JP5726083B2 - Zinc aluminum salt hydroxide - Google Patents

Zinc aluminum salt hydroxide Download PDF

Info

Publication number
JP5726083B2
JP5726083B2 JP2011535489A JP2011535489A JP5726083B2 JP 5726083 B2 JP5726083 B2 JP 5726083B2 JP 2011535489 A JP2011535489 A JP 2011535489A JP 2011535489 A JP2011535489 A JP 2011535489A JP 5726083 B2 JP5726083 B2 JP 5726083B2
Authority
JP
Japan
Prior art keywords
zinc
aluminum salt
component
reaction
salt hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011535489A
Other languages
Japanese (ja)
Other versions
JPWO2011043495A1 (en
Inventor
興東 王
興東 王
孝俊 佐藤
孝俊 佐藤
猛 今橋
猛 今橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Chemical Industry Co Ltd
Original Assignee
Kyowa Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Chemical Industry Co Ltd filed Critical Kyowa Chemical Industry Co Ltd
Priority to JP2011535489A priority Critical patent/JP5726083B2/en
Publication of JPWO2011043495A1 publication Critical patent/JPWO2011043495A1/en
Application granted granted Critical
Publication of JP5726083B2 publication Critical patent/JP5726083B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7715Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
    • C09K11/7727Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/006Compounds containing, besides zinc, two ore more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • C09K11/648Sulfates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7713Sulfates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7741Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Description

本発明は、亜鉛アルミニウム塩水酸化物に関する。   The present invention relates to zinc aluminum salt hydroxide.

フォトルミネッセンスやエレクトロルミネッセンスを示す化合物として、硫化亜鉛や、マンガンまたは銅をドープした硫化亜鉛が広く知られており(特許文献1)、ディスプレイ(無機ELパネル)や蓄光剤として用いられている。しかし、硫化亜鉛は耐光性が悪いため直射日光により暗色化する問題や毒性の問題があった。
また長残光蛍光体として、アルカリ土類アルミン酸塩を母体結晶とする化合物に賦活剤として希土類元素を添加する方法が知られている(特許文献2)。しかし、アルカリ土類アルミン酸塩は水溶性であるため用途が限定されている。
また特許文献3には、ハイドロタルサイト前駆体にナノ酸化亜鉛粒子を固定化した発光デバイス材料が開示されている。しかし、ハイドロタルサイトには耐酸性および分散性がなく粒子形状の制御も困難である。
As a compound exhibiting photoluminescence and electroluminescence, zinc sulfide, zinc sulfide doped with manganese or copper is widely known (Patent Document 1), and is used as a display (inorganic EL panel) or a phosphorescent agent. However, since zinc sulfide has poor light resistance, it has a problem of being darkened by direct sunlight and a problem of toxicity.
As a long afterglow phosphor, a method of adding a rare earth element as an activator to a compound having an alkaline earth aluminate as a base crystal is known (Patent Document 2). However, alkaline earth aluminates are limited in use because they are water soluble.
Patent Document 3 discloses a light emitting device material in which nano zinc oxide particles are immobilized on a hydrotalcite precursor. However, hydrotalcite does not have acid resistance and dispersibility, and it is difficult to control the particle shape.

非特許文献1のTable 1およびTable 2には、少量の亜鉛を含有するアルナイト(alunite:明礬石)が記載されている。しかし、亜鉛を含有するアルナイトがフォトルミネッセンスを示すことについてはこれまで全く知られておらず、該アルナイトを発光材料として用いる検討がなされたことはなかった。
一方、次世代発光ダイオードの材料としてはp−n接合の酸化亜鉛が広く知られており、特に課題であるp型酸化亜鉛の開発が進められているが、酸化亜鉛は耐酸性が弱いという致命的欠点を有している。また、酸化亜鉛がフォトルミネッセンスを発現するためには還元雰囲気中で焼成しなければならないという欠点があった。
Table 1 and Table 2 of Non-Patent Document 1 describe alunite containing a small amount of zinc. However, it has not been known at all that zinc containing alunite exhibits photoluminescence, and no studies have been made on using the alunite as a light emitting material.
On the other hand, pn junction zinc oxide is widely known as a material for next-generation light-emitting diodes, and the development of p-type zinc oxide, which is a particular problem, is in progress. Have disadvantages. Moreover, in order for zinc oxide to express photoluminescence, there was a drawback that it must be fired in a reducing atmosphere.

特開2006−336275号公報JP 2006-336275 A 特開2006−188566号公報Japanese Patent Laid-Open No. 2006-188565 特開2008−169054号公報JP 2008-169054 A

Keith M.Scott 「Solid solution in,and classification of,gossan−derived members of the alunite−Jarosite family,northwest Queensland,Australia」American Minealogist,vol.72,p.178−187,1987Keith M.M. Scott “Solid solution in, and classification of, gossan-derived members of the alunite-Jarosity family, Northwest Queensland, Australia. American. 72, p. 178-187, 1987

本発明の目的は、耐酸性に優れ、発光特性に優れた亜鉛アルミニウム塩水酸化物を提供することにある。また本発明の目的は、該亜鉛アルミニウム塩水酸化物を含む発光特性に優れた発光材料を提供することである。
上記目的を達成するために本発明者らは鋭意検討を重ねた結果、特定の組成を有する亜鉛アルミニウム塩水酸化物はフォトルミネッセンスを示し、耐酸性にも優れることを見いだし本発明を完成させるに至った。
An object of the present invention is to provide a zinc aluminum salt hydroxide having excellent acid resistance and excellent luminescent properties. Another object of the present invention is to provide a luminescent material having excellent luminescent properties including the zinc aluminum salt hydroxide.
In order to achieve the above object, the present inventors have conducted intensive studies, and as a result, found that a zinc aluminum salt hydroxide having a specific composition exhibits photoluminescence and excellent acid resistance, and has completed the present invention. It was.

かくして本発明は、
1. 下記式(1)で表わされる亜鉛アルミニウム塩水酸化物。
Thus, the present invention
1. A zinc aluminum salt hydroxide represented by the following formula (1).

(式中、Mは、Na、K、Ag、Ca2+、NH4+およびHよりなる群から選ばれる少なくとも1種の陽イオン、Mは、Cu2+、Ni2+、Sn4+、Zr4+、Fe2+、Fe3+およびTi4+よりなる群から選ばれる少なくとも1種の金属の陽イオン、Iは少なくとも1種の有機酸アニオン、Jは少なくとも1種の無機酸アニオンを表わし、式中a、b、c、m、n、x、yおよびzは、0.7≦a≦1.35、2.7≦b≦3.3、0≦c≦0.1、0≦m≦5、4≦n≦7、0<x≦0.85、1.7≦y≦2.4、0≦z≦0.5を満足し、但しM および/またはM は、さらに賦活剤として、Eu、Er、Mn、Ce、Ag、Ca、Sr、InおよびMgからなる群より選ばれる少なくとも1種の金属を含有する。)
. 前項1に記載の亜鉛アルミニウム塩水酸化物を200〜600℃で焼成した焼成物、
(Wherein M 1 is at least one cation selected from the group consisting of Na + , K + , Ag + , Ca 2+ , NH 4+ and H 3 O + , M 2 is Cu 2+ , Ni 2+ , At least one metal cation selected from the group consisting of Sn 4+ , Zr 4+ , Fe 2+ , Fe 3+ and Ti 4+ , I represents at least one organic acid anion, and J represents at least one inorganic acid anion. In the formula, a, b, c, m, n, x, y and z are 0.7 ≦ a ≦ 1.35, 2.7 ≦ b ≦ 3.3, 0 ≦ c ≦ 0.1, 0 ≦. satisfy m ≦ 5,4 ≦ n ≦ 7,0 < x ≦ 0.85,1.7 ≦ y ≦ 2.4,0 ≦ z ≦ 0.5, where M 1 and / or M 2 is further As the activator, a small amount selected from the group consisting of Eu, Er, Mn, Ce, Ag, Ca, Sr, In and Mg. Contains at least one metal.)
2 . A fired product obtained by firing the zinc aluminum salt hydroxide according to item 1 at 200 to 600 ° C .;

. (i) 硫酸アルミニウム(A成分)、水溶性亜鉛化合物(B成分)、アルカリ金属の硫酸塩若しくは硫酸アンモニウム(C成分)、Eu、Er、Mn、Ce、Ag、Ca、Sr、InおよびMgからなる群より選ばれる少なくとも1種の金属の可溶性塩、並びに必要に応じて有機酸(D成分)を混合する(混合工程)、
(ii)混合液に、アルカリ水溶液(X成分)を添加して反応させる(反応工程)、および
(iii)反応後、濾別、洗浄および乾燥する(精製工程)、
各工程を含む前項1に記載の亜鉛アルミニウム塩水酸化物の製造方法、
. アルカリ水溶液(X成分)による反応で得られた溶液を、室温〜250℃で1〜20時間水熱反応させる工程を含む前項に記載の製造方法、
. 前項1記載の亜鉛アルミニウム塩水酸化物を含む発光材料、
である。
3 . (I) Aluminum sulfate (component A), water-soluble zinc compound (component B), alkali metal sulfate or ammonium sulfate (component C) , Eu, Er, Mn, Ce, Ag, Ca, Sr, In, and Mg A soluble salt of at least one metal selected from the group, and an organic acid (component D) as necessary (mixing step),
(Ii) An alkaline aqueous solution (component X) is added to the mixed solution to cause a reaction (reaction step), and (iii) the reaction is filtered, washed, and dried (purification step).
The method for producing a zinc aluminum salt hydroxide according to item 1 including each step,
4 . The production method according to item 3 above, comprising a step of hydrothermal reaction of the solution obtained by the reaction with the alkaline aqueous solution (component X) at room temperature to 250 ° C. for 1 to 20 hours,
5 . A light emitting material comprising the zinc aluminum salt hydroxide according to the preceding item 1,
It is.

本発明の亜鉛アルミニウム塩水酸化物は、耐光性および耐酸性に優れる。また本発明の発光材料は、発光特性に優れる。   The zinc aluminum salt hydroxide of the present invention is excellent in light resistance and acid resistance. The light emitting material of the present invention is excellent in light emitting characteristics.

実施例1にかかる調製粒子No.4のSEM写真である。The prepared particles No. 1 according to Example 1. 4 is an SEM photograph of No. 4. 実施例1にかかる調製粒子No.4のX線回折図である。The prepared particles No. 1 according to Example 1. 4 is an X-ray diffraction diagram of FIG. 実施例1にかかる調製粒子No.12のSEM写真である。The prepared particles No. 1 according to Example 1. 12 SEM photographs. 実施例1にかかる調製粒子No.12のX線回折図である。The prepared particles No. 1 according to Example 1. FIG. 12 is an X-ray diffraction diagram of 12; 実施例1にかかる調製粒子No.17のSEM写真である。The prepared particles No. 1 according to Example 1. It is 17 SEM photographs. 実施例1にかかる調製粒子No.17のX線回折図である。The prepared particles No. 1 according to Example 1. FIG. 17 is an X-ray diffraction diagram of 17; 実施例1にかかる調製粒子No.25のSEM写真である。The prepared particles No. 1 according to Example 1. 25 SEM photographs. 実施例1にかかる調製粒子No.25のX線回折図である。The prepared particles No. 1 according to Example 1. FIG. 25 is an X-ray diffraction diagram of 25. 実施例1にかかる調製粒子No.29のSEM写真である。The prepared particles No. 1 according to Example 1. It is 29 SEM photographs. 実施例1にかかる調製粒子No.29のX線回折図である。The prepared particles No. 1 according to Example 1. FIG. 29 is an X-ray diffraction diagram of 29. 実施例1にかかる調製粒子No.29の粒度分布図である。The prepared particles No. 1 according to Example 1. FIG. 実施例1にかかる調製粒子No.42のSEM写真である。The prepared particles No. 1 according to Example 1. It is 42 SEM photographs. 実施例1にかかる調製粒子No.42のX線回折図である。The prepared particles No. 1 according to Example 1. 42 is an X-ray diffraction diagram of 42. FIG. 実施例1にかかる水熱処理温度の違い(調製粒子No.46〜50)による調製粒子のX線回折像の差を示す図である。It is a figure which shows the difference of the X-ray-diffraction image of the preparation particle | grains by the difference (preparation particle | grains No. 46-50) of the hydrothermal treatment temperature concerning Example 1. FIG. 参考調製粒子No.1の、観測波長が400nmであるときの励起スペクトルの図である。 Reference prepared particles No. 1 is a diagram of an excitation spectrum when an observation wavelength is 400 nm. 参考調製粒子No.1の、励起波長が335nmであるときの蛍光スペクトルの図である。 Reference prepared particles No. 1 is a diagram of a fluorescence spectrum when an excitation wavelength is 335 nm. 参考調製粒子No.1の、励起波長を250nmから20nmずつ大きくしたときの蛍光波長の変化を示す図である。 Reference prepared particles No. FIG. 1 is a diagram showing changes in fluorescence wavelength when the excitation wavelength is increased from 250 nm to 20 nm.

<亜鉛アルミニウム塩水酸化物>
本発明は、下記式(1)で表わされる亜鉛アルミニウム塩水酸化物である。
<Zinc aluminum salt hydroxide>
The present invention is a zinc aluminum salt hydroxide represented by the following formula (1).

(ただし、式中MはNa、K、Ag、Ca2+、NH4+およびHなる群から選ばれる少なくとも1種の陽イオン、Mは、Cu2+、Ni2+、Sn4+、Zr4+、Fe2+、Fe3+およびTi4+よりなる群から選ばれる少なくとも1種の金属の陽イオン、Iは少なくとも1種の有機酸アニオン、Jは少なくとも1種の無機酸アニオンを表わし、式中a、b、c、m、n、x、yおよびzは、0.7≦a≦1.35、2.7≦b≦3.3、0≦c≦0.1、0≦m≦5、4≦n≦7、0<x≦0.85、1.7≦y≦2.4、0≦z≦0.5を満足し、但しM および/またはM は、さらに賦活剤として、Eu、Er、Mn、Ce、Ag、Ca、Sr、InおよびMgからなる群より選ばれる少なくとも1種の金属を含有する。)
亜鉛アルミニウム塩水酸化物は、天然鉱物としても存在しアルナイト化合物とよばれているが、本発明のように亜鉛を高濃度で含有するアルナイト化合物はこれまでには知られておらず、また、亜鉛を含有するアルナイト化合物がフォトルミネッセンスを示すことも全く知られていなかった。
(Wherein, M 1 is at least one cation selected from the group consisting of Na + , K + , Ag + , Ca 2+ , NH 4+ and H 3 O + , and M 2 is Cu 2+ , Ni 2+ , Sn. 4+ , Zr 4+ , Fe 2+ , Fe 3+ and Ti 4+ selected from the group consisting of at least one metal cation, I represents at least one organic acid anion, J represents at least one inorganic acid anion, Where a, b, c, m, n, x, y and z are 0.7 ≦ a ≦ 1.35, 2.7 ≦ b ≦ 3.3, 0 ≦ c ≦ 0.1, 0 ≦ m ≦ 5, 4 ≦ n ≦ 7, 0 <x ≦ 0.85, 1.7 ≦ y ≦ 2.4, 0 ≦ z ≦ 0.5 , provided that M 1 and / or M 2 are further activated As the agent, a small amount selected from the group consisting of Eu, Er, Mn, Ce, Ag, Ca, Sr, In and Mg. Contains at least one metal.)
Zinc aluminum salt hydroxide exists as a natural mineral and is called an alunite compound. However, an alunite compound containing zinc at a high concentration as in the present invention has not been known so far. It was also not known at all that the alunite compound containing ss exhibited photoluminescence.

式(1)のMとしては、Na、H、KまたはNH が好ましい。Mとしては、Fe3+、Ti4+またはCu2+が好ましい。
式(1)中のa、b、c、m、n、x、yおよびzは、0.7≦a≦1.35、2.7≦b≦3.3、0≦c≦0.1、0≦m≦5、4≦n≦7、0.05≦x≦0.85、1.7≦y≦2.4、0.001≦z≦0.5の範囲であればよい。好ましい範囲は、0.9≦a≦1.2、2.8≦b≦3.2、0≦c≦0.1、0≦m≦2、5≦n≦6.5、0.1≦x≦0.85、1.8≦y≦2.2、0.01≦z≦0.4である。より好ましい範囲は、0.9≦a≦1.2、2.8≦b≦3.2、0≦m≦2、5≦n≦6.5、0.2≦x≦0.85、1.8≦y≦2.2、0.05≦z≦0.3である。さらに好ましい範囲は3.6≦a+b≦4.4、0≦m≦2、5≦n≦6.5、0.2≦x≦0.85、1.7≦y+z≦2.4である。特に好ましい範囲は3.6≦a+b≦4.4、0≦m≦2、5≦n≦6.5、0.2≦x≦0.85、1.8≦y+z≦2.2である。最も好ましい範囲は3.6≦a+b≦4.4、0≦m≦2、0.2≦x≦0.85、7.5≦y+n≦8.5である。
また式(1)のJは好ましくはSO 2−であるが、SO 2−の一部をPO 3−、NO 、CrO 2−またはAsO 3−等で置換してもよい。
As M 1 in the formula (1), Na + , H 3 O + , K + or NH 4 + is preferable. M 2 is preferably Fe 3+ , Ti 4+ or Cu 2+ .
A, b, c, m, n, x, y and z in the formula (1) are 0.7 ≦ a ≦ 1.35, 2.7 ≦ b ≦ 3.3, 0 ≦ c ≦ 0.1. 0 ≦ m ≦ 5, 4 ≦ n ≦ 7, 0.05 ≦ x ≦ 0.85, 1.7 ≦ y ≦ 2.4, 0.001 ≦ z ≦ 0.5. Preferred ranges are 0.9 ≦ a ≦ 1.2, 2.8 ≦ b ≦ 3.2, 0 ≦ c ≦ 0.1, 0 ≦ m ≦ 2, 5 ≦ n ≦ 6.5, 0.1 ≦ x ≦ 0.85, 1.8 ≦ y ≦ 2.2, and 0.01 ≦ z ≦ 0.4. More preferable ranges are 0.9 ≦ a ≦ 1.2, 2.8 ≦ b ≦ 3.2, 0 ≦ m ≦ 2, 5 ≦ n ≦ 6.5, 0.2 ≦ x ≦ 0.85, 1 .8 ≦ y ≦ 2.2 and 0.05 ≦ z ≦ 0.3. Further preferable ranges are 3.6 ≦ a + b ≦ 4.4, 0 ≦ m ≦ 2, 5 ≦ n ≦ 6.5, 0.2 ≦ x ≦ 0.85, 1.7 ≦ y + z ≦ 2.4. Particularly preferable ranges are 3.6 ≦ a + b ≦ 4.4, 0 ≦ m ≦ 2, 5 ≦ n ≦ 6.5, 0.2 ≦ x ≦ 0.85, and 1.8 ≦ y + z ≦ 2.2. The most preferable ranges are 3.6 ≦ a + b ≦ 4.4, 0 ≦ m ≦ 2, 0.2 ≦ x ≦ 0.85, and 7.5 ≦ y + n ≦ 8.5.
J in formula (1) is preferably SO 4 2− , but even if a part of SO 4 2− is replaced with PO 4 3− , NO 3 , CrO 4 2−, AsO 4 3− or the like. Good.

式(1)において有機酸アニオンを含有する亜鉛アルミニウム塩水酸化物は天然には存在しないが、WO2005/085168において本発明者らが提案した合成アルナイトにおいて初めて開示された。
式(1)のIとして選択される有機酸アニオンは、有機カルボン酸または有機オキシカルボン酸にもとづくアニオン群であることが好ましく、より好ましくは炭素数1〜15を有する有機カルボン酸または有機オキシカルボン酸にもとづくアニオン群から選ばれる少なくとも1種である。Iはさらに好ましくは、炭素数1〜15(特に2〜10)を有し、かつカルボキシル基を1〜4個有するヒドロキシカルボン酸にもとづくアニオン群から選ばれる少なくとも1種である。Iとして特に好ましくは蓚酸イオン、クエン酸イオン、リンゴ酸イオン、酒石酸イオン、グリセリン酸イオン、没食子酸イオンおよび乳酸イオンから選ばれる少なくとも1種であり、これらの中でも最も好ましくはクエン酸イオンである。
式(1)で表される水酸化物において、発光中心になっているのは亜鉛イオン(Zn2+)である。亜鉛アルミニウム塩水酸化物において、亜鉛イオンはアルミニウムと置換するかたちで構造中の酸素イオンとの間にきわめて緩いイオン結合を形成しており、亜鉛アルミニウム塩水酸化物中でII−VI族の酸化亜鉛半導体に近い構造を部分的に有していると考えられる。したがって本発明の亜鉛アルミニウム塩水酸化物のX線回折パターンにおいて酸化亜鉛を示すピークは現われない。
Although zinc aluminum salt hydroxide containing an organic acid anion in formula (1) does not exist in nature, it was first disclosed in the synthetic alunite proposed by the present inventors in WO2005 / 085168.
The organic acid anion selected as I in formula (1) is preferably an anion group based on an organic carboxylic acid or organic oxycarboxylic acid, more preferably an organic carboxylic acid or organic oxycarboxylic acid having 1 to 15 carbon atoms. It is at least one selected from the group of anions based on acids. I is more preferably at least one selected from the group of anions based on hydroxycarboxylic acids having 1 to 15 carbon atoms (particularly 2 to 10) and having 1 to 4 carboxyl groups. I is particularly preferably at least one selected from oxalate ion, citrate ion, malate ion, tartrate ion, glycerate ion, gallate ion and lactate ion, and among these, citrate ion is most preferred.
In the hydroxide represented by the formula (1), the light emission center is zinc ion (Zn 2+ ). In zinc aluminum salt hydroxide, zinc ions form a very loose ionic bond with oxygen ions in the structure by replacing aluminum, and zinc oxide semiconductors of II-VI group in zinc aluminum salt hydroxide It is thought that it has a structure that is close to. Therefore, no peak indicating zinc oxide appears in the X-ray diffraction pattern of the zinc aluminum salt hydroxide of the present invention.

式(1)で表される水酸化物は、純粋な酸化亜鉛ではないにもかかわらず、構造中に酸化亜鉛型構造を有しているため酸化亜鉛半導体に類似した光学特性を示す。しかも本発明の水酸化物は、耐酸性が強いという、通常の酸化亜鉛にない特長をも有している。
式(1)で表される水酸化物中のアルミニウムのモル数に対する亜鉛のモル数の比、モル比x/1−xは0.01〜0.4の範囲であることが好ましい。0.01未満では発光強度が小さく、0.4を超えると亜鉛アルミニウム塩水酸化物の構造が維持できなくなるため発光しない。
Although the hydroxide represented by the formula (1) is not pure zinc oxide, it has a zinc oxide type structure in the structure, and thus exhibits optical characteristics similar to those of a zinc oxide semiconductor. In addition, the hydroxide of the present invention has a feature not found in ordinary zinc oxide, such as strong acid resistance.
The ratio of the number of moles of zinc to the number of moles of aluminum in the hydroxide represented by the formula (1), the mole ratio x / 1-x is preferably in the range of 0.01 to 0.4. If it is less than 0.01, the light emission intensity is small, and if it exceeds 0.4, the structure of the zinc aluminum salt hydroxide cannot be maintained, and no light is emitted.

本発明の亜鉛アルミニウム塩水酸化物は、波長が少なくとも200〜280nmあるいは280〜380nmの範囲にある紫外線により励起される。すなわち、励起波長のピークが2種類存在する(バンドギャップは各4.27eVと2.97eV)。そして、これらいずれの励起波長によっても350〜600nmの範囲で発光するフォトルミネッセンス材料である。例えば335nmの光で励起したときの発光は400nmをピークとし350〜600nmの範囲に拡がるスペクトルを示す青緑色光である。
このことから、本発明の水酸化物は、よく知られた酸化亜鉛や硫化亜鉛と比べて発光スペクトルは約100nm短波長側へシフトしている。本発明の水酸化物の発光スペクトルは、賦活剤の種類、熱処理温度等によりさらに変化させることができる。例えばAgまたはMg等の添加により発光スペクトルのピークは短波長側へ、Cu等の添加により発光スペクトルのピークは長波長側へシフトする。
The zinc aluminum salt hydroxide of the present invention is excited by ultraviolet rays having a wavelength of at least 200 to 280 nm or 280 to 380 nm. That is, there are two types of excitation wavelength peaks (band gaps are 4.27 eV and 2.97 eV, respectively). And it is a photo-luminescence material which light-emits in the range of 350-600 nm by any of these excitation wavelengths. For example, light emission when excited with light of 335 nm is blue-green light having a spectrum with a peak at 400 nm and extending in the range of 350 to 600 nm.
Therefore, the emission spectrum of the hydroxide of the present invention is shifted to the short wavelength side by about 100 nm as compared with the well-known zinc oxide and zinc sulfide. The emission spectrum of the hydroxide of the present invention can be further changed depending on the type of activator, heat treatment temperature, and the like. For example, the addition of Ag or Mg shifts the emission spectrum peak to the short wavelength side, and the addition of Cu or the like shifts the emission spectrum peak to the long wavelength side.

<亜鉛アルミニウム塩水酸化物の製造方法>
本発明の亜鉛アルミニウム塩水酸化物は、
(i) 硫酸アルミニウム(A成分)、水溶性亜鉛化合物(B成分)、アルカリ金属の硫酸塩若しくは硫酸アンモニウム(C成分)、Eu、Er、Mn、Ce、Ag、Ca、Sr、InおよびMgからなる群より選ばれる少なくとも1種の金属の可溶性塩、並びに必要に応じて有機酸(D成分)を混合する(混合工程)、
(ii)混合液に、アルカリ水溶液(X成分)を添加して反応させる(反応工程)、および
(iii)反応後、濾別、洗浄および乾燥する(精製工程)、
各工程により製造することができる。
<Method for producing zinc aluminum salt hydroxide>
The zinc aluminum salt hydroxide of the present invention is
(I) Aluminum sulfate (component A), water-soluble zinc compound (component B), alkali metal sulfate or ammonium sulfate (component C) , Eu, Er, Mn, Ce, Ag, Ca, Sr, In, and Mg A soluble salt of at least one metal selected from the group, and an organic acid (component D) as necessary (mixing step),
(Ii) An alkaline aqueous solution (component X) is added to the mixed solution to cause a reaction (reaction step), and (iii) the reaction is filtered, washed, and dried (purification step).
It can be manufactured by each process.

(混合工程)
混合工程は、A〜C成分、賦活剤金属の可溶性塩および必要に応じD成分を室温で十分攪拌し混合する工程である。
A成分は硫酸アルミニウム(Al(SO)である。A成分は生成させる亜鉛アルミニウム塩水酸化物1モルにつき1.4〜1.6モル使用することが好ましい。
B成分は、酸化亜鉛粉末あるいは有機系または無機系の水溶性亜鉛化合物である。B成分として、酸化亜鉛粉末、硫酸亜鉛、硝酸亜鉛、塩化亜鉛、蓚酸亜鉛または酢酸亜鉛が好適である。B成分は生成させる亜鉛アルミニウム塩水酸化物1モルにつき0.01〜0.5モル、好ましくは0.1〜0.5モル、さらに好ましくは0.1〜0.3モル添加することが好ましい。
C成分は、アルカリ金属の硫酸塩若しくは硫酸アンモニウムである。アルカリ金属としてリチウム、ナトリウム、カリウム等が挙げられる。C成分として硫酸ナトリウム、硫酸カリウム等が挙げられる。C成分は生成させる亜鉛アルミニウム塩水酸化物1モルにつき0.01〜0.05モル添加することが好ましい。
D成分は、有機酸である。有機酸として、炭素数1〜15の脂肪族カルボン酸または炭素数1〜15の脂肪族オキシカルボン酸が挙げられる。具体的には、蓚酸、クエン酸、リンゴ酸、酒石酸、グリセリン酸、没食子酸、乳酸が挙げられる。D成分は生成させる亜鉛アルミニウム塩水酸化物1モルにつき0.01〜0.05モル添加することが好ましい。Zn/Alのモル比は、好ましくは0.01〜0.4、より好ましくは0.5〜2.0である。
(Mixing process)
The mixing step is a step of sufficiently stirring and mixing the components A to C , the soluble salt of the activator metal, and if necessary, the component D at room temperature.
A component is aluminum sulfate (Al 2 (SO 4) 3 ). The component A is preferably used in an amount of 1.4 to 1.6 mol per mol of zinc aluminum salt hydroxide to be produced.
Component B is zinc oxide powder or an organic or inorganic water-soluble zinc compound. As the component B, zinc oxide powder, zinc sulfate, zinc nitrate, zinc chloride, zinc oxalate or zinc acetate are suitable. B component is added in an amount of 0.01 to 0.5 mol, preferably 0.1 to 0.5 mol, more preferably 0.1 to 0.3 mol, per mol of zinc aluminum salt hydroxide to be produced.
The component C is an alkali metal sulfate or ammonium sulfate. Examples of the alkali metal include lithium, sodium, and potassium. Examples of the C component include sodium sulfate and potassium sulfate. The component C is preferably added in an amount of 0.01 to 0.05 mole per mole of zinc aluminum salt hydroxide to be produced.
D component is an organic acid. As an organic acid, a C1-C15 aliphatic carboxylic acid or a C1-C15 aliphatic oxycarboxylic acid is mentioned. Specific examples include succinic acid, citric acid, malic acid, tartaric acid, glyceric acid, gallic acid, and lactic acid. The component D is preferably added in an amount of 0.01 to 0.05 mole per mole of zinc aluminum salt hydroxide to be produced. The molar ratio of Zn / Al is preferably 0.01 to 0.4, more preferably 0.5 to 2.0.

(反応工程)
反応工程は、混合工程で得られた混合溶液に、アルカリ水溶液(X成分)を添加して反応させる工程である。アルカリ水溶液(X成分)として、水酸化ナトリウム、水酸化カルシウムおよびアンモニア等が挙げられる。
アルカリ水溶液(X成分)は生成させる亜鉛アルミニウム塩水酸化物1モルにつき0〜4.5モル添加することが好ましい。反応時間は、好ましくは0.5〜20時間、より好ましくは1〜10時間である。
アルカリ水溶液(X成分)による反応の後、反応液をさらに水熱反応させてもよい。水熱反応の温度は、好ましくは室温〜250℃、より好ましくは80〜200℃である。水熱反応の時間は、好ましくは0.5〜50時間、より好ましくは0.5〜2時間である。
水熱反応工程は省略することができる。水熱反応を行なわない場合には、亜鉛アルミニウム塩水酸化物は得られないがその前駆体を得ることができる。前駆体は、X線回折図において明確な亜鉛アルミニウム塩水酸化物のピークを示さないか、あるいはピークを示しても結晶度は低い。
(Reaction process)
The reaction step is a step in which an alkaline aqueous solution (component X) is added to the mixed solution obtained in the mixing step and reacted. Examples of the alkaline aqueous solution (X component) include sodium hydroxide, calcium hydroxide, and ammonia.
The alkaline aqueous solution (component X) is preferably added in an amount of 0 to 4.5 moles per mole of zinc aluminum salt hydroxide to be produced. The reaction time is preferably 0.5 to 20 hours, more preferably 1 to 10 hours.
After the reaction with the alkaline aqueous solution (component X), the reaction solution may be further hydrothermally reacted. The temperature of the hydrothermal reaction is preferably room temperature to 250 ° C, more preferably 80 to 200 ° C. The time of the hydrothermal reaction is preferably 0.5 to 50 hours, more preferably 0.5 to 2 hours.
The hydrothermal reaction step can be omitted. When the hydrothermal reaction is not performed, zinc aluminum salt hydroxide cannot be obtained, but its precursor can be obtained. The precursor does not show a clear zinc aluminum salt hydroxide peak in the X-ray diffraction pattern or has a low crystallinity even if it shows a peak.

(精製工程)
精製工程は、生成した亜鉛アルミニウム塩水酸化物粒子またはその前駆体を濾別、洗浄および乾燥する工程である。濾別は、真空ろ過法で行なうことが好ましい。洗浄は、イオン交換水を用いて行なうことが好ましい。乾燥は、80〜250℃で行なうことが好ましい。
(Purification process)
The purification step is a step of filtering, washing and drying the produced zinc aluminum salt hydroxide particles or precursors thereof. The filtration is preferably performed by a vacuum filtration method. The washing is preferably performed using ion exchange water. Drying is preferably performed at 80 to 250 ° C.

(賦活剤)
本発明の亜鉛アルミニウム塩水酸化物にさらに賦活剤を添加して発光効率を向上させたり、発光波長を調節することができる。
剤は、Eu、Er、Mn、Ce、Ag、Ca、Sr、InまたはMgである。すなわち、通常の酸化亜鉛発光材料と同様の賦活剤が有効である。賦活剤の添加モル数は亜鉛のモル数に対して0.01〜50%であることが好ましい。
賦活剤は反応の際に可溶性の硫酸化物、塩化物等の塩類、例えば硫酸マグネシウム、硫酸マンガン、硫酸インジウムまたは硫酸セリウム等として水溶性亜鉛化合物(B成分)とともに添加する。別の方法では亜鉛アルミニウム塩水酸化物と賦活剤の硫酸化物、塩化物、酸化物等を混合して焼成して添加できる。さらに別の方法では亜鉛アルミニウム塩水酸化物を、上記塩類の水溶液に浸漬処理したのち乾燥または焼成して添加できる。
(Activator)
An activator can be further added to the zinc aluminum salt hydroxide of the present invention to improve the luminous efficiency or to adjust the emission wavelength.
Vehicle activator is Eu, Er, Mn, Ce, Ag, Ca, Sr, In , or Mg. That is, the same activator as a normal zinc oxide light emitting material is effective. It is preferable that the addition mole number of an activator is 0.01 to 50% with respect to the mole number of zinc.
Activator soluble sulfated during the reaction, added salts such as chlorides, for example magnesium sulfate, manganese sulfate, together with water-soluble zinc compound as indium sulfate or cerium sulfate or the like (B component). In another method, zinc aluminum salt hydroxide and activator sulfate, chloride, oxide and the like can be mixed and baked for addition. In still another method, zinc aluminum salt hydroxide can be added by immersing it in an aqueous solution of the above-mentioned salts, followed by drying or baking.

(焼成処理)
式(1)で表される水酸化物は、焼成処理を行なわなくてもフォトルミネッセンスを発現するが、その蛍光寿命は、水熱処理温度および焼成温度により変化し、水熱処理温度を室温から250℃の範囲で上げる、あるいは焼成処理温度を100℃から600℃の範囲内で上げるにしたがって短くなっていく。製造における通常の乾燥(105℃以下)処理のみの場合、蛍光寿命は10秒程度の長さを示す。焼成処理は大気中でも還元雰囲気中(水素を供給しながら行なう)でもよい。
式(1)で表される水酸化物は、蛍光顔料として樹脂やゴムに添加して用いる際にも分散性が良好であり、このため機械的特性、例えば引張強度や伸び率において良好である。
また、式(1)で表される水酸化物を顔料として練りこんだ樹脂の色は乳白色であり、樹脂の黄変または白化は認められない。式(1)で表される水酸化物は水に不溶であるうえ耐酸性に優れており、強酸環境下においても粒子形状は変化せずその基本構造を保っている。
(Baking process)
The hydroxide represented by the formula (1) develops photoluminescence without performing the baking treatment, but its fluorescence lifetime varies depending on the hydrothermal treatment temperature and the firing temperature, and the hydrothermal treatment temperature is changed from room temperature to 250 ° C. Or the firing temperature is shortened as the firing temperature is raised within the range of 100 to 600 ° C. In the case of only ordinary drying (105 ° C. or lower) treatment in production, the fluorescence lifetime is about 10 seconds long. The firing process may be performed in the air or in a reducing atmosphere (while supplying hydrogen).
The hydroxide represented by the formula (1) has good dispersibility when used as a fluorescent pigment added to a resin or rubber, and therefore has good mechanical properties such as tensile strength and elongation. .
Moreover, the color of the resin kneaded with the hydroxide represented by the formula (1) as a pigment is milky white, and no yellowing or whitening of the resin is observed. The hydroxide represented by the formula (1) is insoluble in water and excellent in acid resistance, and the particle shape does not change even in a strong acid environment and maintains its basic structure.

以下、実施例で本発明の実施の形態を説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための方法を例示するものであって、本発明はフォトルミネッセンス材料を以下のものに特定しない。また、フォトルミネッセンス材料の合成において、酸化亜鉛として酸化亜鉛第1種(正同化学製)を用いた以外は和光純薬の試薬特級を用いた。   Hereinafter, embodiments of the present invention will be described with reference to examples. However, the embodiment described below exemplifies a method for embodying the technical idea of the present invention, and the present invention does not specify the photoluminescent material as follows. Moreover, in the synthesis | combination of the photo-luminescence material, the reagent special grade of Wako Pure Chemical Industries was used except having used the zinc oxide 1st type (made by Shodo Chemical) as zinc oxide.

(測定装置と方法)
本発明において用いた装置と方法は以下のとおりである。
(1)粒度分布、平均二次粒子径および粒度分布シャープ度DRの測定
方法:レーザー回折散乱法による。ただし、試料は、その粉末700mgを0.2wt%ヘキサメタリン酸ソーダ水溶液70mlに加えて、超音波で3分間分散処理した後、スターラーで攪拌しながら粒度分布を測定する。
装置:粒度分布計 マイクロトラックMT3300(Leed&Nortrup Instruments Company社製
(2)粒子形状の観察
SEM写真による。
装置:走査型電子顕微鏡 S−3000N(日立)
方法:加速電圧15kV、作動距離10mm、倍率2千倍、1万倍、2万倍
(3)X線回折の分析
装置:RINT2200VX線回折システム(理学電機(株)製)
方法:CU−Kα、角度(2θ):5〜65°、ステップ:0.02°、スキャンスピ−ド:4°/分、管電圧:40kV、管電流:20mV。
(4)蛍光測定
装置:Fluolog 3−22(堀場Jobin Yvon社製)
光源:キセノンランプ
検出器:PMT
スリット幅:励起側3nm、観測側3nm
(Measurement device and method)
The apparatus and method used in the present invention are as follows.
(1) Measuring method of particle size distribution, average secondary particle size and particle size distribution sharpness DR: by laser diffraction scattering method. However, for the sample, 700 mg of the powder was added to 70 ml of 0.2 wt% sodium hexametaphosphate aqueous solution, and after 3 minutes of dispersion treatment with ultrasonic waves, the particle size distribution was measured while stirring with a stirrer.
Apparatus: Particle size distribution analyzer Microtrac MT3300 (manufactured by Leed & Norrup Instruments Company (2) Observation of particle shape SEM photograph.
Apparatus: Scanning electron microscope S-3000N (Hitachi)
Method: Acceleration voltage 15 kV, working distance 10 mm, magnification 2,000 times, 10,000 times, 20,000 times (3) X-ray diffraction analyzer: RINT2200V X-ray diffraction system (manufactured by Rigaku Corporation)
Method: CU-Kα, angle (2θ): 5 to 65 °, step: 0.02 °, scan speed: 4 ° / min, tube voltage: 40 kV, tube current: 20 mV.
(4) Fluorescence measuring device: Fluorog 3-22 (manufactured by Horiba Jobin Yvon)
Light source: Xenon lamp Detector: PMT
Slit width: excitation side 3nm, observation side 3nm

参考例
亜鉛アルミニウム塩水酸化物粒子(参考調製粒子No.1)を以下の方法に従って合成した。
参考調製粒子No.1>
(混合工程)
1.037モル/Lの硫酸アルミニウム(Al(SO)水溶液173.58mL、酸化亜鉛(ZnO、第1種/正同化学製)7.33g、硫酸ナトリウム(NaSO)25.6gおよび蓚酸(H・2HO)2.27gの混合溶液600mLを25℃で30分攪拌した。攪拌後のpHは3.4(反応モル比[Al]:[Zn]は1:0.25であった。
(反応工程)
次に、該混合溶液に3.38Nの水酸化ナトリウム水溶液106.8mLを添加して25℃で1時間攪拌して反応させた。反応後のpHは3.4(26.7℃)であった。その後さらに170℃で2時間水熱反応させた。26.7℃)であった。
(精製工程)
生成した粒子を濾別、洗浄および乾燥(105℃)することにより含水粉末(参考調製粒子No.1)を得た。参考調製粒子No.1の組成を表5に示す。
Reference Example Zinc aluminum salt hydroxide particles ( reference prepared particles No. 1) were synthesized according to the following method.
< Reference Preparation Particle No. 1>
(Mixing process)
1.037 mol / L aluminum sulfate (Al 2 (SO 4 ) 3 ) aqueous solution 173.58 mL, zinc oxide (ZnO, first type / manufactured by Shodo Chemical) 7.33 g, sodium sulfate (Na 2 SO 4 ) 25 .6 g and 600 mL of a mixed solution of 2.27 g of oxalic acid (H 2 C 2 O 4 .2H 2 O) were stirred at 25 ° C. for 30 minutes. The pH after stirring was 3.4 (reaction molar ratio [Al]: [Zn] was 1: 0.25).
(Reaction process)
Next, 106.8 mL of 3.38N sodium hydroxide aqueous solution was added to the mixed solution, and the mixture was stirred at 25 ° C. for 1 hour to be reacted. The pH after the reaction was 3.4 (26.7 ° C.). Thereafter, a hydrothermal reaction was further performed at 170 ° C. for 2 hours. 26.7 ° C.).
(Purification process)
The produced particles were separated by filtration, washed and dried (105 ° C.) to obtain a water-containing powder ( reference prepared particles No. 1). Reference prepared particles No. The composition of 1 is shown in Table 5.

実施例1(亜鉛アルミニウム塩酸化物粒子の合成)
<調製粒子No.2〜8>
(混合工程)
1.037モル/Lの硫酸アルミニウム水溶液173.58 mL、酸化亜鉛7.33g、硫酸マンガン(MnSO・HO)15.68g、硫酸ナトリウム12.8g、硝酸ナトリウム(NaNO)7.65gおよび蓚酸2.27gの混合溶液600mLを25℃で30分攪拌した。
(反応工程)
次に、該混合溶液に3.38Nの水酸化ナトリウム水溶液106.8mLを添加して25℃で1時間攪拌して反応させた。反応後のpHは3.98(27.3℃)であった。その後さらに170℃で2時間水熱反応させた。水熱反応後のpHは1.42(28.4℃)であった。反応モル比[Al]:[Zn]:[Mn]は1:0.25:0.25であった。
(精製工程)
生成した粒子を濾別、洗浄および乾燥(105℃)することにより粒子の含水粉末(調製粒子No.2)を得た。調製粒子No.2の組成を表5に示す。
反応モル比を変更して同様な反応により調製粒子No.3〜8を得た。調製粒子No.3〜8の組成を表5に示す。調製粒子No.4のSEM写真およびX線回折図をそれぞれ図1および図2に示す。
Example 1 (Synthesis of zinc aluminum salt oxide particles)
<Prepared Particle No. 2-8>
(Mixing process)
1.037 mol / L aluminum sulfate aqueous solution 173.58 mL, zinc oxide 7.33 g, manganese sulfate (MnSO 4 · H 2 O) 15.68 g, sodium sulfate 12.8 g, sodium nitrate (NaNO 3 ) 7.65 g And 600 mL of a mixed solution of 2.27 g of oxalic acid was stirred at 25 ° C. for 30 minutes.
(Reaction process)
Next, 106.8 mL of 3.38N sodium hydroxide aqueous solution was added to the mixed solution, and the mixture was stirred at 25 ° C. for 1 hour to be reacted. The pH after the reaction was 3.98 (27.3 ° C.). Thereafter, a hydrothermal reaction was further performed at 170 ° C. for 2 hours. The pH after the hydrothermal reaction was 1.42 (28.4 ° C.). The reaction molar ratio [Al]: [Zn]: [Mn] was 1: 0.25: 0.25.
(Purification process)
The generated particles were separated by filtration, washed and dried (105 ° C.) to obtain a water-containing powder (prepared particles No. 2). Preparation particle No. The composition of 2 is shown in Table 5.
By changing the reaction molar ratio, the prepared particles No. 3-8 were obtained. Preparation particle No. The composition of 3-8 is shown in Table 5. Preparation particle No. The SEM photograph and X-ray diffraction pattern of No. 4 are shown in FIGS. 1 and 2, respectively.

<調製粒子No.9〜15>
(混合工程)
1.037モル/Lの硫酸アルミニウム水溶液173.58mL、1モル/Lの塩化亜鉛350mL、塩化ストロンチウム(SrCl・HO)4.85gおよび硫酸ナトリウム12.8g、燐酸水素ナトリウム(NaHPO)12.78gの混合溶液600mLを25℃で30分攪拌した。
(反応工程)
次に、該混合溶液に3.38Nの水酸化ナトリウム水溶液210mLを添加して25℃で16時間攪拌して反応させた。反応後のpHは2.47(27.8℃)であった。その後さらに170℃で5時間水熱反応させた。水熱反応後のpHは3.9(27℃)であった。反応モル比[Al]:[Zn]:[Sr]は1:1:0.05であった。
(精製工程)
生成した粒子を濾別、洗浄および乾燥(105℃)することにより下記式で表される粒子の含水粉末(調製粒子No.11)を得た。調製粒子No.11の組成を表5に示す。
塩化ストロンチウムのかわりに塩化カルシウム(CaCl・2HO)、塩化バリウム(BaCl・2HO)、硫酸セリウム(Ce(SO・4HO)、硫酸インジウム(In(SO、塩化ユーロピウム(Eu(Cl)・6HO)および蓚酸エルビウム(Er(C・6HO)を用いて同様の反応を行ない調製粒子No.9、10、12〜15を得た。調製粒子No.9、10、12〜15の組成を表5に示す。調製粒子No.12のSEM写真およびX線回折図をそれぞれ図3および図4に示す。
<Prepared Particle No. 9-15>
(Mixing process)
1.037 mol / L aluminum sulfate aqueous solution 173.58 mL, 1 mol / L zinc chloride 350 mL, strontium chloride (SrCl 2 .H 2 O) 4.85 g and sodium sulfate 12.8 g, sodium hydrogen phosphate (Na 2 HPO 4 ) 600 mL of 12.78 g of the mixed solution was stirred at 25 ° C. for 30 minutes.
(Reaction process)
Next, 210 mL of a 3.38N sodium hydroxide aqueous solution was added to the mixed solution, and the mixture was reacted at 25 ° C. for 16 hours. The pH after the reaction was 2.47 (27.8 ° C.). Thereafter, a hydrothermal reaction was further performed at 170 ° C. for 5 hours. The pH after the hydrothermal reaction was 3.9 (27 ° C.). The reaction molar ratio [Al]: [Zn]: [Sr] was 1: 1: 0.05.
(Purification process)
The produced particles were separated by filtration, washed and dried (105 ° C.) to obtain a water-containing powder of particles represented by the following formula (prepared particle No. 11). Preparation particle No. The composition of 11 is shown in Table 5.
Instead of strontium chloride, calcium chloride (CaCl 2 · 2H 2 O), barium chloride (BaCl 2 · 2H 2 O), cerium sulfate (Ce (SO 4 ) 2 · 4H 2 O), indium sulfate (In 2 (SO 4 ) 3 , europium chloride (Eu (Cl) 3 .6H 2 O) and erbium oxalate (Er 2 (C 2 O 4 ) 3 · 6H 2 O) were used to prepare particles No. 9, 10 12 to 15. Compositions of prepared particles No. 9, 10, and 12 to 15 are shown in Table 5. An SEM photograph and an X-ray diffraction diagram of the prepared particles No. 12 are shown in FIGS.

<調製粒子No.16〜19>
(混合工程)
1.037モル/Lの硫酸アルミニウム水溶液173.58mL、酸化亜鉛7.33g、硫酸マグネシウム(Mg(SO))11.4g、硫酸ナトリウム25.6gおよび蓚酸2.27gの混合溶液600mLを25℃で30分攪拌した。
(反応工程)
次に、該混合溶液に3.38Nの水酸化ナトリウム水溶液106.8mLを添加して25℃で16時間攪拌して反応させた。反応後のpHは3.98(27.3℃)であった。その後さらに170℃で2時間水熱反応させた。水熱反応後のpHは1.42(28.4℃)であった。反応モル比[Al]:[Zn]:[Mg]は1:0.25:0.25であった。
(精製工程)
生成した粒子を濾別、洗浄および乾燥(105℃)することにより下記式で表される粒子の含水粉末(調製粒子No.16)を得た。調製粒子No.16の組成を表5に示す。
反応モル比を変更して同様な反応により調製粒子No.17〜19を得た。調製粒子No.17〜19の組成を表5に示す。調製粒子No.17のSEM写真およびX線回折図をそれぞれ図5および図6に示す。
<Prepared Particle No. 16-19>
(Mixing process)
173.58 mL of 1.037 mol / L aluminum sulfate aqueous solution, 7.33 g of zinc oxide, 11.4 g of magnesium sulfate (Mg (SO 4 )), 25.6 g of sodium sulfate, and 600 mL of a mixed solution of 2.27 g of oxalic acid were added at 25 ° C. For 30 minutes.
(Reaction process)
Next, 106.8 mL of a 3.38N aqueous sodium hydroxide solution was added to the mixed solution, and the mixture was reacted at 25 ° C. for 16 hours. The pH after the reaction was 3.98 (27.3 ° C.). Thereafter, a hydrothermal reaction was further performed at 170 ° C. for 2 hours. The pH after the hydrothermal reaction was 1.42 (28.4 ° C.). The reaction molar ratio [Al]: [Zn]: [Mg] was 1: 0.25: 0.25.
(Purification process)
The produced particles were separated by filtration, washed and dried (105 ° C.) to obtain water-containing powder (prepared particles No. 16) of particles represented by the following formula. Preparation particle No. The composition of 16 is shown in Table 5.
By changing the reaction molar ratio, the prepared particles No. 17-19 were obtained. Preparation particle No. Table 5 shows the compositions of 17-19. Preparation particle No. 17 SEM photographs and X-ray diffraction patterns are shown in FIGS. 5 and 6, respectively.

<調製粒子No.20〜25>
反応モル比[Al]:[Zn]:[Mg]を1:0.5:0.0.05に固定し、水熱反応温度を50〜100℃の間で変えて調製粒子No.16と同様の反応をおこない調製粒子No.20〜25を得た。調製粒子No.20〜25の組成を表5に示す。調製粒子No.25のSEM写真およびX線回折図をそれぞれ図7および図8に示す。
<Prepared Particle No. 20-25>
The reaction molar ratio [Al]: [Zn]: [Mg] is fixed at 1: 0.5: 0.0.05, and the hydrothermal reaction temperature is changed between 50 to 100 ° C. No. 16 was reacted and the prepared particle No. 20-25 were obtained. Preparation particle No. Table 5 shows the composition of 20-25. Preparation particle No. 25 SEM photographs and X-ray diffraction patterns are shown in FIGS. 7 and 8, respectively.

<調製粒子No.27〜50>
調製粒子No.〜25を焼成して調製粒子No.27〜50を得た。参考調整粒子No.1を焼成して参考調整粒子No.26を得た。調製粒子No.27〜50の組成および参考調整粒子No.26の組成を表6に示す。調製粒子No.29のSEM写真、X線回折図および粒度分布図をそれぞれ図9、図10および図11に示す。調製粒子No.42のSEM写真およびX線回折図をそれぞれ図12および図13に示す。水熱処理温度の違い(調製粒子No.46〜50)による調製粒子のX線回折像の差を図14に示す。
以上の結果、特にX線回折図からわかるように、本発明の亜鉛アルミニウム塩水酸化物は、アルナイト類化合物特有のX線回折像を示しており、酸化亜鉛特有の回折ピークは現われていない。このことは、本発明の亜鉛アルミニウム塩水酸化物において亜鉛イオンはアルミニウムイオンと置換して、酸化亜鉛類似の構造を形成していることを示唆している。
また、図14からわかるように、本発明の亜鉛アルミニウム塩水酸化物は、60℃以下の水熱処理温度では、アルナイト類化合物特有のX線回折像を示さずアモルファスである。これは、亜鉛アルミニウム塩水酸化物の前駆体と考えられる。このようなアモルファスの亜鉛アルミニウム塩水酸化物中においては、酸化亜鉛は微小な結晶として良好な分散状態で存在しているものと考えられる。
調製粒子No.2〜25、27〜50、参考調整粒子No.1および26の反応条件および焼成条件を表1〜4に示す。ただし焼成はすべて1時間行なった。
<Prepared Particle No. 27-50>
Preparation particle No. Nos. 2 to 25 are fired to prepare particles No. 27 was obtained to 50. Reference adjustment particle No. No. 1 was calcined and the reference control particle No. 1 was fired. 26 was obtained. Preparation particle No. 27-50 of the composition and reference adjust particle No. The composition of 26 is shown in Table 6. Preparation particle No. 29 SEM photographs, X-ray diffraction patterns and particle size distribution diagrams are shown in FIGS. 9, 10 and 11, respectively. Preparation particle No. The SEM photograph and X-ray diffraction pattern of 42 are shown in FIGS. 12 and 13, respectively. FIG. 14 shows the difference in the X-ray diffraction image of the prepared particles due to the difference in hydrothermal treatment temperature (prepared particles No. 46 to 50).
As a result of the above, as can be seen from the X-ray diffraction diagram, the zinc aluminum salt hydroxide of the present invention shows an X-ray diffraction image peculiar to an alunite compound, and a diffraction peak peculiar to zinc oxide does not appear. This suggests that zinc ions are substituted with aluminum ions in the zinc aluminum salt hydroxide of the present invention to form a structure similar to zinc oxide.
Further, as can be seen from FIG. 14, the zinc aluminum salt hydroxide of the present invention is amorphous at the hydrothermal treatment temperature of 60 ° C. or less and does not show an X-ray diffraction image peculiar to an alunite compound. This is considered a precursor of zinc aluminum salt hydroxide. In such an amorphous zinc aluminum salt hydroxide, it is considered that zinc oxide exists in a finely dispersed state as fine crystals.
Preparation particle No. 2 to 25, 27 to 50, Reference Adjustment Particle No. The reaction conditions and firing conditions for 1 and 26 are shown in Tables 1-4. However, all firing was performed for 1 hour.

参考例2(蛍光特性の評価)
参考調製粒子No.1につき蛍光測定を行なった。観測波長が400nmであるときの励起スペクトルを図15に示す。励起波長が335nmであるときの蛍光スペクトルを図16に示す。励起波長を250nmから20nmずつ大きくしたときの蛍光波長の変化を図17に示す。
鉛アルミニウム塩水酸化物は、従来の発光材料である酸化亜鉛や硫化亜鉛より発光波長が短波長側にシフトしているが、2種類の励起波長を持つ等、基本的には酸化亜鉛を発光中心とする発光材料であることがわかる。
Reference Example 2 (Evaluation of fluorescence characteristics)
Reference prepared particles No. Fluorescence measurement was performed per unit. The excitation spectrum when the observation wavelength is 400 nm is shown in FIG. FIG. 16 shows the fluorescence spectrum when the excitation wavelength is 335 nm. FIG. 17 shows changes in the fluorescence wavelength when the excitation wavelength is increased from 250 nm to 20 nm.
Zinc aluminum salt hydroxide is the emission wavelength from zinc oxide and zinc sulfide which is a conventional light-emitting material is shifted to the short wavelength side, 2 etc. with the type of excitation wavelength, basically emitting zinc oxide It can be seen that the light-emitting material is the center.

実施例3(残光時間の測定)
調製粒子No.2〜25、27〜50および参考調整粒子No.1および26につき、ブラックライト(ピーク波長352nm:FL20S−BLB/東芝)を10分間照射後の残光時間を測定した。結果を表1〜4に示す。
Example 3 (Measurement of afterglow time)
Adjustment made particles No. 2 to 25, 27 to 50 and reference control particles No. For 1 and 26 , the afterglow time after irradiation with black light (peak wavelength: 352 nm: FL20S-BLB / Toshiba) for 10 minutes was measured. The results are shown in Tables 1-4.

実施例4(耐酸性の評価)
30℃の1Nの塩酸50mL中に、調製粒子No.2を懸濁させ、24時間攪拌した。ろ過後のろ液をICPで分析したところZn濃度は10ppmであった。
酸化亜鉛(ZnO 第1種/正同化学製)について同様のテストを行なったところZn濃度は15900ppmであった。本発明の亜鉛アルミニウム塩水酸化物は酸化亜鉛に比べて耐酸性に優れていることがわかる。
Example 4 (Evaluation of acid resistance)
In 50 mL of 1N hydrochloric acid at 30 ° C., prepared particles No. 2 was suspended and stirred for 24 hours. When the filtrate after filtration was analyzed by ICP, the Zn concentration was 10 ppm.
When a similar test was performed on zinc oxide (ZnO type 1 / manufactured by Shodo Chemical Co., Ltd.), the Zn concentration was 15900 ppm. It turns out that the zinc aluminum salt hydroxide of this invention is excellent in acid resistance compared with zinc oxide.

本発明の亜鉛アルミニウム塩水酸化物は、細胞の蛍光標識、LED発光装置、無機EL、色素増感太陽電池電極、長残光蛍光体(りん光物質)、プラズマディスプレイ、電界放出ディスプレイ、ブラウン管あるいは蛍光表示管等の発光素子に好適に用いることができる。
The zinc aluminum salt hydroxide of the present invention is a fluorescent label for cells, LED light emitting device, inorganic EL, dye-sensitized solar cell electrode, long afterglow phosphor (phosphorescent substance), plasma display, field emission display, cathode ray tube or fluorescence. It can be suitably used for a light emitting element such as a display tube.

Claims (5)

下記式(1)で表わされる亜鉛アルミニウム塩水酸化物。
(式中、Mは、Na、K、Ag、Ca2+、NH4+およびHよりなる群から選ばれる少なくとも1種の陽イオン、Mは、Cu2+、Ni2+、Sn4+、Zr4+、Fe2+、Fe3+およびTi4+よりなる群から選ばれる少なくとも1種の金属の陽イオン、Iは少なくとも1種の有機酸アニオン、Jは少なくとも1種の無機酸アニオンを表わし、式中a、b、c、m、n、x、yおよびzは、0.7≦a≦1.35、2.7≦b≦3.3、0≦c≦0.1、0≦m≦5、4≦n≦7、0<x≦0.85、1.7≦y≦2.4、0≦z≦0.5を満足し、但しM および/またはM は、さらに賦活剤として、Eu、Er、Mn、Ce、Ag、Ca、Sr、InおよびMgからなる群より選ばれる少なくとも1種の金属を含有する。)
A zinc aluminum salt hydroxide represented by the following formula (1).
(Wherein M 1 is at least one cation selected from the group consisting of Na + , K + , Ag + , Ca 2+ , NH 4+ and H 3 O + , M 2 is Cu 2+ , Ni 2+ , At least one metal cation selected from the group consisting of Sn 4+ , Zr 4+ , Fe 2+ , Fe 3+ and Ti 4+ , I represents at least one organic acid anion, and J represents at least one inorganic acid anion. In the formula, a, b, c, m, n, x, y and z are 0.7 ≦ a ≦ 1.35, 2.7 ≦ b ≦ 3.3, 0 ≦ c ≦ 0.1, 0 ≦. satisfy m ≦ 5,4 ≦ n ≦ 7,0 < x ≦ 0.85,1.7 ≦ y ≦ 2.4,0 ≦ z ≦ 0.5, where M 1 and / or M 2 is further As the activator, a small amount selected from the group consisting of Eu, Er, Mn, Ce, Ag, Ca, Sr, In and Mg. Contains at least one metal.)
請求項1に記載の亜鉛アルミニウム塩水酸化物を200〜600℃で焼成した焼成物。 A fired product obtained by firing the zinc aluminum salt hydroxide according to claim 1 at 200 to 600 ° C. (i) 硫酸アルミニウム(A成分)、水溶性亜鉛化合物(B成分)、アルカリ金属の硫酸塩若しくは硫酸アンモニウム(C成分)、Eu、Er、Mn、Ce、Ag、Ca、Sr、InおよびMgからなる群より選ばれる少なくとも1種の金属の可溶性塩、並びに必要に応じて有機酸(D成分)を混合する(混合工程)、
(ii)混合液に、アルカリ水溶液(X成分)を添加して反応させる(反応工程)、および
(iii)反応後、濾別、洗浄および乾燥する(精製工程)、
各工程を含む請求項1に記載の亜鉛アルミニウム塩水酸化物の製造方法。
(I) Aluminum sulfate (component A), water-soluble zinc compound (component B), alkali metal sulfate or ammonium sulfate (component C) , Eu, Er, Mn, Ce, Ag, Ca, Sr, In, and Mg A soluble salt of at least one metal selected from the group, and an organic acid (component D) as necessary (mixing step),
(Ii) An alkaline aqueous solution (component X) is added to the mixed solution to cause a reaction (reaction step), and (iii) the reaction is filtered, washed, and dried (purification step).
The manufacturing method of the zinc aluminum salt hydroxide of Claim 1 including each process.
アルカリ水溶液(X成分)による反応で得られた溶液を、室温〜250℃で1〜20時間水熱反応させる工程を含む請求項に記載の製造方法。 The manufacturing method of Claim 3 including the process of hydrothermally reacting the solution obtained by reaction by aqueous alkali solution (X component) at room temperature-250 degreeC for 1 to 20 hours. 請求項1記載の亜鉛アルミニウム塩水酸化物を含む発光材料。   A light emitting material comprising the zinc aluminum salt hydroxide according to claim 1.
JP2011535489A 2009-10-09 2010-10-08 Zinc aluminum salt hydroxide Expired - Fee Related JP5726083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011535489A JP5726083B2 (en) 2009-10-09 2010-10-08 Zinc aluminum salt hydroxide

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009235273 2009-10-09
JP2009235273 2009-10-09
JP2011535489A JP5726083B2 (en) 2009-10-09 2010-10-08 Zinc aluminum salt hydroxide
PCT/JP2010/068221 WO2011043495A1 (en) 2009-10-09 2010-10-08 Hydroxide of zinc aluminum salt

Publications (2)

Publication Number Publication Date
JPWO2011043495A1 JPWO2011043495A1 (en) 2013-03-04
JP5726083B2 true JP5726083B2 (en) 2015-05-27

Family

ID=43856939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011535489A Expired - Fee Related JP5726083B2 (en) 2009-10-09 2010-10-08 Zinc aluminum salt hydroxide

Country Status (3)

Country Link
JP (1) JP5726083B2 (en)
TW (1) TW201118151A (en)
WO (1) WO2011043495A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01178543A (en) * 1987-12-29 1989-07-14 Nippon Synthetic Chem Ind Co Ltd:The Halogenated thermoplastic resin composition
JPH05246711A (en) * 1991-08-16 1993-09-24 Amoco Corp Simplified preparation of hydrotalcite-type clays
JPH101569A (en) * 1996-06-17 1998-01-06 Nippon Synthetic Chem Ind Co Ltd:The Resin composition and its production and use
JPH11222494A (en) * 1997-11-21 1999-08-17 Sakai Chem Ind Co Ltd Hydrotalcite compounds containing metal complex, antimicrobial agent, antimicrobial resin composition and antimicrobial coating composition
JPH11240886A (en) * 1997-11-21 1999-09-07 Sakai Chem Ind Co Ltd Metal complex-containing hydrotalcite compound, antibacterial agent, antibacterial resin composition and antibactirial coating material composition
JPH11292534A (en) * 1997-11-21 1999-10-26 Sakai Chem Ind Co Ltd Metallic complex-containing hydrotalcite compound, antibacterial agent, antibacterial resin composition and antibacterial coating material composition
JP2000239533A (en) * 1999-02-22 2000-09-05 Kyowa Chem Ind Co Ltd Antibiotic polymer composition
WO2001004054A1 (en) * 1999-07-08 2001-01-18 Mizusawa Industrial Chemicals, Ltd. Zinc-modified composite polybasic salt, process for producing the same, and use
JP2006188566A (en) * 2004-12-28 2006-07-20 Tokyo Institute Of Technology Fused functional composite particle and picturing system
WO2008061665A1 (en) * 2006-11-21 2008-05-29 Nabaltec Ag Novel zinc-containing calcium-aluminium double salts
JP2010160368A (en) * 2009-01-09 2010-07-22 Canon Inc Negative charging toner, image forming device, and developing method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01178543A (en) * 1987-12-29 1989-07-14 Nippon Synthetic Chem Ind Co Ltd:The Halogenated thermoplastic resin composition
JPH05246711A (en) * 1991-08-16 1993-09-24 Amoco Corp Simplified preparation of hydrotalcite-type clays
JPH101569A (en) * 1996-06-17 1998-01-06 Nippon Synthetic Chem Ind Co Ltd:The Resin composition and its production and use
JPH11222494A (en) * 1997-11-21 1999-08-17 Sakai Chem Ind Co Ltd Hydrotalcite compounds containing metal complex, antimicrobial agent, antimicrobial resin composition and antimicrobial coating composition
JPH11240886A (en) * 1997-11-21 1999-09-07 Sakai Chem Ind Co Ltd Metal complex-containing hydrotalcite compound, antibacterial agent, antibacterial resin composition and antibactirial coating material composition
JPH11292534A (en) * 1997-11-21 1999-10-26 Sakai Chem Ind Co Ltd Metallic complex-containing hydrotalcite compound, antibacterial agent, antibacterial resin composition and antibacterial coating material composition
JP2000239533A (en) * 1999-02-22 2000-09-05 Kyowa Chem Ind Co Ltd Antibiotic polymer composition
WO2001004054A1 (en) * 1999-07-08 2001-01-18 Mizusawa Industrial Chemicals, Ltd. Zinc-modified composite polybasic salt, process for producing the same, and use
JP2006188566A (en) * 2004-12-28 2006-07-20 Tokyo Institute Of Technology Fused functional composite particle and picturing system
WO2008061665A1 (en) * 2006-11-21 2008-05-29 Nabaltec Ag Novel zinc-containing calcium-aluminium double salts
JP2010160368A (en) * 2009-01-09 2010-07-22 Canon Inc Negative charging toner, image forming device, and developing method

Also Published As

Publication number Publication date
TW201118151A (en) 2011-06-01
WO2011043495A1 (en) 2011-04-14
JPWO2011043495A1 (en) 2013-03-04

Similar Documents

Publication Publication Date Title
Shang et al. (Zn, Mg) 2 GeO 4: Mn 2+ submicrorods as promising green phosphors for field emission displays: hydrothermal synthesis and luminescence properties
EP2100943A1 (en) ABOS:M-based phosphors and light sources containing these phosphors
JP5578739B2 (en) Alkaline earth metal silicate phosphor and method for producing the same
US6187225B1 (en) Blue phosphor for plasma display and lamp application and method of making
Dhiren Meetei et al. Facile synthesis, structural characterization, and photoluminescence mechanism of Dy3+ doped YVO4 and Ca2+ co-doped YVO4: Dy3+ nano-lattices
KR101148998B1 (en) Phosphor
JP5034033B2 (en) Plate-like phosphor and display using it
Kaczmarek et al. Nano-and microsized Eu 3+ and Tb 3+-doped lanthanide hydroxycarbonates and oxycarbonates. The influence of glucose and fructose as stabilizing ligands
WO2010119800A1 (en) Red phosphor and method for producing same
US5989454A (en) Method for making small particle blue emitting lanthanum phosphate based phosphors
JP4923242B2 (en) Manufacturing method of willemite crystal and manufacturing method of fluorescent substance using willemite crystal as mother crystal
JP2010520334A (en) Method for producing red luminescent borate phosphor
JP5726083B2 (en) Zinc aluminum salt hydroxide
Fernández-Osorio et al. Europium-doped ZnAl2O4 nanophosphors: structural and luminescence properties
Hong et al. Synthesis, characterization and luminescence properties of CaMoO 4: Eu 3+ red phosphor for use in light-emitting diodes
Kho et al. Photoluminescence of the Mn-doped ZnGa~ 2O~ 4 Phosphors Prepared by Coprecipitation of Metal Salts
KR101419858B1 (en) Phosphor, and preparing method of the same
KR100387659B1 (en) Manufacturing method of strontium aluminate phosphor by the sol-gel method
Ryu et al. Photoluminescent Spectra of Nd 3+ Codoped CaAl 2 O 4: Eu 2+ Blue Phosphor
JP4670079B2 (en) Method for producing zinc oxide solid solution for blue phosphor and method for producing blue phosphor
Patil et al. White light generation from single gallium oxide nanoparticles co-doped with rare-earth metals
CN110003910B (en) Eu (Eu)3+Activated bismuth fluorotellurate red fluorescent powder and preparation method and application thereof
KR101646775B1 (en) Preparing method of zirconia phosphor powder, and phosphor powder by the same
JP2001234166A (en) Yttrium silicate fluorescent substance for low voltage drive and its preparation process
JP2009161680A (en) Method for preparing highly crystalline fluorescent material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141021

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20141022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150331

R150 Certificate of patent or registration of utility model

Ref document number: 5726083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees