JP5723873B2 - 端末装置及び応答信号マッピング方法 - Google Patents

端末装置及び応答信号マッピング方法 Download PDF

Info

Publication number
JP5723873B2
JP5723873B2 JP2012513763A JP2012513763A JP5723873B2 JP 5723873 B2 JP5723873 B2 JP 5723873B2 JP 2012513763 A JP2012513763 A JP 2012513763A JP 2012513763 A JP2012513763 A JP 2012513763A JP 5723873 B2 JP5723873 B2 JP 5723873B2
Authority
JP
Japan
Prior art keywords
downlink
response signal
terminal
control information
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012513763A
Other languages
English (en)
Other versions
JPWO2011138849A1 (ja
Inventor
中尾 正悟
正悟 中尾
今村 大地
大地 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Corp of America
Original Assignee
Panasonic Intellectual Property Corp of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Corp of America filed Critical Panasonic Intellectual Property Corp of America
Priority to JP2012513763A priority Critical patent/JP5723873B2/ja
Publication of JPWO2011138849A1 publication Critical patent/JPWO2011138849A1/ja
Application granted granted Critical
Publication of JP5723873B2 publication Critical patent/JP5723873B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

本発明は、端末装置及び応答信号マッピング方法に関する。
3GPP LTEでは、下り回線の通信方式としてOFDMA(Orthogonal Frequency Division Multiple Access)が採用されている。3GPP LTEが適用された無線通信システムでは、基地局装置(以下「基地局」と略記する)が予め定められた通信リソースを用いて同期信号(Synchronization Channel:SCH)及び報知信号(Broadcast Channel:BCH)を送信する。そして、端末装置(以下「端末」と略記する)は、まず、SCHを捕まえることによって基地局との同期を確保する。その後、端末は、BCH情報を読むことにより基地局独自のパラメータ(例えば、周波数帯域幅など)を取得する(非特許文献1、2、3参照)。
また、端末は、基地局独自のパラメータの取得が完了した後、基地局に対して接続要求を行うことにより、基地局との通信を確立する。基地局は、通信が確立された端末に対して、必要に応じてPDCCH(Physical Downlink Control CHannel)を介して制御情報を送信する。
そして、端末は、受信したPDCCH信号に含まれる複数の制御情報をそれぞれ「ブラインド判定」する。すなわち、制御情報は、CRC(Cyclic Redundancy Check)部分を含み、このCRC部分は、基地局において、送信対象端末の端末IDによってマスクされる。従って、端末は、受信した制御情報のCRC部分を自装置の端末IDでデマスクしてみるまでは、自装置宛の制御情報であるか否かを判定できない。このブラインド判定では、デマスクした結果、CRC演算がOKとなれば、その制御情報が自装置宛であると判定される。
また、3GPP LTEでは、基地局から端末への下り回線データに対してARQ(Automatic Repeat Request)が適用される。つまり、端末は下り回線データの誤り検出結果を示す応答信号を基地局へフィードバックする。端末は下り回線データに対しCRCを行って、CRC=OK(誤り無し)であればACK(Acknowledgment)を、CRC=NG(誤り有り)であればNACK(Negative Acknowledgment)を応答信号として基地局へフィードバックする。ただし、この応答信号(つまり、ACK/NACK信号)の変調にはBPSK(Binary Phase Shift Keying)が用いられている。また、この応答信号のフィードバックには、PUCCH(Physical Uplink Control Channel)等の上り回線制御チャネルが用いられる。そして、受信した応答信号がNACKを示す場合には、基地局は、端末に対して再送データを送信する。
ここで、基地局から送信される上記制御情報(すなわち、下り割当制御情報)には、基地局が端末に対して割り当てたリソース情報等を含むリソース割当情報が含まれる。この制御情報の送信には、前述の通りPDCCHが用いられる。このPDCCHは、1つ又は複数のL1/L2CCH(L1/L2 Control Channel)から構成される。各L1/L2CCHは、1つ又は複数のCCE(Control Channel Element)から構成される。すなわち、CCEは、制御情報をPDCCHにマッピングするときの基本単位である。また、1つのL1/L2CCHが複数のCCEから構成される場合には、そのL1/L2CCHには識別番号(Index)が連続する複数のCCEが割り当てられる。基地局は、リソース割当対象端末に対する制御情報の通知に必要なCCE数に従って、そのリソース割当対象端末に対してL1/L2CCHを割り当てる。そして、基地局は、このL1/L2CCHのCCEに対応する物理リソースにマッピングして制御情報を送信する。
またここで、各CCEは、PUCCHの構成リソースと1対1に対応付けられている。従って、L1/L2CCHを受信した端末は、このL1/L2CCHを構成するCCEに対応するPUCCHの構成リソースを暗黙的(Implicit)に特定することができ、この特定されたリソースを用いて応答信号を基地局へ送信する。ただし、L1/L2CCHが連続する複数のCCEを占有する場合には、端末は、複数のCCEにそれぞれ対応する複数のPUCCH構成リソースのうち1つ(例えば、Indexが最も小さいCCEに対応するPUCCH構成リソース)を利用して、応答信号を基地局へ送信する。こうして下り回線の通信リソースが効率良く使用される。
複数の端末から送信される複数の応答信号及び参照信号は、図1に示すように、時間軸上(Time domain)でZero Auto-correlation特性を持つZAC(Zero Auto-correlation)系列(Base sequenceと呼ばれることもある)、及び、ウォルシュ符号系列(Walsh code sequence)又はDFT(Discrete Fourier Transform)系列によって拡散され、PUCCH内でコード多重されている(ただし、系列長12のZAC系列そのものを参照信号系列(Reference sequence)と呼ぶこともある)。
図1において(W,W,W,W)は系列長4のウォルシュ系列(ウォルシュ符号系列:Walsh Code Sequence)を表わし、(F,F,F)は系列長3のDFT系列を表す。図1に示すように、端末では、ACK又はNACKの応答信号が、まず周波数軸上でZAC系列(系列長12)によって1SC−FDMAシンボル内に1次拡散される。次いで1次拡散後の応答信号がW〜Wそれぞれに対応させられてIFFT(Inverse Fast Fourier Transform)される。また、端末では、参照信号としての系列長12のZAC系列がF〜Fそれぞれに対応させられてIFFTされる。このようにして、周波数軸上(Frequency domain)で系列長12のZAC系列によって拡散された応答信号、及び参照信号は、IFFTにより時間軸上の系列長12のZAC系列に変換される。これは、1次拡散後の応答信号、及び参照信号がIFFT後にさらにウォルシュ系列(系列長4)、DFT系列(系列長3)を用いて2次拡散されることと等価である。
異なる端末からの応答信号同士は、異なる巡回シフト量(Cyclic shift Index)に対応するZAC系列、または、異なる系列番号(Orthogonal cover Index : OC index)に対応する直交符号系列を用いて拡散されている。直交符号系列は、ウォルシュ系列とDFT系列との組である。また、直交符号系列はブロックワイズ拡散コード系列(Block-wise spreading code)と称されることもある。従って、基地局は、従来の逆拡散及び相関処理を用いることにより、これらコード多重された複数の応答信号を分離することができる(非特許文献4参照)。
ただし、各端末は各サブフレーム(送信単位時間)において自装置宛の下り割当制御情報をブラインド判定するので、端末側では、必ずしも下り割当制御情報の受信が成功するとは限らない。端末が或る下り単位バンドにおける自装置宛の下り割当制御情報の受信に失敗した場合、端末は、当該下り単位バンドにおいて自装置宛の下り回線データが存在するか否かさえも知り得ない。従って、端末が或る下り単位バンドにおける下り割当制御情報の受信に失敗した場合、端末は、当該下り単位バンドにおける下り回線データに対する応答信号も生成しない。このエラーケースは、端末側で応答信号の送信が行われないという意味で、応答信号のDTX(DTX(Discontinuous transmission) of ACK/NACK signals)として定義されている。なお、以降の説明では簡単のため、端末が或る下り単位バンドで下り割当制御情報を受信しなかった状況を、単に「DTX」として表記する。
ところで、3GPP LTEシステム(以下、「LTEシステム」と呼ばれることがある)では、基地局は上り回線データ及び下り回線データに対してそれぞれ独立にリソース割当を行う。そのため、LTEシステムでは、上り回線において、端末(つまり、LTEシステム対応の端末(以下、「LTE端末」という))が、下り回線データに対する応答信号と、上り回線データとを同時に送信しなければならない状況が発生する。この状況では、端末からの応答信号及び上り回線データは、時間多重(Time Division Multiplexing:TDM)を用いて送信される。このようにTDMを用いて応答信号と上り回線データとを同時に送信することで、端末の送信波形のシングルキャリア特性(Single carrier properties)を維持している。
また、図2に示すように、時間多重(TDM)では、端末から送信される応答信号(「A/N」)は、上り回線データ向けに割り当てられたリソース(PUSCH(Physical Uplink Shared CHannel)リソース)の一部(参照信号(RS(Reference Signal))がマッピングされるSC-FDMAシンボルに隣接するSC-FDMAシンボルの一部)を占有して基地局に送信される。ただし、図中の縦軸の「subcarrier」は「Virtual subcarrier」、又は「Time contiguous signal」と呼ばれることもあり、SC-FDMA送信機においてDFT(Discrete Fourier Transform)回路に纏めて入力される「時間的に連続する信号」を便宜上「subcarrier」として表したものである。すなわち、PUSCHリソースでは、応答信号によって、上り回線データのうちの任意のデータがパンクチャ(puncture)される。このため、符号化後の上り回線データの任意のビットがパンクチャされることで、上り回線データの品質(例えば、符号化利得)が大幅に劣化する。そのため、基地局は、例えば、端末に対して非常に低い符号化率を指示したり、非常に大きな送信電力を指示したりすることで、パンクチャによる上り回線データの品質劣化を補償する。
また、3GPP LTEよりも更なる通信の高速化を実現する3GPP LTE−advancedの標準化が開始された。3GPP LTE−advancedシステム(以下、「LTE−Aシステム」と呼ばれることがある)は、LTEシステムを踏襲する。3GPP LTE−advancedでは、最大1Gbps以上の下り伝送速度を実現するために、40MHz以上の広帯域周波数で通信可能な基地局及び端末が導入される見込みである。
LTE−Aシステムにおいては、LTEシステムにおける伝送速度の数倍もの超高速伝送速度による通信、及び、LTEシステムに対する後方互換性(バックワードコンパチビリティー:Backward Compatibility)を同時に実現するために、LTE−Aシステム向けの帯域が、LTEシステムのサポート帯域幅である20MHz以下の「単位バンド」に区切られる。すなわち、「単位バンド」は、ここでは、最大20MHzの幅を持つ帯域であって、通信帯域の基本単位として定義される。さらに、下り回線における「単位バンド」(以下、「下り単位バンド」という)は基地局から報知されるBCHの中の下り周波数帯域情報によって区切られた帯域、又は、下り制御チャネル(PDCCH)が周波数領域に分散配置される場合の分散幅によって定義される帯域として定義されることもある。また、上り回線における「単位バンド」(以下、「上り単位バンド」という)は、基地局から報知されるBCHの中の上り周波数帯域情報によって区切られた帯域、又は、中心付近にPUSCH領域を含み、両端部にLTE向けのPUCCHを含む20MHz以下の通信帯域の基本単位として定義されることもある。また、「単位バンド」は、3GPP LTE−Advancedにおいて、英語でComponent Carrier(s)と表記されることがあり、物理セル番号とキャリア周波数番号で定義されてもよく、セルと呼ばれることもある。
そして、LTE−Aシステムでは、その単位バンドを幾つか束ねた帯域を用いた通信、所謂Carrier aggregationがサポートされる。そして、一般的に上りに対するスループット要求と下りに対するスループット要求とは異なるので、LTE−Aシステムでは、任意のLTE−Aシステム対応の端末(以下、「LTE−A端末」という)に対して設定される単位バンドの数が上りと下りで異なるCarrier aggregation、所謂Asymmetric Carrier aggregationも検討されている。さらに、上りと下りで単位バンド数が非対称であり、且つ、各単位バンドの周波数帯域幅がそれぞれ異なる場合も、サポートされる。
図3は、個別の端末に適用される非対称のCarrier aggregation及びその制御シーケンスの説明に供する図である。図3には、基地局の上りと下りの帯域幅及び単位バンド数が対称である例が示されている。
図3Bにおいて、端末1に対しては、2つの下り単位バンドと左側の1つの上り単位バンドを用いてCarrier aggregationを行うような設定(Configuration)が為される一方、端末2に対しては、端末1と同一の2つの下り単位バンドを用いるような設定が為されるにも拘らず、上り通信では右側の上り単位バンドを利用するような設定が為される。
そして、端末1に着目すると、LTE−Aシステムを構成するLTE−A基地局とLTE−A端末との間では、図3Aに示すシーケンス図に従って、信号の送受信が行われる。図3Aに示すように、(1)端末1は、基地局との通信開始時に、左側の下り単位バンドと同期を取り、左側の下り単位バンドとペアになっている上り単位バンドの情報をSIB2(System Information Block Type 2)と呼ばれる報知信号から読み取る。(2)端末1は、この上り単位バンドを用いて、例えば、接続要求を基地局に送信することによって基地局との通信を開始する。(3)端末に対し複数の下り単位バンドを割り当てる必要があると判断した場合には、基地局は、端末に下り単位バンドの追加を指示する。ただし、図3は、上り単位バンド数は増えず、個別の端末である端末1において非対称Carrier aggregationが開始される説明図である。
