JP5711444B2 - Light reflecting paint and method for producing the same - Google Patents

Light reflecting paint and method for producing the same Download PDF

Info

Publication number
JP5711444B2
JP5711444B2 JP2008192688A JP2008192688A JP5711444B2 JP 5711444 B2 JP5711444 B2 JP 5711444B2 JP 2008192688 A JP2008192688 A JP 2008192688A JP 2008192688 A JP2008192688 A JP 2008192688A JP 5711444 B2 JP5711444 B2 JP 5711444B2
Authority
JP
Japan
Prior art keywords
light
primary particles
secondary particle
pigment
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008192688A
Other languages
Japanese (ja)
Other versions
JP2009242768A (en
Inventor
富男 井上
富男 井上
光彦 林
光彦 林
武 楊原
武 楊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Admatechs Co Ltd
Original Assignee
Admatechs Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Admatechs Co Ltd filed Critical Admatechs Co Ltd
Priority to JP2008192688A priority Critical patent/JP5711444B2/en
Publication of JP2009242768A publication Critical patent/JP2009242768A/en
Application granted granted Critical
Publication of JP5711444B2 publication Critical patent/JP5711444B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、効果的に光線を反射することができる光線反射塗料及びその製造方法に関する。   The present invention relates to a light-reflecting paint capable of effectively reflecting light and a method for producing the same.

近年、省エネ意識の高まりや、法規制の強化などにより、エネルギー効率の向上が望まれている。そこで、各種建築物、車両などの冷房効率化、遮熱化を目的として、太陽光に含まれる赤外線を反射する熱遮蔽性塗料が提案されている(特許文献1など)。   In recent years, improvement in energy efficiency has been desired due to increasing awareness of energy conservation and stricter regulations. Therefore, for the purpose of improving the cooling efficiency and heat insulation of various buildings, vehicles, etc., a heat shielding paint that reflects infrared rays contained in sunlight has been proposed (Patent Document 1, etc.).

また、壁面や案内板、表示板、交通標識、トンネル内の壁面などにおいて効果的に光線反射を行うことができる光線反射塗料が求められている。
特開2006−335949号公報
There is also a need for a light reflecting paint that can effectively reflect light on a wall surface, a guide plate, a display board, a traffic sign, a wall surface in a tunnel, and the like.
JP 2006-335949 A

本発明は上記実情に鑑み為されたものであり、高い熱遮蔽性や効果的な光線反射を実現できる光線反射塗料及びその製造方法を提供することを解決すべき課題とする。   This invention is made | formed in view of the said situation, and makes it the subject which should be solved to provide the light reflection coating material which can implement | achieve high heat-shielding property and effective light reflection, and its manufacturing method.

上記課題を解決する請求項1に係る光線反射塗料の特徴は、体積平均粒径が0.05μm〜5μmであり無機材料から構成される一次粒子を造粒して得られる、体積平均粒径が1μm〜100μmで不揮発分全体の質量を基準として10質量%以上含有する二次粒子顔料を有し、
前記二次粒子顔料は、揮発分蒸発後に、前記一次粒子間に形成された空隙のうちの少なくとも一部が気体にて充填されていることにある。
The feature of the light reflecting paint according to claim 1 that solves the above problem is that the volume average particle diameter is 0.05 μm to 5 μm, and the volume average particle diameter is obtained by granulating primary particles composed of an inorganic material. A secondary particle pigment containing 10% by mass or more based on the mass of the entire nonvolatile content at 1 μm to 100 μm,
The secondary particle pigment is that at least a part of voids formed between the primary particles is filled with gas after evaporation of volatile matter.

上記課題を解決する請求項2に係る光線反射塗料の特徴は、請求項1において、
前記一次粒子間に形成された空隙のうち5体積%以上が気体にて充填されていることにある。
The feature of the light reflecting paint according to claim 2 for solving the above-mentioned problem is as follows:
In the voids formed between the primary particles, 5% by volume or more is filled with gas.

上記課題を解決する請求項3に係る光線反射塗料の特徴は、請求項1又は2において、前記一次粒子を構成する無機材料が、シリカ、アルミナ、チタニア、ジルコニア、セリア、ガラス粉末(屈折率1.45〜2.0)、硫酸バリウム及び炭酸カルシウムからなる群から選択される1種以上の材料であることにある。   The feature of the light reflecting paint according to claim 3 that solves the above problem is that, in claim 1 or 2, the inorganic material constituting the primary particles is silica, alumina, titania, zirconia, ceria, glass powder (refractive index 1 .45-2.0), one or more materials selected from the group consisting of barium sulfate and calcium carbonate.

上記課題を解決する請求項4に係る光線反射塗料の特徴は、請求項1〜3の何れか1項において、前記一次粒子を構成する無機材料がチタニア及びシリカであることにある。   The feature of the light reflecting paint according to claim 4 for solving the above-mentioned problem is that, in any one of claims 1 to 3, the inorganic material constituting the primary particles is titania and silica.

上記課題を解決する請求項5に係る光線反射塗料の特徴は、請求項1〜4の何れか1項において、前記二次粒子顔料が、波長780nm以上の赤外線に対する吸収率が波長780nm未満の可視光に対する吸収率よりも低い、染料及び/又は顔料である着色料を内部又は表面に有することにある。   The feature of the light reflecting paint according to claim 5 for solving the above-mentioned problem is that, in any one of claims 1 to 4, the secondary particle pigment has a visible light absorption coefficient of less than 780 nm for infrared rays having a wavelength of 780 nm or more. The object is to have a colorant which is a dye and / or pigment lower than the light absorption rate inside or on the surface.

上記課題を解決する請求項6に係る光線反射塗料の特徴は、請求項1〜5の何れか1項において、水系エマルジョン樹脂又は非水分散型樹脂からなるバインダーを含み、前記二次粒子顔料を分散する分散媒を有することにある。   The feature of the light reflecting paint according to claim 6 for solving the above-mentioned problem is that, in any one of claims 1 to 5, the binder comprising an aqueous emulsion resin or a non-aqueous dispersion resin, It has a dispersion medium to disperse.

