molten steel from a discharge port 5a at the tip of the gas pipe 5.

複数本の環流ガス配管5は、その基部を1個所に集めた集合管6を形成し、外部から集合管6を通してそれぞれの環流ガス配管5へ環流ガスが供給される構造となっている。   The plurality of reflux gas pipes 5 form a collecting pipe 6 whose bases are collected at one place, and the reflux gas is supplied from the outside to each of the reflux gas pipes 5 through the collecting pipe 6.

本発明の浸漬管に使用する芯金1は、耐熱性金属で構成される筒状の部材であり、通常、略円形の断面形状を有するが、楕円形や多角形状等に形成することもでき、また、二重管構造であってもよい。芯金1の内周と外周の少なくとも一方に定型耐火物を一部あるいは全部に用いてもよい。   The cored bar 1 used in the dip tube of the present invention is a cylindrical member made of a heat-resistant metal and usually has a substantially circular cross-sectional shape, but can also be formed in an elliptical shape or a polygonal shape. Also, a double tube structure may be used. A fixed refractory material may be used for a part or all of at least one of the inner periphery and the outer periphery of the core metal 1.

芯金1には、外方に向かってスタッドが接合されていることが好ましい。このスタッドは、鋼や合金鋼等の金属製の丸棒状、角棒状、板状、波板状の部材を用いて構成する。このスタッドによって耐火材を効果的に支持するためには、耐火材との間に大きな接触抵抗が生じる形状が望ましく、例えば、V字形、T字形、L字形、Y字形等の屈曲・分岐した形状とすることができる。また、スタッドは、芯金の表面に広く分散する様に複数設けることが好ましく、これにより耐火材を広い面積で支持することが可能となる。   It is preferable that a stud is joined to the core metal 1 outward. This stud is formed by using a metal round bar, square bar, plate or corrugated member such as steel or alloy steel. In order to effectively support the refractory material by the stud, a shape that generates a large contact resistance with the refractory material is desirable. For example, a bent or branched shape such as a V shape, a T shape, an L shape, or a Y shape. It can be. Moreover, it is preferable to provide a plurality of studs so that they are widely dispersed on the surface of the cored bar, so that the refractory material can be supported over a wide area.

また、浸漬管にはラス金網などの金網を芯金に接合し、スタッド同様に耐火材を支持することが可能である。   In addition, it is possible to support a refractory material like a stud by joining a metal mesh such as a lath metal mesh to the core metal in the dip tube.

さらに、本発明の浸漬管に使用される環流ガス配管は、鋼やステンレス、合金鋼等の耐熱性の金属で構成された部材を用いる。ガスのリークを考慮した場合、配管用炭素鋼鋼管もしくは圧力配管用炭素鋼鋼管を使用することが望ましい。   Furthermore, the circulating gas piping used for the dip tube of the present invention uses a member made of a heat-resistant metal such as steel, stainless steel, alloy steel or the like. In consideration of gas leakage, it is desirable to use a carbon steel pipe for piping or a carbon steel pipe for pressure piping.

本発明の浸漬管に使用する耐火材は、芯金の内側及び外側に施工配置される。耐火材としては本来公知の耐火材料材を用いることができ、例えば、マグネシア質、マグネシア−クロム質、マグネシア−カーボン質、マグネシア−アルミナ質、マグネシア−アルミナ−ジルコニア質、マグネシア−アルミナ−チタニア質、マグネシア−スピネル質、アルミナ−クロム質、アルミナ−カーボン質、アルミナ−マグネシア−カーボン質、アルミナ−スピネル−カーボン質、マグネシア−アルミナ−カーボン質等の耐火材料を使用することができる。   The refractory material used for the dip tube of the present invention is constructed and arranged on the inside and outside of the cored bar. As the refractory material, a known refractory material material can be used, for example, magnesia, magnesia-chromium, magnesia-carbon, magnesia-alumina, magnesia-alumina-zirconia, magnesia-alumina-titania, Refractory materials such as magnesia-spinel, alumina-chromium, alumina-carbon, alumina-magnesia-carbon, alumina-spinel-carbon, magnesia-alumina-carbon, etc. can be used.

以下に、本発明の浸漬管構造について、例をあげて実施形態を説明する。   Hereinafter, embodiments of the dip tube structure of the present invention will be described by way of examples.

本実施例は、環流ガス吐出孔位置によって環流ガスを吹き込む環流ガス配管の長さが異なる構造の浸漬管において、配管長が短い環流ガス配管部の断熱性よりも、配管長が長い環流ガス配管の吐出孔側の配管部の断熱性を増大した例である。   In this embodiment, in the dip pipe having a structure in which the length of the reflux gas pipe for blowing the reflux gas differs depending on the position of the reflux gas discharge hole, the reflux gas pipe having a longer pipe length than the heat insulation of the reflux gas pipe portion having a shorter pipe length. It is the example which increased the heat insulation of the piping part by the side of this discharge hole.

図3は本実施例の浸漬管の環流ガスの配管5を平面状に展開した図で、図1に示す浸漬管の内筒面の内面から見た環流ガス配管の先端の吐出口の配置を示す水平展開図であって、従来のRH上昇管を内面から見た環流ガス配管の先端の吐出管の配置を示す図9に対応するもので、同展開図において、各配管の長さは、集合管6の配置位置によって異なる。   FIG. 3 is a diagram in which the reflux gas pipe 5 of the dip tube of the present embodiment is developed in a planar shape. FIG. 9 is a horizontal development view corresponding to FIG. 9 showing the arrangement of the discharge pipe at the tip of the reflux gas pipe when the conventional RH riser pipe is viewed from the inner surface. In the development view, the length of each pipe is It depends on the arrangement position of the collecting pipe 6.

図3の配管の展開図において、集合管6から配管長さが長い両端からのそれぞれの環流ガス配管5についての断熱を強化した。具体的には同位置の耐火れんが2について内筒側のれんが2の背面及び、外筒側に位置するれんが2の背面に断熱シート4を貼り付けた。   In the development view of the pipe in FIG. 3, the heat insulation of each of the reflux gas pipes 5 from both ends having a long pipe length from the collecting pipe 6 was reinforced. Specifically, for the refractory brick 2 at the same position, the heat insulating sheet 4 was attached to the back surface of the brick 2 on the inner cylinder side and the back surface of the brick 2 positioned on the outer cylinder side.

断熱シート4を張り付けたれんがの位置は、図2,3に示すように集合管6の対面側1/2周に相当し、当該部位に位置するれんが背面に断熱シート4を貼ることで、当部位に位置する環流ガス配管5の断熱を強化した。   As shown in FIGS. 2 and 3, the position of the brick to which the heat insulating sheet 4 is attached corresponds to 1/2 of the facing side of the collecting pipe 6. The heat insulation of the reflux gas pipe 5 located at the site was reinforced.

本実施例は、環流ガス吐出孔位置によって環流ガス配管の長さが異なる構造の浸漬管において、配管長が短い環流ガス配管部の断熱性よりも、配管長が長い環流ガス配管の吐出孔側の配管部の断熱性を増大した例である。   In this embodiment, in the dip pipe having a structure in which the length of the reflux gas pipe is different depending on the position of the reflux gas discharge hole, the discharge gas side of the reflux gas pipe having a longer pipe length than the heat insulation of the reflux gas pipe portion having a shorter pipe length. It is the example which increased the heat insulation of the piping part.

図4は、本実施例の浸漬管の環流ガス配管を平面状に展開した図であり、各環流ガス配管5の長さは、集合管6の配置位置によって異なる。集合管6から配管長さが長い両端からそれぞれ5本について、断熱材4を巻いて断熱を強化した。   FIG. 4 is a diagram in which the reflux gas pipe of the dip tube of the present embodiment is developed in a planar shape, and the length of each reflux gas pipe 5 varies depending on the arrangement position of the collecting pipe 6. The heat insulating material 4 was wound around each of the five pipes having long pipe lengths from the collecting pipe 6 to strengthen the heat insulation.

このように集合管から遠い位置に配置する環流ガス配管及び環流ガス吐出孔周辺の断熱の強化を行う方法としては、環流ガス配管へ直接断熱材を塗布したり、断熱テープを巻いたりすることも可能である。また、断熱材としてシリカ、アルミナなどの中空粒子を使用した断熱キャスタブルやモルタル、断熱ウール、断熱シートを使用してもよい。   As a method of strengthening the heat insulation around the reflux gas pipe and the reflux gas discharge hole arranged at a position far from the collecting pipe in this way, it is possible to apply a heat insulating material directly to the reflux gas pipe or to wrap a heat insulation tape. Is possible. Moreover, you may use the heat insulation castable, mortar, heat insulation wool, and heat insulation sheet which use hollow particles, such as a silica and an alumina, as a heat insulating material.

本実施例は、環流ガス吐出孔位置によって環流ガス配管の長さが異なる構造の浸漬管において、配管長が短い環流ガス配管の内断面積よりも、配管長が長い環流ガス配管の内断面積を大きくした例である。   In this embodiment, in the dip tube having a structure in which the length of the reflux gas pipe is different depending on the position of the reflux gas discharge hole, the inner cross-sectional area of the reflux gas pipe having a longer pipe length than the inner cross-sectional area of the reflux gas pipe having a shorter pipe length. This is an example in which

図5は本実施例の浸漬管の環流ガス配管を平面状に展開した図であり、各配管の長さは、集合管6の配置位置によって異なる。   FIG. 5 is a diagram in which the reflux gas piping of the dip tube of the present embodiment is developed in a planar shape, and the length of each piping varies depending on the arrangement position of the collecting tube 6.

集合管側位置を0°として、集中管側から左右90°の範囲に配置する環流ガス配管8には、 JIS SGP6Aを使用し、集中管側から90°から270°の範囲に位置する環流ガス配管7 には、JIS SGP8Aを使用した。   JIS SGP6A is used for the recirculation gas pipe 8 arranged in the range of 90 ° to the left and right from the concentration tube side, with the collecting tube side position being 0 °, and the recirculation gas located in the range of 90 ° to 270 ° from the concentration tube side. JIS SGP8A was used for the piping 7.

環流ガス配管の内径について、配管長が異なることによる圧力損失と精錬中の環流ガスの温度上昇に伴うガス粘性上昇による流量低下のバランスを考慮し、適正な配管を選択することが望ましい。使用する部材コストを考慮すれば、既成の部材を使用することが望ましいが、入手が出来ない場合は、先述の配管部の断熱技術との併用も可能である。   Regarding the inner diameter of the reflux gas pipe, it is desirable to select an appropriate pipe in consideration of the balance between the pressure loss due to the difference in the pipe length and the flow rate decrease due to the increase in gas viscosity accompanying the temperature rise of the reflux gas during refining. Considering the cost of the member to be used, it is desirable to use a ready-made member, but if it is not available, it can be used in combination with the above-described heat insulation technology for the piping part.

本実施例は、浸漬管の内筒側吐出孔部位置から浸漬管の外筒側に存在する溶融金属の湯面位置までの距離が、最短になるように環流ガス配管を配置した例である。   In this embodiment, the reflux gas piping is arranged so that the distance from the position of the discharge hole on the inner cylinder side of the dip tube to the molten metal surface position on the outer cylinder side of the dip tube is the shortest. .

図6は、本実施例の浸漬管の環流ガス配管5を平面状に展開した図であり、各配管の長さは、集合管6の配置位置によって異なる。   FIG. 6 is a diagram in which the reflux gas pipe 5 of the dip pipe of the present embodiment is developed in a planar shape, and the length of each pipe varies depending on the arrangement position of the collecting pipe 6.

本実施例では、図6に示す環流ガスの吐出孔位置bと、溶融金属へ浸漬管を浸漬した際の外筒側の溶融金属湯面位置aとの位置関係が最短になるように配置した。   In the present embodiment, the arrangement is made so that the positional relationship between the recirculation gas discharge hole position b shown in FIG. 6 and the molten metal surface position a on the outer cylinder side when the dip tube is immersed in the molten metal is the shortest. .

例えば溶融金属へ垂直に浸漬させる浸漬管の場合、吐出孔位置から溶融金属湯面へ垂直になるように配管させ、環流ガス配管が溶融金属が存在する位置と最短とすることで、外筒側溶融金属からの受熱を最小にした。   For example, in the case of a dip tube that is vertically immersed in the molten metal, the outer tube side is formed by connecting the piping from the discharge hole position to be perpendicular to the molten metal surface so that the reflux gas piping is as short as the position where the molten metal exists. The heat received from the molten metal was minimized.

当配管方法においても、配管長に合わせ適正な内断面積の環流ガス配管を使用したり、長い環流ガス配管の吐出孔側の断熱をおこなったりすることも可能である。   In this piping method, it is also possible to use a reflux gas pipe having an appropriate inner cross-sectional area according to the pipe length, or to insulate the discharge hole side of the long reflux gas pipe.

環流ガスの配管長は、夫々の環流ガス配管の常温(20℃)における圧力損失差が10%以下となるように環流ガス配管長とすることが望ましい。   The length of the reflux gas pipe is preferably set so that the difference in pressure loss between the respective reflux gas pipes at room temperature (20 ° C.) is 10% or less.

常温(20℃)における圧力損失差が10%を超える場合、精錬時に環流ガス配管の温度が上昇した際、配管長が異なることでの環流ガス受熱温度が異なってくることから更に圧力損失が増加してしまう為である。   If the difference in pressure loss at room temperature (20 ° C) exceeds 10%, when the temperature of the reflux gas pipe rises during refining, the pressure loss increases further because the temperature of the reflux gas received by the pipe length is different. It is because it will do.

[実験例]
集合管側に配置される管長が短い配管と、管長が長い配管の吐出孔から吐出される循環ガスの態様を想定実験によって調べた。
[Experimental example]
The mode of the circulating gas discharged from the discharge hole of the pipe having a short pipe length and the pipe having a long pipe length arranged on the collecting pipe side was examined by an assumed experiment.

図10と図11は実験装置である。 同装置において、圧力調整されたガスは流量計10とガスヘッダー12を介し、各々の配管パイプへ吐出される。各々の吐出パイプには流量計13A,13Bを設置し、各パイプのガス流量を読むことが出来る様にした。   10 and 11 are experimental devices. In the apparatus, the pressure-adjusted gas is discharged to each piping pipe through the flow meter 10 and the gas header 12. Each discharge pipe was provided with flow meters 13A and 13B so that the gas flow rate of each pipe could be read.

流量計13Aと13Bから各々の電気炉中の試験配管への配管はJIS SCH6Aの配管を用いて繋ぎこみを行い、試験に供した。   The pipes from the flow meters 13A and 13B to the test pipes in each electric furnace were connected using JIS SCH6A pipes and used for the test.

配管パイプとして、JIS SGP6A、環流ガス配管の長さ相当の600mm、2300mmの2種類とJIS SGP8A 長さ2300mmの配管を1種類の合計3種類を準備した。600mm長さのパイプは集合管側に配置される管長が短い配管を、2300mm長さのパイプは集合管の反対面に配置される管長が長い配管を想定したものである。   As piping pipes, JIS SGP6A, two types of 600 mm and 2300 mm corresponding to the length of the reflux gas piping, and one type of piping of JIS SGP8A length 2300 mm were prepared in total of three types. A pipe having a length of 600 mm is assumed to be a pipe having a short pipe length arranged on the collecting pipe side, and a pipe having a length of 2300 mm is assumed to be a pipe having a long pipe length arranged on the opposite surface of the collecting pipe.

これらパイプは電気炉14内へ挿入できる様に100mm径の螺旋状に巻いた。熱間での実験は、シリコユニット発熱方式の箱型の電気炉14を用い、空気雰囲気下にて行った。   These pipes were wound in a spiral shape with a diameter of 100 mm so that they could be inserted into the electric furnace 14. The hot experiment was carried out in an air atmosphere using a silico unit heating type box-type electric furnace 14.

断熱の効果を確認する試験においては、管長が長い配管パイプへ断熱シート16を施した。パイプへの断熱を施す方法は、断熱シート16は、厚みが2mmの断熱シート(商品名:SCペーパー)を準備し、電気炉内の配管を覆う様に囲った。     In the test for confirming the effect of heat insulation, the heat insulation sheet 16 was applied to a pipe having a long pipe length. As a method of performing heat insulation on the pipe, the heat insulation sheet 16 was prepared by preparing a heat insulation sheet (trade name: SC paper) having a thickness of 2 mm so as to cover the piping in the electric furnace.

配管パイプへの断熱を行っていない装置と断熱を施した装置の各々において、雰囲気温度は常温(室温20℃)と電気炉内温度800℃にて測定を行った。   In each of the apparatus that did not insulate the pipes and the apparatus that had insulation, the ambient temperature was measured at room temperature (room temperature 20 ° C.) and the electric furnace temperature 800 ° C.

熱間での測定雰囲気温度800℃は、RH浸漬管を10ヒート使用直後の芯金部分の温度を熱計算により導き出したものであり、当温度を実験に採用したものである。実験にあたっての操炉は、1時間あたり100℃にて昇温し、800℃にて保持した。   The hot measurement atmosphere temperature of 800 ° C. is derived from the temperature of the cored bar immediately after using the RH dip tube for 10 heats by thermal calculation, and this temperature is adopted in the experiment. The furnace for the experiment was heated at 100 ° C. per hour and held at 800 ° C.

吹き込みガスとして、エアを用い、脱脂、脱湿及び圧力調整を実施した。エアの圧力は、294KPaの一定圧力供給とし、流量計のフロートが安定し、且つ炉内温度が安定した時点での流量を読み取った。   Degreasing, dehumidification, and pressure adjustment were performed using air as the blowing gas. The air pressure was a constant pressure supply of 294 KPa, and the flow rate was read when the float of the flowmeter was stable and the furnace temperature was stable.

各温度の実験での短管相当SGP6A 600mm長さ配管のガス流量値を100として、長管相当SGP6A,SGP8Aの各々2300mm長さのガス流量値を指数化し短管との流量差を確認した。また、比較例として、断熱処理を行わない同質のパイプへの同様の加熱中での流量の測定を行った。その結果を表1に示す。   The gas flow rate value of the short pipe equivalent SGP6A 600 mm long pipe in the experiment at each temperature was taken as 100, and the gas flow value of 2300 mm length of each of the long pipe equivalent SGP6A and SGP8A was indexed to confirm the flow rate difference from the short pipe. Further, as a comparative example, the flow rate during the same heating to a homogeneous pipe not subjected to heat insulation treatment was measured. The results are shown in Table 1.

Figure 0005729875
Figure 0005729875

実施例、比較例両実験ともに、常温においての流量はSGP6A 600mm長さ配管とSGP6A 2300mm配管の流量に差が見られた。これは配管長が異なることによる圧力損失によるものである。
一方SGP8A 2300mm長さ配管の流量はSGP6Aと変わらない値となった。
In both the examples and the comparative examples, there was a difference in the flow rate between the SGP6A 600 mm length pipe and the SGP6A 2300 mm pipe at room temperature. This is due to the pressure loss due to the different pipe lengths.
On the other hand, the flow rate of the SGP8A 2300 mm long pipe was the same value as SGP6A.

次に、800℃雰囲気下でのガス流量差においては、比較例の場合では600mm長さ配管と2300mm配管の流量の差が更に大きくなる結果となった。これは配管長が異なり圧力損失があることに加え、2300mm長さの配管は、ガスが配管内を移動する間に受熱し、ガスの粘性が上がり結果的に圧力損失の増加に繋がったものである。   Next, in the case of the comparative example, the difference in the flow rate between the 600 mm length pipe and the 2300 mm pipe was further increased in the gas flow rate difference under the 800 ° C. atmosphere. This is because the pipe length is different and there is a pressure loss. In addition, the 2300 mm length pipe receives heat while the gas moves through the pipe, and the viscosity of the gas increases, resulting in an increase in pressure loss. is there.

同様に800℃雰囲気下実験において、SGP6A 600mm長さ配管の流量と、SGP8A 2300mm長さ配管のガス流量の差は無い結果となった。これは、2300mm長さ配管はSGP8A配管の管内断面積が大きい為、配管温度上昇に伴うガス粘度上昇がしても圧力損失の上昇が600mm長さ配管よりも小さいことから、短管との流量差が小さくなったと考えられる。   Similarly, in an experiment under an atmosphere of 800 ° C., there was no difference between the flow rate of the SGP6A 600 mm length pipe and the gas flow rate of the SGP8A 2300 mm length pipe. This is because the 2300 mm long pipe has a large cross-sectional area of the SGP8A pipe, so even if the gas viscosity increases due to the rise in pipe temperature, the increase in pressure loss is smaller than that of the 600 mm long pipe. It is thought that the difference has become smaller.

また、同様に800℃雰囲気下の実験において、SGP6A 600mm長さ配管の流量と、断熱を施した2300mm長さ配管のガス流量の差が小さくなった。これは2300mm長さ配管に断熱が施されていることで、配管を通過するガスの温度上昇が抑制され、さらにガスの粘性上昇が抑えられることで圧力損失増加の防止に繋がったと考えられる。   Similarly, in an experiment under an atmosphere at 800 ° C., the difference between the flow rate of the SGP6A 600 mm long pipe and the gas flow rate of the 2300 mm long pipe with heat insulation was reduced. This is thought to be due to the fact that the 2300 mm long pipe is insulated, which suppresses the temperature rise of the gas passing through the pipe and further suppresses the increase in gas viscosity, thereby preventing an increase in pressure loss.

環流ガス吐出孔位置により、環流ガスを吹き込む配管長さが異なる構造の浸漬管において、配管長が短い環流ガス配管の内断面積よりも、配管長が長い環流ガス配管の内断面積を大きくすることで、配管の温度上昇に伴うガス粘性の上昇と流量低下が起こっても、配管長が短い環流ガス配管のガス流量との差が小さくなることで、環流ガス流量バランスをとって均一な吐出にする。   In a dip tube with a structure in which the length of the pipe that blows in the reflux gas differs depending on the position of the reflux gas discharge hole, the inner cross-sectional area of the reflux gas pipe having a longer pipe length is made larger than the inner cross-sectional area of the reflux gas pipe having a shorter pipe length. Therefore, even if the gas viscosity increases and the flow rate decreases as the piping temperature rises, the difference between the gas flow rate of the recirculating gas piping with a short piping length is reduced, and the uniform flow rate is balanced. To.

集合管の配管内のアルゴンガス等環流ガスの温度上昇を抑制することで環流ガスの粘性が上昇することを防ぎ、配管長が異なる浸漬管の環流ガス配管部の環流ガス流量バランスをとって均一な吐出にする。   By suppressing the temperature rise of the reflux gas such as argon gas in the pipe of the collecting pipe, the viscosity of the reflux gas is prevented from increasing, and the reflux gas flow balance of the reflux gas pipe section of the dip pipe with different pipe length is balanced and uniform To discharge properly.

1:芯金 2:耐火れんが
3:不定形耐火物 4:断熱材
5:環流ガス配管
5a:環流ガス吐出孔 6:集合管
7:環流ガス配管(SGP8A) 8:環流ガス配管(SGP6A)
9:圧力計 10:元ガス流量計
11:バルブ 12:ガスヘッダー
13:流量計 14:電気炉
15:試験用環流ガス配管 16:断熱シート
a:浸漬時の溶融金属位置 b:環流ガス吐出孔位置
1: Metal core 2: Refractory brick 3: Indeterminate refractory 4: Thermal insulation material 5: Recirculation gas pipe 5a: Recirculation gas discharge hole 6: Collecting pipe 7: Recirculation gas pipe (SGP8A) 8: Recirculation gas pipe (SGP6A)
9: Pressure gauge 10: Original gas flow meter
11: Valve 12: Gas header 13: Flow meter 14: Electric furnace 15: Recirculation gas piping for test 16: Thermal insulation sheet a: Molten metal position during immersion b: Recirculation gas discharge hole position

Claims (4)

溶鋼を環流させるための内筒部の外周に配置された耐熱性金属よりなる筒状の芯金の内周および外周に耐火材を配し、前記内筒部を環流する溶鋼に不活性ガスを吐出するための複数の環流ガス配管の基部に集合管を形成し、かつ、前記複数の環流ガス配管の先端の環流ガス吐出孔を前記耐火材を通して前記芯金に沿って略均一に前記内筒部内面に開設した真空脱ガス装置の浸漬管であって、前記環流ガス吐出孔の位置によって環流ガス配管の長さが異なる構造の浸漬管において、
配管長が短い環流ガス配管の吐出孔側の配管部の断熱性よりも、配管長が長い環流ガス配管の吐出孔側の配管部の断熱性を増大したことを特徴とする真空脱ガス装置の浸漬管。
A refractory material is arranged on the inner and outer circumferences of a cylindrical metal core made of a heat-resistant metal disposed on the outer circumference of the inner cylinder for circulating the molten steel, and inert gas is supplied to the molten steel circulating in the inner cylinder. A collecting pipe is formed at the base of a plurality of reflux gas pipes for discharging, and the inner cylinder is substantially uniformly along the core metal through the refractory material through the reflux gas discharge holes at the tips of the plurality of reflux gas pipes In the dip pipe of the vacuum degassing apparatus established on the inner surface of the part, the dip pipe having a structure in which the length of the reflux gas pipe is different depending on the position of the reflux gas discharge hole,
The vacuum degassing apparatus is characterized in that the heat insulation of the pipe part on the discharge hole side of the long-circulation gas pipe is increased than the heat insulation of the pipe part on the discharge hole side of the short-circulation gas pipe. Immersion tube.
溶鋼を環流させるための内筒部の外周に配置された耐熱性金属よりなる筒状の芯金の内周および外周に耐火材を配し、前記内筒部を環流する溶鋼に不活性ガスを吐出するための複数の環流ガス配管の基部に集合管を形成し、かつ、前記複数の環流ガス配管の先端の環流ガス吐出孔を前記耐火材を通して前記芯金に沿って略均一に前記内筒部内面に開設した真空脱ガス装置の浸漬管であって、前記環流ガス吐出孔の位置によって環流ガス配管の長さが異なる構造の浸漬管において、
配管長が短い環流ガス配管の内断面積よりも、配管長が長い環流ガス配管の内断面積を大きくしたことを特徴とする真空脱ガス装置の浸漬管。
A refractory material is arranged on the inner and outer circumferences of a cylindrical metal core made of a heat-resistant metal disposed on the outer circumference of the inner cylinder for circulating the molten steel, and inert gas is supplied to the molten steel circulating in the inner cylinder. A collecting pipe is formed at the base of a plurality of reflux gas pipes for discharging, and the inner cylinder is substantially uniformly along the core metal through the refractory material through the reflux gas discharge holes at the tips of the plurality of reflux gas pipes In the dip pipe of the vacuum degassing apparatus established on the inner surface of the part, the dip pipe having a structure in which the length of the reflux gas pipe is different depending on the position of the reflux gas discharge hole,
A dip tube for a vacuum degassing apparatus, wherein the inner cross-sectional area of a long-circulation gas pipe is larger than the inner cross-sectional area of a short-circulation gas pipe.
真空脱ガス装置の浸漬管を溶融金属へ浸漬した際の浸漬管外筒側に存在する溶融金属の湯面の高さ位置と、環流ガス配管の先端の環流ガス吐出孔の高さ位置までの距離が最短になるように環流ガス吐出孔が配置されていることを特徴とする請求項1又は2に記載の真空脱ガス装置の浸漬管。   When the immersion pipe of the vacuum degassing device is immersed in the molten metal, the height of the molten metal surface on the outer cylinder side of the immersion pipe and the height of the reflux gas discharge hole at the tip of the reflux gas pipe The dip tube of the vacuum degassing apparatus according to claim 1 or 2, wherein the reflux gas discharge holes are arranged so that the distance is the shortest. 前記環流ガス配管の長さが、配管元吹込み部から環流ガス吐出孔までの各配管の圧損差が10%以内となる長さであることを特徴とする請求項2又は3に記載の真空脱ガス装置の浸漬管。   4. The vacuum according to claim 2, wherein the length of the reflux gas pipe is such that the pressure loss difference of each pipe from the pipe former blowing portion to the reflux gas discharge hole is within 10%. Degassing device dip tube.
JP2011217671A 2011-09-30 2011-09-30 Dipping tube for vacuum degassing of molten steel Active JP5729875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011217671A JP5729875B2 (en) 2011-09-30 2011-09-30 Dipping tube for vacuum degassing of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011217671A JP5729875B2 (en) 2011-09-30 2011-09-30 Dipping tube for vacuum degassing of molten steel

Publications (2)

Publication Number Publication Date
JP2013076141A JP2013076141A (en) 2013-04-25
JP5729875B2 true JP5729875B2 (en) 2015-06-03

Family

ID=48479812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011217671A Active JP5729875B2 (en) 2011-09-30 2011-09-30 Dipping tube for vacuum degassing of molten steel

Country Status (1)

Country Link
JP (1) JP5729875B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109298016A (en) * 2018-08-24 2019-02-01 上海大学 A kind of analog blast furnace cupola well coagulates the experimental provision of iron layer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528329A (en) * 1978-08-18 1980-02-28 Nippon Steel Corp Molten metal treating vessel
JPS55125222A (en) * 1979-03-19 1980-09-26 Nippon Steel Corp Molten metal treating vessel
JP3374618B2 (en) * 1995-10-25 2003-02-10 住友金属工業株式会社 Vacuum refining method for molten steel
JP4806863B2 (en) * 2001-06-13 2011-11-02 Jfeスチール株式会社 Method for refining molten steel in RH vacuum degassing equipment
JP4805546B2 (en) * 2004-03-19 2011-11-02 Jfeスチール株式会社 Immersion tube of RH degassing equipment and dip tube core metal cooling method.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109298016A (en) * 2018-08-24 2019-02-01 上海大学 A kind of analog blast furnace cupola well coagulates the experimental provision of iron layer
CN109298016B (en) * 2018-08-24 2021-04-30 上海大学 Experimental device for simulating iron layer of blast furnace hearth

Also Published As

Publication number Publication date
JP2013076141A (en) 2013-04-25

Similar Documents

Publication Publication Date Title
EP2952844B1 (en) Monolithic refractory structure
RU2757041C1 (en) Heat transfer intensifying pipe, cracking furnace and atmospheric-vacuum heating furnace comprising said pipe
JP5729875B2 (en) Dipping tube for vacuum degassing of molten steel
CN104120241A (en) Local post weld heat treatment method for adapter tube seat butt joint
CN113432295B (en) Spiral high-flow ultrahigh-temperature air electric heater
CN213578759U (en) Heating furnace body with water-cooling jacket sleeve
JP2009537428A (en) Collective conduit for tubular separation furnace
TWI524952B (en) Flexible stainless steel tube
JP2018059700A (en) Channel inductor lined with ceramic
CN207276639U (en) Double-deck coiled cooling wall
JP2008175404A (en) Heat exchanger
CN206056258U (en) A kind of electromagnet calciner
CN203739238U (en) Fluoroplastic condensation tube bundle welding device
JP6586371B2 (en) Heating coil
JP2010168600A (en) Dipping tube
WO2018040601A1 (en) Flue assembly of water heater, and water heater
JP2015113489A (en) Dip tube for use in refining apparatus
CN220016393U (en) Steel sleeve steel steam composite heat-insulating pipe
CN208733876U (en) Building partition structure
CN107130091A (en) The heating arrangement of annealing furnace
CN210536973U (en) Heating coil for temperature measuring point of induction furnace and induction furnace
JP2004535545A5 (en)
CN204943806U (en) PIPING FITT straight tube
JP6308787B2 (en) Lance pipe
JP2002005592A (en) Multipipe heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150406

R150 Certificate of patent or registration of utility model

Ref document number: 5729875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250