JP5729215B2 - Cooler and manufacturing method thereof - Google Patents

Cooler and manufacturing method thereof Download PDF

Info

Publication number
JP5729215B2
JP5729215B2 JP2011180110A JP2011180110A JP5729215B2 JP 5729215 B2 JP5729215 B2 JP 5729215B2 JP 2011180110 A JP2011180110 A JP 2011180110A JP 2011180110 A JP2011180110 A JP 2011180110A JP 5729215 B2 JP5729215 B2 JP 5729215B2
Authority
JP
Japan
Prior art keywords
case
seal ring
welding
cover plate
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011180110A
Other languages
Japanese (ja)
Other versions
JP2013045781A (en
Inventor
博人 日下
博人 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011180110A priority Critical patent/JP5729215B2/en
Publication of JP2013045781A publication Critical patent/JP2013045781A/en
Application granted granted Critical
Publication of JP5729215B2 publication Critical patent/JP5729215B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、内部に冷媒を通す冷却器に関する。   The present invention relates to a cooler that allows a refrigerant to pass therethrough.

冷却器では、ケースにカバープレートを接合する際、冷媒が漏れないように、わずかな隙間もなく接合する必要がある。冷媒が漏れないようにカバープレートを接合する手法の一つとして、特許文献1には、ケース開口の周囲全体を摩擦撹拌溶接により連続的に接合する技術が提案されている。   In the cooler, when joining the cover plate to the case, it is necessary to join the cover plate without a slight gap so that the refrigerant does not leak. As one technique for joining the cover plates so that the refrigerant does not leak, Patent Document 1 proposes a technique for continuously joining the entire periphery of the case opening by friction stir welding.

特開2010−140951号公報JP 2010-140951 A

ケース開口の全周を連続的に溶接すれば液漏れ(ガス漏れ)することはない。しかしながら、それではコストが嵩む。本明細書は、ケースの開口の全周を連続的に溶接することなく、しかし冷媒が漏れることがないようにカバープレートがケースに接合された冷却器を提供する。   If the entire circumference of the case opening is continuously welded, liquid leakage (gas leakage) will not occur. However, this increases costs. The present specification provides a cooler in which a cover plate is joined to a case without continuously welding the entire circumference of the opening of the case, but preventing the refrigerant from leaking.

本明細書が開示する技術では、容器状に形成されたケースの開口を一巡するようにケース開口周囲上面にシールリングを埋設する。その上にカバープレートを載せ、カバープレートの上から、開口周囲上面の複数個所を点状に溶接する。溶接には摩擦撹拌接合が適している。即ち、ケースとカバープレートの間の密封は、シールリングが確保する。ところが、シールリングは熱に弱い。その一方で、摩擦撹拌溶接は発熱を伴う。摩擦撹拌溶接は、摩擦熱によって部材を軟化・塑性流動させて2つの部材を局所的に練り混ぜて接合する。そのため、温度は局所的に数百度にまで達することがある。従って、シールリングの近くを溶接しようとすると、溶接の熱でシールリングが傷んでしまう虞がある。ケース開口周囲の壁厚を厚くし、溶接箇所とシールリングの間に距離を確保すれば熱の問題は解決するがそれではコストとサイズが嵩んでしまう。そこで本明細書が開示する技術では、カバープレートに垂直な方向から平面視したときに、溶接箇所をシールリングの外側とする。そして、ケースには、カバープレートに垂直な方向から平面視したときに、シールリングを挟んで溶接点と向かいあう位置に、ケース周囲上面の内側の縁からシールリングに向かって冷媒を導く溝を形成する。そのような構造を採用することによって、ケースに冷媒を流せば溶接点付近にてシールリング近くまで冷媒が到達する。従って、ケースに冷媒を流しながら溶接することによって、溶接中もシールリングが冷却され、シールリングが熱で痛んでしまうことを防止することができる。   In the technology disclosed in this specification, a seal ring is embedded in the upper surface around the case opening so as to go around the opening of the case formed in a container shape. A cover plate is placed thereon, and a plurality of locations on the upper surface around the opening are welded in a dotted manner from the top of the cover plate. Friction stir welding is suitable for welding. That is, the seal ring secures the seal between the case and the cover plate. However, the seal ring is vulnerable to heat. On the other hand, friction stir welding involves heat generation. In friction stir welding, the members are softened and plastically flowed by frictional heat, and the two members are locally mixed and joined. Therefore, the temperature may reach several hundred degrees locally. Therefore, if the vicinity of the seal ring is to be welded, the seal ring may be damaged by the heat of welding. If the wall thickness around the case opening is increased and a distance is secured between the welded portion and the seal ring, the thermal problem can be solved, but this increases the cost and size. Therefore, in the technology disclosed in this specification, the welded portion is set to the outside of the seal ring when viewed in plan from a direction perpendicular to the cover plate. The case is formed with a groove that guides the refrigerant from the inner edge of the upper surface around the case toward the seal ring at a position facing the welding point across the seal ring when viewed from the direction perpendicular to the cover plate. To do. By adopting such a structure, when the refrigerant flows through the case, the refrigerant reaches near the seal ring near the welding point. Therefore, by welding while flowing a coolant through the case, the seal ring can be cooled during welding, and the seal ring can be prevented from being damaged by heat.

実施例の冷却器の分解斜視図である。It is a disassembled perspective view of the cooler of an Example. 図1の符号Aで示す部分の部分拡大図である。It is the elements on larger scale of the part shown with the code | symbol A of FIG. 溶接工程(製造工程)を説明する部分断面図である。It is a fragmentary sectional view explaining a welding process (manufacturing process). 溶接装置(製造装置)の模式的斜視図である。It is a typical perspective view of a welding apparatus (manufacturing apparatus). 変形例を説明する図である。It is a figure explaining a modification.

図面を参照して実施例の冷却器10を説明する。図1は、冷却器10の分解斜視図である。図2は、図1にて符号Aで示した箇所の部分拡大図である。図1に示すように、この冷却器10は、箱形である。冷却器10は、容器状に形成されておりその内部空間Sに冷媒を流すケース4に、カバープレート2が溶接されて、ケース4の内部空間Sが封止される。ケース4の一つの側面には、冷媒の供給口12と排出口13が設けられている。ケース4の内部空間Sには、冷媒の通路を形成するための複数の仕切板8が設けられている。供給口12から入った冷媒は、仕切板8に沿ってケース内を往復し、排出口13から排出される。冷却器10は、例えば、発熱量の多いIGBTなどの半導体素子を搭載した基板をカバープレート2の上に固定し、半導体素子の冷却などに用いられる。   A cooler 10 according to an embodiment will be described with reference to the drawings. FIG. 1 is an exploded perspective view of the cooler 10. FIG. 2 is a partially enlarged view of a portion indicated by a symbol A in FIG. As shown in FIG. 1, the cooler 10 has a box shape. The cooler 10 is formed in a container shape, and the cover plate 2 is welded to the case 4 in which the coolant flows into the internal space S to seal the internal space S of the case 4. A refrigerant supply port 12 and a discharge port 13 are provided on one side surface of the case 4. In the internal space S of the case 4, a plurality of partition plates 8 for forming a refrigerant passage are provided. The refrigerant that has entered from the supply port 12 reciprocates in the case along the partition plate 8 and is discharged from the discharge port 13. The cooler 10 is used, for example, for cooling a semiconductor element by fixing a substrate on which a semiconductor element such as an IGBT having a large amount of heat generation is mounted on the cover plate 2.

冷媒が漏れないように、ケース4とカバープレート2の間は密封されねばならない。そのため、ケース4の開口周囲上面4aには、開口を一巡する溝6が設けられており、その中に、開口を一巡するようにシールリング7が埋設されている。シールリング7は、例えば、シリコン樹脂などで作られたリングである。なお、シールリング7は、リング形状を保つことのできる固体でなくともよい。例えば、溝6内に充填されるシリコングリース、あるいは、溝6に充填される硬化性樹脂などであってもよい。   The case 4 and the cover plate 2 must be sealed so that the refrigerant does not leak. Therefore, a groove 6 that makes a round of the opening is provided in the upper surface 4a around the opening of the case 4, and a seal ring 7 is embedded in the groove 6 so as to make a round of the opening. The seal ring 7 is a ring made of, for example, silicon resin. The seal ring 7 may not be a solid that can maintain the ring shape. For example, silicon grease filled in the groove 6 or a curable resin filled in the groove 6 may be used.

ケース4とカバープレート2は、摩擦撹拌溶接によって接合される。図1における符号Pcが示す領域は、カバープレート2における溶接箇所(溶接予定箇所)を示している。Pcに対応するようにケース4に示された領域Psは、ケース4の開口周囲上面4aにおける溶接箇所(溶接予定箇所)を示している。後述するように、カバープレート上の領域Pcとケース上の領域Psは、本来は溶接によって一体化する場所であるが、図1、図2では理解を助けるために、溶接予定箇所として、カバープレートとケースで別々の符号を付した。なお、図3、図5では、カバープレート2の溶接箇所Pcとケース4の溶接箇所Psが一体化した接合部に符号Pを付した。また、図1では、開口周囲上面4aに6箇所の溶接箇所が設けられるが、符号Pc、Psは、一箇所にのみ付しており、図面の複雑化を招かないように、他の溶接箇所には符号を付していない点に留意されたい。図1では、カバープレート2は、ケース4の開口周囲上面4aの6箇所で点状に溶接され、接合される。   The case 4 and the cover plate 2 are joined by friction stir welding. A region indicated by a reference symbol Pc in FIG. 1 indicates a welding location (a planned welding location) in the cover plate 2. A region Ps shown in the case 4 so as to correspond to Pc indicates a welding location (scheduled welding location) on the upper surface 4 a around the opening of the case 4. As will be described later, the region Pc on the cover plate and the region Ps on the case are originally locations that are integrated by welding, but in order to help understanding in FIGS. Different symbols are used for cases. In FIGS. 3 and 5, the reference symbol P is attached to the joint where the welded part Pc of the cover plate 2 and the welded part Ps of the case 4 are integrated. Further, in FIG. 1, six welding locations are provided on the upper surface 4a around the opening, but the symbols Pc and Ps are attached to only one location, and other welding locations are provided so as not to complicate the drawing. It should be noted that there is no reference sign. In FIG. 1, the cover plate 2 is welded and joined in the form of dots at six locations on the upper surface 4 a around the opening of the case 4.

この冷却器10では、溶接点(図中の符号PsとPcが示す箇所)は、カバープレート2に垂直な方向(図中のZ軸方向)から見たときに、シールリング7の外側に位置する。また、開口周囲上面4aには、シールリング7を挟んで溶接点Psと向かいあう位置に、ケース周囲上面4aの内側の縁4bからシールリング7に向かって冷媒を導く溝5が形成されている。この溝5は、カバープレート2を溶接する際、ケース4の内部空間Sに満たされた冷媒をシールリング7の近傍へ導くために設けるものである。図1では1箇所の溝にのみ符号5を付してあるが、全ての溶接箇所Psに対して溝5が設けられている。   In this cooler 10, the welding point (location indicated by symbols Ps and Pc in the figure) is located outside the seal ring 7 when viewed from the direction perpendicular to the cover plate 2 (Z-axis direction in the figure). To do. In addition, a groove 5 that guides the refrigerant from the inner edge 4b of the case peripheral upper surface 4a toward the seal ring 7 is formed in the opening peripheral upper surface 4a at a position facing the welding point Ps with the seal ring 7 interposed therebetween. This groove 5 is provided to guide the refrigerant filled in the internal space S of the case 4 to the vicinity of the seal ring 7 when the cover plate 2 is welded. In FIG. 1, reference numeral 5 is given to only one groove, but the grooves 5 are provided for all of the welding points Ps.

図3に溶接時の様子(断面)を示す。摩擦撹拌溶接では、先端が細い棒状の溶接ツール31を高速回転させながらカバープレート2の表面に押し当てる。そうすると、溶接ツール31が押し当てられた箇所は、摩擦熱によりカバープレート2の当接箇所が軟化する。溶接ツール31をさらに押し当て続けると、軟化が深さ方向に進行し、ケース4まで軟化する。こうして、図3の符号Pで示す領域では、カバープレート2の材料とケース4の材料が練り混ぜ合わされて一体化する。即ち、カバープレート2とケース4が接合される。溶接ツール31を押し当てている間、ケース内部空間Sに冷媒Wを流し続ける。冷媒Wは溝5に案内されてシールリング7の近傍まで到達し、シールリング7を冷却する。冷媒Wによる冷却効果が、摩擦撹拌溶接にて発生する熱からシールリング7を保護する。   FIG. 3 shows a state (cross section) during welding. In friction stir welding, a bar-shaped welding tool 31 with a thin tip is pressed against the surface of the cover plate 2 while rotating at high speed. If it does so, the contact location of the cover plate 2 will soften the location where the welding tool 31 was pressed by frictional heat. When the welding tool 31 is further pressed, the softening proceeds in the depth direction and the case 4 is softened. Thus, in the region indicated by the symbol P in FIG. 3, the material of the cover plate 2 and the material of the case 4 are mixed and integrated. That is, the cover plate 2 and the case 4 are joined. While the welding tool 31 is pressed, the coolant W continues to flow into the case internal space S. The refrigerant W is guided by the groove 5 and reaches the vicinity of the seal ring 7 to cool the seal ring 7. The cooling effect by the refrigerant W protects the seal ring 7 from heat generated by friction stir welding.

図4に、溶接装置30の模式的斜視図を示す。なお、図4には溶接装置30の一部のみが示されていることに留意されたい。作業台44の上にケース4とカバープレート2を重ねて載置し、上から固定治具41でカバープレート2とケース4を上から押さえ、両者がずれないように位置を固定する。その状態で溶接予定位置に溶接ツール31を高速回転させながら押し当てる。このとき、ケース4の供給口12には冷媒供給管42を接続し、排出口13には冷媒排出管43を接続する。そうして、冷媒供給管42を通じてケース4の内部に冷媒を供給する。冷媒は、前述した仕切板8に沿って流れたのち、冷媒排出管43を通じてケース外へと排出される。このように、溶接中にケース内部に冷媒を通すことで、シールリング7を溶接の熱から保護する。全ての溶接予定位置Pcの溶接が終了すると、カバープレート2は完全にケース4に接合される。このとき、ケースの開口周囲上面4aとカバープレート2との境界は、シールリング7によって密閉される。   In FIG. 4, the typical perspective view of the welding apparatus 30 is shown. It should be noted that only a part of the welding apparatus 30 is shown in FIG. The case 4 and the cover plate 2 are placed on the work table 44, and the cover plate 2 and the case 4 are pressed from above with a fixing jig 41, and the positions are fixed so that they do not shift. In this state, the welding tool 31 is pressed against the planned welding position while rotating at high speed. At this time, the refrigerant supply pipe 42 is connected to the supply port 12 of the case 4, and the refrigerant discharge pipe 43 is connected to the discharge port 13. Then, the refrigerant is supplied into the case 4 through the refrigerant supply pipe 42. The refrigerant flows along the partition plate 8 described above, and is then discharged out of the case through the refrigerant discharge pipe 43. Thus, the seal ring 7 is protected from the heat of welding by passing the coolant through the case during welding. When the welding of all the planned welding positions Pc is completed, the cover plate 2 is completely joined to the case 4. At this time, the boundary between the opening peripheral upper surface 4 a of the case and the cover plate 2 is sealed by the seal ring 7.

図5を参照して、ケース開口の周囲上面4aに設ける溝5の変形例を説明する。図5(A)は、ケース4の部分平面図であり、(B)は、図(A)におけるB−B線に沿った断面図であり、(C)は、図(A)におけるC−C線に沿った断面図である。なお、図4(A)では、カバープレート2の図示を省略してある。この変形例では、ケース内空間Sから、シールリング7を収めた溝6まで通じる2本の溝5a、5bが設けられている。別言すれば、平面視したときに、シールリング7を挟んで溶接点Pと向かいあう位置に、ケース周囲上面の内側の縁4bからシールリング7に向かって冷媒を導く複数の溝5a、5bが形成されている。上述したように、溝5は、シールリング7を収めた溝6に繋がっているので、ケース内空間Sに満たされた冷媒Wは、シールリング7の周囲にまで達する。これにより、溶接時にシールリング7を効果的に冷却することができる。また、複数の溝を設けることで、幅広の一つの溝の場合と同等の冷媒量を流すのに、一つ一つの溝を細くすることができる。溝を細くすることによって、シールリング7が溝内にはみ出してしまうことを防止できる。   With reference to FIG. 5, the modification of the groove | channel 5 provided in the surrounding upper surface 4a of case opening is demonstrated. 5A is a partial plan view of the case 4, FIG. 5B is a cross-sectional view taken along line BB in FIG. A, and FIG. 5C is C- in FIG. It is sectional drawing along C line. In addition, illustration of the cover plate 2 is abbreviate | omitted in FIG. 4 (A). In this modified example, two grooves 5 a and 5 b are provided to communicate from the case internal space S to the groove 6 in which the seal ring 7 is accommodated. In other words, when viewed in plan, a plurality of grooves 5a and 5b for guiding the refrigerant from the inner edge 4b of the upper surface around the case toward the seal ring 7 are located at positions facing the welding point P with the seal ring 7 interposed therebetween. Is formed. As described above, since the groove 5 is connected to the groove 6 in which the seal ring 7 is accommodated, the refrigerant W filled in the case space S reaches the periphery of the seal ring 7. Thereby, the seal ring 7 can be effectively cooled at the time of welding. Also, by providing a plurality of grooves, each groove can be made narrower in order to allow the same amount of refrigerant to flow as in the case of a wide single groove. By narrowing the groove, it is possible to prevent the seal ring 7 from protruding into the groove.

実施例に示した技術についての留意点を述べる。冷却器は、冷媒として液体(典型的には水)を用いるものであってよいし、ガスを用いるものであってもよい。   Points to note about the technology shown in the examples will be described. The cooler may use a liquid (typically water) as a refrigerant, or may use a gas.

以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。   Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings can achieve a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.

2:カバープレート
4:ケース
4a:開口周囲上面
4b:縁
5、5a、5b:溝
6:溝(シールリング埋設用)
7:シールリング
8:仕切板
10:冷却器
30:溶接装置
31:溶接ツール
P:溶接箇所
Ps、Pc:溶接予定箇所
S:ケース内部空間
W:冷媒
2: Cover plate 4: Case 4a: Upper surface around opening 4b: Edges 5, 5a, 5b: Groove 6: Groove (for sealing ring embedding)
7: Seal ring 8: Partition plate 10: Cooler 30: Welding device 31: Welding tool P: Welding spot Ps, Pc: Welding spot S: Case internal space W: Refrigerant

Claims (2)

冷媒を流すためのケースと、
ケース開口を一巡するようにケース開口周囲上面に埋設されているシールリングと、
シールリングを覆うとともに、ケース開口周囲上面に摩擦撹拌溶接によって複数個所を点状に溶接されているカバープレートと、
を備えており、カバープレートに垂直な方向から平面視したときに、
溶接点はシールリングの外側に位置しており、シールリングを挟んで溶接点と向かいあう位置に、ケース開口周囲上面の内側の縁からシールリングに向かって冷媒を導く溝が形成されていることを特徴とする冷却器。
A case for flowing refrigerant,
A seal ring embedded in the upper surface surrounding the case opening so as to go around the case opening;
A cover plate that covers the seal ring and is welded to the upper surface around the case opening at a plurality of points by friction stir welding;
When viewed in plan from a direction perpendicular to the cover plate,
The welding point is located outside the seal ring, and a groove that guides the refrigerant from the inner edge of the upper surface around the case opening toward the seal ring is formed at a position facing the welding point across the seal ring. Features a cooler.
請求項1の冷却器の製造方法であり、ケースに冷媒を流しながら摩擦撹拌溶接することを特徴とする冷却器の製造方法。   The method for manufacturing a cooler according to claim 1, wherein friction stir welding is performed while flowing a coolant through the case.
JP2011180110A 2011-08-22 2011-08-22 Cooler and manufacturing method thereof Active JP5729215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011180110A JP5729215B2 (en) 2011-08-22 2011-08-22 Cooler and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011180110A JP5729215B2 (en) 2011-08-22 2011-08-22 Cooler and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013045781A JP2013045781A (en) 2013-03-04
JP5729215B2 true JP5729215B2 (en) 2015-06-03

Family

ID=48009483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011180110A Active JP5729215B2 (en) 2011-08-22 2011-08-22 Cooler and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5729215B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109454322A (en) * 2018-12-06 2019-03-12 南昌大学 Laying method is spelled in modularization explosive welding explosive loading unit and its modularization powder charge

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6244646B2 (en) * 2013-04-04 2017-12-13 睦月電機株式会社 Heat exchanger
EP2965850A1 (en) * 2014-07-11 2016-01-13 NELA Razvojni center d.o.o. Podruznica Vincarje Friction stir welding joint design and method for manufacturing cooling devices for electronic components
JP6471461B2 (en) * 2014-11-05 2019-02-20 日本軽金属株式会社 Manufacturing method of liquid cooling jacket
CN107000114B (en) * 2014-11-05 2020-08-25 日本轻金属株式会社 Method for manufacturing liquid cooling sleeve and liquid cooling sleeve
JP6471462B2 (en) * 2014-11-05 2019-02-20 日本軽金属株式会社 Manufacturing method of liquid cooling jacket
DE102015223413A1 (en) * 2015-11-26 2017-06-01 Zf Friedrichshafen Ag Copper-aluminum heat sinks
JP6309136B1 (en) * 2017-04-19 2018-04-11 三菱電機株式会社 Water-cooled cooler
DE102017112097B3 (en) * 2017-06-01 2018-07-12 Lisa Dräxlmaier GmbH METHOD OF ATTACHING AT LEAST ONE ELECTRIC CONTACT ELEMENT TO AN ALUMINUM RAIL FOR A MOTOR VEHICLE AND FRICTION WELDING CONNECTION
JP7210804B2 (en) * 2019-07-25 2023-01-23 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト Power semiconductor module and method of forming power semiconductor module
CN113507064B (en) * 2021-09-09 2021-11-26 江苏精一电气科技有限公司 Intelligent overheat protection device for electrical equipment
KR102665333B1 (en) * 2021-11-10 2024-05-13 동양피스톤 주식회사 Heat transfer module of motor controller for electric vehicle and its welding method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933066B2 (en) * 1977-08-01 1984-08-13 株式会社日立製作所 Flange welding method for oil-filled electrical equipment tank
JP2001205459A (en) * 2000-01-25 2001-07-31 Kobe Steel Ltd Friction stir joining equipment and friction stir joining method
JP5262822B2 (en) * 2009-02-23 2013-08-14 日本軽金属株式会社 Manufacturing method of liquid cooling jacket

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109454322A (en) * 2018-12-06 2019-03-12 南昌大学 Laying method is spelled in modularization explosive welding explosive loading unit and its modularization powder charge

Also Published As

Publication number Publication date
JP2013045781A (en) 2013-03-04

Similar Documents

Publication Publication Date Title
JP5729215B2 (en) Cooler and manufacturing method thereof
CN107000114B (en) Method for manufacturing liquid cooling sleeve and liquid cooling sleeve
JP6471461B2 (en) Manufacturing method of liquid cooling jacket
JP6372515B2 (en) Liquid cooling jacket manufacturing method and liquid cooling jacket
JP6471462B2 (en) Manufacturing method of liquid cooling jacket
JP6036715B2 (en) Manufacturing method of liquid cooling jacket
CN102317027B (en) Manufacturing method of liquid-cooled jacket
US9821419B2 (en) Method for manufacturing heat exchanger plate and method for friction stir welding
WO2015107716A1 (en) Method of manufacturing liquid-cooled jacket
JP6036714B2 (en) Manufacturing method of liquid cooling jacket
JP2010179349A (en) Method for manufacturing liquid-cooled jacket, and friction stir welding method
JP5862272B2 (en) Manufacturing method of liquid cooling jacket
JP5573973B2 (en) Manufacturing method of liquid cooling jacket
US11311963B2 (en) Method for producing liquid-cooled jacket
JP2009166079A (en) Manufacturing method of liquid-cooled jacket, and friction stir welding method
JP5962820B2 (en) Manufacturing method of liquid cooling jacket
US20170006735A1 (en) Cooling device and cooling device manufacturing method
JP2013252563A (en) Method for producing liquid-cooled jacket
JP7246161B2 (en) zygote
KR20160049797A (en) Appratus of cooling of transformer of housing
JP7440169B2 (en) Heat exchanger
JP2015233094A (en) Semiconductor module cooler
JP7526466B2 (en) Method for manufacturing metal structure
JP2021094566A (en) Manufacturing method of metal structure and metal structure
JP2012057906A (en) Heat transfer board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150323

R151 Written notification of patent or utility model registration

Ref document number: 5729215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151