上記課題を解決する請求項7に係る光線反射塗料の特徴は、請求項6において、前記バインダーは前記二次粒子顔料内に実質的に存在しないことにある。   The feature of the light reflecting paint according to claim 7 for solving the above-mentioned problem is that, in claim 6, the binder is not substantially present in the secondary particle pigment.

上記課題を解決する請求項8に係る光線反射塗料の特徴は、体積平均粒径が0.05μm〜5μmであり無機材料から構成される一次粒子から、体積平均粒径が1μm〜100μmの二次粒子顔料を造粒する造粒工程を有することにあり、前記二次粒子顔料が不揮発分全体の質量を基準として10質量%以上含有される光線反射塗料に係るものである。   The feature of the light reflecting paint according to claim 8 that solves the above-mentioned problem is that a primary particle composed of an inorganic material having a volume average particle size of 0.05 μm to 5 μm and a secondary particle having a volume average particle size of 1 μm to 100 μm It has a granulation step of granulating the particle pigment, and the secondary particle pigment relates to a light reflecting paint containing 10% by mass or more based on the mass of the whole nonvolatile matter.

請求項1に係る発明においては、一次粒子を構成する無機材料とは屈折率が大きく異なる気体が充填されている空隙がその一次粒子間に形成されていることから、入射した光線はその一次粒子と空隙との界面で屈折乃至反射することになり、効果的な光線反射(散乱)を実現することができる光線反射塗料になっている。特に、一次粒子及び二次粒子顔料の粒径をこの範囲にすることにより、光線が効果的に散乱されることになる。   In the invention according to claim 1, since a void filled with a gas having a refractive index greatly different from that of the inorganic material constituting the primary particle is formed between the primary particles, the incident light beam is the primary particle. It is refracted or reflected at the interface between the air gap and the gap, so that it is a light reflecting paint capable of realizing effective light reflection (scattering). In particular, when the particle diameters of the primary particles and the secondary particle pigment are within this range, light rays are effectively scattered.

請求項2に係る発明においては、前記一次粒子間に形成された空隙のうち5体積%以上が気体にて充填されていることにより、特に、高い光線反射作用を発揮するものである。   In the invention which concerns on Claim 2, when 5 volume% or more is filled with the gas among the space | gap formed between the said primary particles, especially a high light reflection effect is exhibited.

請求項3に係る発明においては、一次粒子を構成する無機材料として上述の材料を選択することにより、バインダとして含むことがある樹脂や空隙に充填されている気体との屈折率の差が大きくなって効果的に光線を反射乃至散乱することができる。   In the invention according to claim 3, by selecting the above-mentioned material as the inorganic material constituting the primary particles, the difference in refractive index between the resin that may be included as the binder and the gas filled in the voids is increased. Can effectively reflect or scatter light rays.

請求項4に係る発明においては、一次粒子を構成する無機材料としてチタニアとシリカとの組み合わせを採用することにより、より高い光線反射率を実現することができる。   In the invention which concerns on Claim 4, a higher light reflectivity is realizable by employ | adopting the combination of a titania and a silica as an inorganic material which comprises a primary particle.

請求項5に係る発明においては、所定の波長範囲における吸収率が低い(高い)着色料を有することにより、所定の波長範囲の光線については吸収した上で、その他の波長範囲における光線は反射できる光線反射塗料にすることができる。   In the invention according to claim 5, by having a colorant having a low (high) absorptance in a predetermined wavelength range, light in a predetermined wavelength range is absorbed, and light in other wavelength ranges can be reflected. It can be a light reflecting paint.

請求項6に係る発明においては、二次粒子顔料を分散する分散媒として、水系エマルジョン樹脂又は非水分散型樹脂からなるバインダーを有することにより、二次粒子顔料内にバインダーが侵入せずに空隙内に気体が充填された状態を維持することが容易になる。特に請求項7のように、空隙内にバインダが侵入していない構成が望ましい。   In the invention according to claim 6, by having a binder made of an aqueous emulsion resin or a non-aqueous dispersion type resin as a dispersion medium for dispersing the secondary particle pigment, the binder does not penetrate into the secondary particle pigment. It becomes easy to maintain the state filled with gas. In particular, a configuration in which the binder does not enter the gap is desirable.

請求項8に係る発明においては、一次粒子から二次粒子顔料を造粒する造粒工程を有することにより、より多くの気体を一次粒子間に含む二次粒子顔料を得ることが可能にあって、より高い光線反射作用を発揮することができる光線反射塗料とすることができる。   In the invention which concerns on Claim 8, it has become possible to obtain the secondary particle pigment which contains more gas between primary particles by having the granulation process of granulating a secondary particle pigment from primary particles. Thus, it is possible to provide a light reflecting paint capable of exhibiting a higher light reflecting effect.

本発明の光線反射塗料及びその製造方法について以下詳細に説明を行う。本実施形態の光線反射塗料は二次粒子顔料とその他必要な部材とを有する。その他必要な部材としては一般的に塗料組成物中に含有されるビヒクルを構成する材料が挙げられる。例えば、二次粒子顔料を分散する分散媒(水系、非水系を問わない)が例示できる。分散媒中には、塗膜を形成したり二次粒子顔料を結着するバインダーや、可塑剤、レベリング剤、乾燥剤、希釈剤、湿潤剤、分散剤、乳化剤、増粘剤、沈降防止剤、たれ防止剤、消泡剤、色分れ防止剤、硬化剤・硬化促進剤、耐火・防火剤、防かび・防藻剤、抗菌剤、金属表面処理剤や脱さび剤、皮膜化成剤などの各種表面処理剤などを含有することができる。また、その他にも適宜、必要に応じた部材を採用可能である。   The light-reflective coating material of the present invention and the manufacturing method thereof will be described in detail below. The light reflecting paint of this embodiment has secondary particle pigments and other necessary members. Other necessary members include materials constituting the vehicle generally contained in the coating composition. For example, a dispersion medium (whether aqueous or non-aqueous) in which the secondary particle pigment is dispersed can be exemplified. In the dispersion medium, a binder for forming a coating film or binding a secondary particle pigment, a plasticizer, a leveling agent, a drying agent, a diluent, a wetting agent, a dispersing agent, an emulsifier, a thickener, an anti-settling agent Anti-sagging agent, antifoaming agent, anti-color separation agent, curing agent / curing accelerator, fireproofing / fireproofing agent, antifungal / algaeproofing agent, antibacterial agent, metal surface treatment agent, derusting agent, film forming agent, etc. Various surface treatment agents can be contained. In addition, other members can be used as appropriate.

二次粒子顔料は一次粒子を造粒して得られる粒子である。二次粒子を構成する一次粒子の間に形成された空隙は、揮発分が蒸発した後において、気体(例えば空気)が充填されていることが望ましい。気体が充填されていると一次粒子との間における屈折率の差が大きくなって効果的に光線が反射する。空隙中に気体を充填した状態で保つには、例えば、二次粒子顔料を分散する分散媒として、二次粒子顔料内の空隙に不揮発分が侵入し難い(望ましくは侵入できない)もの(例えば、二次粒子顔料の表面に対して親和性が低いもの、空隙に侵入するには表面張力が大きいもの、不揮発分が分散媒中で空隙よりも粒径が大きいもの)を選択することにより実現できる。例えば、不揮発分の大きさが分散媒中にて空隙よりも大きい形態を実現する方法として、分散媒中にバインダーを含有しており、そのバインダーが水系エマルジョン樹脂であったり、非水分散型樹脂(NAD)からなる形態が採用できる。具体的には水系エマルジョン樹脂としてアクリル樹脂、エポキシ樹脂、アルキド・ポリエステル樹脂、ポリウレタン樹脂、アクリルシリコン樹脂、フッ素樹脂が例示でき、NADとしてはアクリル樹脂、ポリウレタン樹脂、アクリルシリコン樹脂、フッ素樹脂が例示できる。   Secondary particle pigments are particles obtained by granulating primary particles. The voids formed between the primary particles constituting the secondary particles are preferably filled with gas (for example, air) after the volatile components have evaporated. When the gas is filled, the difference in refractive index between the primary particles becomes large and the light beam is effectively reflected. In order to keep the space filled with a gas, for example, as a dispersion medium for dispersing the secondary particle pigment, a non-volatile component cannot enter into the void in the secondary particle pigment (preferably cannot enter) (for example, This can be realized by selecting a material having a low affinity for the surface of the secondary particle pigment, a material having a high surface tension to enter the voids, and a material having a non-volatile content larger than the voids in the dispersion medium. . For example, as a method for realizing a form in which the size of the nonvolatile content is larger than the voids in the dispersion medium, the dispersion medium contains a binder, and the binder is an aqueous emulsion resin or a non-aqueous dispersion resin. A form consisting of (NAD) can be adopted. Specifically, acrylic resin, epoxy resin, alkyd polyester resin, polyurethane resin, acrylic silicon resin, and fluororesin can be exemplified as the water-based emulsion resin, and acrylic resin, polyurethane resin, acrylic silicon resin, and fluororesin can be exemplified as NAD. .

本実施形態の光線反射塗料は、最終的に形成される塗膜中において、二次粒子顔料中における空隙のうちの5体積%以上に気体が充填されていることが望ましく、特に、20体積%以上(更には50体積%以上)気体が充填されていることが望ましい。気体としては空気が例示できる。   In the light reflecting paint of the present embodiment, it is desirable that 5% by volume or more of the voids in the secondary particle pigment is filled with gas in the finally formed coating film, and in particular, 20% by volume. It is desirable that the gas is filled with the above (more than 50% by volume). An example of the gas is air.

二次粒子顔料は、体積平均粒径が1μm〜100μmである。粒径がこの範囲内にあると可視光から赤外光に至るまでの光線を効果的に反射することができる。粒径としては反射することを望む光線の波長によっても変化する。また、最終的に形成される塗膜の性能(外観を含む)を維持するためにも上記範囲内にする。体積平均粒径は、上記性能を向上するため、5μm以上であることがより望ましい。また、50μm以下であることがより望ましい。   The secondary particle pigment has a volume average particle diameter of 1 μm to 100 μm. When the particle diameter is within this range, light rays from visible light to infrared light can be effectively reflected. The particle size also varies depending on the wavelength of light that is desired to be reflected. Moreover, it is also within the above range in order to maintain the performance (including appearance) of the finally formed coating film. The volume average particle diameter is more preferably 5 μm or more in order to improve the above performance. Moreover, it is more desirable that it is 50 μm or less.

二次粒子顔料は球形度が0.9以上であることが望ましく、0.95以上、さらには0.98以上であることがより望ましい。球形度は1に近づく程、真球に近いことを表しており、その測定は、SEMで写真を撮り、その観察される粒子の面積と周囲長から、(真球度)={4π×(面積)÷(周囲長)}で算出される値として算出する。1に近づくほど真球に近い。具体的には画像処理装置(シスメックス株式会社:FPIA−3000)を用いて100個の粒子について測定した平均値を採用する。 The secondary particle pigment preferably has a sphericity of 0.9 or more, more preferably 0.95 or more, and even more preferably 0.98 or more. The closer the sphericity is to 1, the closer it is to a true sphere. The measurement is taken by SEM, and from the observed particle area and perimeter, (sphericity) = {4π × ( (Area) ÷ (peripheral length) 2 }. The closer to 1, the closer to a true sphere. Specifically, an average value measured for 100 particles using an image processing apparatus (Sysmex Corporation: FPIA-3000) is employed.

二次粒子顔料は本実施形態の光線反射塗料中に含まれる不揮発分全体の質量を基準として10質量%以上含有し、特に30質量%以上含有することが望ましい。不揮発分の質量は本実施形態の光線反射塗料が使用される条件下において蒸発する揮発分を除いて算出する。   The secondary particle pigment is contained in an amount of 10% by mass or more, particularly preferably 30% by mass or more based on the mass of the entire nonvolatile content contained in the light reflecting coating material of the present embodiment. The mass of the non-volatile content is calculated by excluding the volatile content that evaporates under the conditions in which the light reflecting paint of the present embodiment is used.

二次粒子顔料は、着色料を有することができる。着色料は二次粒子顔料の内部にまで含有させたり、表面を被覆するように含有させたりすることができる。内部にまで含有させる場合には後述する造粒の工程において着色料を混在させることで実現できる。また、表面を被覆するためには、二次粒子顔料を造粒した後に、着色料をそのまま、又は、何らかのバインダーと共に処理することにより表面を被覆することができる。着色料としては必要な発色が得られるように、1又は2種以上の着色料を用いることができる。特に、780nm以上と780nm未満とで光線の吸収率が異なる材料を採用することで、赤外線領域を選択的に吸収し可視光領域を反射する着色料(780nm以上の吸収率が高い)としたり、赤外線領域を選択的に反射し可視光領域を収集する着色料(780nm未満の吸収率が高い)としたりすることができる。このような特性は2種以上の着色料を混合することで実現しても良い。ここで、吸収率とは、二次粒子顔料中に含有させた状態で且つ光線反射塗料から塗膜を形成した状態にて測定した値を採用し、塗膜から反射した光線について測定する。   The secondary particle pigment can have a colorant. The colorant can be contained up to the inside of the secondary particle pigment, or can be contained so as to cover the surface. When it is made to contain even inside, it is realizable by mixing a coloring agent in the granulation process mentioned later. Moreover, in order to coat | cover a surface, after granulating a secondary particle pigment, a surface can be coat | covered by processing a coloring agent as it is or with a certain binder. As the colorant, one or more kinds of colorants can be used so as to obtain a necessary color. In particular, by adopting a material having different light absorptivity between 780 nm or more and less than 780 nm, a colorant selectively absorbing the infrared region and reflecting the visible region (high absorption rate of 780 nm or more), For example, a colorant that selectively reflects the infrared region and collects the visible region (having a high absorption rate of less than 780 nm) can be used. Such characteristics may be realized by mixing two or more colorants. Here, the absorptance is measured with respect to light reflected from the coating film by adopting a value measured in a state of being contained in the secondary particle pigment and in a state where a coating film is formed from the light reflecting coating.

二次粒子顔料は、転動造粒法、攪拌造粒法、押出造粒法、振動造粒法、流動造粒法、噴霧乾燥造粒法、圧縮造粒法、解砕造粒法など一般的な造粒方法により得ることができる。その中でも、噴霧乾燥造粒法を採用することが望ましい。噴霧乾燥法を行う際には一次粒子を単独で何らかの分散媒中に分散させて行っても良いし、更に何らかのバインダーを加えても良い。   Secondary particle pigments include rolling granulation method, stirring granulation method, extrusion granulation method, vibration granulation method, fluidized granulation method, spray drying granulation method, compression granulation method, crushing granulation method, etc. Can be obtained by a typical granulation method. Among these, it is desirable to employ the spray drying granulation method. When performing the spray drying method, the primary particles may be dispersed alone in some dispersion medium, or some binder may be added.

一次粒子は無機材料から構成される。採用できる無機材料としては特に限定されず、酸化物、窒化物、炭化物などが採用できる。特に反射することを望む波長の光線に対してある程度透明であることが望ましい。例えば、シリカ、アルミナ、チタニア、ジルコニア、セリア、ガラス粉末(望ましくは屈折率1.45〜2.0)、硫酸バリウム及び炭酸カルシウムからなる群から選択される1種以上の材料であることが望ましい。特にシリカ、チタニアを採用することが望ましい。シリカとチタニアとは組み合わせて用いることも可能である。   Primary particles are composed of an inorganic material. The inorganic material that can be employed is not particularly limited, and oxides, nitrides, carbides, and the like can be employed. In particular, it is desirable to be transparent to some extent with respect to light having a wavelength desired to be reflected. For example, one or more materials selected from the group consisting of silica, alumina, titania, zirconia, ceria, glass powder (preferably having a refractive index of 1.45 to 2.0), barium sulfate and calcium carbonate are desirable. . In particular, it is desirable to employ silica and titania. Silica and titania can be used in combination.

一次粒子は体積平均粒径が0.05μm〜5μmである。粒径がこの範囲内にあると可視光から赤外光に至るまでの光線を効果的に反射することができる。粒径としては反射することを望む光線の波長によっても変化する。また、最終的に形成される塗膜の性能を維持するためにも上記範囲内にする。体積平均粒径は、上記性能を向上するため、特に5μm以上であることがより望ましい。また、本実施形態の光線反射塗料から形成される塗膜の美観向上の観点からは50μm以下であることがより望ましい。   The primary particles have a volume average particle size of 0.05 μm to 5 μm. When the particle diameter is within this range, light rays from visible light to infrared light can be effectively reflected. The particle size also varies depending on the wavelength of light that is desired to be reflected. Moreover, it is set within the above range in order to maintain the performance of the finally formed coating film. The volume average particle size is more preferably 5 μm or more in order to improve the above performance. Moreover, it is more desirable that it is 50 micrometers or less from a viewpoint of the aesthetics improvement of the coating film formed from the light reflection coating material of this embodiment.

一次粒子の形状は特に限定されず、球形または不定形のものを用いることができる。一次粒子が球形の場合には球形度が0.9以上であることができ、0.95以上、さらには0.98以上であることができる。   The shape of the primary particles is not particularly limited, and a spherical or irregular shape can be used. When the primary particles are spherical, the sphericity can be 0.9 or more, 0.95 or more, and further 0.98 or more.

球形の一次粒子を製造する方法としては、酸化炎中などに金属粉末を投入して燃焼させることにより酸化させて金属酸化物を得る方法(爆燃法)、無機材料の粉末を火炎中に投入して熔融させることにより球状化させた後、に冷却・固化させる火炎熔融法、ゾルゲル法、水ガラス法などを挙げることができる。これらの方法は得られる一次粒子に求められる粒径や純度に応じて選択することができる。サブマイクロメートルオーダーからマイクロメートルオーダー程度の比較的大きな粒径をもつ一次粒子を製造する場合にはVMC法や火炎熔融法を採用することが望ましく、それより小さな粒径をもつ一次粒子を製造する場合にはゾルゲル法や水ガラス法を採用することが望ましい。また、純度の向上はVMC法やゾルゲル法を採用した方が容易である。   Spherical primary particles can be produced by introducing metal powder into an oxidization flame and burning it to obtain a metal oxide by oxidation (deflagration method), and by pouring an inorganic material powder into the flame. Examples thereof include a flame melting method, a sol-gel method, a water glass method, and the like that are made spherical by melting and then cooled and solidified. These methods can be selected according to the particle size and purity required for the obtained primary particles. When producing primary particles having a relatively large particle size on the order of sub-micrometer order to micrometer order, it is desirable to employ the VMC method or flame melting method, and to produce primary particles having a smaller particle size. In some cases, it is desirable to employ a sol-gel method or a water glass method. Further, it is easier to improve the purity by adopting the VMC method or the sol-gel method.

不定形の一次粒子を製造する方法としては破砕により得られる。破砕の方法としては特に限定しない。例えば、無機材料を適正な粉砕機により適正な粒径となるまで粉砕する方法が例示できる。粉砕機としてはボールミル、振動ボールミル、ジェットミル、遊星ミルなどの一般的な粉砕機が採用できる。   A method for producing amorphous primary particles is obtained by crushing. The method for crushing is not particularly limited. For example, a method of pulverizing an inorganic material with an appropriate pulverizer until an appropriate particle size is obtained can be exemplified. As the pulverizer, general pulverizers such as a ball mill, a vibrating ball mill, a jet mill, and a planetary mill can be employed.

(塗料組成物の調製)
・二次粒子顔料の調製
一次粒子として、球状シリカ(アドマテックス製:アドマファイン25R:体積平均粒径0.5μm)、球状アルミナ(アドマテックス製:アドマファインAO−502:体積平均粒径0.7μm)、不定形チタニア(境化学製:R−5N:体積平均粒径0.26μm)を用いた。
(Preparation of coating composition)
-Preparation of secondary particle pigment As primary particles, spherical silica (manufactured by Admatech: Admafine 25R: volume average particle diameter 0.5 μm), spherical alumina (manufactured by Admatechs: Admafine AO-502: volume average particle diameter 0. 7 μm) and amorphous titania (manufactured by Sakai Chemical: R-5N: volume average particle size 0.26 μm).

この一次粒子を用いて、球状シリカのみ(試料1)、球状アルミナのみ(試料2)、不定形チタニアのみ(試料3)、球状シリカ及び不定形チタニアの質量比1:1の混合物(試料4)についてそれぞれ造粒を行い二次粒子顔料を調製した。造粒条件は分散媒として水を用い、50質量%で分散した分散液を噴霧乾燥(入り口温度200℃、出口温度90℃、流速1.0m/分、分散液供給速度30 mL/分)とした。それぞれ得られた二次粒子顔料の体積平均粒径は、球状シリカのみのものが8.7μm、球状アルミナのみのものが4.9μm、不定形チタニアのみのものが3.9μm、球状シリカ及び不定形チタニアの混合物が4.4μmであった。試料1についてSEM写真を図1に示す。図1より明らかなように非常に高い球形度をもつ二次粒子顔料が得られた。 Using these primary particles, only spherical silica (sample 1), spherical alumina only (sample 2), amorphous titania only (sample 3), a mixture of spherical silica and amorphous titania in a mass ratio of 1: 1 (sample 4) Each was granulated to prepare a secondary particle pigment. Granulation conditions are such that water is used as a dispersion medium, and the dispersion dispersed at 50% by mass is spray-dried (inlet temperature 200 ° C., outlet temperature 90 ° C., flow rate 1.0 m 3 / min, dispersion supply rate 30 mL / min). It was. The volume average particle diameters of the secondary particle pigments obtained were 8.7 μm for spherical silica only, 4.9 μm for spherical alumina only, 3.9 μm for amorphous titania only, spherical silica and non-spherical silica. The mixture of regular titania was 4.4 μm. An SEM photograph of sample 1 is shown in FIG. As is apparent from FIG. 1, secondary particle pigments having very high sphericity were obtained.

そのままの一次粒子についても試料とした(球状シリカ(試料5)、球状アルミナ(試料6)、不定形チタニア(試料7)、球状シリカ及び不定形チタニアの質量比1:1の混合物(試料8))。   The primary particles were also used as samples (spherical silica (sample 5), spherical alumina (sample 6), amorphous titania (sample 7), a mixture of spherical silica and amorphous titania in a mass ratio of 1: 1 (sample 8). ).

それぞれの試料を用いて試験例の光線反射塗料を調製した。光線反射塗料は対応する試料を30gと分散媒としての市販塗料(関西ペイント製:アレスセラマイルド(NADアクリル塗料:白色))を30gと希釈剤としての塗料用シンナーを10〜30質量%とを混合して調製した。混合は遊星式撹拌機にて行った。得られた光線反射塗料をバーコータにて300μmの厚みで隠ぺい率試験紙(日本テストパネル株式会社製)上に塗布した後、60℃で2時間乾燥した。得られた塗膜について分光光度計にて光線の反射率を測定した。試料を混合していない分散媒単独についても基材上に塗布、乾燥後光線の反射率を測定した(対照試料)。結果を図2〜5に示す。   The light reflecting paint of the test example was prepared using each sample. The light-reflecting paint comprises 30 g of a corresponding sample, 30 g of a commercial paint (manufactured by Kansai Paint: Ares Ceramil (NAD acrylic paint: white)) as a dispersion medium, and 10-30% by mass of paint thinner as a diluent. Prepared by mixing. Mixing was performed with a planetary stirrer. The obtained light-reflecting paint was applied to a cover factor test paper (manufactured by Nippon Test Panel Co., Ltd.) at a thickness of 300 μm with a bar coater and then dried at 60 ° C. for 2 hours. The light reflectance of the obtained coating film was measured with a spectrophotometer. The dispersion medium alone not mixed with the sample was also coated on the substrate, and the light reflectance was measured after drying (control sample). The results are shown in FIGS.

図2より明らかなように、試料1(球状シリカを造粒した二次粒子顔料を混合)と試料5(シリカをそのまま一次粒子として混合)と対照試料とについて比較した結果、造粒後の試料1が造粒していない試料5と比較して全体的に高い反射率を示した。   As is clear from FIG. 2, as a result of comparison between sample 1 (mixed with secondary particle pigment obtained by granulating spherical silica), sample 5 (mixed with silica as primary particles) and a control sample, the sample after granulation Compared with the sample 5 in which No. 1 was not granulated, the overall reflectance was high.

図3より明らかなように、試料2(球状アルミナを造粒した二次粒子顔料を混合)と試料6(アルミナをそのまま一次粒子として混合)と対照試料とについて比較した結果、造粒後の試料2が造粒していない試料6と比較して全体的に高い反射率を示した。   As is clear from FIG. 3, as a result of comparison between the sample 2 (mixed with the secondary particle pigment obtained by granulating spherical alumina), the sample 6 (mixed with alumina as primary particles) and the control sample, the sample after granulation Compared with the sample 6 in which 2 was not granulated, the overall reflectivity was high.

図4より明らかなように、試料3(不定形チタニアを造粒した二次粒子顔料を混合)と試料7(チタニアをそのまま一次粒子として混合)と対照試料とについて比較した結果、造粒後の試料3が造粒していない試料7と比較して全体的に高い反射率を示した。   As is clear from FIG. 4, as a result of comparison between Sample 3 (mixed with secondary particle pigment granulated amorphous titania), Sample 7 (mixed with titania as primary particles) and a control sample, The sample 3 showed a higher overall reflectivity than the sample 7 which was not granulated.

図5より明らかなように、試料4(球状シリカ及び不定形チタニアの混合物を造粒した二次粒子顔料を混合)と試料8(球状シリカ及び不定形チタニアの混合物をそのまま一次粒子として混合)と対照試料とについて比較した結果、造粒後の試料4が造粒していない試料8と比較して全体的に高い反射率を示した。   As is clear from FIG. 5, sample 4 (mixed with a secondary particle pigment obtained by granulating a mixture of spherical silica and amorphous titania) and sample 8 (mixed with a mixture of spherical silica and amorphous titania as primary particles) and As a result of comparison with the control sample, the sample 4 after granulation generally showed a higher reflectance than the sample 8 which was not granulated.

また、試料1、3及び4を比較すると、シリカ及びチタニアをそれぞれ単独で混合するよりも、双方の混合物からなる二次粒子顔料を含有させた方が高い反射率を示すことが明らかになった。   Further, comparing Samples 1, 3 and 4, it was revealed that the inclusion of secondary particle pigment made of a mixture of both showed higher reflectivity than mixing silica and titania alone. .

更に、球状シリカを造粒して製造した二次粒子顔料の含有量を30質量%(試料9)、10質量%(試料10)とした以外は試料2と同様の製造方法にて試料について光線反射率を同様にして測定した。結果を図6に示す。図6から明らかなように、二次粒子顔料の含有量の増加に伴い光線反射率も大きくなることが判った。特に、二次粒子顔料の含有量が10%から30%に至る間で飛躍的に光線反射率が高くなることが判った。すなわち、二次粒子顔料の含有量としては10質量%以上にすることができ、効果向上の観点からは10質量%超、更には30質量%以上にすることが望ましい。   Further, the light beam was applied to the sample by the same production method as Sample 2 except that the content of the secondary particle pigment produced by granulating spherical silica was changed to 30% by mass (Sample 9) and 10% by mass (Sample 10). The reflectance was measured in the same manner. The results are shown in FIG. As is apparent from FIG. 6, it was found that the light reflectivity increases as the content of the secondary particle pigment increases. In particular, it has been found that the light reflectance is dramatically increased while the content of the secondary particle pigment is from 10% to 30%. That is, the content of the secondary particle pigment can be 10% by mass or more, and from the viewpoint of improving the effect, it is preferably more than 10% by mass, and more preferably 30% by mass or more.

また、形状による比較として不定形シリカ(アドマテックス製:MC4000:体積平均粒径0.9μm)(試料11)を用いて上記と同様に二次粒子を作製した(試料12:体積平均粒径6.7μm)。試料11及び12について、NAD塗料に30質量%混合して日射反射率の測定を行った。試料1及び5を混合した塗料についても測定を行った。−日射反射率の測定は分光光度計を用い、JISR3106に従い測定した。結果を表1に示す。   Moreover, secondary particles were prepared in the same manner as described above using amorphous silica (manufactured by Admatex: MC4000: volume average particle size 0.9 μm) (sample 11) as a comparison by shape (sample 12: volume average particle size 6). .7 μm). Samples 11 and 12 were mixed with 30% by mass of NAD paint, and the solar reflectance was measured. Measurements were also made on the paint in which samples 1 and 5 were mixed. -The solar reflectance was measured according to JIS R3106 using a spectrophotometer. The results are shown in Table 1.

表1から分かるように、日射反射率は1次粒子の形状によらず効果があることが判った。すなわち、基材として採用したNAD塗料と比較して二次粒子を混合・分散させた試料1、5、11、及び12は1〜2%程度、日射反射率が向上している。日射反射率に代えて日射を吸収する程度として評価すると、NAD塗料では12.4%の日射を吸収するのに対し、試料1、5、11、及び12では10%〜11%程度となった。   As can be seen from Table 1, the solar reflectance was found to be effective regardless of the shape of the primary particles. That is, the samples 1, 5, 11, and 12 in which the secondary particles are mixed and dispersed as compared with the NAD paint adopted as the base material have an improved solar reflectance of about 1 to 2%. When evaluated as the degree of absorbing solar radiation instead of the solar reflectance, NAD paint absorbed 12.4% of solar radiation, whereas samples 1, 5, 11 and 12 had about 10% to 11%. .

実施例にて用いた二次粒子顔料(試料1)のSEM写真である。It is a SEM photograph of the secondary particle pigment (sample 1) used in the example. シリカを用いた試料について造粒前後の光線反射率を示したグラフである。It is the graph which showed the light reflectivity before and behind granulation about the sample using a silica. アルミナを用いた試料について造粒前後の光線反射率を示したグラフである。It is the graph which showed the light reflectivity before and behind granulation about the sample using an alumina. チタニアを用いた試料について造粒前後の光線反射率を示したグラフである。It is the graph which showed the light reflectivity before and behind granulation about the sample using titania. シリカ及びチタニアの混合物を用いた試料について造粒前後の光線反射率を示したグラフである。It is the graph which showed the light reflectivity before and behind granulation about the sample using the mixture of a silica and a titania. 造粒したシリカを用いた試料について光線反射率の造粒物含有量依存性を示したグラフである。It is the graph which showed the granule content dependence of the light reflectivity about the sample using the granulated silica.

Claims (6)

体積平均粒径が0.05μm〜5μmであり無機材料から構成される一次粒子からなり、体積平均粒径が1μm〜50μmで不揮発分全体の質量を基準として10質量%以上含有する二次粒子顔料を有し、
前記二次粒子顔料を分散する分散媒として水系エマルジョン樹脂又は非水分散型樹脂からなるバインダーを有する光線反射塗料であって、
前記二次粒子顔料は、揮発分蒸発後に、前記一次粒子間に形成された空隙のうちの少なくとも一部が気体にて充填されており、
前記二次粒子顔料は、前記一次粒子を噴霧乾燥造粒法で造粒して得られる粒子であり、
前記一次粒子を構成する無機材料は、シリカ、アルミナ、ジルコニア、セリア、ガラス粉末(屈折率1.45〜2.0)、硫酸バリウム及び炭酸カルシウムからなる群から選択される1種以上の材料であることを特徴とする光線反射塗料(ただし、前記一次粒子がシリカ殻からなる立方体状の中空粒子であるものを除く。)。
Secondary particles comprising primary particles composed of an inorganic material having a volume average particle diameter of 0.05 μm to 5 μm, and having a volume average particle diameter of 1 μm to 50 μm and containing 10% by mass or more based on the mass of the entire nonvolatile matter Have pigments,
A light-reflecting paint having a binder comprising a water-based emulsion resin or a non-aqueous dispersion resin as a dispersion medium for dispersing the secondary particle pigment,
The secondary particle pigment is filled with gas at least part of the voids formed between the primary particles after evaporation of volatile matter,
The secondary particle pigment is a particle obtained by granulating the primary particle by a spray drying granulation method,
The inorganic material constituting the primary particles is one or more materials selected from the group consisting of silica, alumina, zirconia, ceria, glass powder (refractive index 1.45 to 2.0), barium sulfate and calcium carbonate. A light-reflecting paint characterized in that (except that the primary particles are cubic hollow particles made of silica shells).
体積平均粒径が0.05μm〜5μmであり無機材料から構成される一次粒子からなり、体積平均粒径が1μm〜50μmで不揮発分全体の質量を基準として10質量%以上含有する二次粒子顔料を有し、
前記二次粒子顔料を分散する分散媒として水系エマルジョン樹脂又は非水分散型樹脂からなるバインダーを有する光線反射塗料であって、
前記二次粒子顔料は、揮発分蒸発後に、前記一次粒子間に形成された空隙のうちの少なくとも一部が気体にて充填されており、
前記二次粒子顔料は、前記一次粒子を噴霧乾燥造粒法で造粒して得られる粒子であり、
前記一次粒子を構成する無機材料はチタニア及びシリカであり、チタニア及びシリカの質量比が1:1であることを特徴とする光線反射塗料。
Secondary particles comprising primary particles composed of an inorganic material having a volume average particle diameter of 0.05 μm to 5 μm, and having a volume average particle diameter of 1 μm to 50 μm and containing 10% by mass or more based on the mass of the entire nonvolatile matter Have pigments,
A light-reflecting paint having a binder comprising a water-based emulsion resin or a non-aqueous dispersion resin as a dispersion medium for dispersing the secondary particle pigment,
The secondary particle pigment is filled with gas at least part of the voids formed between the primary particles after evaporation of volatile matter,
The secondary particle pigment is a particle obtained by granulating the primary particle by a spray drying granulation method,
The inorganic material constituting the primary particles is titania and silica, and the mass ratio of titania and silica is 1: 1.
前記一次粒子間に形成された空隙のうち5体積%以上が気体にて充填されている請求項1又は2に記載の光線反射塗料。   The light reflecting paint according to claim 1 or 2, wherein 5% by volume or more of the voids formed between the primary particles is filled with a gas. 前記二次粒子顔料は、波長780nm以上の赤外線に対する吸収率が波長780nm未満の可視光に対する吸収率よりも低い、染料及び/又は顔料である着色料を内部又は表面に有する請求項1〜3の何れか1項に記載の光線反射塗料。   The said secondary particle pigment has the coloring agent which is a dye and / or a pigment which is lower than the absorptivity with respect to infrared rays with a wavelength of 780 nm or more than the visible light with a wavelength of less than 780 nm inside or on the surface. The light reflecting paint according to any one of the above. 前記バインダーは前記二次粒子顔料内に実質的に存在しない請求項1〜4のいずれかに記載の光線反射塗料。   The light-reflecting paint according to any one of claims 1 to 4, wherein the binder is substantially not present in the secondary particle pigment. 請求項1〜5のいずれかに記載の光線反射塗料の製造方法であって、
体積平均粒径が0.05μm〜5μmであり無機材料から構成される一次粒子から、体積平均粒径が1μm〜50μmの二次粒子顔料を、噴霧乾燥造粒法で造粒する造粒工程を有することを特徴とする、
前記二次粒子顔料が不揮発分全体の質量を基準として10質量%以上含有される光線反射塗料の製造方法。
It is a manufacturing method of the light reflection paint in any one of Claims 1-5,
A granulation step of granulating secondary particle pigments having a volume average particle size of 1 μm to 50 μm from primary particles having a volume average particle size of 0.05 μm to 5 μm and composed of an inorganic material by a spray drying granulation method. It is characterized by having
A method for producing a light-reflective coating, wherein the secondary particle pigment is contained in an amount of 10% by mass or more based on the mass of the whole nonvolatile matter.
JP2008192688A 2008-02-29 2008-07-25 Light reflecting paint and method for producing the same Expired - Fee Related JP5711444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008192688A JP5711444B2 (en) 2008-02-29 2008-07-25 Light reflecting paint and method for producing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008050408 2008-02-29
JP2008050408 2008-02-29
JP2008061245 2008-03-11
JP2008061245 2008-03-11
JP2008192688A JP5711444B2 (en) 2008-02-29 2008-07-25 Light reflecting paint and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009242768A JP2009242768A (en) 2009-10-22
JP5711444B2 true JP5711444B2 (en) 2015-04-30

Family

ID=41305029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008192688A Expired - Fee Related JP5711444B2 (en) 2008-02-29 2008-07-25 Light reflecting paint and method for producing the same

Country Status (1)

Country Link
JP (1) JP5711444B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091575A (en) 2009-10-21 2011-05-06 Sony Corp Coding apparatus and method
JP5751703B2 (en) * 2011-07-12 2015-07-22 株式会社エフコンサルタント Laminated body
JP5751702B2 (en) * 2011-07-12 2015-07-22 株式会社エフコンサルタント Laminated body
JP5869248B2 (en) * 2011-07-22 2016-02-24 菊水化学工業株式会社 Coating material composition
US8828519B2 (en) 2011-10-05 2014-09-09 Cristal Usa Inc. Infrared-reflective coatings
JP2013155240A (en) * 2012-01-27 2013-08-15 Mura Cam Co Ltd Heat shielding coating material
JP6971560B2 (en) * 2016-11-11 2021-11-24 キヤノン株式会社 Particle aggregate materials and paints
CN114956138A (en) * 2022-05-18 2022-08-30 石家庄日加材料技术有限公司 Alumina reflective particles
CN115029035A (en) * 2022-06-08 2022-09-09 广州大学 Ultrahigh-performance aerogel composite heat-insulating coating and preparation method thereof

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197133A (en) * 1984-10-19 1986-05-15 Mitsubishi Metal Corp Composite granular titanium dioxide
JPS6296311A (en) * 1985-10-24 1987-05-02 Denki Kagaku Kogyo Kk Production of high-purity spherical silica filler
JPS6296313A (en) * 1985-10-24 1987-05-02 Denki Kagaku Kogyo Kk Production of high-purity spherical silica filler
JPS6296312A (en) * 1985-10-24 1987-05-02 Denki Kagaku Kogyo Kk Production of high-purity spherical silica filler
JP3045358B2 (en) * 1992-08-27 2000-05-29 日本カーバイド工業株式会社 Non-aqueous dispersible resin composition
JP3408853B2 (en) * 1993-12-16 2003-05-19 アサヒゴム株式会社 Aqueous emulsion paint
JP3030090B2 (en) * 1994-05-20 2000-04-10 日本カーバイド工業株式会社 Resin composition for coating
JPH101523A (en) * 1996-06-14 1998-01-06 Japan Synthetic Rubber Co Ltd Radiation-curable resin composition
JPH107978A (en) * 1996-06-26 1998-01-13 Nippon Synthetic Chem Ind Co Ltd:The Nonaqueous dispersion type resin composition for coating material
JP2001135141A (en) * 1999-11-04 2001-05-18 Soken Chem & Eng Co Ltd Anisotropic conductive bonding ink, liquid crystal display device and method of producing liquid crystal display device
JP3869241B2 (en) * 2001-10-15 2007-01-17 株式会社アドマテックス Ceramic powder
JP3811749B2 (en) * 2001-12-20 2006-08-23 大日本塗料株式会社 Non-aqueous dispersion type antifouling paint composition
JP2003327870A (en) * 2002-03-07 2003-11-19 Sumitomo Osaka Cement Co Ltd Coating for forming metal reflection film and metal reflection film using the coating and article having the film
JP4465423B2 (en) * 2002-03-29 2010-05-19 サンノプコ株式会社 Thickener composition
JP4374869B2 (en) * 2002-05-27 2009-12-02 住友化学株式会社 Manufacturing method of ceramic dispersion
AU2003284650C1 (en) * 2002-12-09 2014-03-13 Tayca Corporation Titanium dioxide particles having beneficial properties and method for producing same
JP5165842B2 (en) * 2005-11-28 2013-03-21 エスケー化研株式会社 Paint composition
JP5028806B2 (en) * 2006-01-24 2012-09-19 凸版印刷株式会社 Antiglare materials and displays
JP5011877B2 (en) * 2006-08-04 2012-08-29 凸版印刷株式会社 Anti-glare light diffusing member and display having anti-glare light diffusing member
JP4752019B2 (en) * 2006-05-18 2011-08-17 国立大学法人 名古屋工業大学 Antireflection coating material, antiglare coating material, antireflection film, antireflection film and antiglare film

Also Published As

Publication number Publication date
JP2009242768A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
JP5711444B2 (en) Light reflecting paint and method for producing the same
JP4959007B2 (en) Shielding film, shielding paint and optical element for optical element
JP4752019B2 (en) Antireflection coating material, antiglare coating material, antireflection film, antireflection film and antiglare film
US5811180A (en) Pigments which reflect infrared radiation from fire
JP5050470B2 (en) Solar radiation shielding dispersion, solar radiation shielding body, and manufacturing method thereof
EP2844706B1 (en) High solar-reflectivity roofing granules utilizing low absorption components
JP2002544114A (en) Glass microspheres and methods used in rear projection screen displays
JP2011186438A5 (en)
CN101861365A (en) Process for producing fine particles of surface treated zinc oxide, fine particles of surface treated zinc oxide, dispersion liquid and dispersion solid of the fine particles of surface treated zinc oxide, and base material coated with fine particles
JP2010000460A (en) Radiation heat transfer control film
Sandin et al. Reflective properties of hollow microspheres in cool roof coatings
JP2012149269A (en) Water-based coating material composition and heat-shielding coating material
JP2013147571A (en) Heat-shielding coating
JP6302518B2 (en) Thermal barrier paints, thermal barrier coatings and coated articles
JP6475849B2 (en) Light diffusing and transmitting sheet and method for producing composite particles
Jaoua‐Bahloul et al. Solar spectral properties of PVC plastisol‐based films filled with various fillers
US11118070B2 (en) Low specular reflectance surface
CN112575590B (en) Diffuse reflection coating for optical curtain and optical curtain
US20200199381A1 (en) Matte paint composition
CN113227270B (en) Low specular reflectance surfaces and coating compositions
WO2017047056A1 (en) Light-diffusing and -transmitting sheet
JP4881653B2 (en) Heat reflective wallpaper
CN114250020B (en) Acrylic coating, preparation method and application thereof, cured product and outdoor building
Wanichart et al. CREATIVE SCIENCE
US20200199379A1 (en) Method of forming a low specular reflectance surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150306

R150 Certificate of patent or registration of utility model

Ref document number: 5711444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees