JP5720105B2 - Permeable reaction wall and groundwater purification structure - Google Patents

Permeable reaction wall and groundwater purification structure Download PDF

Info

Publication number
JP5720105B2
JP5720105B2 JP2010077339A JP2010077339A JP5720105B2 JP 5720105 B2 JP5720105 B2 JP 5720105B2 JP 2010077339 A JP2010077339 A JP 2010077339A JP 2010077339 A JP2010077339 A JP 2010077339A JP 5720105 B2 JP5720105 B2 JP 5720105B2
Authority
JP
Japan
Prior art keywords
reaction wall
permeable reaction
volcanic ash
ash soil
permeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010077339A
Other languages
Japanese (ja)
Other versions
JP2011206694A (en
Inventor
隆明 篠原
隆明 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2010077339A priority Critical patent/JP5720105B2/en
Publication of JP2011206694A publication Critical patent/JP2011206694A/en
Application granted granted Critical
Publication of JP5720105B2 publication Critical patent/JP5720105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、フッ素などで汚染された地下水を原位置で浄化するための透過性反応壁及び地下水浄化構造に係り、特に火山灰土壌の焼成物からなる吸着材を用いた透過性反応壁及び地下水浄化構造に関する。   The present invention relates to a permeable reaction wall and a groundwater purification structure for purifying groundwater contaminated with fluorine or the like in situ, and in particular, a permeable reaction wall and a groundwater purification using an adsorbent made of a calcined product of volcanic ash soil. Concerning structure.

湖水の富栄養化の原因になるリン酸や水系のヒ素やフッ素を吸着除去するための吸着材として、火山灰土壌に鉄塩を混合して焼成したものが特開平6−304472、特開平11−309448に記載されている。後者には、火山灰土壌に鉄塩と併せて酸又はアルカリを混合して焼成することも記載されている。   As an adsorbent for adsorbing and removing phosphoric acid and water-based arsenic and fluorine that cause eutrophication of lake water, those obtained by mixing iron salt with volcanic ash soil and calcining are disclosed in JP-A-6-304472 and JP-A-11-11. 309448. The latter also describes that volcanic ash soil is mixed with an iron salt and mixed with an acid or alkali and fired.

フッ素などの重金属類や有機塩素化合物などで汚染された地下水を原位置で浄化する方法として、汚染地下水の流れを遮るように構築した透過性反応壁(PRB;Permeable Reactive Barrier)が知られている(特開2007−260525、特開2004−261738、特表平5−501520)。   Permeable Reactive Barrier (PRB) constructed to block the flow of contaminated groundwater is known as a method for purifying groundwater contaminated with heavy metals such as fluorine and organic chlorine compounds in situ. (Japanese Patent Laid-Open No. 2007-260525, Japanese Patent Laid-Open No. 2004-261738, Japanese Patent Laid-Open No. 5-501520).

特開平6−304472JP-A-6-304472 特開平11−309448JP-A-11-309448 特開2007−260525JP2007-260525A 特開2004−261738JP 2004-261738 A 特表平5−501520Special table flat 5-501520

火山灰土壌から製造した吸着材は、無機成分で構成される剤であるため微生物分解を受けることがなく、長期にわたり化学的に安定であるところから、透過性反応壁に好適であると考えられる。   Since the adsorbent produced from volcanic ash soil is an agent composed of inorganic components, it is not susceptible to microbial degradation and is chemically stable over a long period of time, so it is considered suitable for a permeable reaction wall.

ところが、上記吸着材を透過性反応壁に適用しようと試みたところ、水浄化材として使用する際にはpH調整が不要であるとされていた吸着材であるにも拘わらず、透過性反応壁に適用すると、初期の段階で透過反応壁内を通過する地下水のpHが低下して処理性能が低くなるという予期しない問題が発生した。さらにはpH低下によりマンガンが溶出するという問題も併発した。   However, when an attempt was made to apply the adsorbent to the permeable reaction wall, the permeable reaction wall was used even though it was an adsorbent that was said to require no pH adjustment when used as a water purification material. As a result, an unexpected problem arises in that the pH of groundwater passing through the permeation reaction wall is lowered in the initial stage and the treatment performance is lowered. Furthermore, the problem of manganese elution due to a decrease in pH occurred.

この理由については、明確ではないが以下によるものと推定される。即ち、通常の水処理においては多量の水、大流量の水の存在下で吸着処理を行っているため、火山灰土壌焼成物から溶出した硫酸イオンや塩化物イオンが大量の水で希釈されることによりpH低下が無視できるレベルである。ところが、一般に地下水は流速が極めて遅く、1cm/日〜10m/日程度である。このように地下水の流量が小さいため上記吸着材を適用した透過性反応壁においては硫酸イオンや塩化物イオンの溶出により透過性反応壁内を通過する地下水のpHが低下し、特に溶出が多い初期に顕著にpHが低下してしまうものと考えられる。   The reason for this is not clear but is presumed to be as follows. That is, in ordinary water treatment, adsorption treatment is performed in the presence of a large amount of water and a large amount of water, so that sulfate ions and chloride ions eluted from the calcined volcanic ash soil are diluted with a large amount of water. Therefore, the pH drop is negligible. However, in general, groundwater has a very slow flow rate of about 1 cm / day to 10 m / day. Since the flow rate of groundwater is small in this way, in the permeable reaction wall to which the above adsorbent is applied, the pH of the groundwater passing through the permeable reaction wall is lowered due to elution of sulfate ions and chloride ions, and in particular, there is a large amount of elution. It is thought that pH will fall remarkably.

本発明は上記問題を解決するものであって、火山灰土壌に鉄塩を混合して焼成した吸着材を透過性反応壁に適用する際に透過性反応壁内を通過する地下水のpH低下による透過性反応壁の性能低下や透過性反応壁から地下水へのマンガン溶出を防止することができる透過性反応壁及び地下水浄化構造を提供することを目的とする。   The present invention solves the above-mentioned problem, and the permeation due to the lowering of the pH of groundwater that passes through the permeable reaction wall when the adsorbent obtained by mixing iron salt with volcanic ash soil and firing is applied to the permeable reaction wall. It is an object of the present invention to provide a permeable reaction wall and a groundwater purification structure that can prevent degradation of the performance of the permeable reaction wall and elution of manganese from the permeable reaction wall to groundwater.

本発明(請求項1)の透過性反応壁は、アニオン汚染地下水の流れを遮るように帯水層に壁状に設けた透過性反応壁において、硫酸第一鉄、硫酸第二鉄、塩化第一鉄及び塩化第二鉄よりなる群から選ばれた少なくとも1種の鉄塩を火山灰土壌に添加して焼成した火山灰土壌焼成物からなる吸着材と、炭酸カルシウム及び/又は炭酸マグネシウムを含む粒状体との混合物を含有し、炭酸カルシウム及び/又は炭酸マグネシウムが1〜50wt%存在することを特徴とするものである。 The permeable reaction wall of the present invention (Claim 1) is a permeable reaction wall provided in a wall shape in an aquifer so as to block the flow of anion-contaminated groundwater. Ferrous sulfate, ferric sulfate, chloride chloride An adsorbent comprising a calcined product of volcanic ash soil obtained by adding at least one iron salt selected from the group consisting of ferrous iron and ferric chloride to the volcanic ash soil and calcining, and a granular material containing calcium carbonate and / or magnesium carbonate containing a mixture of calcium carbonate and / or magnesium carbonate and is characterized in that there 1 to 50 wt%.

請求項2の透過性反応壁は、請求項1において、前記吸着材は、火山灰土壌にさらに水酸化カルシウムを添加して焼成したものであることを特徴とするものである。   A permeable reaction wall according to a second aspect is characterized in that, in the first aspect, the adsorbent is obtained by further adding calcium hydroxide to a volcanic ash soil and baking it.

請求項3の透過性反応壁は、請求項1又は2において、前記アニオンはフッ素、ヒ素、シアン、六価クロム及びセレンよりなる群から選ばれた少なくとも1種又はそれを含む化合物のアニオンであることを特徴とするものである。   The permeable reaction wall according to claim 3 is the anion of at least one selected from the group consisting of fluorine, arsenic, cyan, hexavalent chromium and selenium or a compound containing the same in claim 1 or 2. It is characterized by this.

本発明(請求項4)の地下水浄化構造は、アニオン汚染地下水の流れを遮るように帯水層に壁状に設けられ、硫酸第一鉄、硫酸第二鉄、塩化第一鉄及び塩化第二鉄よりなる群から選ばれた少なくとも1種の鉄塩を火山灰土壌に添加して焼成した火山灰土壌焼成物からなる吸着材と、炭酸カルシウム及び/又は炭酸マグネシウムを含む粒状体との混合物を含有する第1の透過性反応壁と、該第1の透過性反応壁の上流側に設けられた、鉄粉を含有する第2の透過性反応壁とを備えてなるものである。 The groundwater purification structure of the present invention (Claim 4) is provided in the aquifer in a wall shape so as to block the flow of anion-contaminated groundwater, and ferrous sulfate, ferric sulfate, ferrous chloride and ferric chloride. Contains a mixture of an adsorbent composed of a calcined volcanic ash soil obtained by adding at least one iron salt selected from the group consisting of iron to volcanic ash soil and calcined, and a granular material containing calcium carbonate and / or magnesium carbonate A first permeable reaction wall and a second permeable reaction wall containing iron powder provided on the upstream side of the first permeable reaction wall are provided.

請求項5の地下水浄化構造は、請求項4において、該第2の透過性反応壁は、さらに粒状の透水材を含有することを特徴とするものである。   The groundwater purification structure according to claim 5 is characterized in that, in claim 4, the second permeable reaction wall further contains a granular water-permeable material.

本発明の透過性反応壁(第1の透過性反応壁)は、炭酸カルシウム及び/又は炭酸マグネシウムの粒状体を含有しているので、硫酸イオンや塩化物イオンなどが地下水中に溶出しても、透過性反応壁内を通過する地下水のpHが中性域に維持される。このため、透過性反応壁の性能低下や透過性反応壁からのマンガンの溶出が防止される。   Since the permeable reaction wall (first permeable reaction wall) of the present invention contains granules of calcium carbonate and / or magnesium carbonate, even if sulfate ions or chloride ions are eluted into the groundwater. The pH of groundwater passing through the permeable reaction wall is maintained in a neutral range. For this reason, the performance fall of a permeable reaction wall and the elution of manganese from a permeable reaction wall are prevented.

炭酸カルシウム及び/又は炭酸マグネシウムを含む粒状体を含有した本発明の透過性反応壁は、少なくとも処理開始初期において透過性反応壁内を通過する地下水をpH7〜9程度に維持することができるため、pH7〜9で安定して吸着されるアニオンであるフッ素、ヒ素、シアン、六価クロム、セレンを効率よく除去することができる。   Since the permeable reaction wall of the present invention containing granules containing calcium carbonate and / or magnesium carbonate can maintain the groundwater passing through the permeable reaction wall at least at the initial stage of the treatment at a pH of about 7 to 9, Fluorine, arsenic, cyanide, hexavalent chromium and selenium, which are anions that are stably adsorbed at pH 7 to 9, can be efficiently removed.

請求項2のように、火山灰土壌に対し鉄塩と炭酸カルシウム及び/又は炭酸マグネシウムに併せてさらに水酸化カルシウムを混合して焼成した吸着材は、アニオン吸着効果に優れる。   As described in claim 2, an adsorbent obtained by mixing and baking calcium hydroxide in addition to iron salt and calcium carbonate and / or magnesium carbonate to volcanic ash soil is excellent in anion adsorption effect.

ところで、透過性反応壁として鉄粉を含有するものが従来より用いられており、上記本発明の透過性反応壁(第1の透過性反応壁)とこの鉄粉含有透過性反応壁(第2の透過性反応壁)とを併用してもよい。この場合、第1の透過性反応壁からは炭酸塩が溶出するので、炭酸塩が鉄粉に作用しないようにするために、第2の透過性反応壁を第1の透過性反応壁の地下水流れ方向の上流側に設ける。   By the way, what contains iron powder as a permeable reaction wall is used conventionally, The permeable reaction wall (1st permeable reaction wall) of this invention and this iron powder containing permeable reaction wall (2nd) Or a permeable reaction wall). In this case, since carbonate elutes from the first permeable reaction wall, in order to prevent the carbonate from acting on the iron powder, the second permeable reaction wall is used as groundwater of the first permeable reaction wall. Provided upstream in the flow direction.

透過性反応壁を示す断面図である。It is sectional drawing which shows a permeable reaction wall. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result.

以下に図面を参照して本発明の実施の形態に係る透過性反応壁による地下水浄化構造を詳細に説明する。第1図は、本発明の透過性反応壁の断面図である。   Hereinafter, a groundwater purification structure using a permeable reaction wall according to an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view of a permeable reaction wall of the present invention.

第1図の通り、地表1から所定深さに不透水層3あるいは難透水層が存在し、その上側に帯水層2が存在する。4は地下水位である。地下水の流れW、Wを横断するように透過性反応壁5を設けると共に、この透過性反応壁5の両端に連なるようにして遮水壁(図示略)を設け、上流側からの地下水が確実に透過性反応壁5を通過するようにする。 As shown in FIG. 1, an impermeable layer 3 or a hardly permeable layer is present at a predetermined depth from the ground surface 1, and an aquifer 2 is present on the upper side thereof. 4 is the groundwater level. A permeable reaction wall 5 is provided so as to cross the groundwater flows W 1 and W 2 , and a water shielding wall (not shown) is provided so as to be connected to both ends of the permeable reaction wall 5. Surely passes through the permeable reaction wall 5.

透過性反応壁5の施工手順の一例は以下の通りである。ボウリングして浄化材を含む充填材で埋め戻すことにより柱状の第1の浄化体を作成し、次いでこの柱状の第1の浄化体と部分的に重なるようにボウリングして同様に浄化材を含む充填材で埋め戻すことにより柱状の第2の浄化体を作成する、という作業を繰り返して柱状の浄化体を並列して作成することによって壁状の浄化体よりなる透過性反応壁を作成する。必要に応じ、この透過性反応壁5の両端に隣接するようにH型鋼と鉄矢板等を打ち込んで遮水壁を構築する。   An example of the construction procedure of the permeable reaction wall 5 is as follows. A columnar first purification body is created by bowling and backfilling with a filler containing a purification material, and then bowling so as to partially overlap the columnar first purification body and similarly including the purification material A permeable reaction wall made of a wall-shaped purification body is created by repeating the operation of creating a columnar second purification body by backfilling with a filler to create a columnar purification body in parallel. If necessary, a water-impervious wall is constructed by driving in H-shaped steel and steel sheet piles so as to be adjacent to both ends of the permeable reaction wall 5.

<透過性反応壁5の材料>
透過性反応壁5は、火山灰土壌焼成物からなるアニオン吸着材と、炭酸カルシウム及び/又は炭酸マグネシウム含有粒状体とを含む。
<Material of permeable reaction wall 5>
The permeable reaction wall 5 includes an anion adsorbent composed of a calcined product of volcanic ash soil, and calcium carbonate and / or magnesium carbonate-containing granules.

アニオン吸着材としては火山灰土壌に鉄塩と必要に応じ水酸化カルシウムを添加し、混合し、好ましくは造粒して焼成したものが用いられる。   As an anion adsorbent, iron salt and calcium hydroxide as necessary are added to volcanic ash soil, mixed, preferably granulated and fired.

火山灰土壌としては、噴出源より遠く離れた非火山地域をも広く覆い、細粒の火山灰が褐色に風化したいわゆるローム層を母材とするアンドソルが例示される。火山灰土壌はフッ素などのアニオンの吸着・不溶化作用を有する。この吸着・不溶化は、例えば次式のように火山灰粒子表面の反応活性部位で起こる。
R−Fe−O−H +F→R−Fe−O−H
R−Al−O−H +F→R−Al−O−HF(R:火山灰を構成する鉱物成分(例えばアルミノシリケート)の基本骨格)
Examples of the volcanic ash soil include Andol, which covers a non-volcanic area far away from the eruption source and uses a so-called loam layer in which fine-grained volcanic ash is browned as a base material. Volcanic ash soil has an adsorption and insolubilization action of anions such as fluorine. This adsorption / insolubilization occurs at the reactive site on the surface of the volcanic ash particles, for example, as in the following equation.
R—Fe—O—H 2 + + F → R—Fe—O—H 2 F
R—Al—O—H 2 + + F → R—Al—O—H 2 F (R: basic skeleton of mineral components (for example, aluminosilicate) constituting volcanic ash)

鉄塩としては、硫酸第一鉄、硫酸第二鉄、塩化第一鉄、塩化第二鉄の1種又は2種以上を用いる。   As the iron salt, one or more of ferrous sulfate, ferric sulfate, ferrous chloride, and ferric chloride are used.

火山灰土壌に混合する鉄塩の添加量は、火山灰土壌100重量部に対し好ましくは5〜40重量部、より好ましくは10〜30重量部である。また、鉄塩と共にさらに水酸化カルシウムを添加する場合、水酸化カルシウムの添加量は火山灰土壌100重量部に対し1〜10重量部であることが好ましい。   The addition amount of the iron salt mixed with the volcanic ash soil is preferably 5 to 40 parts by weight, more preferably 10 to 30 parts by weight with respect to 100 parts by weight of the volcanic ash soil. Moreover, when adding calcium hydroxide with an iron salt, it is preferable that the addition amount of calcium hydroxide is 1-10 weight part with respect to 100 weight part of volcanic ash soil.

火山灰土壌と鉄塩さらに水酸化カルシウムを混合するには、まず乾式で混合してから水を添加して造粒し、これを乾燥してから焼成するのが好ましい。造粒方法としては、ブリケットマシン、転動造粒法など各種手法を用いることができる。焼成条件は300〜700℃特に400〜600℃で5〜60分間程度とするのが好ましい。このようにして得られる粒子の粒径は、透水性を考慮して0.01〜5mm特に0.1〜3mm程度が好ましい。   In order to mix the volcanic ash soil, the iron salt and the calcium hydroxide, it is preferable to first mix them in a dry manner, add water to granulate them, dry them, and fire them. As a granulation method, various methods such as a briquette machine and a rolling granulation method can be used. The firing conditions are preferably 300 to 700 ° C., particularly 400 to 600 ° C., for about 5 to 60 minutes. The particle size of the particles thus obtained is preferably about 0.01 to 5 mm, particularly about 0.1 to 3 mm in consideration of water permeability.

この吸着材は、透過性反応壁中において10〜100wt%特に20〜100wt%程度存在することが好ましい。   This adsorbent is preferably present in the permeable reaction wall in an amount of about 10 to 100 wt%, particularly about 20 to 100 wt%.

この透過性反応壁には、さらに炭酸カルシウム及び/又は炭酸マグネシウムを含む粒状体を含有させる。炭酸カルシウムとしては石灰石、寒水石などの炭酸カルシウム系鉱物を用いるのが好ましい。炭酸マグネシウムとしては苦灰石、菱苦土石などを用いることができる。   The permeable reaction wall further contains a granular body containing calcium carbonate and / or magnesium carbonate. As calcium carbonate, it is preferable to use calcium carbonate minerals such as limestone and cold water stone. As the magnesium carbonate, dolomite, rhodolite, etc. can be used.

この粒状体は、炭酸カルシウム及び/又は炭酸マグネシウムの鉱物の破砕物のみからなってもよく、これらの破砕物や粉砕物に必要に応じ砂などを添加して造粒したものであってもよいが、前者の方が低コストである。   This granular material may consist of crushed materials of calcium carbonate and / or magnesium carbonate, or may be granulated by adding sand or the like to these crushed materials or pulverized materials as necessary. However, the former is cheaper.

炭酸カルシウム及び/又は炭酸マグネシウムを含む粒状体は、透過性反応壁中において炭酸カルシウム及び/又は炭酸マグネシウムが1〜50wt%特に1〜20wt%存在するのが好ましい。   The granule containing calcium carbonate and / or magnesium carbonate preferably contains 1 to 50 wt%, particularly 1 to 20 wt% of calcium carbonate and / or magnesium carbonate in the permeable reaction wall.

透過性反応壁は、上記の吸着材と、この炭酸カルシウム及び/又は炭酸マグネシウム含有粒状体のみからなってもよく、さらに他の材料、例えば透過性反応壁の透水性を高めるために砂利などの粒状体を含んでもよい。   The permeable reaction wall may consist of the above adsorbent and the calcium carbonate and / or magnesium carbonate-containing granule alone, and other materials such as gravel to increase the water permeability of the permeable reaction wall. Granules may be included.

本発明では、この透過性反応壁のみを地中に設けてもよく、さらに他の浄化材により構成される透過性反応壁を並設してもよい。このような並設される透過性反応壁として鉄粉含有透過性反応壁(第2の透過性反応壁)が挙げられる。   In the present invention, only this permeable reaction wall may be provided in the ground, or a permeable reaction wall composed of another purification material may be provided in parallel. Examples of such permeable reaction walls arranged side by side include an iron powder-containing permeable reaction wall (second permeable reaction wall).

鉄粉としては、炭素を0.29重量%〜5重量%含有し、平均粒径0.1mm以上(例えば0.1〜5mm)かつ比表面積1m/g以上(例えば0.5〜5m/g)である鉄粉を用いるのが好ましい。この鉄粉は、トリクロロエチレン(TCE)、テトラクロロエチレンなどの有機塩素化合物を分解する機能を有する。鉄粉によるTCEの分解反応は次式で示される。
3Fe+CHCl+3HO→C+3Fe3++3Cl+3OH
The iron powder contains 0.29 wt% to 5 wt% of carbon, has an average particle size of 0.1 mm or more (for example, 0.1 to 5 mm), and a specific surface area of 1 m 2 / g or more (for example, 0.5 to 5 m 2 ). / G) is preferably used. This iron powder has a function of decomposing organochlorine compounds such as trichlorethylene (TCE) and tetrachloroethylene. The decomposition reaction of TCE by iron powder is shown by the following formula.
3Fe + C 2 HCl 3 + 3H 2 O → C 2 H 4 + 3Fe 3+ + 3Cl + 3OH

この鉄粉含有透過性反応壁としては、鉄粉や、必要に応じ活性炭、酸化マグネシウム、水酸化マグネシウムなどの浄化成分を混合したものが用いられる。鉄粉は透過性反応壁中において10〜100wt%特に20〜100wt%程度存在することが好ましい。鉄粉を含有した第2の透過性反応壁は、前述の通り、第1の透過性反応壁の地下水流れ方向の上流側に設けられる。   As this iron powder containing permeable reaction wall, what mixed iron powder and purification components, such as activated carbon, magnesium oxide, and magnesium hydroxide as needed, is used. The iron powder is preferably present in the permeable reaction wall in an amount of about 10 to 100 wt%, particularly about 20 to 100 wt%. As described above, the second permeable reaction wall containing iron powder is provided on the upstream side of the first permeable reaction wall in the groundwater flow direction.

本発明のように火山灰土壌に鉄塩を添加して焼成した吸着材と共に炭酸カルシウム及び/又は炭酸マグネシウムをさらに併用した場合の効果を示す実験例を次に示す。   The experiment example which shows the effect at the time of further using together calcium carbonate and / or magnesium carbonate with the adsorbent which added iron salt to the volcanic ash soil like this invention and baked is shown next.

[実験例No.1〜3]
<実験条件>
脱塩素水道水にフッ化ナトリウムを添加して、フッ素濃度を10mg/Lとした溶液に、表1に示す種々の吸着材を10g/Lの濃度で添加して、No.3,5,6については、併用材として寒水石(炭酸カルシウムを含む鉱石)を添加して24時間振盪後に濾過し、フッ素濃度の変化を測定した。試験結果を表1に示す。なお、以下の実験例No.2〜7において、鉄塩含有火山灰土壌焼成物としてクレアテラ社製の吸着材「ピーキャッチ(登録商標)」(酸化鉄(Fe)として約20wt%含有。平均粒径0.8mm)を用いた。
[Experiment No. 1-3]
<Experimental conditions>
To a solution in which sodium fluoride was added to dechlorinated tap water to a fluorine concentration of 10 mg / L, various adsorbents shown in Table 1 were added at a concentration of 10 g / L. For 3, 5, and 6, cold water stone (ore containing calcium carbonate) was added as a combined material, and the mixture was filtered after shaking for 24 hours, and the change in fluorine concentration was measured. The test results are shown in Table 1. The following experimental examples No. 2-7, as an iron salt-containing volcanic ash soil calcined product, an adsorption material “Peacat (registered trademark)” manufactured by Createrra (containing about 20 wt% as iron oxide (Fe 2 O 3 ), average particle size 0.8 mm) Using.

Figure 0005720105
Figure 0005720105

No.1の未焼成火山灰土壌による吸着材では、処理水pHの低下は起こらないものの十分なフッ素の吸着能力を得られなかった。   No. With the adsorbent of 1 unfired volcanic ash soil, the pH of the treated water did not decrease, but sufficient fluorine adsorption capacity could not be obtained.

No.2のように鉄塩含有火山灰土壌焼成物による吸着材を単独で用いると、フッ素を地下水基準に適合可能な吸着能力が得られたが、吸着材に含まれる酸性成分の影響により処理水のpHが24時間以内に低下してしまった。   No. As shown in Fig. 2, when an adsorbent made of iron salt-containing volcanic ash soil burned material was used alone, it was possible to obtain an adsorption capacity capable of conforming to the groundwater standard for fluorine, but the pH of the treated water was influenced by the influence of acidic components contained in the adsorbent. Fell within 24 hours.

No.3のように鉄塩含有火山灰土壌焼成物からなる吸着材に対し寒水石を火山灰土壌焼成物の10wt%添加した場合は、処理水のpHを低下させることなく十分な吸着能力を得ることができた。   No. When 10 wt% of calcite is added to the adsorbent composed of the iron salt-containing volcanic ash soil burned material as shown in Fig. 3, sufficient adsorption capacity can be obtained without lowering the pH of the treated water. It was.

[実験No.4,5(吸着等温線による効果確認)]
<実験条件>
脱塩素水道水にフッ化ナトリウムを添加してフッ素濃度50mg/Lにした水溶液を調製し、鉄塩含有火山灰土壌焼成物による吸着材単独の場合(No.4)、および、鉄塩含有火山灰土壌焼成物からなる吸着材に寒水石を火山灰土壌焼成物の10wt%添加した場合(No.5)について吸着等温線による評価をおこなった。結果を第2図に示す。
[Experiment No. 4, 5 (confirmation of effect by adsorption isotherm)]
<Experimental conditions>
An aqueous solution prepared by adding sodium fluoride to dechlorinated tap water to a fluorine concentration of 50 mg / L, and using an adsorbent alone with a fired iron salt-containing volcanic ash soil (No. 4), and an iron salt-containing volcanic ash soil Evaluation was performed by adsorption isotherm when 10 wt% of calcite was added to the adsorbent made of the fired product (No. 5). The results are shown in FIG.

<結果考察>
No.5のように鉄塩含有火山灰土壌焼成物からなる吸着材に寒水石を併用することにより、No.4の鉄塩含有火山灰土壌焼成物からなる吸着材単独よりも高い吸着能力を得ることができた。これは寒水石を併用することで吸着に適したpHに維持できたからであると考えられる。
<Consideration of results>
No. As shown in No. 5, by using cold water stone together with the adsorbent made of the burned material of iron salt-containing volcanic ash soil, Adsorption capacity higher than that of the adsorbent alone consisting of 4 iron salt-containing volcanic ash soil calcined products could be obtained. This is considered to be because the pH suitable for adsorption could be maintained by using cryogenic stone together.

[実験No.6,7(カラム通水試験)]
<実験条件>
充填カラムを用いた比較を実施した。鉄塩含有火山灰土壌焼成物からなる吸着材と寒水石との併用系(No.6)を充填材として充填した充填カラムと、鉄塩含有火山灰土壌焼成物からなる吸着材単独(No.7)を充填材として充填した充填カラムを用いた評価は、実際の使用条件を想定した評価方法である。内径30mm、充填長300mmのアクリル製カラムに、180cmの充填材を充填した。また、No.6では、火山灰土壌焼成物の10wt%の寒水石を混合して充填材とした。
[Experiment No. 6, 7 (column water flow test)]
<Experimental conditions>
A comparison using a packed column was performed. A packed column packed with a combined system (No. 6) of an adsorbent made of iron salt-containing volcanic ash soil and a frozen stone (No. 6), and an adsorbent alone made of iron salt-containing volcanic ash soil and burned (No. 7) Evaluation using a packed column packed with as a filler is an evaluation method assuming actual use conditions. An acrylic column having an inner diameter of 30 mm and a packing length of 300 mm was packed with 180 cm 3 of packing material. No. In No. 6, 10 wt% of cold water stones of the calcined volcanic ash soil were mixed to obtain a filler.

フッ素濃度50mg/Lの脱塩素水道水を調製し、カラムに0.05mL/minで通水した。充填カラム出口のフッ素濃度およびpHを測定した。その結果を第3図及び第4図に示す。   Dechlorinated tap water having a fluorine concentration of 50 mg / L was prepared and passed through the column at 0.05 mL / min. The fluorine concentration and pH at the outlet of the packed column were measured. The results are shown in FIG. 3 and FIG.

<結果考察>
第3図のように鉄塩含有火山灰土壌焼成物からなる吸着材を寒水石と併用する(No.6)ことによりフッ素の吸着能力が向上した。また、第4図に示す様に、寒水石を併用する(No.6)ことにより充填層出口でのpHを中性付近に維持することができた。
<Consideration of results>
As shown in Fig. 3, the adsorption capacity of fluorine was improved by using an adsorbent made of a fired iron salt-containing volcanic ash soil in combination with cryogenic stone (No. 6). Moreover, as shown in FIG. 4, the pH at the packed bed outlet could be maintained in the vicinity of neutrality by using cold water stone together (No. 6).

2 帯水層
3 不透水層
5 透過性反応壁
2 Aquifer 3 Impermeable layer 5 Permeable reaction wall

Claims (5)

アニオン汚染地下水の流れを遮るように帯水層に壁状に設けた透過性反応壁において、
硫酸第一鉄、硫酸第二鉄、塩化第一鉄及び塩化第二鉄よりなる群から選ばれた少なくとも1種の鉄塩を火山灰土壌に添加して焼成した火山灰土壌焼成物からなる吸着材と、炭酸カルシウム及び/又は炭酸マグネシウムを含む粒状体との混合物を含有し、
炭酸カルシウム及び/又は炭酸マグネシウムが1〜50wt%存在することを特徴とする透過性反応壁。
In the permeable reaction wall provided in the aquifer wall shape so as to block the flow of anion-contaminated groundwater,
An adsorbent comprising a calcined volcanic ash soil obtained by adding at least one iron salt selected from the group consisting of ferrous sulfate, ferric sulfate, ferrous chloride and ferric chloride to the volcanic ash soil and calcining it; , Containing a mixture with granules containing calcium carbonate and / or magnesium carbonate,
A permeable reaction wall characterized in that 1 to 50 wt% of calcium carbonate and / or magnesium carbonate is present.
請求項1において、前記吸着材は、火山灰土壌にさらに水酸化カルシウムを添加して焼成したものであることを特徴とする透過性反応壁。   2. The permeable reaction wall according to claim 1, wherein the adsorbent is obtained by further adding calcium hydroxide to a volcanic ash soil and baking it. 請求項1又は2において、前記アニオンはフッ素、ヒ素、シアン、六価クロム及びセレンよりなる群から選ばれた少なくとも1種又はそれを含む化合物のアニオンであることを特徴とする透過性反応壁。   3. The permeable reaction wall according to claim 1, wherein the anion is an anion of at least one selected from the group consisting of fluorine, arsenic, cyan, hexavalent chromium and selenium or a compound containing the anion. アニオン汚染地下水の流れを遮るように帯水層に壁状に設けられ、硫酸第一鉄、硫酸第二鉄、塩化第一鉄及び塩化第二鉄よりなる群から選ばれた少なくとも1種の鉄塩を火山灰土壌に添加して焼成した火山灰土壌焼成物からなる吸着材と、炭酸カルシウム及び/又は炭酸マグネシウムを含む粒状体との混合物を含有する第1の透過性反応壁と、該第1の透過性反応壁の上流側に設けられた、鉄粉を含有する第2の透過性反応壁とを備えてなる地下水浄化構造。 At least one type of iron selected from the group consisting of ferrous sulfate, ferric sulfate, ferrous chloride and ferric chloride provided in the aquifer in a wall shape so as to block the flow of anion-contaminated groundwater A first permeable reaction wall containing a mixture of an adsorbent comprising a calcined volcanic ash soil fired by adding salt to volcanic ash soil, and a granular material containing calcium carbonate and / or magnesium carbonate; A groundwater purification structure comprising a second permeable reaction wall containing iron powder provided on the upstream side of the permeable reaction wall. 請求項4において、該第2の透過性反応壁は、さらに粒状の透水材を含有することを特徴とする地下水浄化構造。   5. The groundwater purification structure according to claim 4, wherein the second permeable reaction wall further contains a granular water permeable material.
JP2010077339A 2010-03-30 2010-03-30 Permeable reaction wall and groundwater purification structure Active JP5720105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010077339A JP5720105B2 (en) 2010-03-30 2010-03-30 Permeable reaction wall and groundwater purification structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010077339A JP5720105B2 (en) 2010-03-30 2010-03-30 Permeable reaction wall and groundwater purification structure

Publications (2)

Publication Number Publication Date
JP2011206694A JP2011206694A (en) 2011-10-20
JP5720105B2 true JP5720105B2 (en) 2015-05-20

Family

ID=44938396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010077339A Active JP5720105B2 (en) 2010-03-30 2010-03-30 Permeable reaction wall and groundwater purification structure

Country Status (1)

Country Link
JP (1) JP5720105B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6095097B2 (en) * 2012-10-15 2017-03-15 株式会社不動テトラ Permeable groundwater purification wall and groundwater purification method using the permeable groundwater purification wall
JP7098990B2 (en) * 2018-03-20 2022-07-12 株式会社大林組 Contaminated water purification method
JP7183571B2 (en) * 2018-05-17 2022-12-06 株式会社大林組 Contaminated water purification method
JP7398807B2 (en) * 2018-08-29 2023-12-15 国立大学法人 宮崎大学 Microbial adsorbent and microbial sterilization method using the same
CN115108680B (en) * 2022-06-25 2023-11-03 广西七彩环境科技有限公司 Water quality upgrading process system adopting targeting method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11309448A (en) * 1998-04-30 1999-11-09 Kureatera:Kk Arsenic (iii, v), and fluorine adsorbing filter medium and production thereof
JP4329361B2 (en) * 2003-02-26 2009-09-09 栗田工業株式会社 Groundwater purification wall and groundwater purification method
JP5211427B2 (en) * 2006-02-03 2013-06-12 栗田工業株式会社 Groundwater purification method

Also Published As

Publication number Publication date
JP2011206694A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
Taneez et al. A review on the potential uses of red mud as amendment for pollution control in environmental media
Kuzawa et al. Phosphate removal and recovery with a synthetic hydrotalcite as an adsorbent
Apak et al. Heavy metal cation retention by unconventional sorbents (red muds and fly ashes)
JP5720105B2 (en) Permeable reaction wall and groundwater purification structure
Shi et al. Mechanism, application, influencing factors and environmental benefit assessment of steel slag in removing pollutants from water: A review
Renew et al. Immobilization of heavy metals by solidification/stabilization of co-disposed flue gas desulfurization brine and coal fly ash
Cho et al. The role of clay minerals in the reduction of nitrate in groundwater by zero-valent iron
JP5757613B2 (en) Processing materials such as heavy metals
JP4235688B2 (en) Purification method for contaminated soil
KR20190087293A (en) Compositions Containing Modified Chromate-Deficient Red Mud and Methods of Producing Same
Biswas et al. A critical review on occurrence of fluoride and its removal through adsorption with an emphasis on natural minerals
JP2009137801A (en) New material, purification method, method for producing layered double hydroxide, composite material and method for producing the same, adsorbent, purification facility, and method for purifying contaminated water
Ayoob et al. Performance evaluation of alumina cement granules in removing fluoride from natural and synthetic waters
JP2011136311A (en) Development of adsorbent-insolubilizer for arsenic and heavy metals using natural zeolite as main raw material, and contaminated-soil reforming method
CN100352567C (en) Method for improving polluted soil
Ordonez et al. Adsorption thermodynamics and kinetics of Advanced Green Environmental Media (AGEM) for nutrient removal and recovery in agricultural discharge and stormwater runoff
US11235307B2 (en) Filtration system and method for treating water containing nitrogen and phosphorous compounds
US7678192B2 (en) Method of solidifying and detoxifying soil, incinerated ash and coal ash and method of detoxifying polluted water containing dioxins and PCB
JP5402766B2 (en) Groundwater purification structure by permeable reaction wall
Shakir et al. Simultaneous removal of chromotrope 2B and radionuclides from mixed radioactive process wastewater using organo-bentonite
Letshwenyo et al. Phosphorus and sulphates removal from wastewater using copper smelter slag washed with acid
JP3676672B2 (en) Method for modifying contaminated soil and method for modifying sludge
Choong et al. Fabrication of seashell-incorporated polyurethane for sustainable remediation of Fe (II)-contaminated acidic wastewater
JP6046476B2 (en) Anti-elution agent for harmful substances and elution prevention method using the same
JP5428986B2 (en) Groundwater purification structure and repair method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150105

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150309

R150 Certificate of patent or registration of utility model

Ref document number: 5720105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250