このように、基地局は、端末との間で前述のCarrier aggregationによる通信を行う場合、まず端末に対して複数の下り単位バンドを設定する。この下り単位バンドの設定は、上位レイヤのシグナリング(Higher layer signaling。例えば、RRC signaling)によって基地局から端末へ通知される。ただし、基地局は、端末に設定された全ての下り単位バンドを用いて下り回線データを常に送信するのではなく、必要なときのみ(一部のサブフレームにおいてのみ)複数の下り単位バンドそれぞれに下り回線データを割り当てて、信号を送信する。なお、この下り回線データの割当状況は、前述した下り割当制御情報によって端末へ通知される。
3GPP TS 36.211 V8.7.0, "Physical Channels and Modulation (Release 8)," May 2009 3GPP TS 36.212 V8.7.0, "Multiplexing and channel coding (Release 8)," May 2009 3GPP TS 36.213 V8.7.0, "Physical layer procedures (Release 8)," May 2009 Seigo Nakao, Tomofumi Takata, Daichi Imamura, and Katsuhiko Hiramatsu, "Performance enhancement of E-UTRA uplink control channel in fast fading environments," Proceeding of IEEE VTC 2009 spring, April. 2009
ところで、前述のCarrier aggregationが適用されるLTE−Aシステムでは、端末が一度に複数の下り単位バンドにおいて下り回線データを受信する場合がある。すなわち、端末は、複数の下り回線データにそれぞれ対応する複数の応答信号を同時に送信しなければならない場合がある。
また、LTE−Aシステムでは、LTEシステムと同様、基地局は、上り回線データ及び下り回線データに対してそれぞれ独立にリソース割当を行う。そのため、LTE−Aシステムでは、LTEシステムと同様に、上り回線において、LTE−A端末が、複数の下り回線データに対する複数の応答信号と、上り回線データとを同時に送信しなければならない状況が発生する。
この状況では、端末の電力効率を維持するために、端末の送信波形のシングルキャリア特性を維持する必要がある。つまり、この状況では、端末の電力効率を維持するために、LTEシステムと同様、「複数の応答信号及び上り回線データの時間多重(TDM)」を適用する必要がある。しかし、前述の通り、「複数の応答信号及び上り回線データの時間多重(TDM)」を適用する際、PUSCHリソースでは、応答信号によって上り回線データのうち任意のデータがパンクチャ(puncture)されるので、上り回線データの品質(例えば符号化利得)が大幅に劣化する。特に、Carrier aggregationが適用される場合には、応答信号のビット数が増加するので、上り回線データの品質劣化は更に深刻なものとなる。すなわち、LTE−Aシステムでは、複数の応答信号によって上り回線データがパンクチャされる状況を可能な限り回避することが重要となる。
しかしながら、複数の下り単位バンドを用いたCarrier aggregationが適用されるLTE−Aシステムにおいて、複数の応答信号によって上り回線データがパンクチャされる状況を可能な限り回避する方法については、これまで十分な検討がなされていない。
本発明の目的は、複数の下り単位バンドを用いたCarrier aggregationが適用される通信システムにおいて、複数の応答信号によって上り回線データがパンクチャされる状況をなるべく低減することができる端末装置及び応答信号マッピング方法を提供することである。
本発明の第1の態様に係る端末装置は、設定された複数の下り単位バンドのうち一部又は全てを用いて基地局と通信する端末装置であって、前記複数の下り単位バンドの下り制御チャネルで送信された下り割当制御情報と、前記下り割当制御情報が示す下りデータチャネルで送信された下りデータと、を受信する受信手段と、前記下りデータの受信成否に基づいて応答信号を生成する生成手段と、前記応答信号を上りリソースにマッピングするマッピング手段と、を具備し、前記マッピング手段は、前記複数の単位バンドのうち、第1の下り単位バンド以外の第2の下り単位バンドに対応する少なくとも1つの前記下り割当制御情報を受信した場合には、前記複数の下り単位バンドにそれぞれ対応する複数の前記応答信号を、設定された前記複数の下り単位バンドに対応する第1のリソースにマッピングし、前記複数の単位バンドのうち、前記第1の下り単位バンドに対応する前記下り割当制御情報のみを受信した場合には、前記第1の下り単位バンドに対応する前記応答信号を、前記第1の下り単位バンドに対応する第2のリソースにマッピングする構成を採る。
本発明の第2の態様に係る応答信号マッピング方法は、設定された複数の下り単位バンドのうち一部又は全てを用いて基地局と通信する端末装置における応答信号マッピング方法であって、前記複数の下り単位バンドの下り制御チャネルで送信された下り割当制御情報を受信し、前記下り割当制御情報が示す下りデータチャネルで送信された下りデータを受信し、前記下りデータの受信成否に基づいて応答信号を生成し、前記複数の単位バンドのうち、第1の下り単位バンド以外の第2の下り単位バンドに対応する少なくとも1つの前記下り割当制御情報を受信した場合には、前記複数の下り単位バンドにそれぞれ対応する複数の前記応答信号を、設定された前記複数の下り単位バンドに対応する第1のリソースにマッピングし、前記複数の単位バンドのうち、前記第1の下り単位バンドに対応する前記下り割当制御情報のみを受信した場合には、前記第1の下り単位バンドに対応する前記応答信号を、前記第1の下り単位バンドに対応する第2のリソースにマッピングする構成を採る。
本発明によれば、複数の下り単位バンドを用いたCarrier aggregationが適用される通信システムにおいて、複数の応答信号によって上り回線データがパンクチャされる状況をなるべく低減することができる。
応答信号及び参照信号の拡散方法を示す図 PUSCHリソースにおける応答信号及び上り回線データのTDMの適用に関わる動作を示す図 個別の端末に適用される非対称のCarrier aggregation及びその制御シーケンスの説明に供する図 本発明の実施の形態に係る応答信号及び上り回線データの同時送信処理を示す図 本発明の実施の形態に係る応答信号及び上り回線データの同時送信処理を示す図 本発明の実施の形態に係る基地局の構成を示すブロック図 本発明の実施の形態に係る端末の構成を示すブロック図 本発明の実施の形態に係る応答信号及び上り回線データの同時送信処理を示す図(マッピング方法1) 本発明の実施の形態に係る応答信号及び上り回線データの同時送信処理を示す図(マッピング方法2)
以下、本発明の実施の形態について図面を参照して詳細に説明する。
先ず、実施の形態の具体的な構成及び動作を説明する前に、複数の下り単位バンドを用いたCarrier aggregationが適用されるLTE−Aシステムにおいて、複数の下り単位バンドでそれぞれ送信された複数の下り回線データに対する複数の応答信号と、上り回線データとをTDMによって送信する方法として、本発明者らが着目した方法について説明する。
同一サブフレーム内で、複数の応答信号と上り回線データとをTDMによって同時に送信する第1の方法として、図4に示すように、端末が、端末に設定された全ての下り単位バンドに対応する応答信号(ACK、NACK又はDTX(すなわち、当該下り単位バンドで下り割当制御情報を受信しなかった場合))を、PUSCH内の「端末に設定された下り単位バンド数に応じて決定される領域」にマッピングして、上り回線データとともに送信する方法が考えられる。
例えば、第1の方法において、端末に対して5つの下り単位バンドが設定されている場合に、端末が1つの下り単位バンドにおいてのみ下り割当制御情報を受信した場合について説明する。この場合、端末は、下り割当制御情報を受信した1つの下り単位バンドに対応する応答信号成分には、下り回線データの受信成否状況に応じてACK又はNACKを設定する。一方、端末は、下り割当制御情報を受信した下り単位バンド以外のその他の4つの下り単位バンドに対応する応答信号成分にはDTXを設定する。そして、端末は、5つの下り単位バンドに対応する応答信号成分からなる応答信号を送信する。
しかしながら、上述したように、端末に対する下り単位バンドの設定(Configuration)は上位レイヤのシグナリングによって行われる。ここで、上位レイヤのシグナリングは、ARQの適用により保護されているので信頼性が高いものの、基地局から端末へ到達するまでにより多くの時間が掛かってしまう。つまり、上位レイヤのシグナリングは高速に制御することができない。更に、上位レイヤのシグナリングにおける、1つのメッセージあたりのオーバーヘッドが大きいので、端末に対する下り単位バンドの設定を頻繁に変更することはできない。
従って、基地局は、端末に対して複数の下り単位バンドを一度設定すると、端末に設定した下り単位バンドの数を頻繁に変更することはなく、必要に応じて端末に設定された下り単位バンドのうち、一部又は全ての下り単位バンドを用いて下り回線データを送信する。すなわち、基地局は、端末に複数の下り単位バンドを設定した場合でも、端末に対して多くの下り回線データを瞬時的に送信する必要が生じた場合にのみ、端末に設定された複数の下り単位バンドに対して複数の下り回線データを割り当てる(Assignする)。
このため、第1の方法では、大部分のサブフレーム(多くの下り回線データを瞬時的に送信する必要が生じた場合以外の時間)では、前述の「端末に設定された下り単位バンド数に応じて決定される領域」を用いて、基地局が必要とする1つの応答信号(すなわち、1つの下り単位バンドのみでしか下り割当制御情報を受け取らない場合に生成される1つの応答信号。「Non-carrier aggregation assignment時の応答信号」と称されることもある。)のみしか送信されないという状況が発生する。すなわち、基地局が必要とする応答信号が1つだけであるにもかかわらず、「端末に設定された下り単位バンド数に応じて決定される領域」の大きさに応じて、上り回線データがパンクチャされて複数の応答信号がマッピングされるので、上り回線データの伝送品質が大幅に劣化してしまう。
上記第1の方法における問題点を解決する方法として、以下の第2の方法が考えられる。第2の方法では、端末が受信した下り割当制御情報の数に応じて、上り回線データ向けに割り当てられたPUSCH内で応答信号(上り応答信号)をマッピングする領域を決定する。第2の方法の概念図を図5に示す。
例えば、図5Aは、端末が1つの下り割当制御情報を受信した場合の応答信号のマッピング例であり、図5Bは、端末が2つの下り割当制御情報を受信した場合の応答信号のマッピング例である。すなわち、第2の方法では、図5A及び図5Bに示すように、端末は、下り割当制御情報を受信した下り単位バンドに対応する応答信号を、PUSCH内の「端末が受信した下り割当制御情報の数に応じて決定される領域」にマッピングして、上り回線データとともに送信する。よって、PUSCHリソースにおいて応答信号がマッピングされる領域(上り回線データがパンクチャされる領域)は、図5A(下り割当制御情報の数:1つ)及び図5B(下り割当制御情報の数:2つ)に示すように、端末が受信した下り割当制御情報の数(つまり、端末に対する下り回線データの割当数)に応じて変化する。このように、第2の方法では、端末が受信した下り割当制御情報の数に応じて、応答信号によって上り回線データがパンクチャされる部分を変化させることで、応答信号が上り回線データをパンクチャすることによる上り回線データの伝送品質の劣化を最小限に抑えることができる。
しかしながら、第2の方法が適用される際、端末側で下り割当制御情報を受け取り損ねた場合、基地局側と端末側との間で応答信号のマッピング位置(応答信号領域)に関して認識違いが発生し、基地局が応答信号を正常に受信できない状況が発生する。
例えば、基地局が2つの下り回線データ、及び、2つの下り回線データに関する2つの下り割当制御情報を送信したのに対し、端末がそのうちの1つの下り割当制御情報の受信に失敗した場合について説明する。この場合、端末は、1つの下り割当制御情報しか受信しないので、図5Aに示すマッピングに基づいて、1つの応答信号(A/N)によって上り回線データ(Data)をパンクチャし、信号を送信する。これに対して、基地局は、2つの下り割当制御情報を送信しているので、図5Bに示すマッピングで2つの応答信号(A/N)が端末から送信されることを想定している。よって、基地局は、実際には図5Aに示すように1つの応答信号しか送信されていないにもかかわらず、図5Bに示すマッピングに従って応答信号に対する受信処理を行う。よって、基地局は、図5Aに示す上り回線データ(Data)の一部(すなわち、図5Aにおいて、図5Bでは応答信号がマッピングされる領域にマッピングされた上り回線データ)を、応答信号の一部として受信してしまう。このため、基地局における応答信号の受信特性が大幅に劣化してしまう。
更に、この場合、端末から送信される応答信号がいずれの下り単位バンドで送信された下り回線データに対する応答信号であるかを基地局側で判別できないという問題も発生する。この現象は、端末が2つの下り割当制御情報のうちいずれか一方を受け取り損ねた場合に発生するので、下り割当制御情報のBLER(Block error rate)を1%とすると、上述した「基地局側と端末側との間の応答信号領域の認識違い」は約2%の確率で発生すると言える。更に、「基地局側と端末側との間の応答信号領域の認識違い」の発生率は、下り割当制御情報が送信される下り単位バンドの数が増加するにつれて線形的に増加する。
そこで、以下では、複数の下り単位バンドを用いたCarrier aggregationが適用されるLTE−Aシステムにおいて、端末が複数の応答信号と上り回線データとを同時に送信する場合に、応答信号によって上り回線データがパンクチャリングされる状況を低減させることができるとともに、基地局と端末との間で上り回線データ向けに割り当てられたPUSCH内の応答信号領域に関する認識違いの発生を低減させることができる端末及び信号送信制御方法について説明する。
[通信システムの概要]
後述する基地局100及び端末200を含む通信システムでは、1つの上り単位バンド及び当該上り単位バンドと対応づけられたN(Nは、2以上の自然数)個の下り単位バンドを使用した通信、つまり、端末200独自の非対称Carrier aggregationによる通信が行われる。この上り単位バンド及びN個の下り単位バンドは、端末200に対して設定(configure)された「単位バンドグループ」である。また、この通信システムには、端末200と異なり、Carrier aggregationによる通信を行う能力が無く、1つの下り単位バンドとこれに対応づけられた1つの上り単位バンドによる通信(つまり、Carrier aggregationによらない通信)を行う端末も含まれている。
従って、基地局100は、Carrier aggregationによる通信及びCarrier aggregationによらない通信の両方をサポートできるように構成されている。
また、基地局100と端末200との間でも、基地局100による端末200に対するリソース割当によっては、Carrier aggregationによらない通信が行われることも可能である。
また、この通信システムでは、Carrier aggregationによらない通信が行われる場合には、1つの下り回線データに対する1つの応答信号に基づいて従来通りのARQが行われる。一方、Carrier aggregationによる通信が行われる場合には、複数の下り回線データに対する複数の応答信号に基づいてARQが行われる。すなわち、この通信システムは、例えば、LTE−Aシステムであり、基地局100は、例えば、LTE−A基地局であり、端末200は、例えば、LTE−A端末である。また、Carrier aggregationによる通信を行う能力の無い端末は、例えば、LTE端末である。
以下では、次の事項を前提として説明する。すなわち、基地局100と端末200の間で、端末200独自の非対称Carrier aggregationが予め設定(Configure)されており、端末200が用いるべき下り単位バンド及び上り単位バンドの情報が、基地局100と端末200との間で共有されている。また、基地局100は、端末200に設定した複数の下り単位バンドのうちいずれか1つを基本単位バンド(PCC:Primary Component Carrier)として決定しており、この基本単位バンドの情報も基地局100と端末200との間で共有されている。
ただし、基地局100は、端末200に対して、端末200に設定した複数の下り単位バンド全てを常に用いて信号を送信するとは限らない。なお、基地局100は、端末に対して1つの下り単位バンドのみを用いて信号を送信する際には、前述の基本単位バンド(PCC)を優先して使用する。
[基地局の構成]
図6は、本実施の形態に係る基地局100の構成を示すブロック図である。基地局100は、N個の下り単位バンドと上り単位バンドとからなる単位バンドグループを用いて端末と通信する。
図6に示す基地局100において、制御部101は、リソース割当対象端末200に対して、制御情報を送信するための下りリソース(つまり、下り制御情報割当リソース及び上り制御情報割当リソース)、及び、当該制御情報に含まれる、下り回線データを送信するための下りリソース(つまり、下りデータ割当リソース)及び上り回線データを送信するための上りリソース(つまり、上りデータ割当リソース)を割り当てる(Assignする)。このリソース割当は、リソース割当対象端末200に設定(Configure)される単位バンドグループに含まれる下り単位バンド及び上り単位バンドにおいて行われる。また、下り制御情報割当リソース及び上り制御情報割当リソースは、各下り単位バンドにおける下り制御チャネル(PDCCH)に対応するリソース内で選択される。また、下りデータ割当リソースは、各下り単位バンドにおける下りデータチャネル(PDSCH)に対応するリソース内で選択され、上りデータ割当リソースは、各上り単位バンドにおける上りデータチャネル(PUSCH)に対応するリソース内で選択される。また、リソース割当対象端末200が複数存在する場合には、制御部101は、リソース割当対象端末200のそれぞれに異なるリソースを割り当てる。
下り制御情報割当リソース及び上り制御情報割当リソースは、上記したL1/L2CCHと同等である。すなわち、下り制御情報割当リソース及び上り制御情報割当リソースは、1つ又は複数のCCEから構成される。また、下り制御情報割当リソースに含まれる各CCEは、上り制御チャネル(PUCCH)の構成リソースと1対1に対応づけられている。
また、制御部101は、リソース割当対象端末200に対して制御情報を送信する際に用いる符号化率を決定する。この符号化率に応じて制御情報のデータ量が異なるので、このデータ量の制御情報をマッピング可能な数のCCEを持つ下り制御情報割当リソース及び上り制御情報割当リソースが、制御部101によって割り当てられる。
そして、制御部101は、制御情報生成部102に対して、下りデータ割当リソース及び上りデータ割当リソースに関する情報を出力する。また、制御部101は、符号化部103に対して、制御情報を送信する際に用いる符号化率に関する情報を出力する。また、制御部101は、送信データ(つまり、下り回線データ)の符号化率を決定し、符号化部105に出力し、受信データ(つまり、上り回線データ)の符号化率を決定し、復調/復号部118に出力する。また、制御部101は、下りデータ割当リソース、下り制御情報割当リソース及び上り制御情報割当リソースに関する情報をマッピング部108に対して出力する。また、制御部101は、端末が応答信号を送信すべき物理チャネルに関する情報を応答信号分離部116及び判定部119に出力する。ただし、制御部101は下り回線データと、当該下り回線データが用いる下りデータ割当リソースを通知する下り割当制御情報とを同一の下り単位バンドにマッピングするよう制御する。
制御情報生成部102は、下りデータ割当リソースを通知する制御情報及び上りデータ割当リソースを通知する制御情報を生成して符号化部103へ出力する。この制御情報は下り単位バンド毎、上り単位バンド毎に生成される。また、リソース割当対象端末200が複数存在する場合には、リソース割当対象端末200同士を区別するために、制御情報には、宛先端末の端末IDが含まれる。例えば、宛先端末の端末IDでマスキングされたCRCビットが制御情報に含まれる。この制御情報は、「下り割当制御情報」及び「上り割当制御情報」と呼ばれることがある。
符号化部103は、制御部101から受け取る符号化率に従って、制御情報生成部102から入力される制御情報を符号化し、符号化した制御情報を変調部104へ出力する。
変調部104は、符号化後の制御情報を変調し、得られた変調信号をマッピング部108へ出力する。
符号化部105は、送信宛先端末200毎の送信データ(つまり、下り回線データ)及び制御部101からの符号化率情報を入力として、送信データを符号化率情報の示す符号化率で符号化し、データ送信制御部106に出力する。ただし、送信宛先端末200に対して複数の下り単位バンドが割り当てられる場合には、符号化部105は、各下り単位バンドで送信される送信データをそれぞれ符号化し、符号化後の送信データをデータ送信制御部106へ出力する。
データ送信制御部106は、初回送信時には、符号化後の送信データを保持するとともに符号化後の送信データを変調部107へ出力する。なお、符号化後の送信データは、送信宛先端末200毎に保持される。また、1つの送信宛先端末200への送信データは、送信される下り単位バンド毎に保持される。これにより、送信宛先端末200に送信されるデータ全体の再送制御だけでなく、下り単位バンドごとの再送制御も可能になる。
また、データ送信制御部106は、再送制御信号生成部120から受け取る再送制御信号が再送命令を示す場合には、当該再送制御信号に対応する保持データを、変調部107へ出力する。また、データ送信制御部106は、再送制御信号生成部120から受け取る再送制御信号が再送しないことを示す場合には、当該再送制御信号に対応する保持データを削除する。この場合には、データ送信制御部106は、次の初回送信データを変調部107へ出力する。
変調部107は、データ送信制御部106から受け取る符号化後の送信データを変調し、変調信号をマッピング部108へ出力する。
マッピング部108は、制御部101から受け取る下り制御情報割当リソース及び上り制御情報割当リソースの示すリソース(PDCCH内のリソース)に、変調部104から受け取る制御情報の変調信号(下り割当制御情報または上り割当制御情報)をマッピングし、IFFT部109へ出力する。
また、マッピング部108は、制御部101から受け取る下りデータ割当リソースの示すリソース(PDSCH内のリソース)に、変調部107から受け取る送信データの変調信号(下り回線データ)をマッピングし、IFFT部109へ出力する。
マッピング部108にて複数の下り単位バンドにおける複数のサブキャリアにマッピングされた制御情報及び送信データ(下り回線データ)は、IFFT部109で周波数領域信号から時間領域信号に変換され、CP付加部110にてCPが付加されてOFDM信号とされた後に、無線送信部111にてD/A変換、増幅及びアップコンバート等の送信処理が施され、アンテナを介して端末200へ送信される。これにより、N個の下り単位バンドの下り制御チャネルで、上り割当制御情報及び下り割当制御情報が送信され、かつ、下り割当制御情報が示す下りデータチャネルで下り回線データが送信される。
無線受信部112は、端末200から送信された、上りデータチャネル信号(PUSCH信号)を含む信号をアンテナを介して受信し、受信信号に対しダウンコンバート、A/D変換等の受信処理を行う。なお、PUSCH信号には、上り回線データが含まれる。ただし、端末200で応答信号と上り回線データとが時間多重(TDM)される際には、PUSCH信号には、上り回線データ及び応答信号の双方が含まれる。
CP除去部113は、受信処理後の受信信号に付加されているCPを除去する。
PUSCH分離部114は、制御部101からの指示に従って、FFT(Fast Fourier Transform)処理により、受信信号に含まれるPUSCH信号を周波数軸上で分離する。そして、PUSCH分離部114は、抽出したPUSCH信号(上り回線データのみを含む信号、または、上り回線データ及び応答信号の双方を含む信号)の周波数成分をIDFT(Inverse Discrete Fourier Transform)部115に出力する。
IDFT部115は、PUSCH分離部114から入力されるPUSCH信号の周波数成分に対してIDFT処理を施すことにより、PUSCH信号を時間軸上の信号に変換する。
応答信号分離部116は、制御部101からの指示に従って、IDFT部115から入力される時間軸上のPUSCH信号から、応答信号が含まれる可能性がある信号成分と、上り回線データが含まれる信号成分とを時間軸上で分離する。そして、応答信号分離部116は、応答信号が含まれる信号成分を応答信号受信部117に出力し、上り回線データが含まれる信号成分を復調/復号部118に出力する。
応答信号受信部117は、応答信号分離部116から入力される、応答信号に対応する信号成分を復調・復号し、復号後の信号及び尤度情報を判定部119に出力する。
復調/復号部118は、制御部101から入力される上り回線データに対応する符号化率を用いて、応答信号分離部116から入力される、上り回線データが含まれる信号成分を復調・復号し、受信データとして出力する。
判定部119は、制御部101からの指示に従って、下り回線データの誤り検出結果に基づく応答信号が、上り割当制御情報が示す上りデータチャネル(PUSCHリソース)に含まれるか否かを判定する。
具体的には、判定部119は、応答信号受信部117から入力される尤度情報に基づいて、端末200からPUSCHリソースを用いて応答信号が送信されているか否かを判定する。すなわち、判定部119は、応答信号受信部117から入力される尤度情報に示される尤度の大きさが或る一定の閾値以下であれば、端末200はPUSCHリソースを用いて応答信号を送信していないと判定する。この場合、判定部119は、「全ての応答信号に対するDTX」を示す情報を再送制御信号生成部120に出力する。一方、判定部119は、応答信号受信部117から入力される尤度情報に示される尤度の大きさが或る一定の閾値より大きい場合、端末200はPUSCHリソースを用いて応答信号を送信していると判定する。この場合、判定部119は、更にそれぞれの下り単位バンドに対応する応答信号がACK、NACK又はDTXのいずれを示しているかを、例えば同期検波によって判定する。そして、判定部119は、判定結果(ACK、NACK又はDTX)を再送制御信号生成部120へ出力する。
再送制御信号生成部120は、判定部119から入力される応答信号に関する判定結果(ACK、NACK又はDTX)に基づいて、各下り単位バンドで送信したデータ(下り回線データ)を再送すべきか否かを判定し、判定結果に基づいて再送制御信号を生成する。具体的には、再送制御信号生成部120は、或る下り回線データに関してNACKを示す応答信号又はDTXを受け取る場合には、当該下り回線データの再送命令を示す再送制御信号を生成して、生成した再送制御信号をデータ送信制御部106へ出力する。また、再送制御信号生成部120は、或る下り回線データに関してACKを示す応答信号を受け取る場合には、当該下り回線データを再送しないことを示す再送制御信号を生成して、生成した再送制御信号をデータ送信制御部106へ出力する。
[端末の構成]
図7は、本実施の形態に係る端末200の構成を示すブロック図である。端末200は、N個の下り単位バンドと上り単位バンドとからなる単位バンドグループを用いて基地局100と通信し、且つ、下り単位バンドに配置される下り回線データの誤り検出結果に基づく応答信号を上り単位バンドの上り制御チャネルで送信する。
図7に示す端末200において、無線受信部201は、基地局100から送信されたOFDM信号をアンテナを介して受信し、受信OFDM信号に対しダウンコンバート、A/D変換等の受信処理を行う。なお、受信OFDM信号には、PDSCH信号またはPDCCH信号が含まれる。すなわち、端末200は、N個の下り単位バンドの下り制御チャネルで送信された、上り割当制御情報及び下り割当制御情報を受信し、下り割当制御情報が示す下りデータチャネルで送信された下り回線データを受信する。
CP除去部202は、受信処理後のOFDM信号に付加されているCPを除去する。
FFT部203は、受信OFDM信号をFFTして周波数領域信号に変換し、得られた受信信号を抽出部204へ出力する。
抽出部204は、入力される符号化率情報に従って、FFT部203から受け取る受信信号から下り制御チャネル信号(PDCCH信号)を抽出する。すなわち、符号化率に応じて下り制御情報割当リソースを構成するCCEの数が変わるので、抽出部204は、その符号化率に対応する個数のCCEを抽出単位として、下り制御チャネル信号を抽出する。また、下り制御チャネル信号は、下り単位バンドごとに抽出される。抽出された下り制御チャネル信号は、復調部205へ出力される。
また、抽出部204は、判定部207から受け取る自機宛の下りデータ割当リソースに関する情報に基づいて、受信信号から下り回線データ(下りデータチャネル信号(PDSCH信号))を抽出し、復調部209へ出力する。
復調部205は、抽出部204から受け取る下り制御チャネル信号を復調し、得られた復調結果を復号部206に出力する。
復号部206は、入力される符号化率情報に従って、復調部205から受け取る復調結果を復号して、得られた復号結果を判定部207に出力する。
判定部207は、復号部206から受け取る復号結果に含まれる制御情報が自機宛の制御情報であるか否かをブラインド判定する。この判定は、上記した抽出単位に対応する復号結果を単位として行われる。例えば、判定部207は、自機の端末IDでCRCビットをデマスキングし、CRC=OK(誤り無し)となった制御情報を自機宛の制御情報であると判定する。そして、判定部207は、自機宛の下り割当制御情報に含まれる、自機に対する下りデータ割当リソースに関する情報を抽出部204へ出力する。また、判定部207は、自機宛ての上り割当制御情報を制御部208へ出力する。
制御部208は、判定部207から受け取る上り割当制御情報に含まれる、自機に対する上りデータ割当リソースに関する情報に基づいて、上り回線データの送信に用いるPUSCHリソース(上り単位バンドにおける周波数位置)を特定する。そして、制御部208は、特定したPUSCHリソースをIFFT部218に出力する。また、制御部208は、上り割当制御情報に基づいて、上り回線データの符号化率及び変調方式を特定し、特定した符号化率及び変調方式を符号化/変調部215に出力する。
また、制御部208は、上り回線データ、及び、下り回線データに対する応答信号が同一サブフレームで送信される場合には、上り回線データ及び応答信号を時間領域で多重(TDM)するように、応答信号/データ多重部216及びIFFT部218に指示する。このとき、制御部208は、下り割当制御情報の受信状況に基づいて、応答信号をマッピングする、PUSCH内の領域を制御する。
また、制御部208は、自機宛ての制御情報がマッピングされていた下り単位バンドの識別情報を、ACK/NACK制御部212に出力する。
復調部209は、抽出部204から受け取る下り回線データを復調し、復調後の下り回線データを復号部210へ出力する。
復号部210は、復調部209から受け取る下り回線データを復号し、復号後の下り回線データをCRC部211へ出力する。
CRC部211は、復号部210から受け取る復号後の下り回線データを生成し、CRCを用いて下り単位バンド毎に誤り検出し、CRC=OK(誤り無し)の場合にはACKを、CRC=NG(誤り有り)の場合にはNACKを、ACK/NACK制御部212へ出力する。また、CRC部211は、CRC=OK(誤り無し)の場合には、復号後の下り回線データを受信データとして出力する。
ACK/NACK制御部212は、自機に設定された単位バンドグループに含まれる各下り単位バンドで送信された下り回線データの受信状況に基づいて、自機が基地局100へ送信すべき応答信号を生成する。
具体的には、ACK/NACK制御部212は、制御部208から入力される下り単位バンドの識別情報、及び、下り回線データの受信成否に基づいて、応答信号として束ACK/NACK信号を生成する。より詳細には、ACK/NACK制御部212は、端末200が基本単位バンド(PCC)のみで下り割当制御情報を受信した場合には、基本単位バンドの下り回線データに対する応答信号のみを生成し、生成した応答信号を符号化部213へ出力する。また、ACK/NACK制御部212は、端末200が基本単位バンド以外の下り単位バンドにおいて1つでも下り割当制御情報を受信した場合には、基地局100から端末200に対して予め設定(configure)された下り単位バンド全てに対応する応答信号を生成する。ただし、この場合、ACK/NACK制御部212は、基地局100から端末200に対して設定されている下り単位バンドのうち、下り割当制御情報を受信しなかった下り単位バンドに対応する応答信号としてNACK(又はDTX)を設定する。そして、ACK/NACK制御部212は、端末200に対して設定されている全ての下り単位バンドに対応する応答信号で構成される束ACK/NACK信号を符号化部213へ出力する。
符号化部213は、ACK/NACK制御部212から入力される応答信号を符号化して変調部214へ出力する。
変調部214は、符号化部213から入力される応答信号を変調し、変調後の応答信号を時間軸上の波形(Time domain signal)として、応答信号/データ多重部216に出力する。
符号化/変調部215は、制御部208から指示される符号化率及び変調方式を用いて、送信データ(すなわち、上り回線データ)の符号化処理及び変調処理を行い、変調後の信号を時間軸上の波形として、応答信号/データ多重部216に出力する。
応答信号/データ多重部216は、制御部208からの指示に従って、符号化/変調部215から入力される上り回線データと、変調部214から入力される応答信号とを時間領域で多重(TDM)するか否かを決定する。具体的には、応答信号/データ多重部216は、上り回線データと応答信号とを時間領域で多重するように、制御部208から指示された場合、符号化/変調部215から入力される上り回線データと、変調部214から入力される応答信号を時間領域で多重し、多重後の信号をDFT部217へ出力する。また、応答信号/データ多重部216は、上り回線データと応答信号とを時間領域で多重しないように、制御部208から指示された場合には、符号化/変調部215から入力される上り回線データのみをDFT部217へ出力する(すなわち、上り回線データと応答信号とを時間領域で多重しない)。
DFT部217は、応答信号/データ多重部216から入力される時間領域の信号(すなわち、時間領域のPUSCH信号)を、DFT処理により、周波数領域の信号(すなわち、周波数領域のPUSCH信号)に変換し、周波数領域のPUSCH信号をIFFT部218に出力する。
IFFT部218は、制御部208から指示されるリソース情報(PUSCHリソース)に基づいて、DFT部217から入力されるPUSCH信号を周波数領域にマッピングしてIFFT処理を施す。
CP付加部219は、IFFT処理後の時間領域の信号の後尾部分と同じ信号をCPとしてその信号の先頭に付加する。
無線送信部220は、CP付加部219から受け取る信号に対しD/A変換、増幅及びアップコンバート等の送信処理を行い、送信処理後の信号をアンテナから基地局100へ送信する。これにより、上り割当制御情報が示す上りデータチャネルで上り回線データが送信される。
[基地局100及び端末200の動作]
上述のように構成された基地局100及び端末200の動作について説明する。以下、端末200において、上り回線データと、下り回線データに対する応答信号とが同一サブフレームで送信される場合における応答信号のマッピング方法ついて説明する。
なお、基地局100は、端末200に対してCarrier aggregationによって通信を行う旨を予め設定している。つまり、基地局100は、端末200に対して複数の下り単位バンドを設定(configure)している。また、端末200に設定された複数の下り単位バンドは、基本単位バンド(PCC)と、基本単位バンド以外の単位バンド(SCC:Secondary Component Carrier)とで構成される。
また、基地局100から下り割当制御情報及び下り回線データを受信した端末200は、下り回線データの復号成否状況(受信成否状況)に応じて、各下り回線データに対応する応答信号としてACK又はNACKを設定する。
また、以下の説明では、端末200が1つの下り単位バンドにおいて受信した下り回線データに対する応答信号の情報数(応答信号情報数)を1つ又は2つとする。例えば、2つの下り回線データが空間分割多重(SDM:Space Division Multiplexing)によって送信される場合、端末200は、1つの下り単位バンドあたり2つの応答信号情報を生成する。ただし、下り回線データの送信にSDMが適用されるか否かは下り単位バンド毎に独立に設定される。
また、端末200は、下り割当制御情報の受信状況に応じて、応答信号情報(ACK又はNACK)のマッピング位置を決定する。ただし、以下の説明では、1つの応答信号情報がACK又はNACKを示す場合(すなわち、2 statesの場合)について説明するが、本発明は、1つの応答信号情報がACK、NACK又はDTXのいずれかを示す場合(すなわち、3 statesの場合)についても適用することができる。
以下、端末200における応答信号のマッピング方法1及び2について説明する。
<マッピング方法1>
以下、端末200での各下り単位バンド(PCC及びSCC)における下り割当制御情報の受信状況が異なる状態1、状態2及び状態3での応答信号のマッピング方法についてそれぞれ説明する。
<状態1:端末200がPCCのみで下り割当制御情報を受信した場合(図8A参照)>
端末200がPCCのみで下り割当制御情報を受信した場合、端末200は、図8Aに示すように、1つの下り単位バンド(PCC)で受信した下り割当制御情報が示すPDCCHで送信された下り回線データに対する応答信号(PCCに対応する応答信号。「A/N(PCC)」)のみを、Carrier aggregationによらない通信を行う端末(例えば、LTE端末)と同様の方法(例えば、図2)を用いて送信する。
具体的には、端末200において、ACK/NACK制御部212は、PCCで受信した下り割当制御情報が示すPDCCHで受信した下り回線データの復号成否(受信成否)に基づいて、PCCに対応する応答信号情報(1つ又は2つ)を生成する。
ここで、応答信号情報が1つ(例えば1bit)の場合、まず、変調部214は、応答信号情報を変調し、応答信号シンボルを生成する。そして、変調部214は、応答信号シンボルを繰り返し配置(repetition)することにより、基地局100から指示されたシンボル数で構成される「応答信号シンボルセット」を生成する。
また、応答信号情報が2つ(例えば2bit)の場合、まず、符号化部213は応答信号情報を符号化して3bitの系列を生成し、変調部214は3bitの系列を変調して応答信号シンボルサブセット(例えば3シンボル)を生成する。そして、変調部214は、応答信号シンボルサブセットを繰り返し配置(repetition)することにより、基地局100から指示されたシンボル数で構成される「応答信号シンボルセット」を生成する。
なお、応答信号シンボルセットのシンボル数は、基地局100から別途シグナリングされてもよいし、又は、例えば端末200が送信する上り回線データの変調方式及び符号化率(MCS:Modulation and Coding Scheme)に関連付けられて決定されてもよい(すなわち、上り回線データのMCSに応じて、応答信号シンボルセットのシンボル数が決定されてもよい)。
ただし、状態1において応答信号シンボルセットのシンボル数が上り回線データのMCSに関連付けられて決定される場合には、応答信号シンボルセットのシンボル数は、端末200が送信すべき応答信号情報数(例えば応答信号ビット数)も考慮して決定される。すなわち、上り回線データに同じMCSが設定されるという条件下では、応答信号ビット数が1ビットの場合に対して応答信号ビット数が2ビットの場合の応答信号シンボルセットのシンボル数はほぼ2倍となる。
次いで、端末200の応答信号/データ多重部216は、制御部208からの指示に従って、生成したPCCに対応する応答信号シンボルセットと、上り回線データとを、PUSCHで時間多重する。
このとき、制御部208は、応答信号をマッピングするPUSCH内の領域を制御する。具体的には、制御部208は、PCCに対応する応答信号シンボルセットを、PUSCH内の、基地局100から割り当てられた領域(上り回線リソース)にマッピングする。例えば、制御部208は、PCCに対応する応答信号シンボルセットを、LTEシステム(図2)と同様の領域にマッピングする。又は、制御部208は、PCCに対応する応答信号シンボルセット(図8Aに示すA/N(PCC))を、図5A(第2の方法)と同様にして、端末200に割り当てられた下り割当制御情報の数(状態1ではPCCのみ)に応じた領域にマッピングする。
例えば、図8Aに示すPUSCH内の参照信号(RS)がマッピングされるSC-FDMAシンボルに隣接する或るSC-FDMAシンボルに着目する。図8Aに示すように、制御部208は、PCCに対応する応答信号シンボルセット(A/N(PCC))を、そのSC-FDMAシンボルの一部である領域1(図8Aでは4つのリソースエレメント(RE:Resource Element))にマッピングする。なお、図8Aにおいて、応答信号シンボルセットは、上り回線データをパンクチャしてマッピングされる。
<状態2:端末200がPCC及びSCCの双方で下り割当制御情報を受信した場合(図8B参照)>
端末200がPCC及びSCCの双方で下り割当制御情報を受信した場合、端末200は、図8Bに示すように、端末200に設定された複数の下り単位バンド(PCC及びSCC)で受信した下り割当制御情報が示すPDSCHで送信された下り回線データに対する応答信号(PCC及びSCCのそれぞれに対応する応答信号。「ACK/NACK(PCC+SCC)」)を送信する。
具体的には、端末200において、ACK/NACK制御部212は、端末200に設定された複数の下り単位バンドのうち、下り割当制御情報を受け取った下り単位バンド(PCC及び下り割当制御情報を受け取ったSCC)で受信した下り回線データの復号成否(受信成否)に基づいて、当該下り単位バンドに対応する応答信号情報(各下り単位バンドで1つ又は2つ)を生成する。
更に、ACK/NACK制御部212は、端末200に設定された複数の下り単位バンドのうち、下り割当制御情報を受け取った下り単位バンド以外の下り単位バンド(下り割当制御情報を受け取っていないSCC)に対応する応答信号情報としてNACK(又はDTX)を設定する。
このようにして、端末200がPCC及びSCCの双方で下り割当制御情報を受信した場合(状態2)、端末200は、端末200に設定された全ての下り単位バンドに対応する応答信号情報を生成する。つまり、状態2では、端末200から基地局100へ送信される応答信号情報の数は、端末200が下り割当制御情報を受信した下り単位バンド(基地局からAssignされた下り単位バンド)の数にかかわらず、端末200に設定(configure)された下り単位バンドの数(及び、各下り単位バンドでSDMが適用されているか否か)によって一意に決定される。
そして、符号化部213は、端末200に設定された全ての下り単位バンドに対応する応答信号情報(PCCに対応するACK/NACK、及び、SCCに対応するACK、NACK又はDTX)をまとめて符号化(例えば、ブロック符号化)し、変調部214は、符号化後の応答信号情報を変調して、応答信号シンボルサブセットを生成する。そして、変調部214は、応答信号シンボルサブセットを繰り返し配置(repetition)することにより、基地局100から指示されたシンボル数で構成される「応答信号シンボルセット」を生成する。
なお、応答信号シンボルセットのシンボル数は、基地局100から別途シグナリングされてもよいし、又は、例えば端末200が送信する上り回線データの変調方式及び符号化率(MCS)に関連付けられて決定されてもよい。
ただし、状態2において応答信号シンボルセットのシンボル数が上り回線データのMCSに関連付けられて決定される場合には、応答信号シンボルセットのシンボル数は、端末200が送信すべき応答信号情報(応答信号ビット)の総数(すなわち、端末200に設定された各下り単位バンドに対応する応答信号情報を全て送信するために必要なビット数)も考慮して決定される。すなわち、上り回線データに同じMCSが設定されるという条件下では、応答信号ビット数が1ビットの場合に対して応答信号ビット数がNビットの場合の応答信号シンボルセットのシンボル数はほぼN倍となるように決定される。
次いで、端末200の応答信号/データ多重部216は、制御部208からの指示に従って、生成した応答信号シンボルセットと、上り回線データとを、PUSCHで時間多重する。
このとき、制御部208は、応答信号をマッピングするPUSCH内の領域を制御する。具体的には、制御部208は、端末200に設定された全ての下り単位バンド(PCC及びSCC)に対応する応答信号シンボルセット(図8Bに示すA/N(PCC+SCC))を、PUSCH内の、基地局100から割り当てられた領域(上り回線リソース)にマッピングする。例えば、制御部208は、端末200に設定された全ての下り単位バンドに対応する応答信号シンボルセットを、PUSCH内の「端末200に設定された下り単位バンド数に応じて決定される領域」にマッピングする。
例えば、図8Bに示すPUSCH内の参照信号(RS)がマッピングされるSC-FDMAシンボルに隣接する或るSC-FDMAシンボルに着目する。図8Bに示すように、制御部208は、端末200に設定された全ての下り単位バンド(PCC及びSCC)に対応する応答信号シンボルセット(A/N(PCC+SCC))を、図4(第1の方法)と同様にして、端末200に設定された下り単位バンド数に応じて決定される領域である領域2(図8Bでは12RE)にマッピングする。つまり、図8Bに示す領域2は、端末200に設定されている下り単位バンドが変更されるまでは固定の領域である。なお、図8Bにおいて、応答信号シンボルセットは、上り回線データをパンクチャしてマッピングされる。
<状態3:端末200がSCCのみで下り割当制御情報を受信した場合(図8B参照)>
端末200がSCCのみで下り割当制御情報を受信した場合、端末200は、状態2と同様にして、図8Bに示すように、端末200に設定された複数の下り単位バンド(PCC及びSCC)で受信した下り割当制御情報が示すPDSCHで送信された下り回線データに対する応答信号(PCC及びSCCのそれぞれに対応する応答信号。「ACK/NACK(PCC+SCC)」)を送信する。
具体的には、端末200において、ACK/NACK制御部212は、端末200に設定された複数の下り単位バンドのうち、下り割当制御情報を受け取った下り単位バンド(SCC)で受信した下り回線データの復号成否(受信成否)に基づいて、当該下り単位バンドに対応する応答信号情報(各下り単位バンドで1つ又は2つ)を生成する。
更に、ACK/NACK制御部212は、PCCに対応する応答信号情報として、NACK(又はDTX)を設定する。更に、ACK/NACK制御部212は、端末200に設定された複数の下り単位バンドのうち、下り割当制御情報を受け取ったSCC以外のSCC(下り割当制御情報を受け取っていないSCC)に対応する応答信号情報としてNACK(又はDTX)を設定する。
このようにして、端末200がSCCのみで下り割当制御情報を受信した場合(状態3)、状態2と同様、端末200は、端末200に設定された全ての下り単位バンドに対応する応答信号情報を生成する。つまり、状態3では、端末200から基地局100へ送信される応答信号情報の数は、端末200が下り割当制御情報を受信した下り単位バンド(基地局からAssignされた下り単位バンド)の数にかかわらず、端末200に設定(configure)された下り単位バンドの数(及び、各下り単位バンドでSDMが適用されているか否か)によって一意に決定される。
そして、状態2と同様、符号化部213は、端末200に設定された全ての下り単位バンドに対応する応答信号情報(PCCに対応するNACK(又はDTX)、及び、SCCに対応するACK、NACK又はDTX)をまとめて符号化(例えば、ブロック符号化)し、変調部214は、符号化後の応答信号情報を変調して、応答信号シンボルサブセットを生成する。そして、変調部214は、応答信号シンボルサブセットを繰り返し配置(repetition)することにより、基地局100から指示されたシンボル数で構成される「応答信号シンボルセット」を生成する。
なお、応答信号シンボルセットのシンボル数は、基地局100から別途シグナリングされてもよいし、又は、例えば端末200が送信する上り回線データの変調方式及び符号化率(MCS)に関連付けられて決定されてもよい。
ただし、状態3において応答信号シンボルセットのシンボル数が上り回線データのMCSに関連付けられて決定される場合には、応答信号シンボルセットのシンボル数は、端末200が送信すべき応答信号情報(応答信号ビット)の総数(すなわち、端末200に設定された各下り単位バンドに対応する応答信号情報を全て送信するために必要なビット数)も考慮して決定される。すなわち、上り回線データに同じMCSが設定されるという条件下では、応答信号ビット数が1ビットの場合に対して応答信号ビット数がNビットの場合の応答信号シンボルセットのシンボル数はほぼN倍となるように決定される。
次いで、端末200の応答信号/データ多重部216は、制御部208からの指示に従って、生成した応答信号シンボルセットと、上り回線データとを、PUSCHで時間多重する。
このとき、制御部208は、応答信号をマッピングするPUSCH内の領域を制御する。具体的には、制御部208は、状態2と同様、端末200に設定された全ての下り単位バンド(PCC及びSCC)に対応する応答信号シンボルセットを、PUSCH内の、基地局100から割り当てられた領域(上り回線リソース)にマッピングする。例えば、制御部208は、状態2と同様、端末200に設定された全ての下り単位バンドに対応する応答信号シンボルセットを、PUSCH内の「端末200に設定された下り単位バンド数に応じて決定される領域」にマッピングする。
例えば、図8Bに示すPUSCH内の参照信号(RS)がマッピングされるSC-FDMAシンボルに隣接する或るSC-FDMAシンボルに着目する。図8Bに示すように、制御部208は、端末200に設定された全ての下り単位バンド(PCC及びSCC)に対応する応答信号シンボルセット(A/N(PCC+SCC))を、図4(第1の方法)と同様にして、端末200に設定された下り単位バンド数に応じて決定される領域である領域2(12RE)にマッピングする。なお、図8Bにおいて、応答信号シンボルセットは、上り回線データをパンクチャしてマッピングされる。
以上、端末200における下り割当制御情報の受信状況が異なる状態1、状態2及び状態3でのマッピング方法について説明した。
このように、マッピング方法1では、端末200は、上り回線データと応答信号とを同一のサブフレーム(送信単位時間)内で送信する場合、端末200に設定された複数の単位バンドのうち、PCC以外の下り単位バンド(SCC)において少なくとも1つの下り割当制御情報を受信した場合(状態2又は状態3)には、端末200に設定された複数の下り単位バンド(PCC及びSCC)にそれぞれ対応する複数の応答信号(応答信号シンボルセット)を、PUSCH内の、端末200に設定された複数の下り単位バンドの数に応じて決定される領域(図8Bに示す領域2)にマッピングする。
これに対して、端末200は、上り回線データと応答信号とを同一のサブフレーム(送信単位時間)内で送信する場合、端末200に設定された複数の単位バンドのうち、PCCのみで下り割当制御情報を受信した場合(状態1)には、PCCに対応する応答信号(応答信号シンボルセット)を、PUSCH内の領域であって、状態2及び状態3で応答信号がマッピングされる領域(図8Bでは領域2)よりも小さい領域(図8Aでは領域1)にマッピングする。
上述したように、基地局100は、上位レイヤのシグナリング(例えば、RRC Signaling)によって端末200に対してCarrier aggregationを設定する。ただし、上位レイヤのシグナリングは高速に制御できず、基地局100は、端末200に設定する下り単位バンド数を頻繁に変更することができない。このため、基地局100は、端末200に対してCarrier aggregationによって大量のデータを送信した後も、Carrier aggregationの設定を瞬時に変更することができない。
よって、基地局100が端末200に対してCarrier aggregationを設定しているにもかかわらず、複数の単位バンドを用いた通信が必ずしも必要ではない期間が長く発生する。すなわち、基地局100が端末200に対してCarrier aggregationを設定しても、大部分の時間(大部分のサブフレーム)では、Non-Carrier aggregation assignmentによる通信(1つの下り単位バンドのみを用いた通信)が行われる。
また、基地局100は、Non-Carrier aggregation assignmentによる通信を行う際には、PCC(基本単位バンド)を用いる。すなわち、Non-Carrier aggregation assignment時には、PCC以外の下り単位バンド(SCC)のみを用いて下り回線データが送信される状況は稀である。これは、PCC以外の下り単位バンド(SCC)では、端末200側の電力効率を向上させるために、端末200が一部の期間で下り回線データ及び下り割当制御情報をモニタしない状況が発生するためである。
つまり、基地局100が端末200に対して複数の下り単位バンド(Carrier aggregation)を設定しても、大部分の時間(大部分のサブフレーム)では、状態1(PCCのみを用いた通信。Non-Carrier aggregation assignmentによる通信)が行われる。よって、基地局100と端末200との間の通信では、状態1(図8A)の発生頻度の方が、状態2又は状態3(図8B)の発生頻度よりも多くなる。つまり、基地局100が端末200に対して複数の下り単位バンド(Carrier aggregation)を設定した場合でも、図8Aに示すように応答信号(応答信号シンボルセット)がPUSCH内の、領域2よりも小さい領域1(例えば、LTEシステムと同様にして決定される領域)にマッピングされる頻度が高くなる。一方、図8Bに示すように応答信号(応答信号シンボルセット)がPUSCH内の「端末200に設定された全ての下り単位バンドの数に応じて決定された領域」である領域2にマッピングされる頻度が低くなる。
従って、マッピング方法1では、PUSCHリソースにおいて、応答信号によって上り回線データがパンクチャされる状況を、第1の方法(図4)と比較して大幅に削減することができる。換言すると、マッピング方法1では、端末200がPCCのみで下り割当制御情報(つまり、下り回線データ)を受信した場合には、PUSCHリソースにおいて応答信号によって上り回線データがパンクチャされる状況を、LTEシステム(図2)と同程度に抑えることができる。
また、マッピング方法1では、「基地局100と端末200との間の応答信号領域の認識違い」は、SCCで送信された下り割当制御情報を端末200が全て受信失敗した場合のみに発生する。すなわち、端末200において、複数のSCCにおいて少なくとも1つの下り割当制御情報を受信できれば「基地局100と端末200との間の応答信号領域の認識違い」は発生しない。
よって、第2の方法(図5A及び図5B)では「基地局100と端末200との間の応答信号領域の認識違い」が下り単位バンド数の増加に伴い線形的に増加する問題があるのに対して、マッピング方法1では、「基地局100と端末200との間の応答信号領域の認識違い」が発生する状況を大幅に削減できる。つまり、マッピング方法1では、「基地局100と端末200との間の応答信号領域の認識違い」は、下り単位バンド数の増加に伴い減少する。例えば、端末200に2つの下り単位バンド(PCC及びSCC)が設定された場合に、下り割当制御情報のBLER(Block error rate)を1%とすると、「基地局100と端末200との間の応答信号領域の認識違い」は最大でも約1%(つまり、1つのSCCで下り割当制御情報が送信されたにもかかわらず端末200が下り割当制御情報を受信できない場合のみ)に抑えることができる。
このように、マッピング方法1によれば、複数の下り単位バンドを用いたCarrier aggregationが適用されるLTE−Aシステムにおいて、端末が上り回線データと応答信号とを同一のサブフレーム内で同時に送信する場合でも、応答信号によって上り回線データがパンクチャされる状況を削減できるとともに、基地局と端末との間でPUSCH内の応答信号領域に関する認識違いを発生しにくくすることができる。
<マッピング方法2>
マッピング方法2では、マッピング方法1において「基地局100と端末200との間の応答信号領域の認識違い」が発生した場合(つまり、SCCで送信された下り割当制御情報を端末200が全て受信失敗した場合)でも、基地局がPCCに対応する応答信号情報を確実に受信できる方法について説明する。
以下、マッピング方法1と同様、端末200での各下り単位バンド(PCC及びSCC)における下り割当制御情報の受信状況が異なる状態1、状態2及び状態3での応答信号のマッピング方法についてそれぞれ説明する。
<状態1:端末200がPCCのみで下り割当制御情報を受信した場合(図8A参照)>
端末200がPCCのみで下り割当制御情報を受信した場合、端末200は、マッピング方法1と同様の処理を行う。
すなわち、端末200(ACK/NACK制御部212)は、マッピング方法1の状態1と同様、PCCで受信した下り割当制御情報が示すPDSCHで受信した下り回線データの復号成否(受信成否)に基づいて応答信号情報(1つ又は2つ)を生成する。また、端末200(符号化部213及び変調部214)は、マッピング方法1の状態1と同様、応答信号情報の数(応答信号ビット数)に応じて、応答信号情報の符号化及び変調を行い、基地局100から指示されたシンボル数で構成される「応答信号シンボルセット」を生成する。
そして、端末200(応答信号/データ多重部216)は、生成したPCCに対応する応答信号シンボルセットと、上り回線データとをPUSCHで時間多重する。このとき、制御部208は、応答信号をマッピングするPUSCH内の領域を制御する。具体的には、端末200の制御部208は、マッピング方法1の状態1と同様、PCCに対応する応答信号シンボルセットを、例えば、PUSCH内の、LTEシステム(図2)と同様の領域(図8Aに示す領域1)にマッピングする。又は、制御部208は、PCCに対応する応答信号シンボルセット(図8Aに示すA/N(PCC))を、図5A(第2の方法)と同様にして、端末200に割り当てられた下り割当制御情報の数(状態1ではPCCのみ)に応じた領域(図8Aに示す領域1)にマッピングする。なお、図8Aにおいて、応答信号シンボルセットは、上り回線データをパンクチャしてマッピングされる。
<状態2:端末200がPCC及びSCCの双方で下り割当制御情報を受信した場合(図9A参照)>
端末200がPCC及びSCCの双方で下り割当制御情報を受信した場合、端末200は、図9Aに示すように、端末200に設定された複数の下り単位バンド(PCC及びSCC)で受信した下り割当制御情報が示すPDSCHで送信された下り回線データに対する応答信号(PCC及びSCCのそれぞれに対応する応答信号。「A/N(PCC)」及び「A/N(SCC)」)を送信する。
具体的には、端末200において、ACK/NACK制御部212は、状態1(図8A)と同様にして、端末200に設定された複数の下り単位バンドのうち、PCCに対応する応答信号情報を生成する。そして、変調部214は、PCCに対応する応答信号情報を繰り返し配置(repetition)することにより、PCCに対応する応答信号シンボルセット(「PCC応答信号シンボルセット」)を生成する。
更に、ACK/NACK制御部212は、端末200に設定された複数の下り単位バンドのうち、全てのSCCに対応する応答信号情報を生成する。つまり、ACK/NACK制御部212は、下り割当制御情報を受け取ったSCCで受信した下り回線データの復号成否(受信成否)に基づいて、当該SCCに対応する応答信号情報(各下り単位バンドで1つ又は2つ)を生成する。また、ACK/NACK制御部212は、端末200に設定された複数の下り単位バンドのうち、下り割当制御情報を受け取ったSCC以外のSCCに対応する応答信号情報としてNACK(又はDTX)を設定する。そして、符号化部213は、全てのSCCに対応する応答信号情報をまとめて符号化(例えばブロック符号化)し、変調部214は、符号化後の応答信号情報を変調することにより、SCCに対応する応答信号シンボルサブセット(「SCC応答信号シンボルサブセット」)を生成する。そして、変調部214は、SCC応答信号シンボルサブセットを繰り返し配置(repetition)することにより、基地局100から指示されたシンボル数で構成される「SCC応答信号シンボルセット」を生成する。
このようにして、端末200がPCC及びSCCの双方で下り割当制御情報を受信した場合(状態2)、端末200は、マッピング方法1の状態2(及び状態3)と同様、端末200に設定された全ての下り単位バンドに対応する応答信号情報を生成する。ただし、端末200は、端末200に設定された複数の下り単位バンドにおいて、PCCに対応する応答信号と、SCCに対応する応答信号とをそれぞれ個別に符号化(separate coding)する。これにより、端末200では、PCC応答信号シンボルセットとSCC応答信号シンボルセットとが生成される。
なお、マッピング方法1と同様、応答信号シンボルセットのシンボル数は、基地局100から別途シグナリングされてもよいし、又は、例えば端末200が送信する上り回線データの変調方式及び符号化率(MCS)に関連付けられて決定されてもよい。更に、PCC応答信号シンボルセットのシンボル数及びSCC応答信号シンボルセットのシンボル数は独立に決定されてもよい。ただし、状態2において応答信号シンボルセットのシンボル数が上り回線データのMCSに関連付けられて決定される場合には、応答信号シンボルセットのシンボル数は、端末200が送信すべきPCCに対応する応答信号情報のビット総数、及び、SCCの組に対応する応答信号情報のビット総数も考慮して決定される。
次いで、端末200の応答信号/データ多重部216は、制御部208からの指示に従って、生成した応答信号シンボルセットと、上り回線データとを、PUSCHで時間多重する。
このとき、制御部208は、応答信号をマッピングするPUSCH内の領域を制御する。具体的には、制御部208は、端末200に設定された全ての下り単位バンド(PCC及びSCC)に対応する応答信号シンボルセット(図9Aに示すA/N(PCC)及びA/N(SCC))を、PUSCH内の、基地局100から割り当てられた領域(上り回線リソース)にマッピングする。例えば、制御部208は、PCCに対応するPCC応答信号シンボルセットを、状態1と同様に、PUSCH内の「PCCのみに応じた領域(図9Aに示す領域1)」にマッピングするとともに、端末200に設定された全てのSCCに対応するSCC応答信号シンボルセットを、PUSCH内の「端末200に設定されたSCCの数に応じて決定される領域(図9Aに示す領域3)」にマッピングする。
例えば、図9Aに示すPUSCH内の参照信号(RS)がマッピングされるSC-FDMAシンボルに隣接する或るSC-FDMAシンボルに着目する。図9Aに示すように、制御部208は、PCC応答信号シンボルセット(A/N(PCC))を図9Aに示す領域1にマッピングする一方、SCC応答信号シンボルセット(A/N(SCC))を、端末200に設定されたSCCの数に応じて決定される領域である領域3(図9Aでは8RE)にマッピングする。つまり、図9Aに示す領域3は、端末200に設定されているSCC数(すなわち、PCC以外の下り単位バンド数)が変更されるまでは固定の領域である。
ここで、図9Aに示すように、領域3(端末200に設定されたSCCの数に応じて決定される固定の領域)は、状態1(図8A)におけるPCCに対応する応答信号シンボルセット(A/N(PCC))がマッピングされる領域(領域1)と異なるREに配置される。そして、図9Aに示すように、制御部208は、PCC応答信号シンボルセット(A/N(PCC))を領域1(4RE)にマッピングし、SCC応答信号シンボルセット(A/N(SCC))を、領域1以外の領域3(8RE)にマッピングする。なお、図9Aにおいて、応答信号シンボルセットは、上り回線データをパンクチャしてマッピングされる。
すなわち、状態1(図8A)及び状態2(図9A)において、PCC向けの応答信号情報がマッピングされるPUSCH内の領域は変化しない。一方、状態2では、SCC応答信号シンボルセットは、端末200に設定されたSCCの数に応じて決定される、領域1とは異なる領域(領域3)にマッピングされる。図9Aでは、SCC応答信号シンボルセットは、PCC応答信号シンボルセットがマッピングされた領域1に隣接する領域にマッピングされる。換言すると、図9Aでは、SCC応答信号シンボルセットは、LTEシステム(図2)で応答信号が占有するREの続きのREにマッピングされる。
<状態3:端末200がSCCのみで下り割当制御情報を受信した場合(図9B参照)>
端末200がSCCのみで下り割当制御情報を受信した場合、端末200は、状態2と同様にして、図9Bに示すように、端末200に設定された複数の下り単位バンド(PCC及びSCC)で受信した下り割当制御情報が示すPDSCHで送信された下り回線データに対する応答信号(PCC及びSCCのそれぞれに対応する応答信号。「A/N(PCC)」及び「A/N(SCC)」)を送信する。
具体的には、端末200において、ACK/NACK制御部212は、端末200に設定された複数の下り単位バンドのうち、PCCに対応する応答信号情報としてNACK(又はDTX)を設定する。そして、変調部214は、PCCに対応する応答信号情報を繰り返し配置(repetition)することにより「PCC応答信号シンボルセット」を生成する。
更に、ACK/NACK制御部212は、端末200に設定された複数の下り単位バンドのうち、全てのSCCに対応する応答信号情報を生成する。つまり、ACK/NACK制御部212は、状態2と同様、下り割当制御情報を受け取ったSCCで受信した下り回線データの復号成否(受信成否)に基づいて、当該SCCに対応する応答信号情報(各下り単位バンドで1つ又は2つ)を生成する。また、ACK/NACK制御部212は、端末200に設定された複数の下り単位バンドのうち、下り割当制御情報を受け取ったSCC以外のSCCに対応する応答信号情報としてNACK(又はDTX)を設定する。そして、符号化部213は、全てのSCCに対応する応答信号情報をまとめて符号化(例えばブロック符号化)し、変調部214は、符号化後の応答信号情報を変調することにより「SCC応答信号シンボルサブセット」を生成する。そして、変調部214は、SCC応答信号シンボルサブセットを繰り返し配置(repetition)することにより、基地局100から指示されたシンボル数で構成される「SCC応答信号シンボルセット」を生成する。
このようにして、端末200がPCC及びSCCの双方で下り割当制御情報を受信した場合には、端末200は、状態2と同様、端末200に設定された複数の下り単位バンドにおいて、PCCに対応する応答信号と、SCCに対応する応答信号とを別々に符号化(separate coding)する。これにより、端末200では、PCC応答信号シンボルセットとSCC応答信号シンボルセットとが生成される。
なお、応答信号シンボルセットのシンボル数は、基地局100から別途シグナリングされてもよいし、又は、例えば端末200が送信する上り回線データの変調方式及び符号化率(MCS)に関連付けられて決定されてもよい。更に、PCC応答信号シンボルセットのシンボル数及びSCC応答信号シンボルセットのシンボル数は独立に決定されてもよい。ただし、状態3において応答信号シンボルセットのシンボル数が上り回線データのMCSに関連付けられて決定される場合には、応答信号シンボルセットのシンボル数は、端末200が送信すべきPCCに対応する応答信号情報のビット総数、及び、SCCの組に対応する応答信号情報のビット総数も考慮して決定される。
次いで、端末200の応答信号/データ多重部216は、制御部208からの指示に従って、生成した応答信号シンボルセットと、上り回線データとを、PUSCHで時間多重する。
このとき、制御部208は、応答信号をマッピングするPUSCH内の領域を制御する。具体的には、制御部208は、端末200に設定された全ての下り単位バンド(PCC及びSCC)に対応する応答信号シンボルセット(図9Bに示すNACK(A/N(PCC))及びA/N(SCC))を、PUSCH内の、基地局100から割り当てられた領域(上り回線リソース)にマッピングする。例えば、制御部208は、状態2と同様、PCCに対応するPCC応答信号シンボルセットを、PUSCH内の「PCCのみに応じた領域(図9Bに示す領域1)」にマッピングするとともに、端末200に設定された全てのSCCに対応するSCC応答信号シンボルセットを、PUSCH内の「端末200に設定されたSCCの数に応じて決定される領域(図9Bに示す領域3)」にマッピングする。
例えば、図9Bに示すPUSCH内の参照信号(RS)がマッピングされるSC-FDMAシンボルに隣接する或るSC-FDMAシンボルに着目する。図9Bに示すように、制御部208は、状態2と同様にして、PCC応答信号シンボルセット(A/N(PCC))を図9Bに示す領域1にマッピングする一方、SCC応答信号シンボルセット(A/N(SCC))を、端末200に設定されたSCCの数に応じて決定される領域である領域3(図9Bでは8RE)にマッピングする。つまり、図9Bに示す領域3は、端末200に設定されているSCC(すなわち、下り単位バンド数)が変更されるまでは固定の領域である。
ただし、状態2(図9A)と同様、図9Bに示すように、制御部208は、PCC応答信号シンボルセット(A/N(PCC)。ここではNACK)を領域1(4RE)にマッピングし、SCC応答信号シンボルセット(A/N(SCC))を、領域3(8RE)にマッピングする。なお、図9Bにおいて、応答信号シンボルセットは、上り回線データをパンクチャしてマッピングされる。
すなわち、状態2(図9A)と同様、状態1(図8A)及び状態3(図9B)において、PCC向けの応答信号情報(NACK)がマッピングされるPUSCH内の領域は変化しない。また、状態2(図9A)と同様、状態3(図9B)では、SCC応答信号シンボルセットは、端末200に設定されたSCCの数に応じて決定される領域(領域3)にマッピングされる。つまり、図9Bでは、9Aと同様、SCC応答信号シンボルセットは、PCC応答信号シンボルセットがマッピングされた領域1(LTEシステム(図2)で応答信号が占有するRE)と異なる領域(例えば、領域1(4RE)の続きのRE)にマッピングされる。
以上、端末200における下り割当制御情報の受信状況が異なる状態1、状態2及び状態3での応答信号のマッピング方法について説明した。
このように、マッピング方法2では、端末200は、上り回線データと応答信号とを同一のサブフレーム(送信単位時間)内で送信する場合、端末200に設定された複数の単位バンドのうち、PCCのみで下り割当制御情報を受信した場合(状態1)には、マッピング方法1と同様、PCCに対応する応答信号(応答信号シンボルセット)を、PUSCH内の領域であって、状態2及び状態3で応答信号がマッピングされる領域(図9A及び図9Bに示す領域1と領域3の合計)よりも小さい領域(図8Aに示す領域1)にマッピングする。
また、端末200は、上り回線データと応答信号とを同一のサブフレーム(送信単位時間)内で送信する場合、端末200に設定された複数の単位バンドのうち、PCC以外の下り単位バンド(SCC)において少なくとも1つの下り割当制御情報を受信した場合(状態2及び状態3)には、PCCに対応するPCC応答信号シンボルセットを、PUSCH内の「PCCのみに応じた領域(図9Bに示す領域1)」にマッピングするとともに、端末200に設定された全てのSCCに対応するSCC応答信号シンボルセットを、PUSCH内の「端末200に設定されたSCCの数に応じて決定される領域(図9Bに示す領域3)」にマッピングする。ただし、このとき、図9A及び図9Bに示すように、領域1と領域3とは互いに異なる領域であり、端末200は、PCCに対応する応答信号(PCC応答信号シンボルセット)を領域1にマッピングし、SCCに対応する応答信号(SCC応答信号シンボルセット)を、領域1以外の領域3にマッピングする。
つまり、端末200は、PCCに対応する応答信号(PCC応答信号シンボルセット)を、図8A、図9A及び図9Bに示す領域1(LTEシステム(図2)と同様の領域)で常に送信する。一方、端末200は、SCCで下り割当制御情報を受信した場合にのみ、図9A及び図9Bに示す領域1以外の追加領域(Additional resource)、すなわち、領域3を用いる。
よって、マッピング方法2(図8A、図9A及び図9B)は、マッピング方法1(図8A、図8B)と比較すると、PUSCHにおいて、応答信号によって上り回線データがパンクチャされることによる、上り回線データのオーバーヘッド(上り回線データの伝送品質の劣化)をほぼ同等に削減することができる。
ただし、マッピング方法1では、上述したように、SCCで送信された下り割当制御情報を端末200が全て受信失敗した場合に「基地局100と端末200との間の応答信号領域の認識違い」が発生する問題が残っている。つまり、SCCで送信された下り割当制御情報を端末200が全て受信失敗した場合、SCCに対応する応答信号情報のみでなく、PCCに対応する応答信号情報の受信にも失敗する可能性が高くなる。
例えば、基地局100において、応答信号に対してNACKをACKとして誤って受信するエラー(NACK->ACKエラー)又はDTXをACKとして誤って受信するエラー(DTX->ACKエラー)が発生した場合、物理層ではデータが端末200に正常に伝送されたと誤認識し、データの再送を停止してしまう。この場合、基地局100では、上位層のタイマ(Timer)によって再度データの送信が試行されるまでは当該データは端末200に到達しないという現象が発生する。すなわち、応答信号の誤り率特性(応答信号の受信品質)が劣化すると、データの伝送遅延が大幅に増加してしまう。
また、上位レイヤのシグナリングは主にPCCを介して行われるので、PCCで送信されるデータ(上位レイヤの制御情報を含むデータ)の伝送遅延が増加することは許されない。また、上述したように、基地局100は、Non-Carrier aggregation assignmentによる通信を行う際には、PCC(基本単位バンド)を用いる。よって、PCCで送信されるデータに対する応答信号の誤り率特性(受信品質)は或る一定の品質が保証されなければならない。
これに対して、マッピング方法2では、端末200は、PCCに対応する応答信号情報及びSCCに対応する応答信号情報を別々に符号化し、PUSCHの中の互いに異なる領域にマッピングする。また、端末200は、PCCに対応する応答信号情報(PCC応答信号シンボルセット)を、各下り単位バンド(PCC及びSCC)の下り割当制御情報の受信状況に依らず(つまり、状態1〜3のいずれにおいても)、常に同一の領域(図8Aに示す領域A)にマッピングする。
よって、マッピング方法2によれば、端末200側においてSCCで送信された下り割当制御情報の受信に全て失敗した場合でも、PCCに対応する応答信号情報がマッピングされた領域は不変であるので、基地局100と端末200との間でPCCに対応する応答信号領域の認識違いは発生しない。すなわち、より重要なデータ(急を要するデータ)の送信に用いられるPCCに対応する応答信号の受信品質劣化を防止することができるので、マッピング方法1よりもシステムスループットが向上する。
このように、マッピング方法2によれば、複数の下り単位バンドを用いたCarrier aggregationが適用されるLTE−Aシステムにおいて、端末が上り回線データと応答信号とを同一のサブフレーム内で同時に送信する場合でも、応答信号によって上り回線データがパンクチャされる状況を削減できるとともに、基地局と端末との間でPUSCH内の特にPCCに対する応答信号領域に関する認識違いを無くすことができる。
なお、マッピング方法2では、SCC応答信号シンボルセットをPCC応答信号シンボルセットに続けた位置(RE)にマッピングする場合について説明したが、SCC応答信号のマッピングはこれに限定されない。すなわち、PCC応答信号シンボルセットがマッピングされる位置(RE)が不変であれば、例えば、SCC応答信号シンボルセットが、他の制御信号(CQI、RI、PMI)がマッピングされる位置に続けてマッピングされていてもよく、他の制御信号(例えばCQI)と纏めて符号化して任意の位置にマッピングされてもよい。
また、マッピング方法2では、PCCに対応するPCC応答信号シンボルセットを、PUSCH内の「PCCのみに応じた領域(図9Bに示す領域1)」にマッピングするとともに、端末200に設定された全てのSCCに対応するSCC応答信号シンボルセットを、PUSCH内の「端末200に設定されたSCCの数に応じて決定される領域(図9Bに示す領域3)」にマッピングする場合について説明した。しかし、端末200は、「基地局から端末200に設定された全ての下り単位バンド数に応じて決定される領域(図8Bにおける領域2)」のうちの一部を領域1として用い、領域2のうち領域1以外の領域を領域3として用いてもよい。この場合も、得られる効果は上記と同様である。
また、マッピング方法2では、状態3の場合(すなわち、SCCにおいてのみ下り割当制御情報を受信した場合)には、PCC応答信号シンボルセットにNACK(又はDTX)を設定して、図9Bに示す領域1にマッピングする場合について説明した。しかし、本発明では、状態3の場合において、PCC応答信号シンボルセット自体を生成せず、従って領域1においてデータのパンクチャをしないように制御してもよい(領域1にはデータが配置される)。この動作は、領域1に着目すれば、Carrier aggregation無しで通信時に、端末側で下り割当制御情報を取り損ねた場合と同等の動作となる。この場合、端末側での「PCCに対応する下り割当制御情報の検出漏れ」を基地局が判断するために、基地局側では「領域1に端末からのPCC応答信号シンボルセットが配置されているか否か」を検出する動作を行えばよい。こうすることで、データがパンクチャされる量が削減できるため、上り回線データの伝送品質が向上する。
また、マッピング方法2では、領域3の大きさを端末に設定されたSCCの数に応じて設定し、端末200に設定された全てのSCCに対応するSCC応答信号シンボルセットを領域3に配置する場合について説明したが、これに限定されない。例えば、領域3の大きさを、端末200が受信したSCCに対応する下り割当制御情報の数に応じて設定し、端末200が受信した下り割当制御情報の数に対応するSCC応答信号シンボルセットを領域3に配置してもよい。この場合、「基地局100と端末200との間の応答信号領域の認識違い」が発生する頻度は、第2の方法(図5A及び図5B)と同等程度となるが、PCCに対応する応答信号情報がマッピングされた領域は不変であるので、基地局100と端末200との間でPCCに対応する応答信号領域の認識違いは発生しない。すなわち、より重要なデータ(急を要するデータ)の送信に用いられるPCCに対応する応答信号の受信品質劣化を防止する効果は期待できる。
以上、端末200における応答信号のマッピング方法1及び2について説明した。
このように、本実施の形態によれば、複数の下り単位バンドを用いたCarrier aggregationが適用される通信システムにおいて、端末が上り回線データと応答信号とを同一のサブフレーム内で同時に送信する場合でも、複数の応答信号によって上り回線データがパンクチャされる状況を削減できる。更に、本実施の形態によれば、基地局と端末との間で上り回線データ向けに割り当てられたPUSCH内の応答信号領域に関する認識違いを発生しにくくすることができる。
以上、本発明の各実施の形態について説明した。
なお、上記実施の形態では、基地局100の制御部101は、下り回線データと当該下り回線データに対する下り割当制御情報とを同一の下り単位バンドにマッピングするよう制御するとしたが、これに限定されない。すなわち、下り回線データと当該下り回線データに対する下り割当制御情報とが別の下り単位バンドにマッピングされていても、下り割当制御情報と下り回線データとの対応関係が明確であれば、各実施の形態で説明した技術を適用できる。この場合、端末200は、端末200に設定された複数の単位バンドのうち、PCCに配置される下り回線データに対応する下り割当制御情報のみを受信した場合には状態1の動作(図8A)を行い、端末200に設定された複数の単位バンドのうち、SCCに配置される下り回線データに対応する下り割当制御情報を1つでも受信した場合には状態2又は3の動作(図8B、図9A又は図9B)を行えばよい。
また、上記実施の形態ではアンテナとして説明したが、本発明はアンテナポート(antenna port)でも同様に適用できる。
アンテナポートとは、1本又は複数の物理アンテナから構成される、論理的なアンテナを指す。すなわち、アンテナポートは必ずしも1本の物理アンテナを指すとは限らず、複数のアンテナから構成されるアレイアンテナ等を指すことがある。
例えば3GPP LTEにおいては、アンテナポートが何本の物理アンテナから構成されるかは規定されず、基地局が異なる参照信号(Reference signal)を送信できる最小単位として規定されている。
また、アンテナポートはプリコーディングベクトル(Precoding vector)の重み付けを乗算する最小単位として規定されることもある。
また、上記実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はハードウェアとの連携においてソフトウェアでも実現することも可能である。
また、上記実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。
さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
2010年5月6日出願の特願2010−106461の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
本発明は、移動体通信システム等に適用することができる。
100 基地局
200 端末
101,208 制御部
102 制御情報生成部
103,213 符号化部
104,214 変調部
105 符号化部
106 データ送信制御部
107 変調部
108 マッピング部
109,218 IFFT部
110,219 CP付加部
111,220 無線送信部
112,201 無線受信部
113,202 CP除去部
114 PUSCH分離部
115 IDFT部
116 応答信号分離部
117 応答信号受信部
118 復調/復号部
119 判定部
120 再送制御信号生成部
203 FFT部
204 抽出部
205,209 復調部
206,210 復号部
207 判定部
211 CRC部
212 ACK/NACK制御部
215 符号化/変調部
216 応答信号/データ多重部
217 DFT部

Claims (6)

  1. 設定された複数の下り単位バンドのうち一部又は全てを用いて基地局と通信する端末装置であって、
    前記複数の下り単位バンドの下り制御チャネルで送信された下り割当制御情報と、前記下り割当制御情報が示す下りデータチャネルで送信された下りデータと、を受信する受信手段と、
    前記下りデータの受信成否に基づいて、前記複数の下り単位バンドのうち、第1の下り単位バンドに対応する第1の応答信号と、第2の下り単位バンドに対応する第2の応答信号とを含む、応答信号を生成する生成手段と、
    前記第1の応答信号と、前記第2の応答信号とを別々に符号化する符号化手段と、
    前記第1の応答信号と前記第2の応答信号とをそれぞれ上りデータチャネル領域内の異なる領域に、上り回線データと時間領域で多重してマッピングするマッピング手段と、を具備し、
    前記マッピング手段は、
    前記第1の応答信号を前記複数の下り単位バンドの前記下り割当制御情報の受信状況に依らず、同一の領域にマッピングする、
    端末装置。
  2. 前記第2の下り単位バンドに対応する少なくとも1つの前記下り割当制御情報を受信した場合、
    前記マッピング手段は、前記第2の応答信号を、前記端末装置に設定された前記第2の下り単位バンド数に応じて決定される領域に、マッピングする、
    請求項1に記載の端末装置。
  3. 前記第2の下り単位バンドに対応する少なくとも1つの前記下り割当制御情報を受信した場合、
    前記マッピング手段は、前記第2の応答信号を、前記基地局から前記端末に設定された全ての下り単位バンド数に応じて決定される領域に、マッピングする、
    請求項1記載の端末装置。
  4. 前記第2の下り単位バンドに対応する少なくとも1つの前記下り割当制御情報を受信した場合、
    マッピング手段は、前記第2の応答信号を、他の制御信号がマッピングされる領域に続けてマッピングする、
    請求項1記載の端末装置。
  5. 設定された複数の下り単位バンドのうち一部又は全てを用いて基地局と通信する端末装置であって、
    前記複数の下り単位バンドの下り制御チャネルで送信された下り割当制御情報と、前記下り割当制御情報が示す下りデータチャネルで送信された下りデータと、を受信する受信手段と、
    前記下りデータの受信成否に基づいて、前記複数の下り単位バンドのうち、第1の下り単位バンドに対応する第1の応答信号と、第2の下り単位バンドに対応する第2の応答信号とを含む、応答信号を生成する生成手段と、
    前記第1の応答信号と、前記第2の応答信号とを別々に符号化する符号化手段と、
    前記第1の応答信号と前記第2の応答信号とをそれぞれ上りデータチャネル領域内の異なる領域に、上り回線データと時間領域で多重してマッピングするマッピング手段と、を具備し、
    前記第2の下り単位バンドに対応する少なくとも1つの前記下り割当制御情報のみを受信した場合、
    前記マッピング手段は、前記第1の応答信号を前記上りデータチャネル領域にマッピングしない、
    端末装置。
  6. 設定された複数の下り単位バンドのうち一部又は全てを用いて基地局と通信する端末装置における応答信号マッピング方法であって、
    前記複数の下り単位バンドの下り制御チャネルで送信された下り割当制御情報を受信し、
    前記下り割当制御情報が示す下りデータチャネルで送信された下りデータを受信し、
    前記下りデータの受信成否に基づいて、前記複数の下り単位バンドのうち、第1の下り単位バンドに対応する第1の応答信号と、第2の下り単位バンドに対応する第2の応答信号とを含む、応答信号を生成し、
    前記第1の応答信号と、前記第2の応答信号とを別々に符号化し、
    前記第1の応答信号と前記第2の応答信号とをそれぞれ上りデータチャネル領域内の異なる領域に、上り回線データと時間領域で多重してマッピングし、
    前記複数の単位バンドの前記下り割当制御情報の受信状況に依らず、前記第1の応答信号と、上り回線データと時間領域で多重して、上りデータチャネル領域において同一の領域にマッピングする、
    応答信号マッピング方法。
JP2012513763A 2010-05-06 2011-04-14 端末装置及び応答信号マッピング方法 Expired - Fee Related JP5723873B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012513763A JP5723873B2 (ja) 2010-05-06 2011-04-14 端末装置及び応答信号マッピング方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010106461 2010-05-06
JP2010106461 2010-05-06
PCT/JP2011/002205 WO2011138849A1 (ja) 2010-05-06 2011-04-14 端末装置及び応答信号マッピング方法
JP2012513763A JP5723873B2 (ja) 2010-05-06 2011-04-14 端末装置及び応答信号マッピング方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015066042A Division JP5864797B2 (ja) 2010-05-06 2015-03-27 端末装置及び応答信号マッピング方法

Publications (2)

Publication Number Publication Date
JPWO2011138849A1 JPWO2011138849A1 (ja) 2013-07-22
JP5723873B2 true JP5723873B2 (ja) 2015-05-27

Family

ID=44903705

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012513763A Expired - Fee Related JP5723873B2 (ja) 2010-05-06 2011-04-14 端末装置及び応答信号マッピング方法
JP2015066042A Expired - Fee Related JP5864797B2 (ja) 2010-05-06 2015-03-27 端末装置及び応答信号マッピング方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2015066042A Expired - Fee Related JP5864797B2 (ja) 2010-05-06 2015-03-27 端末装置及び応答信号マッピング方法

Country Status (3)

Country Link
US (3) US8942199B2 (ja)
JP (2) JP5723873B2 (ja)
WO (1) WO2011138849A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104038323B (zh) 2009-04-21 2018-01-05 光学无线技术有限责任公司 终端、基站及在其中使用的方法
US20120087238A1 (en) * 2009-06-19 2012-04-12 Panasonic Corporation Terminal device and retransmission control method
KR101775531B1 (ko) * 2010-03-23 2017-09-06 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
US20130100888A1 (en) * 2010-06-18 2013-04-25 Sharp Kabushiki Kaisha Mobile communication system, mobile station apparatus, base station apparatus, and communication method
KR101833187B1 (ko) * 2013-02-22 2018-02-27 인텔 아이피 코포레이션 액세스 네트워크 선택 및 트래픽 라우팅을 위한 시스템 및 방법
US10015790B2 (en) * 2014-04-25 2018-07-03 Lg Electronics Inc. Method and device for transmitting/receiving radio signal in wireless communication system
US9844072B2 (en) * 2014-09-26 2017-12-12 Qualcomm Incorporated Ultra-low latency LTE uplink frame structure
US9955462B2 (en) 2014-09-26 2018-04-24 Qualcomm Incorporated Ultra-low latency LTE control data communication
US9980257B2 (en) 2014-09-26 2018-05-22 Qualcomm Incorporated Ultra-low latency LTE reference signal transmission
EP3251268B1 (en) 2015-01-30 2020-04-15 Telefonaktiebolaget LM Ericsson (publ) Communicating control data in a wireless communication network
US10880067B2 (en) * 2017-05-12 2020-12-29 Qualcomm Incorporated Downlink control allocation using carrier aggregation resource groups
US20210022162A1 (en) * 2019-07-19 2021-01-21 Qualcomm Incorporated Power efficient monitoring for semi-persistent scheduling occasions on multiple component carriers

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7616698B2 (en) * 2003-11-04 2009-11-10 Atheros Communications, Inc. Multiple-input multiple output system and method
JP4415777B2 (ja) * 2004-07-07 2010-02-17 株式会社日立製作所 マルチキャリア通信における適応変調方法
US8737189B2 (en) * 2005-02-16 2014-05-27 Broadcom Corporation Method and system for compromise greenfield preambles for 802.11n
JP4167646B2 (ja) * 2004-11-30 2008-10-15 株式会社東芝 Ofdm復調装置
US8233552B2 (en) * 2005-11-07 2012-07-31 Broadcom Corporation Method and system for utilizing givens rotation expressions for asymmetric beamforming matrices in explicit feedback information
JP4940867B2 (ja) * 2006-09-29 2012-05-30 日本電気株式会社 移動通信システムにおける制御信号およびリファレンス信号の多重方法、リソース割当方法および基地局
JP4629056B2 (ja) * 2006-10-03 2011-02-09 株式会社エヌ・ティ・ティ・ドコモ ユーザ装置、送信方法及び通信システム
KR101319894B1 (ko) * 2007-05-22 2013-10-18 엘지전자 주식회사 부가 정보를 포함한 제어 채널 송수신 방법
KR20090015778A (ko) * 2007-08-08 2009-02-12 엘지전자 주식회사 스케줄링 요청 신호 전송 방법
US9288021B2 (en) * 2008-05-02 2016-03-15 Qualcomm Incorporated Method and apparatus for uplink ACK/NACK resource allocation
KR101638900B1 (ko) * 2008-08-05 2016-07-12 엘지전자 주식회사 무선 통신 시스템에서 하향링크 멀티 캐리어에 대한 제어정보를 전송하는 방법
US8341467B2 (en) * 2008-08-13 2012-12-25 Nec Laboratories America, Inc. System and method for wireless transmission using hybrid ARQ based on average mutual information per bit
CN101790240B (zh) * 2009-01-24 2015-04-15 华为技术有限公司 Ack/nack信道资源分配及确认信息处理的方法及装置
CN102365837B (zh) * 2009-03-29 2014-05-14 Lg电子株式会社 在无线通信系统中发送控制信息的方法及其装置
US8265575B2 (en) * 2009-06-16 2012-09-11 Mediatek Inc. Methods for handling a transmitting process and communication apparatuses utilizing the same
KR101757296B1 (ko) * 2009-08-18 2017-07-13 엘지전자 주식회사 무선 통신 시스템에서 harq 절차를 수행하는 방법 및 장치
ES2841908T3 (es) * 2010-01-11 2021-07-12 Electronics & Telecommunications Res Inst Agregación de portadora en sistemas de comunicación inalámbrica
US8920841B2 (en) * 2010-04-23 2014-12-30 Heather Sheardown Biodegradable polymer system
KR101701305B1 (ko) * 2010-06-21 2017-02-13 주식회사 팬택 반송파 집합화 환경에서 상향제어정보를 송수신하는 방법 및 장치
KR20120016561A (ko) * 2010-08-16 2012-02-24 주식회사 팬택 다중반송파 시스템에서 제어정보 전송 장치 및 방법
JP4878651B1 (ja) * 2010-09-17 2012-02-15 シャープ株式会社 移動局装置、通信システム、通信方法および集積回路
JP5307112B2 (ja) * 2010-12-17 2013-10-02 シャープ株式会社 移動局装置、基地局装置、無線通信システム、制御方法及び集積回路
US8891402B2 (en) * 2011-09-30 2014-11-18 Sharp Kabushiki Kaisha Devices for reporting uplink information
KR20130125695A (ko) * 2012-05-09 2013-11-19 주식회사 팬택 인터밴드 tdd 전송 방식에서 채널 셀렉션 전송을 위한 harq-ack 인덱스 매핑 및 업링크 자원 할당을 제어하는 방법 및 장치
US9094960B2 (en) * 2012-05-30 2015-07-28 Intel Corporation Hybrid automatic repeat request (HARQ) mapping for carrier aggregation (CA)
US8923880B2 (en) * 2012-09-28 2014-12-30 Intel Corporation Selective joinder of user equipment with wireless cell

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
CSNC201110007324; Panasonic: 'ACK/NACK multiplexing schemes on PUSCH[online]' 3GPP TSG-RAN WG1#61b R1-103760 , 20100628, インターネット<URL:http://www.3gpp.org/ftp/tsg_ra *
CSNC201110008454; Research In Motion UK Limited: 'UCI Transmission in the Presence of UL-SCH Data[online]' 3GPP TSG-RAN WG1#61 R1-103067 , 20100504, インターネット<URL:http://www.3gpp.org/ftp/tsg_ra *
CSNC201110009019; Ericsson, ST-Ericsson: 'PUCCH design for carrier aggregation[online]' 3GPP TSG-RAN WG1#60b R1-101730 , 20100412, インターネット<URL:http://www.3gpp.org/ftp/tsg_ra *
CSNC201110009297; Panasonic: 'UL ACK/NACK transmission on large payload size format[online]' 3GPP TSG-RAN WG1#60b R1-102020 , 20100412, インターネット<URL:http://www.3gpp.org/ftp/tsg_ra *
CSNC201110010034; CATT: 'UL ACK/NACK Transmission Design in FDD with CA[online]' 3GPP TSG-RAN WG1#60 R1-100876 , 20100222, インターネット<URL:http://www.3gpp.org/ftp/tsg_ra *
CSNC201110011210; LG Electronics: 'UCI piggyback onto PUSCH in LTE-Advanced[online]' 3GPP TSG-RAN WG1#59b R1-100218 , 20100118, インターネット<URL:http://www.3gpp.org/ftp/tsg_ra *
CSNC201110011352; Panasonic: 'PUCCH resource allocation for carrier aggregation[online]' 3GPP TSG-RAN WG1#59b R1-100363 , 20100118, インターネット<URL:http://www.3gpp.org/ftp/tsg_ra *
CSNC201110017072; LG Electronics: 'UL control channel design to support carrier aggregation[online]' 3GPP TSG-RAN WG1#56b R1-091204 , 20090323, インターネット<URL:http://www.3gpp.org/ftp/tsg_ra *
JPN6014036758; Panasonic: 'PUCCH resource allocation for carrier aggregation[online]' 3GPP TSG-RAN WG1#59b R1-100363 , 20100118, インターネット<URL:http://www.3gpp.org/ftp/tsg_ra *
JPN6014036759; Panasonic: 'ACK/NACK multiplexing schemes on PUSCH[online]' 3GPP TSG-RAN WG1#61b R1-103760 , 20100628, インターネット<URL:http://www.3gpp.org/ftp/tsg_ra *
JPN6014036760; Research In Motion UK Limited: 'UCI Transmission in the Presence of UL-SCH Data[online]' 3GPP TSG-RAN WG1#61 R1-103067 , 20100504, インターネット<URL:http://www.3gpp.org/ftp/tsg_ra *
JPN6014036761; CATT: 'UL ACK/NACK Transmission Design in FDD with CA[online]' 3GPP TSG-RAN WG1#60 R1-100876 , 20100222, インターネット<URL:http://www.3gpp.org/ftp/tsg_ra *
JPN6014036762; LG Electronics: 'UCI piggyback onto PUSCH in LTE-Advanced[online]' 3GPP TSG-RAN WG1#59b R1-100218 , 20100118, インターネット<URL:http://www.3gpp.org/ftp/tsg_ra *
JPN6014036763; LG Electronics: 'UL control channel design to support carrier aggregation[online]' 3GPP TSG-RAN WG1#56b R1-091204 , 20090323, インターネット<URL:http://www.3gpp.org/ftp/tsg_ra *
JPN6014036764; Ericsson, ST-Ericsson: 'PUCCH design for carrier aggregation[online]' 3GPP TSG-RAN WG1#60b R1-101730 , 20100412, インターネット<URL:http://www.3gpp.org/ftp/tsg_ra *
JPN6014036765; Panasonic: 'UL ACK/NACK transmission on large payload size format[online]' 3GPP TSG-RAN WG1#60b R1-102020 , 20100412, インターネット<URL:http://www.3gpp.org/ftp/tsg_ra *

Also Published As

Publication number Publication date
US20130044720A1 (en) 2013-02-21
US9094171B2 (en) 2015-07-28
JP5864797B2 (ja) 2016-02-17
WO2011138849A1 (ja) 2011-11-10
US20150098454A1 (en) 2015-04-09
JP2015165672A (ja) 2015-09-17
US20150263842A1 (en) 2015-09-17
JPWO2011138849A1 (ja) 2013-07-22
US9325478B2 (en) 2016-04-26
US8942199B2 (en) 2015-01-27

Similar Documents

Publication Publication Date Title
JP6569119B2 (ja) 端末装置、送信方法及び集積回路
JP5864797B2 (ja) 端末装置及び応答信号マッピング方法
JP6094914B2 (ja) 通信装置、通信方法及び集積回路
JP6528338B2 (ja) Lte−a通信システム、及び、送受信方法
JP5878652B2 (ja) 端末装置及び通信方法
JP5947890B2 (ja) 端末装置、基地局装置、送信方法及び受信方法
WO2010122808A1 (ja) 基地局装置及び端末装置
WO2010143419A1 (ja) 端末装置及び信号多重制御方法
JP2012104874A (ja) 端末装置及び再送制御方法
JP5871917B2 (ja) 端末装置及び応答信号送信方法
WO2010146855A1 (ja) 端末装置及び信号送信制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140109

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150330

R150 Certificate of patent or registration of utility model

Ref document number: 5723873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees