JP5714535B2 - Imaging optical system with anti-vibration mechanism - Google Patents

Imaging optical system with anti-vibration mechanism Download PDF

Info

Publication number
JP5714535B2
JP5714535B2 JP2012095040A JP2012095040A JP5714535B2 JP 5714535 B2 JP5714535 B2 JP 5714535B2 JP 2012095040 A JP2012095040 A JP 2012095040A JP 2012095040 A JP2012095040 A JP 2012095040A JP 5714535 B2 JP5714535 B2 JP 5714535B2
Authority
JP
Japan
Prior art keywords
lens
group
optical system
imaging optical
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012095040A
Other languages
Japanese (ja)
Other versions
JP2012234169A (en
Inventor
典行 小笠原
典行 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Inc
Original Assignee
Sigma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Inc filed Critical Sigma Inc
Priority to JP2012095040A priority Critical patent/JP5714535B2/en
Publication of JP2012234169A publication Critical patent/JP2012234169A/en
Application granted granted Critical
Publication of JP5714535B2 publication Critical patent/JP5714535B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はデジタルカメラ、ビデオカメラなどに用いられる撮影レンズに好適な防振機構を備えた結像光学系に関する。   The present invention relates to an imaging optical system provided with an image stabilization mechanism suitable for a photographing lens used in a digital camera, a video camera, or the like.

近年、デジタルスチルカメラやビデオカメラ等の撮像装置の普及に伴い、撮像素子の画素数の増加が急速に進んでおり、より高画質の結像光学系が求められている。更に近年では高画質を得るために大型の撮像素子を採用するカメラが増加している。   In recent years, with the widespread use of imaging devices such as digital still cameras and video cameras, the number of pixels of the image sensor has been rapidly increasing, and an image-forming optical system with higher image quality has been demanded. Further, in recent years, an increasing number of cameras employ a large image sensor in order to obtain high image quality.

同じ画素数ならば、大型の撮像素子は小型のものに比べて画素あたりの面積が大きいため、ノイズの少ない良好な画像を得ることが出来る。しかし撮像素子が大きくなると、当然ながら結像光学系も大型化する傾向がある。   If the number of pixels is the same, a large image sensor has a larger area per pixel than a small image sensor, so that a good image with less noise can be obtained. However, as the image pickup device becomes larger, the imaging optical system tends to increase in size.

撮像装置に広く使用される撮像素子は一般に入射角の大きな光に対して感度が低下するという特性を持つ。撮像素子に対して、周辺部まで入射角を小さく保つためにはレトロフォーカス型の屈折力配置が有利となる。   An image sensor widely used in an image pickup apparatus generally has a characteristic that sensitivity decreases with respect to light having a large incident angle. In order to keep the incident angle small to the periphery of the image sensor, a retrofocus type refractive power arrangement is advantageous.

しかし、レトロフォーカス型の屈折力配置は、撮像素子の大きさに対して結像光学系の全長が大きくなりがちである。大型の撮像素子を使用する撮像装置においては、結像光学系の全長が大きくなると撮像装置全体が大型化してしまう。   However, the retrofocus type refractive power arrangement tends to increase the total length of the imaging optical system with respect to the size of the image sensor. In an image pickup apparatus using a large image pickup element, the entire image pickup apparatus is increased in size when the overall length of the imaging optical system is increased.

従って大型の撮像素子に対応する光学系としては、撮像素子への入射角、すなわち結像光学系からの光線射出角を抑えつつ可能な限り小型化することが課題となる。   Therefore, an optical system corresponding to a large image sensor has to be miniaturized as much as possible while suppressing an incident angle to the image sensor, that is, a light emission angle from the imaging optical system.

大型の撮像素子に対応するための、画角50〜60°程度のコンパクトな結像光学系としては例えば特許文献1乃至3に開示されている。   For example, Patent Documents 1 to 3 disclose a compact imaging optical system having an angle of view of about 50 to 60 ° to deal with a large image sensor.

特開2003−241084号公報JP 2003-241084 A

特開2009−258158号公報JP 2009-258158 A

特開2010−101979号公報JP 2010-101979 A

前述のように大型の撮像素子に対応する結像光学系においては十分な小型化が課題となるが、小型化に伴う性能の低下や製造誤差に対する敏感度の増大を最小限に抑えることが同時に必要となる。またフォーカシングに用いるレンズ群をなるべく軽くし、アクチュエータの小型化やフォーカシングの高速化も望まれる。   As described above, sufficient miniaturization is an issue in imaging optical systems that support large image sensors, but at the same time minimizing performance degradation and increased sensitivity to manufacturing errors associated with miniaturization. Necessary. In addition, it is desirable to make the lens group used for focusing as light as possible, to reduce the size of the actuator and to increase the focusing speed.

また画素数の多い撮像素子においては微少なブレが画像のシャープネスの低下につながるため、防振機構を搭載することが望ましい。   In addition, in an image sensor with a large number of pixels, it is desirable to mount an anti-vibration mechanism because a slight blur leads to a reduction in image sharpness.

特許文献1および特許文献2に記載の結像光学系は、絞りより物体側の第1レンズ群内に物体側から順に負レンズと正レンズを配置し、それらのレンズを近接して配置して合成屈折力を正とし、さらに絞りより像側の第2レンズ群を物体側の第1レンズ群よりも強い正の屈折力とすることで全長の小型化と光線射出角の抑制が達成されている。フォーカシングは3枚程度のレンズからなる正の屈折力の第2レンズ群のみで行うことによって一定の軽量化が達成でき、さらにフォーカシングの高速化やアクチュエータの小型化が可能となる。   In the imaging optical system described in Patent Literature 1 and Patent Literature 2, a negative lens and a positive lens are arranged in order from the object side in the first lens group on the object side of the stop, and these lenses are arranged close to each other. By making the combined refractive power positive, and by making the second lens group on the image side from the stop more positive refractive power than the first lens group on the object side, downsizing of the total length and suppression of the light emission angle are achieved. Yes. Focusing can be achieved by using only the second lens unit having a positive refractive power composed of about three lenses, and a certain weight reduction can be achieved. Further, focusing can be speeded up and the actuator can be downsized.

また、特許文献1および特許文献2に記載の結像光学系は、絞りよりも物体側の第1レンズ群では最も物体側の面を物体側に凸としつつ最も像側の面を像側に凹とし、また逆に、絞りよりも像側の第2レンズ群では最も物体側の面を物体側に凹としつつ最も像側の面を像側に凸としている。   In the imaging optical systems described in Patent Document 1 and Patent Document 2, in the first lens group closer to the object than the stop, the most object-side surface is convex on the object side, and the most image-side surface is on the image side. Conversely, in the second lens group on the image side relative to the stop, the most object side surface is concave on the object side and the most image side surface is convex on the image side.

一般に、上記のように絞りに対しコンセントリックなレンズ形状とすることにより、軸外主光線の各面への入射角を小さくして各面での非点収差やコマ収差の発生を抑制できる。また、レンズの屈折力配置が開口絞りを中心として対称に近いと第1レンズ群と第2レンズ群の間でコマ収差、歪曲、倍率色収差等を打ち消し合い、結像光学系全体として良好な収差補正を実現できる。   In general, by using a concentric lens shape with respect to the stop as described above, it is possible to reduce the incidence angle of the off-axis principal ray on each surface and suppress the generation of astigmatism and coma on each surface. Further, when the refractive power arrangement of the lens is close to symmetry with the aperture stop as the center, coma aberration, distortion, lateral chromatic aberration, etc. cancel each other between the first lens group and the second lens group, and the entire imaging optical system has good aberration. Correction can be realized.

しかしながら、このような第1レンズ群と第2レンズ群のみからなる構成の結像光学系では、フォーカシングに伴って第2レンズ群を移動させることにより屈折力配置が大きく変化し、諸収差、特にコマ収差や歪曲、倍率色収差の変動が大きくなるため、近距離での性能が不十分となる。   However, in such an imaging optical system composed of only the first lens group and the second lens group, the refractive power arrangement changes greatly by moving the second lens group during focusing, and various aberrations, in particular, Since coma aberration, distortion, and lateral chromatic aberration fluctuate, performance at short distances becomes insufficient.

また、これらの収差は画角が大きくなるほど大きく発生するため、その補正および変動の抑制が難しくなる。このため、この形式の結像光学系は対角線全画角が30°程度の中望遠画角において主に使用されており、対角線全画角が50°程度の標準画角に使用された例は少ない。   In addition, since these aberrations increase as the angle of view increases, it is difficult to correct and suppress fluctuations. For this reason, this type of imaging optical system is mainly used in a medium telephoto field angle with a diagonal total field angle of about 30 °, and an example in which it is used for a standard field angle with a diagonal total field angle of about 50 ° is as follows. Few.

また防振については特許文献2において、フォーカス群内のレンズ1枚を光軸と直交する方向に移動することで行うことが提案されているが、収差変動の敏感度が高いため、十分な性能を達成することが難しい。更にフォーカス群の機構が複雑化してフォーカス群の重量増加を招いてしまう。   In addition, Patent Document 2 proposes that image stabilization be performed by moving one lens in the focus group in a direction orthogonal to the optical axis. However, since the sensitivity to aberration fluctuation is high, sufficient performance is achieved. Difficult to achieve. Furthermore, the mechanism of the focus group becomes complicated, leading to an increase in the weight of the focus group.

一方、特許文献3に記載の結像光学系は光学系の最も物体側に負のレンズエレメントが配置されたレトロフォーカス型の屈折力配置となっており、光線射出角を抑制している。また、フォーカシングを最も像側のレンズ1枚で行っているために非常に軽量である。   On the other hand, the imaging optical system described in Patent Document 3 has a retrofocus type refractive power arrangement in which a negative lens element is arranged on the most object side of the optical system, and suppresses a light emission angle. Further, since focusing is performed with one lens closest to the image side, it is very lightweight.

その反面、レトロフォーカス型の屈折力配置により全長がやや長いという欠点がある。この光学系は絞りより物体側の群の合成屈折力を正として全長の短縮を図っているが、最も物体側に位置する2枚の負レンズの屈折力が大きく、絞りより物体側の群だけで強いレトロフォーカス型の屈折力配置となっているため全長の短縮が難しい。   On the other hand, there is a drawback that the total length is slightly longer due to the retrofocus type refractive power arrangement. In this optical system, the total refractive power is shortened by making the combined refractive power of the group closer to the object side than the stop positive. It is difficult to shorten the overall length due to the strong retrofocus type refractive power arrangement.

またフォーカス群がレンズ系の最も像側の1枚であるために、屈折力を強くして移動量の短縮を図ると、フォーカス群単体での収差補正が困難となってフォーカシングに伴う収差変動が大きくなるという問題が生じ、またフォーカス群の屈折力を弱くするとフォーカス群の移動量が大きくなって結像光学系全体の小型化に不利となる。   In addition, since the focus group is one on the most image side of the lens system, if the refracting power is increased to reduce the amount of movement, it is difficult to correct the aberration in the focus group alone, and the aberration fluctuations due to focusing are changed. When the refractive power of the focus group is weakened, the amount of movement of the focus group becomes large, which is disadvantageous for downsizing the entire imaging optical system.

また防振についての言及は無い。   There is no mention of anti-vibration.

本発明はこのような状況に鑑みてなされたものであり、対角線全画角がおおよそ60°から30°程度の広角から中望遠の画角領域に適し、大型の撮像素子に対応し、高性能化と小型化を達成し、光線射出角を抑制し、かつ軽量なレンズ群でフォーカシングを行いながら、撮影領域全体で収差変動の少ない、防振機構を備えた結像光学系を提供することを目的とする。   The present invention has been made in view of such a situation, and is suitable for a wide-angle to medium-telephoto field-of-view region in which a diagonal total field angle is approximately 60 ° to 30 °, and is compatible with a large image sensor. To provide an imaging optical system equipped with an anti-vibration mechanism that achieves miniaturization and miniaturization, suppresses the light emission angle, and performs focusing with a lightweight lens group while reducing aberration fluctuations throughout the entire imaging area. Objective.

上記目的を達成するために、本発明の第1の防振機構を備えた結像光学系は、物体側から順に、正の屈折力の第1レンズ群と、開口絞りと、正の屈折力の第2レンズ群と、負の屈折力の第3レンズ群より構成され、無限遠から近距離へのフォーカシングに際して前記第2レンズ群が光軸に沿って物体側へ移動し、前記第3レンズ群は物体側から順に負の屈折力の3a群と正の屈折力の3b群よりなって、前記3a群は1枚の負レンズよりなり、前記3b群は最も像側に正レンズを有し、前記3a群を光軸と直交する方向に移動させることによって防振を行い、下記の条件式を満足することを特徴とする。
(1)1.20<f1/f23<7.50
(2)0.01<|f2/f3|<0.35
(3)0.90<|f3a×f3b/f^2|<6.50
ただし、
fi:第iレンズ群の焦点距離
f23:第2レンズ群と第3レンズ群の無限遠合焦時における合成焦点距離
f3a:3a群の焦点距離
f3b:3b群の焦点距離
f:結像光学系全系の無限遠合焦時における焦点距離
In order to achieve the above object, an image forming optical system having the first image stabilization mechanism of the present invention includes, in order from the object side, a first lens unit having a positive refractive power, an aperture stop, and a positive refractive power. The second lens group and a third lens group having a negative refractive power, and the second lens group moves toward the object side along the optical axis during focusing from infinity to a short distance, and the third lens group Is composed of a negative refractive power 3a group and a positive refractive power 3b group in order from the object side, the 3a group is composed of one negative lens, and the 3b group has a positive lens closest to the image side, Vibration is prevented by moving the group 3a in a direction perpendicular to the optical axis, and the following conditional expression is satisfied.
(1) 1.20 <f1 / f23 <7.50
(2) 0.01 <| f2 / f3 | <0.35
(3) 0.90 <| f3a × f3b / f ^ 2 | <6.50
However,
fi: focal length of the i-th lens group f23: combined focal length f3a: focal length of the 3a group when the second lens group and the third lens group are focused at infinity f3b: focal length of the 3b group f: imaging optical system Focal length when focusing on infinity of the entire system

また本発明の第2の防振機構を備えた結像光学系は、本発明の第1の防振機構を備えた
結像光学系において、前記第1レンズ群は、物体側から順に物体側に凸面を向けた正レンズと像側に凹面を向けた負レンズとの接合レンズDB1を有し、前記第2レンズ群は、物体側から順に物体側に凹面を向けた負レンズと像側に凸面を向けた正レンズとの接合レンズDB2と両凸形状の正レンズから構成され、下記の条件式を満足することを特徴とする。
(4)|RDB1/f|>1.00
(5)|RDB2/f|>0.85
ただし、
RDB1:接合レンズDB1の接合面の曲率半径
RDB2:接合レンズDB2の接合面の曲率半径
The imaging optical system provided with the second image stabilization mechanism according to the present invention is the imaging optical system provided with the first image stabilization mechanism according to the present invention, wherein the first lens group is arranged in order from the object side to the object side. The second lens group includes a negative lens having a concave surface facing the object side and an image side facing the image side in order from the object side. It is composed of a cemented lens DB2 with a positive lens having a convex surface and a biconvex positive lens, and satisfies the following conditional expression.
(4) | RDB1 / f |> 1.00
(5) | RDB2 / f |> 0.85
However,
RDB1: radius of curvature of the cemented surface of the cemented lens DB1 RDB2: radius of curvature of the cemented surface of the cemented lens DB2

また本発明の第3の防振機構を備えた結像光学系は、本発明の第2の防振機構を備えた結像光学系において、前記接合レンズDB1は、前記第1レンズ群に含まれる接合レンズのうち最も像側に位置することを特徴とする。   The imaging optical system having the third image stabilization mechanism of the present invention is the imaging optical system having the second image stabilization mechanism of the present invention, and the cemented lens DB1 is included in the first lens group. It is characterized in that it is located closest to the image side among the cemented lenses.

さらに本発明の第4の防振機構を備えた結像光学系は、本発明の第1乃至第3いずれかの防振機構を備えた結像光学系において、下記の条件式を満足することを特徴とする。
(6)0.800<n3a/n3b<0.990
ただし、
n3a:3a群を構成する負レンズの屈折率の最大値
n3b:3b群を構成する正レンズの屈折率の最小値
Furthermore, the imaging optical system provided with the fourth image stabilization mechanism of the present invention satisfies the following conditional expression in the imaging optical system provided with any one of the first to third image stabilization mechanisms of the present invention. It is characterized by.
(6) 0.800 <n3a / n3b <0.990
However,
n3a: Maximum value of the refractive index of the negative lens constituting the 3a group n3b: Minimum value of the refractive index of the positive lens constituting the 3b group

さらに本発明の第の防振機構を備えた結像光学系は、本発明の第1の防振機構を備えた結像光学系において、前記第2レンズ群は、物体側から順に、物体側に凹面を向けた負レンズと像側に凸面を向けた正レンズとの接合レンズDB2と両凸形状の正レンズのみから構成されることを特徴とする。 Further fifth imaging optical system having a vibration reduction mechanism of the present invention, in the first imaging optical system having a vibration reduction mechanism of the present invention, the second lens group comprises, in order from the object side, the object It is characterized by comprising only a cemented lens DB2 of a negative lens having a concave surface on the side and a positive lens having a convex surface on the image side, and a biconvex positive lens.

本発明を実施の防振機構を備えた結像光学系によれば、対角線全画角がおおよそ60°から30°程度の広角から中望遠の画角領域に適し、大型の撮像素子に対応し、高性能化と小型化を達成し、光線射出角を抑制し、かつ軽量なレンズ群でフォーカシングを行いながら、撮影領域全体で収差変動の少ない防振機構を備えた結像光学系を提供することができる。   According to the imaging optical system equipped with the image stabilization mechanism embodying the present invention, the diagonal total field angle is suitable for a wide-angle to medium-telephoto field angle range of approximately 60 ° to 30 °, and corresponds to a large image sensor. An imaging optical system that achieves high performance and miniaturization, suppresses the light emission angle, and performs focusing with a lightweight lens group while providing an anti-vibration mechanism with little aberration variation in the entire imaging area be able to.

本発明の防振機構を備えた結像光学系の実施例1に係るレンズ構成図である。It is a lens block diagram concerning Example 1 of an image formation optical system provided with the vibration proof mechanism of the present invention. 実施例1の防振機構を備えた結像光学系の撮影距離無限遠における縦収差図である。FIG. 6 is a longitudinal aberration diagram at an imaging distance of infinity of the imaging optical system including the image stabilization mechanism of Example 1. 実施例1の防振機構を備えた結像光学系の撮影距離500mmにおける縦収差図である。FIG. 6 is a longitudinal aberration diagram at an imaging distance of 500 mm of the imaging optical system including the image stabilization mechanism of Example 1. 実施例1の防振機構を備えた結像光学系の撮影距離無限遠における横収差図である。6 is a lateral aberration diagram at an imaging distance of infinity of an imaging optical system including the image stabilization mechanism of Example 1. FIG. 実施例1の防振機構を備えた結像光学系の撮影距離500mmにおける横収差図である。FIG. 6 is a lateral aberration diagram at an imaging distance of 500 mm of the imaging optical system including the image stabilization mechanism of Example 1. 実施例1の防振機構を備えた結像光学系の撮影距離無限遠において、防振群をプラス方向に0.25mm変移させた状態の横収差図である。FIG. 6 is a lateral aberration diagram in a state where the image stabilization group is shifted by 0.25 mm in the plus direction at an imaging distance of infinity of the imaging optical system including the image stabilization mechanism of Example 1. 実施例1の防振機構を備えた結像光学系の撮影距離500mmにおいて、防振群をプラス方向に0.25mm変移させた状態の横収差図である。FIG. 6 is a lateral aberration diagram in a state where the image stabilization group is shifted by 0.25 mm in the plus direction at an imaging distance of 500 mm of the imaging optical system including the image stabilization mechanism of Example 1. 本発明の防振機構を備えた結像光学系の実施例2に係るレンズ構成図である。It is a lens block diagram which concerns on Example 2 of the imaging optical system provided with the anti-vibration mechanism of this invention. 実施例2の防振機構を備えた結像光学系の撮影距離無限遠における縦収差図である。FIG. 6 is a longitudinal aberration diagram at an imaging distance infinity of an imaging optical system including the image stabilization mechanism of Example 2. 実施例2の防振機構を備えた結像光学系の撮影距離500mmにおける縦収差図である。FIG. 6 is a longitudinal aberration diagram at an imaging distance of 500 mm of an imaging optical system including the image stabilization mechanism of Example 2. 実施例2の防振機構を備えた結像光学系の撮影距離無限遠における横収差図である。FIG. 6 is a lateral aberration diagram at an imaging distance infinite of the imaging optical system including the image stabilization mechanism of Example 2. 実施例2の防振機構を備えた結像光学系の撮影距離500mmにおける横収差図である。FIG. 6 is a lateral aberration diagram at an imaging distance of 500 mm in an image forming optical system including the image stabilization mechanism according to Example 2. 実施例2の防振機構を備えた結像光学系の撮影距離無限遠において、防振群をプラス方向に0.25mm変移させた状態の横収差図である。FIG. 11 is a lateral aberration diagram in a state where the image stabilization group is shifted by 0.25 mm in the plus direction at an imaging distance of infinity of the imaging optical system including the image stabilization mechanism of Example 2. 実施例2の防振機構を備えた結像光学系の撮影距離500mmにおいて、防振群をプラス方向に0.25mm変移させた状態の横収差図である。FIG. 10 is a lateral aberration diagram in a state where the image stabilization group is shifted by 0.25 mm in the plus direction at an imaging distance of 500 mm of the imaging optical system including the image stabilization mechanism of Example 2. 本発明の防振機構を備えた結像光学系の実施例3に係るレンズ構成図である。It is a lens block diagram which concerns on Example 3 of the imaging optical system provided with the vibration isolating mechanism of this invention. 実施例3の防振機構を備えた結像光学系の撮影距離無限遠における縦収差図である。FIG. 7 is a longitudinal aberration diagram at an imaging distance infinite of the imaging optical system including the image stabilization mechanism of Example 3. 実施例3の防振機構を備えた結像光学系の撮影距離500mmにおける縦収差図である。FIG. 6 is a longitudinal aberration diagram at an imaging distance of 500 mm of an imaging optical system including the image stabilization mechanism of Example 3. 実施例3の防振機構を備えた結像光学系の撮影距離無限遠における横収差図である。FIG. 10 is a lateral aberration diagram at an imaging distance infinite for the imaging optical system including the image stabilization mechanism according to Example 3. 実施例3の防振機構を備えた結像光学系の撮影距離500mmにおける横収差図である。FIG. 6 is a lateral aberration diagram at an imaging distance of 500 mm in an image forming optical system including the image stabilization mechanism according to Example 3. 実施例3の防振機構を備えた結像光学系の撮影距離無限遠において、防振群をプラス方向に0.25mm変移させた状態の横収差図である。FIG. 11 is a lateral aberration diagram in a state where the image stabilization group is shifted by 0.25 mm in the plus direction at an imaging distance of infinity of the imaging optical system including the image stabilization mechanism of Example 3. 実施例3の防振機構を備えた結像光学系の撮影距離500mmにおいて、防振群をプラス方向に0.25mm変移させた状態の横収差図である。FIG. 10 is a lateral aberration diagram in a state where the image stabilization group is shifted by 0.25 mm in the plus direction at an imaging distance of 500 mm of the imaging optical system including the image stabilization mechanism of Example 3. 本発明の防振機構を備えた結像光学系の実施例4に係るレンズ構成図である。It is a lens block diagram which concerns on Example 4 of the imaging optical system provided with the anti-vibration mechanism of this invention. 実施例4の防振機構を備えた結像光学系の撮影距離無限遠における縦収差図である。FIG. 10 is a longitudinal aberration diagram at an imaging distance infinite of the imaging optical system including the image stabilization mechanism of Example 4. 実施例4の防振機構を備えた結像光学系の撮影距離500mmにおける縦収差図である。FIG. 6 is a longitudinal aberration diagram at an imaging distance of 500 mm of an imaging optical system including the image stabilization mechanism of Example 4. 実施例4の防振機構を備えた結像光学系の撮影距離無限遠における横収差図である。FIG. 10 is a lateral aberration diagram at an imaging distance infinite for the imaging optical system including the image stabilization mechanism according to Example 4. 実施例4の防振機構を備えた結像光学系の撮影距離500mmにおける横収差図である。FIG. 10 is a lateral aberration diagram at an imaging distance of 500 mm in an imaging optical system provided with the image stabilization mechanism of Example 4. 実施例4の防振機構を備えた結像光学系の撮影距離無限遠において、防振群をプラス方向に0.25mm変移させた状態の横収差図である。FIG. 11 is a lateral aberration diagram in a state where the image stabilization group is shifted by 0.25 mm in the plus direction at an imaging distance of infinity of the imaging optical system including the image stabilization mechanism of Example 4. 実施例4の防振機構を備えた結像光学系の撮影距離500mmにおいて、防振群をプラス方向に0.25mm変移させた状態の横収差図である。FIG. 10 is a lateral aberration diagram in a state where the image stabilization group is shifted by 0.25 mm in the plus direction at an imaging distance of 500 mm of the imaging optical system including the image stabilization mechanism of Example 4. 本発明の防振機構を備えた結像光学系の実施例5に係るレンズ構成図である。It is a lens block diagram which concerns on Example 5 of the imaging optical system provided with the anti-vibration mechanism of this invention. 実施例5の防振機構を備えた結像光学系の撮影距離無限遠における縦収差図である。FIG. 10 is a longitudinal aberration diagram at an imaging distance infinite of an imaging optical system including the image stabilization mechanism of Example 5. 実施例5の防振機構を備えた結像光学系の撮影距離500mmにおける縦収差図である。FIG. 9 is a longitudinal aberration diagram at an imaging distance of 500 mm of an imaging optical system provided with the image stabilization mechanism of Example 5. 実施例5の防振機構を備えた結像光学系の撮影距離無限遠における横収差図である。FIG. 10 is a transverse aberration diagram at an imaging distance infinite of the imaging optical system including the image stabilization mechanism of Example 5. 実施例5の防振機構を備えた結像光学系の撮影距離500mmにおける横収差図である。FIG. 10 is a lateral aberration diagram at an imaging distance of 500 mm of the imaging optical system including the image stabilization mechanism of Example 5. 実施例5の防振機構を備えた結像光学系の撮影距離無限遠において、防振群をプラス方向に0.25mm変移させた状態の横収差図である。FIG. 10 is a lateral aberration diagram in a state where the image stabilization group is shifted by 0.25 mm in the plus direction at an imaging distance of infinity of the imaging optical system including the image stabilization mechanism of Example 5. 実施例5の防振機構を備えた結像光学系の撮影距離500mmにおいて、防振群をプラス方向に0.25mm変移させた状態の横収差図である。FIG. 10 is a lateral aberration diagram in a state where the image stabilization group is shifted by 0.25 mm in the plus direction at an imaging distance of 500 mm of the imaging optical system including the image stabilization mechanism of Example 5. 本発明の防振機構を備えた結像光学系の実施例6に係るレンズ構成図である。It is a lens block diagram which concerns on Example 6 of the imaging optical system provided with the anti-vibration mechanism of this invention. 実施例6の防振機構を備えた結像光学系の撮影距離無限遠における縦収差図である。FIG. 10 is a longitudinal aberration diagram at an imaging distance infinite of an imaging optical system provided with the image stabilization mechanism of Example 6. 実施例6の防振機構を備えた結像光学系の撮影距離500mmにおける縦収差図である。FIG. 12 is a longitudinal aberration diagram at an imaging distance of 500 mm of an imaging optical system provided with the image stabilization mechanism of Example 6. 実施例6の防振機構を備えた結像光学系の撮影距離無限遠における横収差図である。FIG. 10 is a lateral aberration diagram at an imaging distance infinite of the imaging optical system including the image stabilization mechanism according to Example 6. 実施例6の防振機構を備えた結像光学系の撮影距離500mmにおける横収差図である。FIG. 10 is a lateral aberration diagram at an imaging distance of 500 mm of an imaging optical system provided with the image stabilization mechanism of Example 6. 実施例6の防振機構を備えた結像光学系の撮影距離無限遠において、防振群をプラス方向に0.25mm変移させた状態の横収差図である。FIG. 11 is a lateral aberration diagram in a state where the image stabilization group is shifted by 0.25 mm in the plus direction at an imaging distance of infinity of the imaging optical system including the image stabilization mechanism of Example 6. 実施例6の防振機構を備えた結像光学系の撮影距離500mmにおいて、防振群をプラス方向に0.25mm変移させた状態の横収差図である。FIG. 11 is a lateral aberration diagram in a state where the image stabilization group is shifted by 0.25 mm in the plus direction at an imaging distance of 500 mm of the imaging optical system including the image stabilization mechanism of Example 6. 本発明の防振機構を備えた結像光学系の実施例7に係るレンズ構成図である。It is a lens block diagram which concerns on Example 7 of the imaging optical system provided with the anti-vibration mechanism of this invention. 実施例7の防振機構を備えた結像光学系の撮影距離無限遠における縦収差図である。FIG. 11 is a longitudinal aberration diagram at an imaging distance infinite of an imaging optical system provided with the image stabilization mechanism of Example 7. 実施例7の防振機構を備えた結像光学系の撮影距離500mmにおける縦収差図である。FIG. 11 is a longitudinal aberration diagram at an imaging distance of 500 mm of an imaging optical system provided with the image stabilization mechanism of Example 7. 実施例7の防振機構を備えた結像光学系の撮影距離無限遠における横収差図である。FIG. 11 is a lateral aberration diagram at an imaging distance infinite for the imaging optical system including the image stabilization mechanism according to Example 7. 実施例7の防振機構を備えた結像光学系の撮影距離500mmにおける横収差図である。FIG. 10 is a lateral aberration diagram at an imaging distance of 500 mm of an imaging optical system provided with the image stabilization mechanism of Example 7. 実施例7の防振機構を備えた結像光学系の撮影距離無限遠において、防振群をプラス方向に0.25mm変移させた状態の横収差図である。FIG. 18 is a lateral aberration diagram in a state where the image stabilization group is shifted by 0.25 mm in the plus direction at an imaging distance of infinity of the imaging optical system including the image stabilization mechanism of Example 7. 実施例7の防振機構を備えた結像光学系の撮影距離500mmにおいて、防振群をプラス方向に0.25mm変移させた状態の横収差図である。FIG. 12 is a lateral aberration diagram in a state where the image stabilization group is shifted by 0.25 mm in the plus direction at an imaging distance of 500 mm of the imaging optical system including the image stabilization mechanism of Example 7. 本発明の防振機構を備えた結像光学系の実施例8に係るレンズ構成図である。It is a lens block diagram which concerns on Example 8 of the imaging optical system provided with the anti-vibration mechanism of this invention. 実施例8の防振機構を備えた結像光学系の撮影距離無限遠における縦収差図である。FIG. 12 is a longitudinal aberration diagram at an imaging distance infinite of an imaging optical system including the image stabilization mechanism of Example 8. 実施例8の防振機構を備えた結像光学系の撮影距離500mmにおける縦収差図である。FIG. 10 is a longitudinal aberration diagram at an imaging distance of 500 mm in an imaging optical system provided with the image stabilization mechanism of Example 8. 実施例8の防振機構を備えた結像光学系の撮影距離無限遠における横収差図である。FIG. 10 is a lateral aberration diagram at an imaging distance infinite of the imaging optical system including the image stabilization mechanism of Example 8. 実施例8の防振機構を備えた結像光学系の撮影距離500mmにおける横収差図である。FIG. 10 is a transverse aberration diagram at an imaging distance of 500 mm of an imaging optical system provided with the image stabilization mechanism of Example 8. 実施例8の防振機構を備えた結像光学系の撮影距離無限遠において、防振群をプラス方向に0.25mm変移させた状態の横収差図である。FIG. 14 is a lateral aberration diagram in a state where the image stabilization group is shifted by 0.25 mm in the plus direction at an imaging distance of infinity of the imaging optical system including the image stabilization mechanism of Example 8. 実施例8の防振機構を備えた結像光学系の撮影距離500mmにおいて、防振群をプラス方向に0.25mm変移させた状態の横収差図である。FIG. 10 is a lateral aberration diagram in a state where the image stabilization group is shifted by 0.25 mm in the plus direction at an imaging distance of 500 mm of the imaging optical system including the image stabilization mechanism of Example 8. 本発明の防振機構を備えた結像光学系の実施例9に係るレンズ構成図である。It is a lens block diagram which concerns on Example 9 of the imaging optical system provided with the anti-vibration mechanism of this invention. 実施例9の防振機構を備えた結像光学系の撮影距離無限遠における縦収差図である。FIG. 12 is a longitudinal aberration diagram at an imaging distance infinite of the imaging optical system including the image stabilization mechanism of Example 9. 実施例9の防振機構を備えた結像光学系の撮影距離500mmにおける縦収差図である。FIG. 10 is a longitudinal aberration diagram at an imaging distance of 500 mm of an imaging optical system provided with the image stabilization mechanism of Example 9. 実施例9の防振機構を備えた結像光学系の撮影距離無限遠における横収差図である。FIG. 10 is a lateral aberration diagram at an imaging distance infinite of the imaging optical system including the image stabilization mechanism according to Example 9. 実施例9の防振機構を備えた結像光学系の撮影距離500mmにおける横収差図である。10 is a lateral aberration diagram at an imaging distance of 500 mm of an imaging optical system provided with the image stabilization mechanism of Example 9. FIG. 実施例9の防振機構を備えた結像光学系の撮影距離無限遠において、防振群をプラス方向に0.25mm変移させた状態の横収差図である。FIG. 10 is a lateral aberration diagram in a state where the image stabilization group is shifted by 0.25 mm in the plus direction at an imaging distance of infinity of the imaging optical system including the image stabilization mechanism of Example 9. 実施例9の防振機構を備えた結像光学系の撮影距離500mmにおいて、防振群をプラス方向に0.25mm変移させた状態の横収差図である。FIG. 10 is a lateral aberration diagram in a state where the image stabilization group is shifted by 0.25 mm in the plus direction at an imaging distance of 500 mm of the imaging optical system including the image stabilization mechanism of Example 9. 本発明の防振機構を備えた結像光学系の実施例10に係るレンズ構成図である。It is a lens block diagram which concerns on Example 10 of the imaging optical system provided with the vibration isolating mechanism of this invention. 実施例10の防振機構を備えた結像光学系の撮影距離無限遠における縦収差図である。FIG. 11 is a longitudinal aberration diagram at an imaging distance infinite of the imaging optical system including the image stabilization mechanism of Example 10. 実施例10の防振機構を備えた結像光学系の撮影距離500mmにおける縦収差図である。FIG. 12 is a longitudinal aberration diagram at an imaging distance of 500 mm of an imaging optical system provided with the image stabilization mechanism of Example 10. 実施例10の防振機構を備えた結像光学系の撮影距離無限遠における横収差図である。FIG. 10 is a transverse aberration diagram at an imaging distance infinite of the imaging optical system including the image stabilization mechanism according to Example 10. 実施例10の防振機構を備えた結像光学系の撮影距離500mmにおける横収差図である。FIG. 10 is a lateral aberration diagram at an imaging distance of 500 mm of the imaging optical system including the image stabilization mechanism according to Example 10. 実施例10の防振機構を備えた結像光学系の撮影距離無限遠において、防振群をプラス方向に0.25mm変移させた状態の横収差図である。FIG. 27 is a lateral aberration diagram in a state where the image stabilization group is shifted by 0.25 mm in the plus direction at an imaging distance of infinity of the imaging optical system including the image stabilization mechanism of Example 10. 実施例10の防振機構を備えた結像光学系の撮影距離500mmにおいて、防振群をプラス方向に0.25mm変移させた状態の横収差図である。FIG. 25 is a lateral aberration diagram in a state where the image stabilization group is shifted by 0.25 mm in the plus direction at an imaging distance of 500 mm of the imaging optical system including the image stabilization mechanism of Example 10. 本発明の防振機構を備えた結像光学系の実施例11に係るレンズ構成図である。It is a lens block diagram which concerns on Example 11 of the imaging optical system provided with the anti-vibration mechanism of this invention. 実施例11の防振機構を備えた結像光学系の撮影距離無限遠における縦収差図である。FIG. 18 is a longitudinal aberration diagram at an imaging distance infinite of the imaging optical system including the image stabilization mechanism of Example 11. 実施例11の防振機構を備えた結像光学系の撮影距離500mmにおける縦収差図である。FIG. 12 is a longitudinal aberration diagram at an imaging distance of 500 mm of an imaging optical system provided with the image stabilization mechanism of Example 11. 実施例11の防振機構を備えた結像光学系の撮影距離無限遠における横収差図である。FIG. 12 is a lateral aberration diagram at an imaging distance infinite for the imaging optical system including the image stabilization mechanism according to Example 11. 実施例11の防振機構を備えた結像光学系の撮影距離500mmにおける横収差図である。12 is a lateral aberration diagram at an imaging distance of 500 mm of an imaging optical system including the image stabilization mechanism according to Example 11. FIG. 実施例11の防振機構を備えた結像光学系の撮影距離無限遠において、防振群をプラス方向に0.25mm変移させた状態の横収差図である。FIG. 25 is a lateral aberration diagram in a state where the image stabilization group is shifted by 0.25 mm in the plus direction at an imaging distance of infinity of the imaging optical system including the image stabilization mechanism of Example 11. 実施例11の防振機構を備えた結像光学系の撮影距離500mmにおいて、防振群をプラス方向に0.25mm変移させた状態の横収差図である。FIG. 25 is a lateral aberration diagram in a state where the image stabilization group is shifted by 0.25 mm in the plus direction at an imaging distance of 500 mm of the imaging optical system including the image stabilization mechanism of Example 11. 本発明の防振機構を備えた結像光学系の実施例12に係るレンズ構成図である。It is a lens block diagram which concerns on Example 12 of the imaging optical system provided with the anti-vibration mechanism of this invention. 実施例12の防振機構を備えた結像光学系の撮影距離無限遠における縦収差図である。FIG. 14 is a longitudinal aberration diagram at an imaging distance infinity of an image forming optical system including the image stabilization mechanism according to Example 12. 実施例12の防振機構を備えた結像光学系の撮影距離800mmにおける縦収差図である。FIG. 14 is a longitudinal aberration diagram at an imaging distance of 800 mm of an image forming optical system including the image stabilization mechanism according to Example 12. 実施例12の防振機構を備えた結像光学系の撮影距離無限遠における横収差図である。FIG. 16 is a transverse aberration diagram at an imaging distance infinite of the imaging optical system including the image stabilization mechanism according to Example 12. 実施例12の防振機構を備えた結像光学系の撮影距離800mmにおける横収差図である。FIG. 18 is a lateral aberration diagram at an imaging distance of 800 mm in the image forming optical system including the image stabilization mechanism according to Example 12. 実施例12の防振機構を備えた結像光学系の撮影距離無限遠において、防振群をプラス方向に0.5mm変移させた状態の横収差図である。FIG. 25 is a lateral aberration diagram in a state where the image stabilization group is shifted 0.5 mm in the plus direction at an imaging distance of infinity of the imaging optical system including the image stabilization mechanism of Example 12. 実施例12の防振機構を備えた結像光学系の撮影距離800mmにおいて、防振群をプラス方向に0.5mm変移させた状態の横収差図である。FIG. 25 is a lateral aberration diagram in a state where the image stabilization group is shifted 0.5 mm in the plus direction at an imaging distance of 800 mm of the imaging optical system including the image stabilization mechanism of Example 12. 本発明の防振機構を備えた結像光学系の実施例13に係るレンズ構成図である。It is a lens block diagram which concerns on Example 13 of the imaging optical system provided with the anti-vibration mechanism of this invention. 実施例13の防振機構を備えた結像光学系の撮影距離無限遠における縦収差図である。FIG. 14 is a longitudinal aberration diagram at an imaging distance infinity of an image forming optical system including the image stabilization mechanism according to Example 13. 実施例13の防振機構を備えた結像光学系の撮影距離800mmにおける縦収差図である。FIG. 14 is a longitudinal aberration diagram at an imaging distance of 800 mm of an image forming optical system including the image stabilization mechanism according to Example 13. 実施例13の防振機構を備えた結像光学系の撮影距離無限遠における横収差図である。FIG. 25 is a lateral aberration diagram at an imaging distance infinite for the imaging optical system including the image stabilization mechanism according to Example 13; 実施例13の防振機構を備えた結像光学系の撮影距離800mmにおける横収差図である。14 is a lateral aberration diagram at an imaging distance of 800 mm in an image forming optical system including the image stabilization mechanism according to Example 13. FIG. 実施例13の防振機構を備えた結像光学系の撮影距離無限遠において、防振群をプラス方向に0.5mm変移させた状態の横収差図である。FIG. 25 is a lateral aberration diagram in a state where the image stabilization group is shifted 0.5 mm in the plus direction at an imaging distance of infinity of the imaging optical system including the image stabilization mechanism of Example 13. 実施例13の防振機構を備えた結像光学系の撮影距離800mmにおいて、防振群をプラス方向に0.5mm変移させた状態の横収差図である。FIG. 25 is a lateral aberration diagram in a state where the image stabilization group is shifted 0.5 mm in the plus direction at an imaging distance of 800 mm of the imaging optical system including the image stabilization mechanism of Example 13. 本発明の防振機構を備えた結像光学系の実施例14に係るレンズ構成図である。It is a lens block diagram which concerns on Example 14 of the imaging optical system provided with the anti-vibration mechanism of this invention. 実施例14の防振機構を備えた結像光学系の撮影距離無限遠における縦収差図である。FIG. 16 is a longitudinal aberration diagram at an imaging distance infinity of an image forming optical system including the image stabilization mechanism according to Example 14; 実施例14の防振機構を備えた結像光学系の撮影距離800mmにおける縦収差図である。FIG. 18 is a longitudinal aberration diagram at an imaging distance of 800 mm of an image forming optical system including the image stabilization mechanism according to Example 14. 実施例14の防振機構を備えた結像光学系の撮影距離無限遠における横収差図である。FIG. 25 is a lateral aberration diagram at an imaging distance infinite of the imaging optical system including the image stabilization mechanism according to Example 14; 実施例14の防振機構を備えた結像光学系の撮影距離800mmにおける横収差図である。FIG. 25 is a lateral aberration diagram at an imaging distance of 800 mm of the imaging optical system provided with the image stabilization mechanism according to Example 14. 実施例14の防振機構を備えた結像光学系の撮影距離無限遠において、防振群をプラス方向に0.5mm変移させた状態の横収差図である。FIG. 27 is a lateral aberration diagram in a state where the image stabilization group is shifted 0.5 mm in the plus direction at an imaging distance infinity of the imaging optical system including the image stabilization mechanism according to Example 14; 実施例14の防振機構を備えた結像光学系の撮影距離800mmにおいて、防振群をプラス方向に0.5mm変移させた状態の横収差図である。FIG. 25 is a lateral aberration diagram in a state where the image stabilization group is shifted 0.5 mm in the plus direction at an imaging distance of 800 mm of the imaging optical system including the image stabilization mechanism of Example 14. 防振群の屈折力が負である場合の防振時の収差補正を説明する図である。It is a figure explaining the aberration correction at the time of vibration isolation when the refractive power of the vibration isolation group is negative. 防振群の屈折力が正である場合の防振時の収差補正を説明する図である。It is a figure explaining the aberration correction at the time of image stabilization when the refractive power of an image stabilization group is positive.

本発明の結像光学系は、図1、図8、図15、図22、図29、図36、図43、図50、図57、図64、図71、図78、図85、及び図92に示すレンズ構成図からわかるように、物体側から順に、正の屈折力の第1レンズ群G1と、開口絞りSと、正の屈折力の第2レンズ群G2と、負の屈折力の第3レンズ群G3より構成され、無限遠から近距離へのフォーカシングに際して第2レンズ群G2が光軸に沿って物体側へ移動する構成となっている。   The imaging optical system of the present invention is shown in FIGS. 1, 8, 15, 22, 29, 36, 43, 50, 57, 64, 71, 78, 85, and FIG. As can be seen from the lens configuration diagram shown in FIG. 92, in order from the object side, the first lens group G1 having a positive refractive power, the aperture stop S, the second lens group G2 having a positive refractive power, and a negative refractive power. The third lens group G3 is configured such that the second lens group G2 moves to the object side along the optical axis during focusing from infinity to a short distance.

また、第3レンズ群G3は物体側から順に負の屈折力の3a群G3aと正の屈折力の3b群G3bから構成され、3a群G3aを光軸と直交する方向に移動させることにより防振を行う。   The third lens group G3 is composed of a negative refractive power 3a group G3a and a positive refractive power 3b group G3b in order from the object side. By moving the 3a group G3a in a direction perpendicular to the optical axis, vibration is prevented. I do.

まず、第1レンズ群G1と第2レンズ群G2の合成系における、フォーカシングに伴う収差の変動について定性的に説明する。   First, a qualitative description will be given of aberration fluctuations accompanying focusing in the synthesis system of the first lens group G1 and the second lens group G2.

一般的に、開口絞りに対して同じ側にある正の屈折力のレンズ群と負の屈折力のレンズ群の残存収差の符号は逆である。また、軸外主光線通過位置が光軸から遠いほどコマ収差等の軸外収差の発生は大きくなる。   In general, the signs of the residual aberrations of the positive refractive power lens group and the negative refractive power lens group on the same side with respect to the aperture stop are opposite. Further, the occurrence of off-axis aberrations such as coma aberration increases as the off-axis principal ray passage position is farther from the optical axis.

本発明の防振機構を備えた結像光学系では、無限遠から近距離へのフォーカシングに伴い、第1レンズ群G1での軸外主光線通過位置は殆ど変化しないが、第2レンズ群G2は物体側へ移動するので第2レンズ群G2での軸外主光線通過位置はより光軸に近くなる。   In the imaging optical system provided with the image stabilization mechanism of the present invention, the off-axis principal ray passing position in the first lens group G1 hardly changes with focusing from infinity to a short distance, but the second lens group G2 Since it moves to the object side, the off-axis principal ray passing position in the second lens group G2 becomes closer to the optical axis.

このため、第1レンズ群G1の発生させる収差は殆ど変化しないにも拘らず第2レンズ群の発生させる収差は小さくなり、第1レンズ群G1と第2レンズ群G2の合成系において収差変動が発生することになる。   For this reason, although the aberration generated by the first lens group G1 hardly changes, the aberration generated by the second lens group becomes small, and aberration fluctuation occurs in the combined system of the first lens group G1 and the second lens group G2. Will occur.

第1レンズ群G1と第2レンズ群G2のそれぞれの群で十分に収差を補正することが出来れば収差変動は少なくなるが、そのためにはそれぞれの群の構成枚数を増加させる必要が有り、フォーカス群の軽量化という本発明の目的の一つが達成できない。   If the aberration can be sufficiently corrected in each of the first lens group G1 and the second lens group G2, the variation in aberration will be reduced. For this purpose, it is necessary to increase the number of components in each group, and the focus One of the objects of the present invention, the weight reduction of the group, cannot be achieved.

そこで本発明の防振機構を備えた結像光学系では、フォーカシングに伴う収差変動を抑えるために、第2レンズ群G2の像側にフォーカシング時に移動しない負の屈折力の第3レンズ群G3を導入した。第3レンズ群G3導入による効果について説明する。   Therefore, in the imaging optical system equipped with the image stabilization mechanism of the present invention, the third lens group G3 having a negative refractive power that does not move during focusing to the image side of the second lens group G2 is used in order to suppress aberration fluctuations caused by focusing. Introduced. The effect of introducing the third lens group G3 will be described.

無限遠から近距離へのフォーカシングに伴って正の屈折力の第2レンズ群G2が開口絞りSに近づくので、射出瞳は像側へ移動し、第2レンズ群G2以降の軸外主光線通過位置は光軸に近くなる。従って、第3レンズ群G3における軸外主光線通過位置は光軸に近くなり、第3レンズ群G3の発生させる収差は小さくなる。   As the second lens group G2 having a positive refractive power approaches the aperture stop S during focusing from infinity to a short distance, the exit pupil moves to the image side, and the off-axis principal ray passing position after the second lens group G2. Is close to the optical axis. Accordingly, the off-axis principal ray passing position in the third lens group G3 is close to the optical axis, and the aberration generated by the third lens group G3 is reduced.

前述のように、無限遠から近距離へのフォーカシングに伴って第2レンズ群G2の発生させる収差は小さくなるので、正の屈折力の第2レンズ群G2と負の屈折力の第3レンズ群G3の発生させる収差がそれぞれ小さくなることになる。すなわち、第2レンズ群G2と第3レンズ群G3の発生させる収差の符号が逆符号であると、第2レンズ群G2と第3レンズ群G3の合成系の収差変動を抑制できる。   As described above, the aberration generated by the second lens group G2 decreases with focusing from infinity to a short distance, so the second lens group G2 having a positive refractive power and the third lens group G3 having a negative refractive power. As a result, the aberration generated by each becomes smaller. That is, if the signs of the aberrations generated by the second lens group G2 and the third lens group G3 are opposite signs, it is possible to suppress aberration fluctuations in the combined system of the second lens group G2 and the third lens group G3.

上記の理由から第3レンズ群G3の屈折力を負とすることによって、フォーカシング時の第2レンズ群G2と第3レンズ群G3の合成系での収差の変動を抑制でき、第1レンズ群G1も含めた結像光学系全系のフォーカシングに伴う収差変動を抑制することが可能となる。   For the above reason, by making the refractive power of the third lens group G3 negative, it is possible to suppress fluctuations in aberrations in the combined system of the second lens group G2 and the third lens group G3 during focusing, and the first lens group G1. It is possible to suppress aberration fluctuations accompanying focusing of the entire imaging optical system including the lens.

このように、本発明の防振機構を備えた結像光学系は、第3レンズ群の導入によってフォーカシングに伴う第2レンズ群の移動によるコマ収差等の軸外収差の変動の抑制を可能としているため、軸外収差の変動の抑制が課題となる対角線全画角50°程度の標準レンズ、またはそれ以上の画角の広角レンズに適する。また本発明の防振機構を備えた結像光学系は、軸外収差の発生が対角線全画角50°程度の標準レンズより少ない対角線全画角30°程度の中望遠レンズに対しても、当然適用可能である。   As described above, the imaging optical system including the image stabilization mechanism according to the present invention can suppress fluctuations in off-axis aberrations such as coma due to movement of the second lens unit due to focusing by introducing the third lens unit. Therefore, it is suitable for a standard lens having a full diagonal angle of view of about 50 °, or a wide-angle lens having a larger angle of view, where the suppression of fluctuations in off-axis aberration is an issue. Further, the imaging optical system equipped with the image stabilization mechanism of the present invention is also suitable for a medium telephoto lens having a diagonal total field angle of about 30 °, which is less than that of a standard lens having a diagonal total field angle of about 50 °. Naturally applicable.

さらに、負の屈折力の第3レンズ群G3には、フォーカシングに伴う第2レンズ群G2の移動量を抑制する、結像光学系の全長を抑制するなどの効果もあるため、結像光学系全体の小型化に寄与する。   Further, the third lens group G3 having a negative refractive power has effects such as suppressing the movement amount of the second lens group G2 due to focusing and suppressing the total length of the imaging optical system. Contributes to overall miniaturization.

一方、前述した通り、撮像素子は入射角の大きな光に対して感度が低下するという特性を持つために、結像光学系からの光線射出角を抑制する必要がある。このため、開口絞りSを挟んで対向する正の屈折力の第1レンズ群G1と、正の屈折力の第2レンズ群G2および負の第3レンズ群G3の合成系とを比べると、第1レンズ群G1の正の屈折力の方が弱くなければならない。   On the other hand, as described above, since the imaging element has a characteristic that the sensitivity is reduced with respect to light having a large incident angle, it is necessary to suppress the light emission angle from the imaging optical system. For this reason, when comparing the first lens group G1 having positive refractive power and the second lens group G2 having positive refractive power and the negative third lens group G3 facing each other with the aperture stop S interposed therebetween, The positive refractive power of one lens group G1 must be weaker.

同様に、負の屈折力の第3レンズ群G3は射出瞳を像側に移動させ光線射出角を大きくする作用を持つので、第2レンズ群G2に比べて第3レンズ群G3の屈折力の方が小さくなければならない。   Similarly, since the third lens group G3 having a negative refractive power has an action of moving the exit pupil to the image side and increasing the light exit angle, the refractive power of the third lens group G3 is larger than that of the second lens group G2. It must be smaller.

次に防振群の配置について説明する。レンズ系後方の第3レンズ群G3においては、絞りSより後ろの正の第2レンズ群G2の作用により、軸外主光線の光軸となす角度が小さくなるために偏芯による非点収差等の収差変動が少なくなりやすく、防振群を配置するのに適する。さらに第3レンズ群G3はフォーカシングに伴う移動がなく、フォーカス群の重量増加を避けられることも好ましい。   Next, the arrangement of the vibration isolation group will be described. In the third lens group G3 behind the lens system, the angle of the off-axis principal ray with respect to the optical axis becomes small due to the action of the positive second lens group G2 behind the stop S. This is suitable for arranging a vibration-proof group. Further, it is also preferable that the third lens group G3 does not move due to focusing and an increase in the weight of the focus group can be avoided.

防振群が絞りS近傍にない場合の防振時の収差補正について、図を用いて定性的に説明する。一般に、光線の通過位置が光軸から離れるほど光線の偏角が大きくなる。すなわち単色収差の発生が大きくなるといえる。   Aberration correction during image stabilization when the image stabilization group is not in the vicinity of the stop S will be qualitatively described with reference to the drawings. In general, the deviation angle of a light beam increases as the passing position of the light beam moves away from the optical axis. That is, it can be said that the occurrence of monochromatic aberration increases.

以下の説明では、標準状態の防振群入射前後の光線の偏角をδ、シフト状態の防振群入射前後の光線の偏角をδ’、標準状態の防振群から射出される光線が防振群の像側の群に入射する位置と結像光学系全体の光軸との距離をh、シフト状態の防振群から射出される光線が防振群の像側の群に入射する位置と結像光学系全体の光軸との距離をh’とする。 In the following explanation, the deflection angle of the light beam before and after the standard vibration isolation group is incident is δ, the deflection angle of the light beam before and after the shift vibration isolation group is incident is δ ′, and the light beam emitted from the standard vibration isolation group is The distance between the position incident on the image side group of the image stabilization group and the optical axis of the entire imaging optical system is h, and the light beam emitted from the image stabilization group in the shifted state enters the image side group of the image stabilization group. Let h ′ be the distance between the position and the optical axis of the entire imaging optical system.

まず図99を用いて、防振群の屈折力が負である場合を考える。防振群の中心軸が光線の入射位置に近づく方向にシフトした場合、図からわかる通り、標準状態の偏角δに比べてシフト状態の偏角δ’は小さくなり、防振群の発生させる収差の絶対値は小さくなる傾向にある。この時、防振群の屈折力が負であることからh’はhに比べて小さくなり、防振群より像側のレンズの発生させる収差の絶対値も小さくなる傾向にある。   First, consider the case where the refractive power of the image stabilizing group is negative with reference to FIG. When the center axis of the vibration isolation group is shifted in a direction approaching the incident position of the light beam, as shown in the figure, the deviation angle δ ′ of the shift state is smaller than the deviation angle δ of the standard state, and the vibration isolation group is generated. The absolute value of aberration tends to be small. At this time, since the refractive power of the image stabilizing group is negative, h 'is smaller than h, and the absolute value of the aberration generated by the lens on the image side tends to be smaller than the image stabilizing group.

その結果、防振群と防振群より像側の群の発生させる収差の絶対値がともに小さくなるので、防振時の収差変動を抑制するためには防振群と防振群より像側の群の発生させる収差は異符号であると良い。このため、定性的には防振群と防振群より像側の群の屈折力は異符号である方が良い。   As a result, the absolute value of the aberration generated by the image side group from both the image stabilization group and the image stabilization group becomes smaller. The aberrations generated by these groups are preferably different signs. Therefore, qualitatively, it is better that the refractive power of the image side group is different from that of the image stabilizing group.

したがって、防振群の屈折力が負である場合は防振群より像側の群の屈折力は正であると良い。   Therefore, when the refractive power of the image stabilizing group is negative, it is preferable that the image side group has a positive refractive power.

次に図100を用いて、防振群の屈折力が正である場合を考える。防振群の中心軸が光線の入射位置に近づく方向にシフトした場合、図からわかる通り、標準状態の偏角δに比べてシフト状態の偏角δ’は小さくなり、防振群の発生させる収差の絶対値は小さくなる傾向にある。この時、防振群の屈折力が正であることからh’はhに比べて大きくなり、防振群より像側のレンズの発生させる収差の絶対値も大きくなる傾向にある。   Next, a case where the refractive power of the vibration proof group is positive will be considered using FIG. When the center axis of the vibration isolation group is shifted in a direction approaching the incident position of the light beam, as shown in the figure, the deviation angle δ ′ of the shift state is smaller than the deviation angle δ of the standard state, and the vibration isolation group is generated. The absolute value of aberration tends to be small. At this time, since the refractive power of the image stabilizing group is positive, h ′ is larger than h, and the absolute value of the aberration generated by the lens on the image side tends to be larger than the image stabilizing group.

その結果、防振群の発生させる収差の絶対値は小さく、防振群より像側の群の発生させる収差の絶対値は大きくなるので、防振時の収差変動を抑制するためには防振群と防振群より像側の群の発生させる収差は同符号であると良い。このため、定性的には防振群と防振群より像側の群の屈折力は同符号である方が良い。   As a result, the absolute value of the aberration generated by the image stabilization group is small and the absolute value of the aberration generated by the image side group is larger than that of the image stabilization group. The aberrations generated by the group on the image side from the group and the image stabilizing group should have the same sign. Therefore, qualitatively, it is better that the refractive power of the image side group is the same as that of the image stabilizing group.

したがって、防振群の屈折力が正である場合は防振群より像側の群の屈折力は正であると良い。   Therefore, when the refractive power of the image stabilizing group is positive, it is preferable that the image side group has a positive refractive power.

これらのことから防振群が絞りの近傍にない場合において、防振群の屈折力の符号に関わらず、防振群より像側に正の屈折力の群を配置することによって防振時の収差変動を抑制することができる。したがって、本発明の防振機構を備えた結像光学系では、第3レンズ群を負の屈折力の3a群G3aと正の屈折力の3b群G3bより構成し、3a群G3aにおいて防振を行う構成とした。第3レンズ群内の3a群G3aよりさらに物体側にレンズ群を設けても良い。ただし、機構構成が複雑化するため装置全体の小型化に不利となる。   From these facts, when the anti-vibration group is not in the vicinity of the stop, regardless of the sign of the refractive power of the anti-vibration group, a group of positive refractive power is arranged on the image side from the anti-vibration group. Aberration fluctuation can be suppressed. Therefore, in the imaging optical system provided with the image stabilization mechanism of the present invention, the third lens group is configured by the negative refractive power 3a group G3a and the positive refractive power 3b group G3b, and the 3a group G3a performs the image stabilization. The configuration is to be performed. A lens group may be provided further on the object side than the 3a group G3a in the third lens group. However, since the mechanism configuration is complicated, it is disadvantageous for downsizing of the entire apparatus.

そこで、本発明の防振機構を備えた結像光学系が満たす条件式1は、第1レンズ群G1と、第2レンズ群G2および第3レンズ群G3の合成系との無限遠合焦状態における焦点距離の比に関して、光学系の全長とレンズからの光線射出角とを抑制するための好ましい範囲を規定するものである。   Therefore, conditional expression 1 satisfied by the imaging optical system including the image stabilization mechanism according to the present invention is an infinitely focused state between the first lens group G1 and the combined system of the second lens group G2 and the third lens group G3. With respect to the ratio of the focal lengths, the preferable range for suppressing the total length of the optical system and the light emission angle from the lens is defined.

条件式1の下限を下回ると、第1レンズ群G1の屈折力が強くなって光線射出角の抑制が困難となる。一方、条件式1の上限を上回ると、第2レンズ群G2の屈折力が強くなるために第2レンズ群G2および第3レンズ群G3の収差補正が困難となる。また第2レンズ群G2および第3レンズ群G3の合成系の屈折力が第1レンズ群G1に対して強くなり、レトロフォーカス型の屈折力配置に近づくため、バックフォーカスが長くなって結像光学系全体の全長の抑制が難しくなり、防振機構を備えた結像光学系の小型化を阻害する。   If the lower limit of conditional expression 1 is not reached, the refractive power of the first lens group G1 will become strong and it will be difficult to suppress the light exit angle. On the other hand, if the upper limit of conditional expression 1 is exceeded, the refractive power of the second lens group G2 becomes strong, so that it becomes difficult to correct aberrations of the second lens group G2 and the third lens group G3. Further, since the refractive power of the combined system of the second lens group G2 and the third lens group G3 becomes stronger than that of the first lens group G1, and approaches a retrofocus type refractive power arrangement, the back focus becomes longer and the imaging optical system becomes longer. It becomes difficult to suppress the overall length of the entire system, and hinders the downsizing of the imaging optical system provided with the image stabilization mechanism.

なお、上述した条件式1について、その下限値を1.30に、またさらに2.40とすることで、前述の効果をより確実にすることができる。また、上限値を7.00とすることで、前述の効果をより確実にすることができる。   In addition, regarding the conditional expression 1 described above, by setting the lower limit value to 1.30 and further to 2.40, the above-described effect can be further ensured. Moreover, the above-mentioned effect can be made more reliable by setting the upper limit value to 7.00.

また、本発明の防振機構を備えた結像光学系が満たす条件式2は、第2レンズ群G2と第3レンズ群G3の焦点距離の比に関して、レンズからの光線射出角と収差変動とを抑制するための好ましい範囲を規定するものである。   Conditional expression 2 satisfied by the imaging optical system including the image stabilization mechanism according to the present invention is that the light emission angle from the lens and the aberration variation are related to the ratio of the focal lengths of the second lens group G2 and the third lens group G3. A preferable range for suppressing the above is defined.

条件式2の下限を下回ると、第3レンズ群G3の屈折力が弱くなってフォーカシングに伴う収差変動を抑制することが難しくなる。また、光学系全長やフォーカシングに伴う第2レンズ群G2の移動量の抑制が難しくなり、防振機構を備えた結像光学系の小型化を阻害する。一方、条件式2の上限を超えると第3レンズ群G3の屈折力が強くなり光線射出角の抑制が難しくなる。   If the lower limit of conditional expression 2 is not reached, the refractive power of the third lens group G3 becomes weak, making it difficult to suppress aberration fluctuations associated with focusing. In addition, it becomes difficult to suppress the total length of the optical system and the amount of movement of the second lens group G2 due to focusing, which hinders downsizing of the imaging optical system provided with the image stabilization mechanism. On the other hand, if the upper limit of conditional expression 2 is exceeded, the refractive power of the third lens group G3 becomes strong and it becomes difficult to suppress the light emission angle.

なお、上述した条件式2について、その下限値を0.02とすることで、前述の効果をより確実にすることができる。また、上限値を0.30に、またさらに0.25とすることで、前述の効果をより確実にすることができる。   In addition, the conditional effect 2 mentioned above can make the above-mentioned effect more reliable by setting the lower limit to 0.02. Moreover, the above-mentioned effect can be made more reliable by setting the upper limit value to 0.30 and further to 0.25.

また、本発明の防振機構を備えた結像光学系が満たす条件式3は、3a群G3aと3b群G3bの屈折力に関して、防振時及びフォーカシング時の収差変動の抑制のために満たすべき範囲を規定するものである。   Conditional expression 3 satisfied by the imaging optical system including the image stabilization mechanism of the present invention should be satisfied in order to suppress aberration fluctuations during image stabilization and focusing with respect to the refractive powers of the 3a group G3a and the 3b group G3b. It defines the range.

条件式3の下限を下回って3a群G3aと3b群G3bの屈折力が大きくなるとそれぞれの群の発生させる球面収差やコマ収差が大きくなり、防振時の収差変動が大きくなり、画質低下が大きくなる。一方、条件式3の上限を上回って3a群G3aと3b群G3bの屈折力が小さくなると、第3レンズ群G3全体での収差発生が少なくなりすぎてフォーカシング時の収差変動を抑制することが困難となる。また防振群の移動量あたりの像の変移量を大きくとれなくなるため、防振群の移動量を大きくする必要が有り、鏡筒径の大型化を招く。   If the refractive power of the 3a group G3a and the 3b group G3b increases below the lower limit of the conditional expression 3, the spherical aberration and coma aberration generated by each group increase, the aberration fluctuation during vibration isolation increases, and the image quality deteriorates greatly. Become. On the other hand, if the refractive power of the 3a group G3a and the 3b group G3b becomes smaller than the upper limit of the conditional expression 3, the generation of aberrations in the third lens group G3 as a whole becomes too small and it is difficult to suppress aberration fluctuations during focusing. It becomes. In addition, since the image shift amount per movement amount of the image stabilizing group cannot be increased, it is necessary to increase the amount of movement of the image stabilizing group, which increases the diameter of the lens barrel.

さらに本発明の防振機構を備えた結像光学系では、第1レンズ群G1内に、物体側から順に物体側に凸面を向けた正レンズと像側に凹面を向けた負レンズの2枚のレンズからなる接合レンズDB1を有し、第2レンズ群G2内に、物体側から順に物体側に凹面を向けた負レンズと像側に凸面を向けた正レンズの2枚のレンズからなる接合レンズDB2を有する構成としている。これにより、コマ収差や非点収差等の軸外収差を補正するとともに、第1レンズ群G1と第2レンズ群G2のそれぞれでの軸上色収差の補正を行っている。   Further, in the imaging optical system provided with the image stabilization mechanism of the present invention, two lenses in the first lens group G1, a positive lens having a convex surface facing the object side and a negative lens having a concave surface facing the image side in order from the object side. In the second lens group G2, a cemented lens composed of two lenses, a negative lens having a concave surface facing the object side and a positive lens having a convex surface facing the image side, in order from the object side. The lens DB2 is included. Thus, off-axis aberrations such as coma and astigmatism are corrected, and axial chromatic aberration is corrected in each of the first lens group G1 and the second lens group G2.

これらの接合レンズを分離して空気レンズとすると曲率の自由度が1面分増えるので、開放でのコマフレアをさらに削減できる可能性があるが、各レンズの偏芯による性能低下が大きくなるため、製造時の性能が低下するおそれがある。また瞳中心付近での横収差が大きくなりやすいため、開口絞りSを絞っても解像度が上がらないなどの問題がある。   If these cemented lenses are separated into air lenses, the degree of freedom of curvature increases by one surface, so there is a possibility that coma flare in the open state can be further reduced, but the performance degradation due to eccentricity of each lens increases, There is a possibility that the performance at the time of manufacture is lowered. Further, since lateral aberration near the center of the pupil tends to increase, there is a problem that the resolution does not increase even when the aperture stop S is stopped.

さらに第2レンズ群G2は光線射出角を抑制するために大きな屈折力を持つ必要があるため、接合レンズDB2の像側に両凸形状の正レンズを有するのが良い。   Furthermore, since the second lens group G2 needs to have a large refractive power in order to suppress the light emission angle, it is preferable to have a biconvex positive lens on the image side of the cemented lens DB2.

本発明の防振機構を備えた結像光学系では、第1レンズ群中の接合レンズDB1、および第2レンズ群中の接合レンズDB2の接合面が条件式4および5を満たすことが望ましい。これらの条件式は、各接合レンズDB1およびDB2それぞれの接合面の曲率半径に関して、好ましい条件を規定するものである。   In the imaging optical system having the image stabilization mechanism of the present invention, it is desirable that the cemented surfaces of the cemented lens DB1 in the first lens group and the cemented lens DB2 in the second lens group satisfy the conditional expressions 4 and 5. These conditional expressions define preferable conditions with respect to the curvature radii of the cemented surfaces of the cemented lenses DB1 and DB2.

条件式4および5に規定の範囲を超えて各接合面の曲率が強くなると、接合面で発生する7次のコマ収差や5次および7次の非点収差の発生が大きくなり、接合レンズの偏芯による性能低下が大きくなる。また接合レンズの体積が大きくなり重量が増加する。特に接合レンズDB2はフォーカシング時に移動する第2レンズ群G2内に設けられているので、重量増加は大きな問題となる。   If the curvature of each cemented surface increases beyond the range specified in conditional expressions 4 and 5, the occurrence of seventh-order coma aberration and fifth-order and seventh-order astigmatism occurring on the cemented surface increases, Performance degradation due to eccentricity becomes large. Moreover, the volume of the cemented lens increases and the weight increases. In particular, since the cemented lens DB2 is provided in the second lens group G2 that moves during focusing, an increase in weight becomes a serious problem.

さらに本発明の防振機構を備えた結像光学系では、前記第1レンズ群中の接合レンズDB1が第1レンズ群中の最も像側に配置されることが望ましい。前述のように接合レンズDB1は像側に凹面を向けているので、像側の面が負の屈折力となっている。この面を第1レンズ群中の最も像側に配置することによって、第1レンズ群内部の屈折力配置はテレフォト型に近くなり、結像光学系全体の全長を抑制するために好都合である。   Furthermore, in the imaging optical system provided with the image stabilization mechanism of the present invention, it is desirable that the cemented lens DB1 in the first lens group is disposed on the most image side in the first lens group. As described above, since the cemented lens DB1 has the concave surface facing the image side, the image side surface has negative refractive power. By disposing this surface on the most image side in the first lens group, the refractive power arrangement inside the first lens group becomes close to a telephoto type, which is convenient for suppressing the entire length of the entire imaging optical system.

また、第1レンズ群の像側には開口絞りがあって、全ての画角の光束が集中するために第1レンズ群の最も像側のエレメントは偏芯が発生した場合の収差変化の感度が大きくなりやすい傾向がある。第1レンズ群の最も像側に、条件式4を満たして偏芯時の収差変化の感度を抑制した接合レンズDB1を配置することにより、製造誤差による性能の低下を抑えることが出来る。   In addition, since there is an aperture stop on the image side of the first lens group, and light beams of all angles of view are concentrated, the sensitivity of the change in aberration when the most image side element of the first lens group is decentered. Tends to be large. By disposing the cemented lens DB1 that satisfies the conditional expression 4 and suppresses the sensitivity of aberration change at the time of decentering on the most image side of the first lens group, it is possible to suppress the performance degradation due to the manufacturing error.

さらに、本発明の防振機構を備えた結像光学系は条件式6を満たすことが望ましい。本発明の防振機構を備えた結像光学系が満たす条件式6は、第3レンズ群G3における少なくとも1枚ずつの負レンズと正レンズの屈折率に関して、フォーカシングに伴う収差変動を抑制するために好ましい条件を規定するものである。より屈折力の大きい第2レンズ群G2の収差変動を打ち消すためには、第3レンズ群G3は屈折力に対して収差の発生を大きくする必要がある。   Further, it is desirable that the imaging optical system provided with the image stabilization mechanism of the present invention satisfies the conditional expression 6. Conditional expression 6 satisfied by the imaging optical system provided with the image stabilization mechanism of the present invention is to suppress aberration fluctuations accompanying focusing with respect to the refractive index of at least one negative lens and one positive lens in the third lens group G3. The preferable conditions are defined. In order to cancel the aberration variation of the second lens group G2 having a larger refractive power, the third lens group G3 needs to increase the generation of aberration with respect to the refractive power.

条件式6の下限を下回って第3レンズ群G3内の少なくとも1枚の負レンズの屈折率が低くなると、第3レンズ群G3内の負レンズの発生させるコマ収差、歪曲が大きくなって性能低下の原因となり、また偏芯による収差変動が大きくなって製造時の性能が低下してしまう。一方、条件式6の上限を上回って第3レンズ群G3内の少なくとも1枚の負レンズの屈折率が高くなると、コマ収差、歪曲の発生が小さくなるため、フォーカシングに伴う収差変動の抑制が難しくなる。   If the refractive index of at least one negative lens in the third lens group G3 becomes lower than the lower limit of the conditional expression 6, the coma aberration and distortion generated by the negative lens in the third lens group G3 increase and the performance deteriorates. In addition, aberration fluctuations due to decentering become large, and the performance at the time of manufacture deteriorates. On the other hand, if the refractive index of at least one negative lens in the third lens group G3 is higher than the upper limit of conditional expression 6, coma and distortion are less likely to occur, so it is difficult to suppress aberration fluctuations associated with focusing. Become.

なお、上述した条件式6について、その下限値を0.850とすることで、前述の効果をより確実にすることができる。また、上限値を0.985、またさらに0.900とすることで、前述の効果をより確実にすることができる。   In addition, regarding the conditional expression 6 described above, by setting the lower limit value to 0.850, the above-described effect can be further ensured. Moreover, the above-mentioned effect can be made more reliable by setting the upper limit value to 0.985 and further to 0.900.

さらに本発明の防振機構を備えた結像光学系では、第3レンズ群G3の最も像側に正レンズを有する構成とすることが望ましい。前述のように負の屈折力の第3レンズ群G3は射出瞳を像側に移動させ、画像周辺部における主光線の射出角が大きくなりがちである。これを解消するために、第3レンズ群G3の最も像側に正レンズを配置することで、正レンズのパワーを弱くして収差の発生を抑制しながら主光線射出角を抑制することが出来る。   Furthermore, it is desirable that the image forming optical system provided with the image stabilization mechanism of the present invention has a positive lens on the most image side of the third lens group G3. As described above, the third lens group G3 having negative refractive power tends to move the exit pupil to the image side and increase the exit angle of the principal ray at the periphery of the image. In order to eliminate this, by arranging the positive lens closest to the image side of the third lens group G3, the chief ray emission angle can be suppressed while weakening the power of the positive lens and suppressing the occurrence of aberration. .

さらに本発明の防振機構を備えた結像光学系では、 第3レンズ群G3に含まれる負レンズを1枚とする構成が望ましい。第3レンズ群G3において第2レンズ群G2の移動に伴う収差変動を打ち消すためには、第3レンズ群G3中の負レンズはある程度収差の発生を大きくする必要がある。そのためには第3レンズ群G3中の負レンズを少なくすることが好ましく、1枚にて構成することが最も好ましい。すなわち、3a群G3aを1枚の負レンズより構成することが最も好ましい。
これは構成枚数の削減にもつながり、結像光学系全体の小型化において有利となる。
さらに3a群G3aは防振群であり、3a群G3aを1枚で構成することにより防振群を軽量化できるので、アクチュエータの小型化が可能で鏡筒全体の小型化に寄与する。
Further, in the imaging optical system provided with the image stabilization mechanism of the present invention, it is desirable that the negative lens included in the third lens group G3 is one. In order to cancel out aberration fluctuations accompanying the movement of the second lens group G2 in the third lens group G3, it is necessary for the negative lens in the third lens group G3 to generate aberrations to some extent. For this purpose, it is preferable to reduce the number of negative lenses in the third lens group G3, and it is most preferable to use a single lens. That is, it is most preferable that the 3a group G3a is composed of one negative lens.
This leads to a reduction in the number of components, which is advantageous in reducing the size of the entire imaging optical system.
Further, the 3a group G3a is a vibration proof group. Since the vibration proof group can be reduced in weight by configuring the 3a group G3a as a single piece, the actuator can be reduced in size, which contributes to downsizing of the entire lens barrel.

さらに本発明の防振機構を備えた結像光学系では、第2レンズ群G2は物体側から順に物体側に凹面を向けた負レンズと像側に凸面を向けた正レンズの2枚のレンズからなる接合レンズDB2と両凸形状の正レンズのみからなることが望ましい。   Furthermore, in the imaging optical system provided with the image stabilization mechanism of the present invention, the second lens group G2 includes two lenses, a negative lens having a concave surface facing the object side and a positive lens having a convex surface facing the image side in order from the object side. It is desirable that the lens is composed only of a cemented lens DB2 and a positive biconvex lens.

前述のように光線射出角を抑制し、フォーカシングに必要な屈折力を付与しながら十分に収差を補正するために、物体側から順に接合レンズDB2と両凸レンズを有することが望ましい。より構成枚数を増やすと第2レンズ群の収差補正には有利になるが、第2レンズ群の重量の増加を招き、本発明の目的の一つであるフォーカス群の軽量化が達成困難となる。   As described above, it is desirable to have the cemented lens DB2 and the biconvex lens in order from the object side in order to sufficiently suppress aberration while suppressing the light emission angle and providing the refractive power necessary for focusing. Increasing the number of components is advantageous for aberration correction of the second lens group, but increases the weight of the second lens group and makes it difficult to reduce the weight of the focus group, which is one of the objects of the present invention. .

本発明の防振機構を備えた結像光学系では、以下の構成を伴うことが、本発明の結像光学系の高性能化により効果的である。   In the imaging optical system provided with the image stabilization mechanism of the present invention, the following configuration is effective for improving the performance of the imaging optical system of the present invention.

フォーカシングに伴う収差変動を抑制するために、第2レンズ群G2のいずれか1つまたは複数の面を非球面とし、第2レンズ群G2での収差発生を抑制する構成とするとより望ましい。   In order to suppress aberration fluctuations due to focusing, it is more preferable that any one or a plurality of surfaces of the second lens group G2 be aspherical to suppress the occurrence of aberrations in the second lens group G2.

どの面を非球面としても補正効果を得られるが、第2レンズ群G2の物体側寄りの面ほどコマ収差の補正に効果を発揮し、第2レンズ群G2の像側寄りの面ほど非点収差や歪曲収差の補正に効果を発揮する傾向がある。第2レンズ群G2内の面は面精度によって球面収差やコマ収差が変化しやすいため、精度良く製造しやすい両凸形状の正レンズのいずれかの面を非球面とする構成とするとより望ましい。   Although any surface can be aspherical, the correction effect can be obtained, but the surface closer to the object side of the second lens group G2 is more effective in correcting coma, and the surface closer to the image side of the second lens group G2 is astigmatism. It tends to be effective in correcting aberrations and distortions. Since the spherical aberration and coma aberration of the surface in the second lens group G2 are likely to change depending on the surface accuracy, it is more desirable that any surface of the biconvex positive lens that is easy to manufacture with high accuracy be an aspherical surface.

また、第1レンズ群G1や第3レンズ群G3にさらに非球面を導入することで、非点収差等の補正をより良好に行える。   In addition, astigmatism and the like can be corrected more satisfactorily by introducing an aspheric surface to the first lens group G1 and the third lens group G3.

図1は、本発明の実施例1の防振機構を備えた結像光学系のレンズ構成図である。   FIG. 1 is a lens configuration diagram of an imaging optical system provided with the image stabilization mechanism according to the first embodiment of the present invention.

第1レンズ群G1は、物体側に凸面を向けた正レンズL1と像側に凹面を向けた負レンズL2とから成る接合レンズDB1で構成されており、全体として正の屈折力を持っている。   The first lens group G1 includes a cemented lens DB1 including a positive lens L1 having a convex surface facing the object side and a negative lens L2 having a concave surface facing the image side, and has a positive refractive power as a whole. .

第2レンズ群G2は、物体側に凹面を向けた負レンズL3と像側に凸面を向けた正レンズL4とから成る接合レンズDB2と、両凸形状の正レンズL5とで構成されており、全体として正の屈折力を持っている。この第2レンズ群G2は、無限遠から近距離へのフォーカシングに際して光軸に沿って物体側に移動する。   The second lens group G2 includes a cemented lens DB2 including a negative lens L3 having a concave surface facing the object side and a positive lens L4 having a convex surface facing the image side, and a biconvex positive lens L5. As a whole, it has a positive refractive power. The second lens group G2 moves toward the object side along the optical axis during focusing from infinity to a short distance.

第3レンズ群G3は、両凹形状の負レンズL6で構成される負の屈折力の3a群G3aと、両凸形状の正レンズL7で構成される正の屈折力の3b群G3bとで構成されており、全体として負の屈折力を持っている。この3a群G3aは光軸と直交する方向に移動することで防振を行っている。   The third lens group G3 includes a negative refractive power 3a group G3a configured by a biconcave negative lens L6 and a positive refractive power 3b group G3b configured by a biconvex positive lens L7. It has a negative refractive power as a whole. The 3a group G3a performs vibration isolation by moving in a direction orthogonal to the optical axis.

また、正レンズL5の像側レンズ面と正レンズL7の像側レンズ面は、それぞれ所定の非球面形状となっている。   Further, the image side lens surface of the positive lens L5 and the image side lens surface of the positive lens L7 each have a predetermined aspherical shape.

図8は、本発明の実施例2の防振機構を備えた結像光学系のレンズ構成図である。   FIG. 8 is a lens configuration diagram of an imaging optical system including the image stabilization mechanism according to the second embodiment of the present invention.

第1レンズ群G1は、物体側に凸面を向けた正レンズL1と像側に凹面を向けた負レンズL2とから成る接合レンズDB1で構成されており、全体として正の屈折力を持っている。   The first lens group G1 includes a cemented lens DB1 including a positive lens L1 having a convex surface facing the object side and a negative lens L2 having a concave surface facing the image side, and has a positive refractive power as a whole. .

第2レンズ群G2は、物体側に凹面を向けた負レンズL3と像側に凸面を向けた正レンズL4とから成る接合レンズDB2と、両凸形状の正レンズL5とで構成されており、全体として正の屈折力を持っている。この第2レンズ群G2は、無限遠から近距離へのフォーカシングに際して光軸に沿って物体側に移動する。   The second lens group G2 includes a cemented lens DB2 including a negative lens L3 having a concave surface facing the object side and a positive lens L4 having a convex surface facing the image side, and a biconvex positive lens L5. As a whole, it has a positive refractive power. The second lens group G2 moves toward the object side along the optical axis during focusing from infinity to a short distance.

第3レンズ群G3は、両凹形状の負レンズL6で構成される負の屈折力の3a群G3aと、両凸形状の正レンズL7で構成される正の屈折力の3b群G3bとで構成されており、全体として負の屈折力を持っている。この3a群G3aは光軸と直交する方向に移動することで防振を行っている。   The third lens group G3 includes a negative refractive power 3a group G3a configured by a biconcave negative lens L6 and a positive refractive power 3b group G3b configured by a biconvex positive lens L7. It has a negative refractive power as a whole. The 3a group G3a performs vibration isolation by moving in a direction orthogonal to the optical axis.

また、正レンズL5の像側レンズ面は所定の非球面形状となっている。   The image side lens surface of the positive lens L5 has a predetermined aspherical shape.

図15は、本発明の実施例3の防振機構を備えた結像光学系のレンズ構成図である。   FIG. 15 is a lens configuration diagram of an imaging optical system including the image stabilization mechanism according to the third embodiment of the present invention.

第1レンズ群G1は、物体側に凸面を向けた正レンズL1と像側に凹面を向けた負レンズL2とから成る接合レンズDB1で構成されており、全体として正の屈折力を持っている。   The first lens group G1 includes a cemented lens DB1 including a positive lens L1 having a convex surface facing the object side and a negative lens L2 having a concave surface facing the image side, and has a positive refractive power as a whole. .

第2レンズ群G2は、物体側に凹面を向けた負レンズL3と像側に凸面を向けた正レンズL4とから成る接合レンズDB2と、両凸形状の正レンズL5とで構成されており、全体として正の屈折力を持っている。この第2レンズ群G2は、無限遠から近距離へのフォーカシングに際して光軸に沿って物体側に移動する。   The second lens group G2 includes a cemented lens DB2 including a negative lens L3 having a concave surface facing the object side and a positive lens L4 having a convex surface facing the image side, and a biconvex positive lens L5. As a whole, it has a positive refractive power. The second lens group G2 moves toward the object side along the optical axis during focusing from infinity to a short distance.

第3レンズ群G3は、両凹形状の負レンズL6で構成される負の屈折力の3a群G3aと、両凸形状の正レンズL7で構成される正の屈折力の3b群G3bとで構成されており、全体として負の屈折力を持っている。この3a群G3aは光軸と直交する方向に移動することで防振を行っている。   The third lens group G3 includes a negative refractive power 3a group G3a configured by a biconcave negative lens L6 and a positive refractive power 3b group G3b configured by a biconvex positive lens L7. It has a negative refractive power as a whole. The 3a group G3a performs vibration isolation by moving in a direction orthogonal to the optical axis.

また、正レンズL4の像側レンズ面は所定の非球面形状となっている。   Further, the image side lens surface of the positive lens L4 has a predetermined aspherical shape.

図22は、本発明の実施例4の防振機構を備えた結像光学系のレンズ構成図である。   FIG. 22 is a lens configuration diagram of an imaging optical system including the image stabilization mechanism according to the fourth embodiment of the present invention.

第1レンズ群G1は、物体側に凸面を向けたメニスカス形状の負レンズL1と、物体側に凸面を向けた正レンズL2と像側に凹面を向けた負レンズL3とから成る接合レンズDB1で構成されており、全体として正の屈折力を持っている。   The first lens group G1 is a cemented lens DB1 including a meniscus negative lens L1 having a convex surface facing the object side, a positive lens L2 having a convex surface facing the object side, and a negative lens L3 having a concave surface facing the image side. It has a positive refractive power as a whole.

第2レンズ群G2は、物体側に凹面を向けた負レンズL4と像側に凸面を向けた正レンズL5とから成る接合レンズDB2と、両凸形状の正レンズL6とで構成されており、全体として正の屈折力を持っている。この第2レンズ群G2は、無限遠から近距離へのフォーカシングに際して光軸に沿って物体側に移動する。   The second lens group G2 includes a cemented lens DB2 including a negative lens L4 having a concave surface facing the object side and a positive lens L5 having a convex surface facing the image side, and a biconvex positive lens L6. As a whole, it has a positive refractive power. The second lens group G2 moves toward the object side along the optical axis during focusing from infinity to a short distance.

第3レンズ群G3は、両凹形状の負レンズL7で構成される負の屈折力の3a群G3aと、両凸形状の正レンズL8で構成される正の屈折力の3b群G3bとで構成されており、全体として負の屈折力を持っている。この3a群G3aは光軸と直交する方向に移動することで防振を行っている。   The third lens group G3 is composed of a negative refractive power 3a group G3a composed of a biconcave negative lens L7 and a positive refractive power 3b group G3b composed of a biconvex positive lens L8. It has a negative refractive power as a whole. The 3a group G3a performs vibration isolation by moving in a direction orthogonal to the optical axis.

また、正レンズL5の像側レンズ面は所定の非球面形状となっている。   The image side lens surface of the positive lens L5 has a predetermined aspherical shape.

図29は、本発明の実施例5の防振機構を備えた結像光学系のレンズ構成図である。   FIG. 29 is a lens configuration diagram of an imaging optical system including the image stabilization mechanism according to the fifth embodiment of the present invention.

第1レンズ群G1は、物体側に凸面を向けたメニスカス形状の正レンズL1と、物体側に凸面を向けた正レンズL2と像側に凹面を向けた負レンズL3とから成る接合レンズDB1で構成されており、全体として正の屈折力を持っている。   The first lens group G1 is a cemented lens DB1 including a meniscus positive lens L1 having a convex surface facing the object side, a positive lens L2 having a convex surface facing the object side, and a negative lens L3 having a concave surface facing the image side. It has a positive refractive power as a whole.

第2レンズ群G2は、物体側に凹面を向けた負レンズL4と像側に凸面を向けた正レンズL5とから成る接合レンズDB2と、両凸形状の正レンズL6とで構成されており、全体として正の屈折力を持っている。この第2レンズ群G2は、無限遠から近距離へのフォーカシングに際して光軸に沿って物体側に移動する。   The second lens group G2 includes a cemented lens DB2 including a negative lens L4 having a concave surface facing the object side and a positive lens L5 having a convex surface facing the image side, and a biconvex positive lens L6. As a whole, it has a positive refractive power. The second lens group G2 moves toward the object side along the optical axis during focusing from infinity to a short distance.

第3レンズ群G3は、物体側に凸面を向けたメニスカス形状の負レンズL7で構成される負の屈折力の3a群G3aと、両凸形状の正レンズL8で構成される正の屈折力の3b群G3bとで構成されており、全体として負の屈折力を持っている。この3a群G3aは光軸と直交する方向に移動することで防振を行っている。   The third lens group G3 has a negative refractive power 3a group G3a composed of a meniscus negative lens L7 having a convex surface facing the object side, and a positive refractive power composed of a biconvex positive lens L8. 3b group G3b, and has a negative refractive power as a whole. The 3a group G3a performs vibration isolation by moving in a direction orthogonal to the optical axis.

また、正レンズL1の物体側レンズ面と正レンズL5の像側レンズ面は、それぞれ所定の非球面形状となっている。   Further, the object side lens surface of the positive lens L1 and the image side lens surface of the positive lens L5 each have a predetermined aspherical shape.

図36は、本発明の実施例6の防振機構を備えた結像光学系のレンズ構成図である。   FIG. 36 is a lens configuration diagram of an imaging optical system including the image stabilization mechanism according to Embodiment 6 of the present invention.

第1レンズ群G1は、物体側に凸面を向けた正レンズL1と像側に凹面を向けた負レンズL2とから成る接合レンズDB1で構成されており、全体として正の屈折力を持っている。   The first lens group G1 includes a cemented lens DB1 including a positive lens L1 having a convex surface facing the object side and a negative lens L2 having a concave surface facing the image side, and has a positive refractive power as a whole. .

第2レンズ群G2は、物体側に凹面を向けた負レンズL3と像側に凸面を向けた正レンズL4とから成る接合レンズDB2と、両凸形状の正レンズL5とで構成されており、全体として正の屈折力を持っている。この第2レンズ群G2は、無限遠から近距離へのフォーカシングに際して光軸に沿って物体側に移動する。   The second lens group G2 includes a cemented lens DB2 including a negative lens L3 having a concave surface facing the object side and a positive lens L4 having a convex surface facing the image side, and a biconvex positive lens L5. As a whole, it has a positive refractive power. The second lens group G2 moves toward the object side along the optical axis during focusing from infinity to a short distance.

第3レンズ群G3は、物体側に凸面を向けたメニスカス形状の負レンズL6で構成される負の屈折力の3a群G3aと、両凸形状の正レンズL7で構成される正の屈折力の3b群G3bとで構成されており、全体として負の屈折力を持っている。この3a群G3aは光軸と直交する方向に移動することで防振を行っている。   The third lens group G3 has a negative refractive power 3a group G3a composed of a meniscus negative lens L6 with a convex surface facing the object side, and a positive refractive power composed of a biconvex positive lens L7. 3b group G3b, and has a negative refractive power as a whole. The 3a group G3a performs vibration isolation by moving in a direction orthogonal to the optical axis.

また、正レンズL5の像側レンズ面と正レンズL7の像側レンズ面は、それぞれ所定の非球面形状となっている。   Further, the image side lens surface of the positive lens L5 and the image side lens surface of the positive lens L7 each have a predetermined aspherical shape.

図43は、本発明の実施例7の防振機構を備えた結像光学系のレンズ構成図である。   FIG. 43 is a lens configuration diagram of an imaging optical system provided with the image stabilization mechanism of Example 7 of the present invention.

第1レンズ群G1は、物体側に凸面を向けた正レンズL1と像側に凹面を向けた負レンズL2とから成る接合レンズDB1で構成されており、全体として正の屈折力を持っている。   The first lens group G1 includes a cemented lens DB1 including a positive lens L1 having a convex surface facing the object side and a negative lens L2 having a concave surface facing the image side, and has a positive refractive power as a whole. .

第2レンズ群G2は、物体側に凹面を向けた負レンズL3と像側に凸面を向けた正レンズL4とから成る接合レンズDB2と、両凸形状の正レンズL5とで構成されており、全体として正の屈折力を持っている。この第2レンズ群G2は、無限遠から近距離へのフォーカシングに際して光軸に沿って物体側に移動する。   The second lens group G2 includes a cemented lens DB2 including a negative lens L3 having a concave surface facing the object side and a positive lens L4 having a convex surface facing the image side, and a biconvex positive lens L5. As a whole, it has a positive refractive power. The second lens group G2 moves toward the object side along the optical axis during focusing from infinity to a short distance.

第3レンズ群G3は、両凹形状の負レンズL6で構成される負の屈折力の3a群G3aと、両凸形状の正レンズL7で構成される正の屈折力の3b群G3bとで構成されており、全体として負の屈折力を持っている。この3a群G3aは光軸と直交する方向に移動することで防振を行っている。   The third lens group G3 includes a negative refractive power 3a group G3a configured by a biconcave negative lens L6 and a positive refractive power 3b group G3b configured by a biconvex positive lens L7. It has a negative refractive power as a whole. The 3a group G3a performs vibration isolation by moving in a direction orthogonal to the optical axis.

また、正レンズL5の像側レンズ面と正レンズL7の像側レンズ面は、それぞれ所定の非球面形状となっている。   Further, the image side lens surface of the positive lens L5 and the image side lens surface of the positive lens L7 each have a predetermined aspherical shape.

図50は、本発明の実施例8の防振機構を備えた結像光学系のレンズ構成図である。   FIG. 50 is a lens configuration diagram of an imaging optical system including the image stabilization mechanism according to the eighth embodiment of the present invention.

第1レンズ群G1は、物体側に凸面を向けた正レンズL1と像側に凹面を向けた負レンズL2とから成る接合レンズDB1で構成されており、全体として正の屈折力を持っている。   The first lens group G1 includes a cemented lens DB1 including a positive lens L1 having a convex surface facing the object side and a negative lens L2 having a concave surface facing the image side, and has a positive refractive power as a whole. .

第2レンズ群G2は、物体側に凹面を向けた負レンズL3と像側に凸面を向けた正レンズL4とから成る接合レンズDB2と、両凸形状の正レンズL5とで構成されており、全体として正の屈折力を持っている。この第2レンズ群G2は、無限遠から近距離へのフォーカシングに際して光軸に沿って物体側に移動する。   The second lens group G2 includes a cemented lens DB2 including a negative lens L3 having a concave surface facing the object side and a positive lens L4 having a convex surface facing the image side, and a biconvex positive lens L5. As a whole, it has a positive refractive power. The second lens group G2 moves toward the object side along the optical axis during focusing from infinity to a short distance.

第3レンズ群G3は、両凹形状の負レンズL6で構成される負の屈折力の3a群G3aと、両凸形状の正レンズL7で構成される正の屈折力の3b群G3bとで構成されており、全体として負の屈折力を持っている。この3a群G3aは光軸と直交する方向に移動することで防振を行っている。   The third lens group G3 includes a negative refractive power 3a group G3a configured by a biconcave negative lens L6 and a positive refractive power 3b group G3b configured by a biconvex positive lens L7. It has a negative refractive power as a whole. The 3a group G3a performs vibration isolation by moving in a direction orthogonal to the optical axis.

また、正レンズL5の像側レンズ面と正レンズL7の像側レンズ面は、それぞれ所定の非球面形状となっている。   Further, the image side lens surface of the positive lens L5 and the image side lens surface of the positive lens L7 each have a predetermined aspherical shape.

図57は、本発明の実施例9の防振機構を備えた結像光学系のレンズ構成図である。   FIG. 57 is a lens configuration diagram of an imaging optical system including the image stabilization mechanism according to Example 9 of the present invention.

第1レンズ群G1は、物体側に凸面を向けたメニスカス形状の負レンズL1と、物体側に凸面を向けた正レンズL2と像側に凹面を向けた負レンズL3とから成る接合レンズDB1で構成されており、全体として正の屈折力を持っている。   The first lens group G1 is a cemented lens DB1 including a meniscus negative lens L1 having a convex surface facing the object side, a positive lens L2 having a convex surface facing the object side, and a negative lens L3 having a concave surface facing the image side. It has a positive refractive power as a whole.

第2レンズ群G2は、物体側に凹面を向けた負レンズL4と像側に凸面を向けた正レンズL5とから成る接合レンズDB2と、両凸形状の正レンズL6とで構成されており、全体として正の屈折力を持っている。この第2レンズ群G2は、無限遠から近距離へのフォーカシングに際して光軸に沿って物体側に移動する。   The second lens group G2 includes a cemented lens DB2 including a negative lens L4 having a concave surface facing the object side and a positive lens L5 having a convex surface facing the image side, and a biconvex positive lens L6. As a whole, it has a positive refractive power. The second lens group G2 moves toward the object side along the optical axis during focusing from infinity to a short distance.

第3レンズ群G3は、両凹形状の負レンズL7で構成される負の屈折力の3a群G3aと、両凸形状の正レンズL8で構成される正の屈折力の3b群G3bとで構成されており、全体として負の屈折力を持っている。この3a群G3aは光軸と直交する方向に移動することで防振を行っている。   The third lens group G3 is composed of a negative refractive power 3a group G3a composed of a biconcave negative lens L7 and a positive refractive power 3b group G3b composed of a biconvex positive lens L8. It has a negative refractive power as a whole. The 3a group G3a performs vibration isolation by moving in a direction orthogonal to the optical axis.

また、正レンズL6の物体側レンズ面と正レンズL8の像側レンズ面は、それぞれ所定の非球面形状となっている。   Further, the object side lens surface of the positive lens L6 and the image side lens surface of the positive lens L8 each have a predetermined aspherical shape.

図64は、本発明の実施例10の防振機構を備えた結像光学系のレンズ構成図である。   FIG. 64 is a lens configuration diagram of an imaging optical system including the image stabilization mechanism according to Example 10 of the present invention.

第1レンズ群G1は、物体側に凸面を向けた正レンズL1と像側に凹面を向けた負レンズL2とから成る接合レンズDB1で構成されており、全体として正の屈折力を持っている。   The first lens group G1 includes a cemented lens DB1 including a positive lens L1 having a convex surface facing the object side and a negative lens L2 having a concave surface facing the image side, and has a positive refractive power as a whole. .

第2レンズ群G2は、物体側に凹面を向けた負レンズL3と像側に凸面を向けた正レンズL4とから成る接合レンズDB2と、両凸形状の正レンズL5とで構成されており、全体として正の屈折力を持っている。この第2レンズ群G2は、無限遠から近距離へのフォーカシングに際して光軸に沿って物体側に移動する。   The second lens group G2 includes a cemented lens DB2 including a negative lens L3 having a concave surface facing the object side and a positive lens L4 having a convex surface facing the image side, and a biconvex positive lens L5. As a whole, it has a positive refractive power. The second lens group G2 moves toward the object side along the optical axis during focusing from infinity to a short distance.

第3レンズ群G3は、両凹形状の負レンズL6で構成される負の屈折力の3a群G3aと、両凸形状の正レンズL7で構成される正の屈折力の3b群G3bとで構成されており、全体として負の屈折力を持っている。この3a群G3aは光軸と直交する方向に移動することで防振を行っている。   The third lens group G3 includes a negative refractive power 3a group G3a configured by a biconcave negative lens L6 and a positive refractive power 3b group G3b configured by a biconvex positive lens L7. It has a negative refractive power as a whole. The 3a group G3a performs vibration isolation by moving in a direction orthogonal to the optical axis.

また、正レンズL5の像側レンズ面と正レンズL7の像側レンズ面は、それぞれ所定の非球面形状となっている。   Further, the image side lens surface of the positive lens L5 and the image side lens surface of the positive lens L7 each have a predetermined aspherical shape.

図71は、本発明の実施例11の防振機構を備えた結像光学系のレンズ構成図である。   FIG. 71 is a lens configuration diagram of an imaging optical system including the image stabilization mechanism according to Example 11 of the present invention.

第1レンズ群G1は、物体側に凸面を向けた正レンズL1と像側に凹面を向けた負レンズL2とから成る接合レンズDB1で構成されており、全体として正の屈折力を持っている。   The first lens group G1 includes a cemented lens DB1 including a positive lens L1 having a convex surface facing the object side and a negative lens L2 having a concave surface facing the image side, and has a positive refractive power as a whole. .

第2レンズ群G2は、物体側に凹面を向けた負レンズL3と像側に凸面を向けた正レンズL4とから成る接合レンズDB2と、両凸形状の正レンズL5とで構成されており、全体として正の屈折力を持っている。この第2レンズ群G2は、無限遠から近距離へのフォーカシングに際して光軸に沿って物体側に移動する。   The second lens group G2 includes a cemented lens DB2 including a negative lens L3 having a concave surface facing the object side and a positive lens L4 having a convex surface facing the image side, and a biconvex positive lens L5. As a whole, it has a positive refractive power. The second lens group G2 moves toward the object side along the optical axis during focusing from infinity to a short distance.

第3レンズ群G3は、両凹形状の負レンズL6で構成される負の屈折力の3a群G3aと、両凸形状の正レンズL7と両凸形状の正レンズL8とで構成される正の屈折力の3b群G3bとで構成されており、全体として負の屈折力を持っている。この3a群G3aは光軸と直交する方向に移動することで防振を行っている。   The third lens group G3 is a positive lens composed of a negative refractive power 3a group G3a composed of a biconcave negative lens L6, a biconvex positive lens L7, and a biconvex positive lens L8. It consists of a 3b group G3b having a refractive power, and has a negative refractive power as a whole. The 3a group G3a performs vibration isolation by moving in a direction orthogonal to the optical axis.

また、正レンズL5の像側レンズ面は所定の非球面形状となっている。   The image side lens surface of the positive lens L5 has a predetermined aspherical shape.

図78は、本発明の実施例12の結像光学系のレンズ構成図である。   FIG. 78 is a lens configuration diagram of the imaging optical system according to Example 12 of the present invention.

第1レンズ群G1は、物体側に凸面を向けたメニスカス形状の正レンズL1と、物体側に凸面を向けたメニスカス形状の正レンズL2と像側に凹面を向けたメニスカス形状の負レンズL3とから成る接合レンズと、物体側に凸面を向けた正レンズL4と像側に凹面を向けた負レンズL5とから成る接合レンズDB1で構成されており、全体として正の屈折力を持っている。   The first lens group G1 includes a meniscus positive lens L1 having a convex surface facing the object side, a meniscus positive lens L2 having a convex surface facing the object side, and a meniscus negative lens L3 having a concave surface facing the image side. And a cemented lens DB1 composed of a positive lens L4 having a convex surface facing the object side and a negative lens L5 having a concave surface facing the image side, and has a positive refractive power as a whole.

第2レンズ群G2は、物体側に凹面を向けた負レンズL6と像側に凸面を向けた正レンズL7とから成る接合レンズDB2と、両凸形状の正レンズL8とで構成されており、全体として正の屈折力を持っている。この第2レンズ群G2は、無限遠から近距離へのフォーカシングに際して光軸に沿って物体側に移動する。   The second lens group G2 includes a cemented lens DB2 including a negative lens L6 having a concave surface facing the object side and a positive lens L7 having a convex surface facing the image side, and a biconvex positive lens L8. As a whole, it has a positive refractive power. The second lens group G2 moves toward the object side along the optical axis during focusing from infinity to a short distance.

第3レンズ群G3は、両凹形状の負レンズL9で構成される負の屈折力の3a群G3aと、物体側に凸面を向けたメニスカス形状の正レンズL10で構成される正の屈折力の3b群とで構成されており、全体として負の屈折力を持っている。この3a群G3aは光軸と直交する方向に移動することで防振を行っている。   The third lens group G3 has a negative refractive power 3a group G3a composed of a biconcave negative lens L9 and a positive refractive power composed of a meniscus positive lens L10 having a convex surface facing the object side. 3b group and has a negative refractive power as a whole. The 3a group G3a performs vibration isolation by moving in a direction orthogonal to the optical axis.

また、正レンズL8の像側レンズ面は所定の非球面形状となっている。   The image side lens surface of the positive lens L8 has a predetermined aspheric shape.

図85は、本発明の実施例13の結像光学系のレンズ構成図である。   FIG. 85 is a lens configuration diagram of the imaging optical system according to Example 13 of the present invention.

第1レンズ群G1は、物体側に凸面を向けたメニスカス形状の正レンズL1と、物体側に凸面を向けたメニスカス形状の正レンズL2と像側に凹面を向けたメニスカス形状の負レンズL3とから成る接合レンズと、物体側に凸面を向けた正レンズL4と像側に凹面を向けた負レンズL5とから成る接合レンズDB1で構成されており、全体として正の屈折力を持っている。   The first lens group G1 includes a meniscus positive lens L1 having a convex surface facing the object side, a meniscus positive lens L2 having a convex surface facing the object side, and a meniscus negative lens L3 having a concave surface facing the image side. And a cemented lens DB1 composed of a positive lens L4 having a convex surface facing the object side and a negative lens L5 having a concave surface facing the image side, and has a positive refractive power as a whole.

第2レンズ群G2は、物体側に凹面を向けた負レンズL6と像側に凸面を向けた正レンズL7とから成る接合レンズDB2と、両凸形状の正レンズL8とで構成されており、全体として正の屈折力を持っている。この第2レンズ群G2は、無限遠から近距離へのフォーカシングに際して光軸に沿って物体側に移動する。   The second lens group G2 includes a cemented lens DB2 including a negative lens L6 having a concave surface facing the object side and a positive lens L7 having a convex surface facing the image side, and a biconvex positive lens L8. As a whole, it has a positive refractive power. The second lens group G2 moves toward the object side along the optical axis during focusing from infinity to a short distance.

第3レンズ群G3は、両凹形状の負レンズL9で構成される負の屈折力の3a群G3aと、両凸レンズL10で構成される正の屈折力の3b群とで構成されており、全体として負の屈折力を持っている。この3a群G3aは光軸と直交する方向に移動することで防振を行っている。   The third lens group G3 is composed of a negative refractive power 3a group G3a composed of a biconcave negative lens L9 and a positive refractive power 3b group composed of a biconvex lens L10. As negative power. The 3a group G3a performs vibration isolation by moving in a direction orthogonal to the optical axis.

また、正レンズL8の像側レンズ面は所定の非球面形状となっている。   The image side lens surface of the positive lens L8 has a predetermined aspheric shape.

図92は、本発明の実施例14の結像光学系のレンズ構成図である。   FIG. 92 is a lens configuration diagram of the imaging optical system according to Example 14 of the present invention.

第1レンズ群G1は、物体側に凸面を向けたメニスカス形状の正レンズL1と、物体側に凸面を向けた正レンズL2と像側に凹面を向けた負レンズL3とから成る接合レンズDB1で構成されており、全体として正の屈折力を持っている。   The first lens group G1 is a cemented lens DB1 including a meniscus positive lens L1 having a convex surface facing the object side, a positive lens L2 having a convex surface facing the object side, and a negative lens L3 having a concave surface facing the image side. It has a positive refractive power as a whole.

第2レンズ群G2は、物体側に凹面を向けた負レンズL4と像側に凸面を向けた正レンズL5とから成る接合レンズDB2と、両凸形状の正レンズL6とで構成されており、全体として正の屈折力を持っている。この第2レンズ群G2は、無限遠から近距離へのフォーカシングに際して光軸に沿って物体側に移動する。   The second lens group G2 includes a cemented lens DB2 including a negative lens L4 having a concave surface facing the object side and a positive lens L5 having a convex surface facing the image side, and a biconvex positive lens L6. As a whole, it has a positive refractive power. The second lens group G2 moves toward the object side along the optical axis during focusing from infinity to a short distance.

第3レンズ群G3は、両凹形状の負レンズL7で構成される負の屈折力の3a群G3aと、両凸レンズL8で構成される正の屈折力の3b群とで構成されており、全体として負の屈折力を持っている。この3a群G3aは、光軸と直交する方向に移動することで防振を行っている。   The third lens group G3 includes a negative refractive power 3a group G3a constituted by a biconcave negative lens L7, and a positive refractive power 3b group constituted by a biconvex lens L8. As negative power. The 3a group G3a performs vibration isolation by moving in a direction orthogonal to the optical axis.

また、正レンズL6の像側レンズ面は所定の非球面形状となっている。   The image side lens surface of the positive lens L6 has a predetermined aspheric shape.

以下に、前述した各実施例に対応する数値実施例の具体的な数値データを示す。各数値実施例の[全体諸元]において、fは焦点距離、FnoはFナンバー、2ωは全画角を示す。[レンズ諸元]において、第1列の番号は物体側からのレンズ面番号、第2列のrは各レンズ面の曲率半径、第3列のdはレンズ面間隔、第4列のndはd線(波長587.56nm)に対する屈折率、νdはd線(波長587.56nm)に対するアッベ数を示している。   Specific numerical data of numerical examples corresponding to the respective embodiments described above are shown below. In [Overall specifications] of each numerical example, f represents a focal length, Fno represents an F number, and 2ω represents a total angle of view. In [Lens Specifications], the first column number is the lens surface number from the object side, the second column r is the radius of curvature of each lens surface, the third column d is the lens surface spacing, and the fourth column nd is The refractive index with respect to the d-line (wavelength 587.56 nm) and νd represents the Abbe number with respect to the d-line (wavelength 587.56 nm).

第1列のレンズ面番号に付した*(アスタリスク)は、そのレンズ面形状が非球面であることを示している。第2列の「開口絞り」は絞り面位置を表し、第3列のBfはバックフォーカスを表す。   * (Asterisk) attached to the lens surface number in the first row indicates that the lens surface shape is an aspherical surface. The “aperture stop” in the second row represents the position of the stop surface, and Bf in the third row represents the back focus.

[可変間隔]はフォーカシングにおける各可変間隔の値を示している。   [Variable interval] indicates the value of each variable interval in focusing.

[非球面係数]は、[レンズ諸元]において*を付したレンズ面の非球面形状を与える非球面係数を示している。非球面の形状は、光軸に直行する方向への光軸からの変位をy、非球面と光軸の交点から光軸方向への変位(サグ量)をz、基準球面の曲率半径をr、コーニック係数をK、4、6、8、10次の非球面係数をA4、A6、A8、A10と置くとき、非球面の座標が以下の式で表されるものとする。   [Aspheric coefficient] indicates an aspheric coefficient that gives the aspheric shape of the lens surface marked with * in [Lens Specifications]. The shape of the aspheric surface is y for the displacement from the optical axis in the direction perpendicular to the optical axis, z for the displacement (sag amount) from the intersection of the aspheric surface and the optical axis in the optical axis direction, and r for the radius of curvature of the reference spherical surface. When the conic coefficient is K, 4, 6, 8, and the 10th-order aspheric coefficient is A4, A6, A8, and A10, the coordinates of the aspheric surface are expressed by the following equations.

Figure 0005714535
Figure 0005714535

なお、以下の全ての諸元の値において、記載している焦点距離f、曲率半径r、レンズ面間隔d、その他の長さの単位は特記のない限りミリ(mm)を使用するが、光学系では比例拡大と比例縮小とにおいても同等の光学性能が得られるので、これに限られるものではない。   In addition, in the values of all the following specifications, the stated focal length f, radius of curvature r, lens surface interval d, and other length units are in millimeters (mm) unless otherwise specified. In the system, the same optical performance can be obtained even in proportional expansion and proportional reduction, and the present invention is not limited to this.

また、以下に前述した各実施例における条件式の値の一覧を示す。   In addition, a list of values of conditional expressions in the respective embodiments described above is shown below.

実施例1
[全体諸元]
撮影距離 INF
f 30.83
Fno 2.89
2ω 50.49

[レンズ諸元]
r d nd νd
[1] 17.7672 3.1821 1.88300 40.80
[2] -1000.0000 0.8000 1.58144 40.89
[3] 12.9742 2.6198
[4] 開口絞り d4
[5] -10.0295 0.8000 1.69895 30.05
[6] 58.7192 3.8254 1.80420 46.50
[7] -15.7253 0.1500
[8] 47.8215 3.6590 1.77250 49.62
* [9] -27.3923 d9
[10] -97.3976 1.0000 1.56732 42.84
[11] 24.1411 4.4473
[12] 88.7361 2.8926 1.77250 49.62
* [13] -67.2193 Bf
*:非球面

[可変間隔]
撮影距離 d4 d9 Bf
INF 6.9859 1.5000 20.4045
500mm 5.6552 2.8307 20.4045

[非球面係数]
9面 13面
A4 1.68830E-05 9.50840E-08
A6 -6.94468E-09 -5.47977E-09
A8 2.50342E-11 2.45567E-11
A10 0.00000E+00 0.00000E+00
Example 1
[Overall specifications]
Shooting distance INF
f 30.83
Fno 2.89
2ω 50.49

[Lens specifications]
rd nd νd
[1] 17.7672 3.1821 1.88300 40.80
[2] -1000.0000 0.8000 1.58144 40.89
[3] 12.9742 2.6198
[4] Aperture stop d4
[5] -10.0295 0.8000 1.69895 30.05
[6] 58.7192 3.8254 1.80420 46.50
[7] -15.7253 0.1500
[8] 47.8215 3.6590 1.77250 49.62
* [9] -27.3923 d9
[10] -97.3976 1.0000 1.56732 42.84
[11] 24.1411 4.4473
[12] 88.7361 2.8926 1.77250 49.62
* [13] -67.2193 Bf
*: Aspheric

[Variable interval]
Shooting distance d4 d9 Bf
INF 6.9859 1.5000 20.4045
500mm 5.6552 2.8307 20.4045

[Aspheric coefficient]
9th 13th
A4 1.68830E-05 9.50840E-08
A6 -6.94468E-09 -5.47977E-09
A8 2.50342E-11 2.45567E-11
A10 0.00000E + 00 0.00000E + 00

実施例2
[全体諸元]
撮影距離 INF
f 30.92
Fno 2.91
2ω 50.28

[レンズ諸元]
r d nd νd
[1] 17.8828 3.0675 1.88300 40.80
[2] -466.4970 0.8000 1.58144 40.89
[3] 13.0047 2.5427
[4] 開口絞り d4
[5] -10.2042 0.8000 1.67270 32.17
[6] 36.9328 3.9392 1.80420 46.50
[7] -16.8128 0.1500
[8] 50.1843 3.5110 1.77250 49.62
* [9] -26.8479 d9
[10] -80.8366 1.0000 1.60342 38.01
[11] 25.2151 4.5111
[12] 101.7470 2.8930 1.80420 46.50
[13] -60.0440 Bf
*:非球面

[可変間隔]
撮影距離 d4 d9 Bf
INF 6.7985 1.5000 20.6687
500mm 5.5178 2.7807 20.6688

[非球面係数]
9面
A4 2.03217E-05
A6 -1.99227E-08
A8 1.55204E-10
A10 0.00000E+00
Example 2
[Overall specifications]
Shooting distance INF
f 30.92
Fno 2.91
2ω 50.28

[Lens specifications]
rd nd νd
[1] 17.8828 3.0675 1.88300 40.80
[2] -466.4970 0.8000 1.58144 40.89
[3] 13.0047 2.5427
[4] Aperture stop d4
[5] -10.2042 0.8000 1.67270 32.17
[6] 36.9328 3.9392 1.80420 46.50
[7] -16.8128 0.1500
[8] 50.1843 3.5110 1.77250 49.62
* [9] -26.8479 d9
[10] -80.8366 1.0000 1.60342 38.01
[11] 25.2151 4.5111
[12] 101.7470 2.8930 1.80420 46.50
[13] -60.0440 Bf
*: Aspheric

[Variable interval]
Shooting distance d4 d9 Bf
INF 6.7985 1.5000 20.6687
500mm 5.5178 2.7807 20.6688

[Aspheric coefficient]
9 sides
A4 2.03217E-05
A6 -1.99227E-08
A8 1.55204E-10
A10 0.00000E + 00

実施例3
[全体諸元]
撮影距離 INF
f 30.81
Fno 2.90
2ω 50.43

[レンズ諸元]
r d nd νd
[1] 16.3182 3.1496 1.88300 40.80
[2] 1000.0000 0.8500 1.60342 38.01
[3] 11.9440 2.1808
[4] 開口絞り d4
[5] -10.2428 0.8500 1.67270 32.17
[6] 100.7580 3.7977 1.77250 49.62
* [7] -15.0281 0.1500
[8] 55.9362 3.2307 1.83481 42.72
[9] -36.4658 d9
[10] -64.6517 1.0000 1.67270 32.17
[11] 29.6972 2.9631
[12] 216.4930 3.6631 1.77250 49.62
[13] -31.3466 Bf
*:非球面

[可変間隔]
撮影距離 d4 d9 Bf
INF 6.8178 2.9737 20.7178
500mm 5.2020 4.5895 20.7178

[非球面係数]
7面
A4 1.07514E-05
A6 7.51773E-08
A8 0.00000E+00
A10 0.00000E+00
Example 3
[Overall specifications]
Shooting distance INF
f 30.81
Fno 2.90
2ω 50.43

[Lens specifications]
rd nd νd
[1] 16.3182 3.1496 1.88300 40.80
[2] 1000.0000 0.8500 1.60342 38.01
[3] 11.9440 2.1808
[4] Aperture stop d4
[5] -10.2428 0.8500 1.67270 32.17
[6] 100.7580 3.7977 1.77250 49.62
* [7] -15.0281 0.1500
[8] 55.9362 3.2307 1.83481 42.72
[9] -36.4658 d9
[10] -64.6517 1.0000 1.67270 32.17
[11] 29.6972 2.9631
[12] 216.4930 3.6631 1.77250 49.62
[13] -31.3466 Bf
*: Aspheric

[Variable interval]
Shooting distance d4 d9 Bf
INF 6.8178 2.9737 20.7178
500mm 5.2020 4.5895 20.7178

[Aspheric coefficient]
7 sides
A4 1.07514E-05
A6 7.51773E-08
A8 0.00000E + 00
A10 0.00000E + 00

実施例4
[全体諸元]
撮影距離 INF
f 30.91
Fno 2.91
2ω 50.28

[レンズ諸元]
r d nd νd
[1] 21.1515 1.0000 1.51742 52.15
[2] 14.2703 2.8609
[3] 16.3026 3.8285 1.80420 46.50
[4] -79.9177 1.0332 1.54814 45.82
[5] 13.8102 2.8556
[6] 開口絞り d6
[7] -11.0738 0.8500 1.60342 38.01
[8] 34.1395 3.5895 1.77250 49.62
* [9] -19.3756 0.1500
[10] 118.722 3.5280 1.72916 54.67
[11] -22.6131 d11
[12] -46.4782 1.0000 1.67270 32.17
[13] 33.6717 2.0043
[14] 155.728 3.4080 1.80420 46.50
[15] -32.2286 Bf
*:非球面

[可変間隔]
撮影距離 d6 d11 Bf
INF 6.7621 1.5000 25.3043
500mm 5.0986 3.1635 25.3042

[非球面係数]
9面
A4 2.11124E-05
A6 1.22452E-07
A8 0.00000E+00
A10 0.00000E+00
Example 4
[Overall specifications]
Shooting distance INF
f 30.91
Fno 2.91
2ω 50.28

[Lens specifications]
rd nd νd
[1] 21.1515 1.0000 1.51742 52.15
[2] 14.2703 2.8609
[3] 16.3026 3.8285 1.80420 46.50
[4] -79.9177 1.0332 1.54814 45.82
[5] 13.8102 2.8556
[6] Aperture stop d6
[7] -11.0738 0.8500 1.60342 38.01
[8] 34.1395 3.5895 1.77250 49.62
* [9] -19.3756 0.1500
[10] 118.722 3.5280 1.72916 54.67
[11] -22.6131 d11
[12] -46.4782 1.0000 1.67270 32.17
[13] 33.6717 2.0043
[14] 155.728 3.4080 1.80420 46.50
[15] -32.2286 Bf
*: Aspheric

[Variable interval]
Shooting distance d6 d11 Bf
INF 6.7621 1.5000 25.3043
500mm 5.0986 3.1635 25.3042

[Aspheric coefficient]
9 sides
A4 2.11124E-05
A6 1.22452E-07
A8 0.00000E + 00
A10 0.00000E + 00

実施例5
[全体諸元]
撮影距離 INF
f 30.77
Fno 2.47
2ω 50.43

[レンズ諸元]
r d nd νd
* [1] 30.4647 2.0493 1.80610 40.73
[2] 70.7560 1.6595
[3] 45.0084 2.6177 1.88300 40.80
[4] -45.0084 1.0353 1.60342 38.01
[5] 16.3355 1.9370
[6] 開口絞り d6
[7] -10.1505 1.0665 1.67270 32.17
[8] 1000.0000 4.8298 1.77250 49.62
* [9] -14.1058 0.1500
[10] 41.3218 3.8985 1.80420 46.50
[11] -55.6171 d11
[12] 330.7410 1.0000 1.64769 33.84
[13] 22.4954 1.5801
[14] 47.0046 3.0802 1.72916 54.67
[15] -132.7210 Bf
*:非球面

[可変間隔]
撮影距離 d6 d11 Bf
INF 8.2303 1.5000 22.7049
500mm 6.6333 3.0970 22.7049

[非球面係数]
1面 9面
A4 -5.37530E-06 6.75573E-06
A6 -1.74772E-08 -1.94113E-08
A8 0.00000E+00 5.96039E-10
A10 0.00000E+00 0.00000E+00
Example 5
[Overall specifications]
Shooting distance INF
f 30.77
Fno 2.47
2ω 50.43

[Lens specifications]
rd nd νd
* [1] 30.4647 2.0493 1.80610 40.73
[2] 70.7560 1.6595
[3] 45.0084 2.6177 1.88300 40.80
[4] -45.0084 1.0353 1.60342 38.01
[5] 16.3355 1.9370
[6] Aperture stop d6
[7] -10.1505 1.0665 1.67270 32.17
[8] 1000.0000 4.8298 1.77250 49.62
* [9] -14.1058 0.1500
[10] 41.3218 3.8985 1.80420 46.50
[11] -55.6171 d11
[12] 330.7410 1.0000 1.64769 33.84
[13] 22.4954 1.5801
[14] 47.0046 3.0802 1.72916 54.67
[15] -132.7210 Bf
*: Aspheric

[Variable interval]
Shooting distance d6 d11 Bf
INF 8.2303 1.5000 22.7049
500mm 6.6333 3.0970 22.7049

[Aspheric coefficient]
1 side 9 sides
A4 -5.37530E-06 6.75573E-06
A6 -1.74772E-08 -1.94113E-08
A8 0.00000E + 00 5.96039E-10
A10 0.00000E + 00 0.00000E + 00

実施例6
[全体諸元]
撮影距離 INF
f 30.60
Fno 2.47
2ω 50.72

[レンズ諸元]
r d nd νd
[1] 20.4321 3.6701 1.88300 40.80
[2] 1969.5900 1.2000 1.60342 38.01
[3] 14.1396 3.9679
[4] 開口絞り d4
[5] -10.2071 0.8500 1.64769 33.84
[6] 31.0579 4.9674 1.80420 46.50
[7] -19.4887 0.1500
[8] 49.8435 4.6667 1.77250 49.62
* [9] -24.8436 d9
[10] 73.6332 1.0000 1.71736 29.50
[11] 23.1034 2.5618
[12] 69.7780 2.0789 1.77250 49.62
* [13] -875.8660 Bf
*:非球面

[可変間隔]
撮影距離 d4 d9 Bf
INF 8.0709 1.5000 22.6437
500mm 6.7216 2.8493 22.6437

[非球面係数]
9面 13面
A4 2.64598E-05 -8.41610E-07
A6 -1.67129E-09 2.18423E-08
A8 5.88092E-11 4.26137E-13
A10 0.00000E+00 0.00000E+00
Example 6
[Overall specifications]
Shooting distance INF
f 30.60
Fno 2.47
2ω 50.72

[Lens specifications]
rd nd νd
[1] 20.4321 3.6701 1.88300 40.80
[2] 1969.5900 1.2000 1.60342 38.01
[3] 14.1396 3.9679
[4] Aperture stop d4
[5] -10.2071 0.8500 1.64769 33.84
[6] 31.0579 4.9674 1.80420 46.50
[7] -19.4887 0.1500
[8] 49.8435 4.6667 1.77250 49.62
* [9] -24.8436 d9
[10] 73.6332 1.0000 1.71736 29.50
[11] 23.1034 2.5618
[12] 69.7780 2.0789 1.77250 49.62
* [13] -875.8660 Bf
*: Aspheric

[Variable interval]
Shooting distance d4 d9 Bf
INF 8.0709 1.5000 22.6437
500mm 6.7216 2.8493 22.6437

[Aspheric coefficient]
9th 13th
A4 2.64598E-05 -8.41610E-07
A6 -1.67129E-09 2.18423E-08
A8 5.88092E-11 4.26137E-13
A10 0.00000E + 00 0.00000E + 00

実施例7
[全体諸元]
撮影距離 INF
f 28.77
Fno 2.91
2ω 53.60

[レンズ諸元]
r d nd νd
[1] 18.3732 3.0553 1.88300 40.80
[2] -1225.7800 0.8000 1.56732 42.84
[3] 12.9748 2.7044
[4] 開口絞り d4
[5] -9.7411 0.8000 1.72825 28.32
[6] 95.1258 4.3138 1.80420 46.50
[7] -14.9218 0.1500
[8] 43.1304 4.3678 1.77250 49.62
* [9] -28.8136 d9
[10] -248.3050 1.0000 1.56732 42.84
[11] 24.5497 2.9966
[12] 96.4861 2.6302 1.77250 49.62
* [13] -73.0893 Bf
*:非球面

[可変間隔]
撮影距離 d4 d9 Bf
INF 7.4725 1.5000 20.5277
500mm 6.1644 2.8081 20.5277

[非球面係数]
9面 13面
A4 1.46389E-05 3.05823E-06
A6 -1.48270E-08 3.48667E-09
A8 3.04390E-11 1.21760E-10
A10 0.00000E+00 0.00000E+00
Example 7
[Overall specifications]
Shooting distance INF
f 28.77
Fno 2.91
2ω 53.60

[Lens specifications]
rd nd νd
[1] 18.3732 3.0553 1.88300 40.80
[2] -1225.7800 0.8000 1.56732 42.84
[3] 12.9748 2.7044
[4] Aperture stop d4
[5] -9.7411 0.8000 1.72825 28.32
[6] 95.1258 4.3138 1.80420 46.50
[7] -14.9218 0.1500
[8] 43.1304 4.3678 1.77250 49.62
* [9] -28.8136 d9
[10] -248.3050 1.0000 1.56732 42.84
[11] 24.5497 2.9966
[12] 96.4861 2.6302 1.77250 49.62
* [13] -73.0893 Bf
*: Aspheric

[Variable interval]
Shooting distance d4 d9 Bf
INF 7.4725 1.5000 20.5277
500mm 6.1644 2.8081 20.5277

[Aspheric coefficient]
9th 13th
A4 1.46389E-05 3.05823E-06
A6 -1.48270E-08 3.48667E-09
A8 3.04390E-11 1.21760E-10
A10 0.00000E + 00 0.00000E + 00

実施例8
[全体諸元]
撮影距離 INF
f 36.83
Fno 2.92
2ω 42.87

[レンズ諸元]
r d nd νd
[1] 18.7768 3.8986 1.88300 40.80
[2] 147.9180 1.2000 1.60342 38.01
[3] 14.1942 3.1885
[4] 開口絞り d4
[5] -11.6016 1.1500 1.71736 29.50
[6] 67.9589 3.7918 1.80420 46.50
[7] -18.8419 0.4530
[8] 67.6991 4.0561 1.77250 49.62
* [9] -28.8070 d9
[10] -471.2120 1.0000 1.51742 52.15
[11] 27.0408 2.6038
[12] 122.6210 2.4355 1.77250 49.62
* [13] -92.8949 Bf
*:非球面

[可変間隔]
撮影距離 d4 d9 Bf
INF 8.4761 3.2528 24.1734
500mm 6.1681 5.5609 24.1734

[非球面係数]
9面 13面
A4 1.13631E-05 -1.10755E-06
A6 5.04777E-09 -3.33029E-09
A8 0.00000E+00 0.00000E+00
A10 0.00000E+00 0.00000E+00
Example 8
[Overall specifications]
Shooting distance INF
f 36.83
Fno 2.92
2ω 42.87

[Lens specifications]
rd nd νd
[1] 18.7768 3.8986 1.88300 40.80
[2] 147.9180 1.2000 1.60342 38.01
[3] 14.1942 3.1885
[4] Aperture stop d4
[5] -11.6016 1.1500 1.71736 29.50
[6] 67.9589 3.7918 1.80420 46.50
[7] -18.8419 0.4530
[8] 67.6991 4.0561 1.77250 49.62
* [9] -28.8070 d9
[10] -471.2120 1.0000 1.51742 52.15
[11] 27.0408 2.6038
[12] 122.6210 2.4355 1.77250 49.62
* [13] -92.8949 Bf
*: Aspheric

[Variable interval]
Shooting distance d4 d9 Bf
INF 8.4761 3.2528 24.1734
500mm 6.1681 5.5609 24.1734

[Aspheric coefficient]
9th 13th
A4 1.13631E-05 -1.10755E-06
A6 5.04777E-09 -3.33029E-09
A8 0.00000E + 00 0.00000E + 00
A10 0.00000E + 00 0.00000E + 00

実施例9
[全体諸元]
撮影距離 INF
f 24.72
Fno 2.90
2ω 60.91

[レンズ諸元]
r d nd νd
[1] 34.3141 1.0000 1.49700 81.61
[2] 14.0764 4.5148
[3] 27.8352 2.6364 1.80420 46.50
[4] -32.4074 0.8000 1.51742 52.15
[5] 51.1758 1.2119
[6] 開口絞り d6
[7] -10.4135 1.1500 1.76182 26.61
[8] -811.4690 4.3029 1.80420 46.50
[9] -14.9803 0.1500
[10] 103.7640 4.2389 1.75501 51.16
* [11] -20.0298 d11
[12] -125.3740 1.0000 1.60342 38.01
[13] 33.9463 0.9100
[14] 68.7625 1.8898 1.77250 49.62
* [15] -1092.8400 Bf
*:非球面

[可変間隔]
撮影距離 d6 d11 Bf
INF 7.6621 1.5000 23.7560
500mm 6.8124 2.3497 23.7560

[非球面係数]
11面 15面
A4 2.88489E-05 -1.33539E-06
A6 -1.34435E-08 4.43316E-08
A8 0.00000E+00 1.70897E-10
A10 0.00000E+00 -4.28211E-14
Example 9
[Overall specifications]
Shooting distance INF
f 24.72
Fno 2.90
2ω 60.91

[Lens specifications]
rd nd νd
[1] 34.3141 1.0000 1.49700 81.61
[2] 14.0764 4.5148
[3] 27.8352 2.6364 1.80420 46.50
[4] -32.4074 0.8000 1.51742 52.15
[5] 51.1758 1.2119
[6] Aperture stop d6
[7] -10.4135 1.1500 1.76182 26.61
[8] -811.4690 4.3029 1.80420 46.50
[9] -14.9803 0.1500
[10] 103.7640 4.2389 1.75501 51.16
* [11] -20.0298 d11
[12] -125.3740 1.0000 1.60342 38.01
[13] 33.9463 0.9100
[14] 68.7625 1.8898 1.77250 49.62
* [15] -1092.8400 Bf
*: Aspheric

[Variable interval]
Shooting distance d6 d11 Bf
INF 7.6621 1.5000 23.7560
500mm 6.8124 2.3497 23.7560

[Aspheric coefficient]
11 faces 15 faces
A4 2.88489E-05 -1.33539E-06
A6 -1.34435E-08 4.43316E-08
A8 0.00000E + 00 1.70897E-10
A10 0.00000E + 00 -4.28211E-14

実施例10
[全体諸元]
撮影距離 INF
f 38.82
Fno 2.92
2ω 40.96

[レンズ諸元]
r d nd νd
[1] 18.7363 3.8808 1.88300 40.80
[2] 176.1670 1.2000 1.60342 38.01
[3] 14.3179 2.8894
[4] 開口絞り d4
[5] -12.5113 1.1500 1.69895 30.05
[6] 50.5350 3.3293 1.80420 46.50
[7] -21.1597 1.3982
[8] 70.6099 3.2915 1.77250 49.62
* [9] -28.4884 d9
[10] -88.6725 1.0000 1.51742 52.15
[11] 29.4400 2.6671
[12] 110.3830 2.3688 1.77250 49.62
* [13] -83.6235 Bf
*:非球面

[可変間隔]
撮影距離 d4 d9 Bf
INF 7.7649 1.9800 26.8193
500mm 5.4180 4.3269 26.8194

[非球面係数]
9面 13面
A4 1.29698E-05 -2.20389E-06
A6 5.07127E-09 -7.24219E-09
A8 0.00000E+00 0.00000E+00
A10 0.00000E+00 0.00000E+00
Example 10
[Overall specifications]
Shooting distance INF
f 38.82
Fno 2.92
2ω 40.96

[Lens specifications]
rd nd νd
[1] 18.7363 3.8808 1.88300 40.80
[2] 176.1670 1.2000 1.60342 38.01
[3] 14.3179 2.8894
[4] Aperture stop d4
[5] -12.5113 1.1500 1.69895 30.05
[6] 50.5350 3.3293 1.80420 46.50
[7] -21.1597 1.3982
[8] 70.6099 3.2915 1.77250 49.62
* [9] -28.4884 d9
[10] -88.6725 1.0000 1.51742 52.15
[11] 29.4400 2.6671
[12] 110.3830 2.3688 1.77250 49.62
* [13] -83.6235 Bf
*: Aspheric

[Variable interval]
Shooting distance d4 d9 Bf
INF 7.7649 1.9800 26.8193
500mm 5.4180 4.3269 26.8194

[Aspheric coefficient]
9th 13th
A4 1.29698E-05 -2.20389E-06
A6 5.07127E-09 -7.24219E-09
A8 0.00000E + 00 0.00000E + 00
A10 0.00000E + 00 0.00000E + 00

実施例11
[全体諸元]
撮影距離 INF
f 30.81
Fno 2.91
2ω 50.52

[レンズ諸元]
r d nd νd
[1] 17.6398 3.1831 1.88300 40.80
[2] -661.0788 0.8000 1.58144 40.89
[3] 12.8754 2.5733
[4] 開口絞り d4
[5] -9.9833 0.8000 1.69895 30.05
[6] 54.4546 3.8772 1.80420 46.50
[7] -15.5512 0.1500
[8] 44.9191 3.6762 1.77250 49.62
* [9] -28.2894 d9
[10] -94.3498 1.0000 1.54814 45.82
[11] 23.4326 4.2896
[12] 103.2251 2.0675 1.71300 53.94
[13] -200.0487 0.1500
[14] 596.8248 1.9200 1.71300 53.94
[15] -91.3509 Bf
*:非球面

[可変間隔]
撮影距離 d4 d9 Bf
INF 6.9886 1.2000 19.8474
500mm 5.6980 2.4906 19.8474

[非球面係数]
9面
A4 1.66558E-05
A6 -1.50233E-08
A8 9.05044E-11
A10 0.00000E+00
Example 11
[Overall specifications]
Shooting distance INF
f 30.81
Fno 2.91
2ω 50.52

[Lens specifications]
rd nd νd
[1] 17.6398 3.1831 1.88300 40.80
[2] -661.0788 0.8000 1.58144 40.89
[3] 12.8754 2.5733
[4] Aperture stop d4
[5] -9.9833 0.8000 1.69895 30.05
[6] 54.4546 3.8772 1.80420 46.50
[7] -15.5512 0.1500
[8] 44.9191 3.6762 1.77250 49.62
* [9] -28.2894 d9
[10] -94.3498 1.0000 1.54814 45.82
[11] 23.4326 4.2896
[12] 103.2251 2.0675 1.71300 53.94
[13] -200.0487 0.1500
[14] 596.8248 1.9200 1.71300 53.94
[15] -91.3509 Bf
*: Aspheric

[Variable interval]
Shooting distance d4 d9 Bf
INF 6.9886 1.2000 19.8474
500mm 5.6980 2.4906 19.8474

[Aspheric coefficient]
9 sides
A4 1.66558E-05
A6 -1.50233E-08
A8 9.05044E-11
A10 0.00000E + 00

実施例12
[全体諸元]
撮影距離 INF
f 49.97
Fno 2.91
2ω 31.29

[レンズ諸元]
r d nd vd
[1] 25.5676 3.2132 1.91082 35.25
[2] 76.6739 0.1500
[3] 18.6018 3.0735 1.88100 40.14
[4] 25.1540 0.8500 1.69895 30.05
[5] 14.0047 1.1254
[6] 18.1926 2.8366 1.49700 81.61
[7] 471.3847 0.8500 1.76182 26.61
[8] 16.2708 3.5236
[9] 開口絞り d9
[10] -13.3018 0.8500 1.61293 36.96
[11] 45.3569 3.3222 1.77250 49.62
[12] -34.6306 0.1500
[13] 88.7278 4.3443 1.77250 49.47
* [14] -21.7125 d14
[15] -65.7271 0.8500 1.72916 54.67
[16] 56.2018 1.7879
[17] 57.3786 2.2311 1.80518 25.46
[18] 1000.0000 Bf
*:非球面

[可変間隔]
撮影距離 d9 d14 Bf
INF 11.1929 1.2000 18.0523
800mm 8.3863 4.0066 18.0523

[非球面係数]
14面
A4 2.14963E-05
A6 1.81277E-08
A8 0.00000E+00
A10 0.00000E+00
Example 12
[Overall specifications]
Shooting distance INF
f 49.97
Fno 2.91
2ω 31.29

[Lens specifications]
rd nd vd
[1] 25.5676 3.2132 1.91082 35.25
[2] 76.6739 0.1500
[3] 18.6018 3.0735 1.88100 40.14
[4] 25.1540 0.8500 1.69895 30.05
[5] 14.0047 1.1254
[6] 18.1926 2.8366 1.49700 81.61
[7] 471.3847 0.8500 1.76182 26.61
[8] 16.2708 3.5236
[9] Aperture stop d9
[10] -13.3018 0.8500 1.61293 36.96
[11] 45.3569 3.3222 1.77250 49.62
[12] -34.6306 0.1500
[13] 88.7278 4.3443 1.77250 49.47
* [14] -21.7125 d14
[15] -65.7271 0.8500 1.72916 54.67
[16] 56.2018 1.7879
[17] 57.3786 2.2311 1.80518 25.46
[18] 1000.0000 Bf
*: Aspheric

[Variable interval]
Shooting distance d9 d14 Bf
INF 11.1929 1.2000 18.0523
800mm 8.3863 4.0066 18.0523

[Aspheric coefficient]
14
A4 2.14963E-05
A6 1.81277E-08
A8 0.00000E + 00
A10 0.00000E + 00

実施例13
[全体諸元]
撮影距離 INF
f 49.83
Fno 2.91
2ω 31.37

[レンズ諸元]
r d nd vd
[1] 25.6932 2.9860 1.88100 40.14
[2] 78.1195 0.1500
[3] 16.7234 2.5121 1.88100 40.14
[4] 23.5258 0.8500 1.68893 31.16
[5] 13.0992 1.1461
[6] 17.3301 2.8747 1.49700 81.61
[7] 206.6586 0.8500 1.71736 29.50
[8] 14.6907 3.6520
[9] 開口絞り d9
[10] -14.8255 0.8500 1.59551 39.22
[11] 51.9204 3.1601 1.77250 49.62
[12] -41.3253 0.7021
[13] 69.7649 4.5681 1.77250 49.47
* [14] -24.4434 d14
[15] -45.1987 0.8500 1.49700 81.61
[16] 33.3998 2.0054
[17] 40.2381 3.4071 1.51823 58.96
[18] -158.4762 Bf
*:非球面

[可変間隔]
撮影距離 d9 d14 Bf
INF 12.0088 1.2000 15.5014
800mm 9.0132 4.1956 15.5014

[非球面係数]
14面
A4 1.66652E-05
A6 4.92275E-09
A8 0.00000E+00
A10 0.00000E+00
Example 13
[Overall specifications]
Shooting distance INF
f 49.83
Fno 2.91
2ω 31.37

[Lens specifications]
rd nd vd
[1] 25.6932 2.9860 1.88100 40.14
[2] 78.1195 0.1500
[3] 16.7234 2.5121 1.88100 40.14
[4] 23.5258 0.8500 1.68893 31.16
[5] 13.0992 1.1461
[6] 17.3301 2.8747 1.49700 81.61
[7] 206.6586 0.8500 1.71736 29.50
[8] 14.6907 3.6520
[9] Aperture stop d9
[10] -14.8255 0.8500 1.59551 39.22
[11] 51.9204 3.1601 1.77250 49.62
[12] -41.3253 0.7021
[13] 69.7649 4.5681 1.77250 49.47
* [14] -24.4434 d14
[15] -45.1987 0.8500 1.49700 81.61
[16] 33.3998 2.0054
[17] 40.2381 3.4071 1.51823 58.96
[18] -158.4762 Bf
*: Aspheric

[Variable interval]
Shooting distance d9 d14 Bf
INF 12.0088 1.2000 15.5014
800mm 9.0132 4.1956 15.5014

[Aspheric coefficient]
14
A4 1.66652E-05
A6 4.92275E-09
A8 0.00000E + 00
A10 0.00000E + 00

実施例14
[全体諸元]
撮影距離 INF
f 54.15
Fno 2.91
2ω 28.99

[レンズ諸元]
r d nd vd
[1] 22.8494 3.8512 1.88100 40.14
[2] 72.9156 4.2501
[3] 14.7989 4.0964 1.49700 81.61
[4] -596.7061 0.8500 1.72825 28.32
[5] 11.5054 4.0442
[6] 開口絞り d6
[7] -13.2230 0.8500 1.65844 50.85
[8] 278.9063 4.5406 1.77250 49.62
[9] -19.5173 0.1500
[10] 61.1270 3.6152 1.77250 49.47
* [11] -45.4303 d11
[12] -46.4826 0.8500 1.59349 67.00
[13] 52.9372 3.6470
[14] 184.5884 2.5964 1.80420 46.50
[15] -77.8785 Bf
*:非球面

[可変間隔]
撮影距離 d6 d11 Bf
INF 12.0519 1.2000 14.4036
800mm 8.3631 4.8887 14.4037

[非球面係数]
11面
A4 1.31775E-06
A6 -2.40905E-09
A8 0.00000E+00
A10 0.00000E+00
Example 14
[Overall specifications]
Shooting distance INF
f 54.15
Fno 2.91
2ω 28.99

[Lens specifications]
rd nd vd
[1] 22.8494 3.8512 1.88100 40.14
[2] 72.9156 4.2501
[3] 14.7989 4.0964 1.49700 81.61
[4] -596.7061 0.8500 1.72825 28.32
[5] 11.5054 4.0442
[6] Aperture stop d6
[7] -13.2230 0.8500 1.65844 50.85
[8] 278.9063 4.5406 1.77250 49.62
[9] -19.5173 0.1500
[10] 61.1270 3.6152 1.77250 49.47
* [11] -45.4303 d11
[12] -46.4826 0.8500 1.59349 67.00
[13] 52.9372 3.6470
[14] 184.5884 2.5964 1.80420 46.50
[15] -77.8785 Bf
*: Aspheric

[Variable interval]
Shooting distance d6 d11 Bf
INF 12.0519 1.2000 14.4036
800mm 8.3631 4.8887 14.4037

[Aspheric coefficient]
11
A4 1.31775E-06
A6 -2.40905E-09
A8 0.00000E + 00
A10 0.00000E + 00

[条件式対応値]
条件式1 条件式2 条件式3 条件式4 条件式5 条件式6
条件式 f1/f2-3 |f2/f3| |f3axf3b/f^2| |RDB1/f| |RDB2/f| n3a/n3b
範囲 1.20-7.50 0.01-0.35 0.90-6.50 1.00- 0.85- 0.800-0.990
実施例1 3.235 0.140 1.786 32.44 1.90 0.884
実施例2 3.225 0.148 1.572 15.09 1.19 0.889
実施例3 3.568 0.014 1.132 32.45 3.27 0.944
実施例4 5.629 0.020 1.012 2.59 1.10 0.927
実施例5 4.725 0.116 1.889 1.46 32.49 0.953
実施例6 6.586 0.187 4.232 64.36 1.01 0.969
実施例7 3.963 0.115 2.574 42.60 3.31 0.884
実施例8 3.278 0.138 2.504 4.02 1.85 0.856
実施例9 3.656 0.220 6.058 1.31 32.83 0.905
実施例10 2.745 0.180 1.750 4.54 1.30 0.856
実施例11 3.156 0.152 1.869 21.46 1.77 0.904
実施例12 1.461 0.322 1.253 9.43 0.91 0.958
実施例13 1.427 0.285 0.966 4.15 1.04 0.986
実施例14 1.353 0.256 0.970 11.02 5.15 0.883
[Values for conditional expressions]
Conditional expression 1 Conditional expression 2 Conditional expression 3 Conditional expression 4 Conditional expression 5 Conditional expression 6
Conditional expression f1 / f2-3 | f2 / f3 | | f3axf3b / f ^ 2 | | RDB1 / f | | RDB2 / f | n3a / n3b
Range 1.20-7.50 0.01-0.35 0.90-6.50 1.00- 0.85- 0.800-0.990
Example 1 3.235 0.140 1.786 32.44 1.90 0.884
Example 2 3.225 0.148 1.572 15.09 1.19 0.889
Example 3 3.568 0.014 1.132 32.45 3.27 0.944
Example 4 5.629 0.020 1.012 2.59 1.10 0.927
Example 5 4.725 0.116 1.889 1.46 32.49 0.953
Example 6 6.586 0.187 4.232 64.36 1.01 0.969
Example 7 3.963 0.115 2.574 42.60 3.31 0.884
Example 8 3.278 0.138 2.504 4.02 1.85 0.856
Example 9 3.656 0.220 6.058 1.31 32.83 0.905
Example 10 2.745 0.180 1.750 4.54 1.30 0.856
Example 11 3.156 0.152 1.869 21.46 1.77 0.904
Example 12 1.461 0.322 1.253 9.43 0.91 0.958
Example 13 1.427 0.285 0.966 4.15 1.04 0.986
Example 14 1.353 0.256 0.970 11.02 5.15 0.883

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
DB1 接合レンズ
DB2 接合レンズ
G3a 3a群
G3b 3b群
S 開口絞り
G1 First lens group G2 Second lens group G3 Third lens group DB1 Joint lens DB2 Joint lens G3a 3a group G3b 3b group S Aperture stop

Claims (5)

物体側から順に、正の屈折力の第1レンズ群と、開口絞りと、正の屈折力の第2レンズ群と、負の屈折力の第3レンズ群より構成され、
無限遠から近距離へのフォーカシングに際して前記第2レンズ群が光軸に沿って物体側へ移動し、前記第3レンズ群は物体側から順に負の屈折力の3a群と正の屈折力の3b群よりなって、前記3a群は1枚の負レンズよりなり、前記3b群は最も像側に正レンズを有し、前記3a群を光軸と直交する方向に移動させることによって防振を行い、下記の条件式を満足することを特徴とする防振機構を備えた結像光学系。
(1)1.20<f1/f23<7.50
(2)0.01<|f2/f3|<0.35
(3)0.90<|f3a×f3b/f^2|<6.50
ただし、
fi:第iレンズ群の焦点距離
f23:第2レンズ群と第3レンズ群の無限遠合焦時における合成焦点距離
f3a:3a群の焦点距離
f3b:3b群の焦点距離
f:結像光学系全系の無限遠合焦時における焦点距離
In order from the object side, the first lens group having a positive refractive power, an aperture stop, a second lens group having a positive refractive power, and a third lens group having a negative refractive power,
During focusing from infinity to short distance, the second lens group moves to the object side along the optical axis, and the third lens group sequentially has a negative refractive power 3a group and a positive refractive power 3b group from the object side. The 3a group includes one negative lens, the 3b group has a positive lens closest to the image side, and performs vibration isolation by moving the 3a group in a direction perpendicular to the optical axis. An imaging optical system provided with an image stabilization mechanism that satisfies the following conditional expression:
(1) 1.20 <f1 / f23 <7.50
(2) 0.01 <| f2 / f3 | <0.35
(3) 0.90 <| f3a × f3b / f ^ 2 | <6.50
However,
fi: focal length of the i-th lens group f23: combined focal length f3a: focal length of the 3a group at the time of focusing on the infinity of the second lens group and the third lens group f3b: focal length of the 3b group f: imaging optical system Focal length when focusing on infinity of the entire system
前記第1レンズ群は、物体側から順に物体側に凸面を向けた正レンズと像側に凹面を向けた負レンズとの接合レンズDB1を有し、前記第2レンズ群は、物体側から順に物体側に凹面を向けた負レンズと像側に凸面を向けた正レンズとの接合レンズDB2と両凸形状の正レンズから構成され、下記の条件式を満足することを特徴とする請求項1に記載の防振機構を備えた結像光学系。
(4)|RDB1/f|>1.00
(5)|RDB2/f|>0.85
ただし、
RDB1:接合レンズDB1の接合面の曲率半径
RDB2:接合レンズDB2の接合面の曲率半径
The first lens group includes a cemented lens DB1 of a positive lens having a convex surface facing the object side in order from the object side and a negative lens having a concave surface facing the image side, and the second lens group is in order from the object side. 2. The lens unit is composed of a cemented lens DB2 composed of a negative lens having a concave surface facing the object side and a positive lens having a convex surface facing the image side, and a biconvex positive lens, and satisfies the following conditional expression: An imaging optical system provided with the image stabilization mechanism described in 1.
(4) | RDB1 / f |> 1.00
(5) | RDB2 / f |> 0.85
However,
RDB1: radius of curvature of the cemented surface of the cemented lens DB1 RDB2: radius of curvature of the cemented surface of the cemented lens DB2
前記接合レンズDB1は、前記第1レンズ群に含まれる接合レンズのうち最も像側に位置することを特徴とする請求項2に記載の防振機構を備えた結像光学系。   3. The imaging optical system having an image stabilization mechanism according to claim 2, wherein the cemented lens DB <b> 1 is located closest to the image side among the cemented lenses included in the first lens group. 下記の条件式を満足することを特徴とする請求項1乃至3のいずれかに記載の防振機構を備えた結像光学系。
(6)0.800<n3a/n3b<0.990
ただし、
n3a:3a群を構成する負レンズの屈折率の最大値
n3b:3b群を構成する正レンズの屈折率の最小値
The imaging optical system provided with the image stabilization mechanism according to any one of claims 1 to 3, wherein the following conditional expression is satisfied.
(6) 0.800 <n3a / n3b <0.990
However,
n3a: Maximum value of the refractive index of the negative lens constituting the 3a group n3b: Minimum value of the refractive index of the positive lens constituting the 3b group
前記第2レンズ群は、物体側から順に、物体側に凹面を向けた負レンズと像側に凸面を
向けた正レンズとの接合レンズDB2と両凸形状の正レンズのみから構成されることを特
徴とする請求項1に記載の防振機構を備えた結像光学系。
The second lens group includes, in order from the object side, only a cemented lens DB2 of a negative lens having a concave surface facing the object side and a positive lens having a convex surface facing the image side, and a biconvex positive lens. An imaging optical system comprising the image stabilization mechanism according to claim 1 .
JP2012095040A 2011-04-18 2012-04-18 Imaging optical system with anti-vibration mechanism Active JP5714535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012095040A JP5714535B2 (en) 2011-04-18 2012-04-18 Imaging optical system with anti-vibration mechanism

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011091864 2011-04-18
JP2011091864 2011-04-18
JP2012095040A JP5714535B2 (en) 2011-04-18 2012-04-18 Imaging optical system with anti-vibration mechanism

Publications (2)

Publication Number Publication Date
JP2012234169A JP2012234169A (en) 2012-11-29
JP5714535B2 true JP5714535B2 (en) 2015-05-07

Family

ID=47434492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012095040A Active JP5714535B2 (en) 2011-04-18 2012-04-18 Imaging optical system with anti-vibration mechanism

Country Status (1)

Country Link
JP (1) JP5714535B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109782417A (en) * 2017-11-14 2019-05-21 佳能株式会社 Optical system and imaging device

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069262A1 (en) * 2011-11-09 2013-05-16 富士フイルム株式会社 Imaging lens and imaging device
JP5675575B2 (en) * 2011-12-15 2015-02-25 オリンパスイメージング株式会社 Inner focus lens system and image pickup apparatus including the same
CN104024907B (en) * 2011-12-27 2016-05-25 富士胶片株式会社 Imaging lens system and camera head
JP5888004B2 (en) * 2012-02-29 2016-03-16 株式会社ニコン Optical system and optical apparatus having this optical system
JP6576180B2 (en) * 2015-09-15 2019-09-18 キヤノン株式会社 Observation optical system and observation apparatus having the same
JP6667297B2 (en) * 2016-01-08 2020-03-18 キヤノン株式会社 Optical system and imaging apparatus having the same
JP7005315B2 (en) * 2017-11-30 2022-01-21 キヤノン株式会社 Optical system and an image pickup device having it
JP6847067B2 (en) 2018-02-28 2021-03-24 富士フイルム株式会社 Imaging lens and imaging device
JP6847068B2 (en) * 2018-02-28 2021-03-24 富士フイルム株式会社 Imaging lens and imaging device
JPWO2019220615A1 (en) * 2018-05-18 2021-04-22 株式会社ニコン Optical systems, optical instruments, and methods of manufacturing optical systems
WO2019220614A1 (en) * 2018-05-18 2019-11-21 株式会社ニコン Optical system, optical device, and method for manufacturing optical system
CN112119337B (en) * 2018-05-18 2023-03-28 株式会社尼康 Optical system and optical apparatus
JP7131609B2 (en) * 2018-05-18 2022-09-06 株式会社ニコン Optics and optics
JP6942098B2 (en) * 2018-07-26 2021-09-29 富士フイルム株式会社 Imaging lens and imaging device
CN109100856B (en) * 2018-10-19 2023-10-03 广东奥普特科技股份有限公司 High-resolution large-target-surface-magnification-adjustable line-scanning machine vision lens
CN110346924B (en) * 2019-06-30 2021-11-09 瑞声光学解决方案私人有限公司 Image pickup optical lens
CN113589481B (en) 2019-07-02 2022-10-28 浙江舜宇光学有限公司 Optical imaging lens
KR20230087307A (en) * 2021-12-09 2023-06-16 엘지이노텍 주식회사 Optical system and camera module including the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177510A (en) * 1986-01-30 1987-08-04 Canon Inc Photographing lens utilizing floating
JPS63147125A (en) * 1986-12-11 1988-06-20 Canon Inc Photographic lens with variable optical characteristic
JP2706789B2 (en) * 1988-11-15 1998-01-28 株式会社タムロン Large aperture ratio lens for close-up photography
JP2540932B2 (en) * 1989-03-02 1996-10-09 キヤノン株式会社 Shooting system with anti-vibration function
JPH07152001A (en) * 1993-11-29 1995-06-16 Nikon Corp Short distance correcting lens having vibrationproof function
JPH09152550A (en) * 1995-11-29 1997-06-10 Asahi Optical Co Ltd Zoom lens
JP2012173299A (en) * 2011-02-17 2012-09-10 Sony Corp Imaging lens and imaging apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109782417A (en) * 2017-11-14 2019-05-21 佳能株式会社 Optical system and imaging device
CN109782417B (en) * 2017-11-14 2022-07-08 佳能株式会社 Optical system and imaging device

Also Published As

Publication number Publication date
JP2012234169A (en) 2012-11-29

Similar Documents

Publication Publication Date Title
JP5714535B2 (en) Imaging optical system with anti-vibration mechanism
JP5666489B2 (en) Imaging optics
US7253965B2 (en) Zoom lens system with vibration reduction
US7411745B2 (en) Large-aperture-ratio internal focusing telephoto lens
US7212349B2 (en) Zoom lens system
US7599127B2 (en) Zoom lens system
US7161746B2 (en) Fisheye lens
US7492524B2 (en) Zoom lens system, imaging apparatus, method for vibration reduction, and method for varying focal length
US7924511B2 (en) Optical system, method for focusing, and imaging apparatus equipped therewith
JP5455572B2 (en) Zoom lens and imaging apparatus having the same
JP4976867B2 (en) Zoom lens and imaging apparatus having the same
US7907350B2 (en) Zoom lens system, imaging apparatus, method for zooming, and method for vibration reduction
US20110102905A1 (en) Zoom optical system, optical apparatus and method for manufacturing zoom optical system
US7656591B2 (en) Retrofocus lens system and image-taking device
JP5726491B2 (en) Large-aperture telephoto zoom lens with anti-vibration function
JP6105301B2 (en) Imaging optics
JP5426353B2 (en) Zoom lens with anti-vibration function
US10409042B2 (en) Wide attachment, and image pickup lens and image pickup apparatus including same
US8736972B2 (en) Zoom lens, optical apparatus and method for manufacturing zoom lens
JP2006267676A (en) Variable power optical system with image blur correcting function
JP2006139187A (en) Zoom lens
JP3029148B2 (en) Rear focus zoom lens
JP7178796B2 (en) INNER FOCUS IMAGING LENS AND IMAGING DEVICE
US7667900B2 (en) Zoom lens system and optical apparatus using the same
JP4928288B2 (en) Zoom lens and imaging apparatus having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150311

R150 Certificate of patent or registration of utility model

Ref document number: 5714535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250