JP5709995B2 - Forced once-through steam generator - Google Patents

Forced once-through steam generator Download PDF

Info

Publication number
JP5709995B2
JP5709995B2 JP2013522156A JP2013522156A JP5709995B2 JP 5709995 B2 JP5709995 B2 JP 5709995B2 JP 2013522156 A JP2013522156 A JP 2013522156A JP 2013522156 A JP2013522156 A JP 2013522156A JP 5709995 B2 JP5709995 B2 JP 5709995B2
Authority
JP
Japan
Prior art keywords
steam
steam generator
surrounding wall
forced
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013522156A
Other languages
Japanese (ja)
Other versions
JP2013532814A (en
Inventor
ブロデッサー、ヨアヒム
ブリュックナー、ヤン
エッフェルト、マルティン
フランケ、ヨアヒム
シュルツェ、トビアス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JP2013532814A publication Critical patent/JP2013532814A/en
Application granted granted Critical
Publication of JP5709995B2 publication Critical patent/JP5709995B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • F22B29/062Construction of tube walls involving vertically-disposed water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • F22B29/065Construction of tube walls involving upper vertically disposed water tubes and lower horizontally- or helically disposed water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/22Drums; Headers; Accessories therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/22Drums; Headers; Accessories therefor
    • F22B37/227Drums and collectors for mixing

Description

本発明は、気密に溶接され垂直方向に貫流可能な蒸気発生管から形成される囲壁を有し、この囲壁内に通過管寄せを配置し、この管寄せにより多数の並列接続された出口側の第1の蒸気発生管をこの第1の蒸気発生管に直列接続される多数の並列接続された入口側の第2の蒸気発生管に流動媒体側で接続する強制貫流蒸気発生器に関する。本発明はさらにこの種の蒸気発生器を備えた発電設備に関する。   The present invention has a surrounding wall formed of a steam generating pipe that is hermetically welded and can flow in the vertical direction. A passage header is arranged in the surrounding wall, and a plurality of parallel-connected outlet side outlets are arranged by the header. The present invention relates to a forced through-flow steam generator for connecting a first steam generation pipe on a fluid medium side to a plurality of parallel-connected inlet-side second steam generation pipes connected in series to the first steam generation pipe. The invention further relates to a power generation facility comprising such a steam generator.

蒸気発生器は流動媒体から蒸気を発生するための設備である。この種の設備では流動媒体、典型的には水が加熱されて蒸気に変換される。蒸気は次いで機械の駆動用にまたは電気エネルギーの発生用に使用される。蒸気発生器は一般的に蒸気発生用の蒸発器と蒸気を利用者にとって必要な温度に加熱する過熱器を有する。しばしば蒸発器には廃熱を利用する予熱器が前置接続され、全設備の効率をさらに高めている。   A steam generator is a facility for generating steam from a fluid medium. In this type of equipment, the fluid medium, typically water, is heated and converted to steam. The steam is then used for driving the machine or generating electrical energy. The steam generator generally has an evaporator for generating steam and a superheater for heating the steam to a temperature necessary for the user. Often, the evaporator is pre-connected with a preheater that uses waste heat, further increasing the efficiency of the entire facility.

蒸気発生器は工業的には現在一般的に水管ボイラとして実施され、すなわち流動媒体が蒸気発生管内に導かれる。蒸気発生管はこの場合互いに気密に溶接されて1つの囲壁を形成し、この囲壁内に熱を供給する高温ガスが案内されるようにすることができる。蒸気発生器は縦置きまたは横置き構造に形成可能であり、すなわち高温ガスは垂直または水平方向に案内される。   Steam generators are now generally implemented industrially as water tube boilers, i.e. a fluid medium is introduced into the steam generator tube. In this case, the steam generating pipes can be welded together in an airtight manner to form a wall, in which the hot gas supplying heat is guided. The steam generator can be formed vertically or horizontally, i.e. hot gas is guided vertically or horizontally.

蒸気発生器はさらに強制貫流蒸気発生器として設計することができ、この場合流動媒体の貫流は給水ポンプにより強制される。流動媒体はこの場合給水ポンプからボイラに供給され、予熱器、蒸発器および過熱器を順次通流する。飽和蒸気温度までの給水の加熱、蒸発および過熱は連続的に貫流中に行われるので、− 少なくとも全負荷時には − 水および蒸気の特別な分離装置は不要である。貫流蒸気発生器はまた過臨界圧力下でも運転できる。個々の加熱面、予熱器、蒸発器および過熱器の定義づけは厳密に言ってこの運転様式では連続的な位相経過が生じるのであまり重要ではない。   The steam generator can also be designed as a forced through-flow steam generator, in which case the flow through the fluid medium is forced by a feed pump. In this case, the fluid medium is supplied from the feed water pump to the boiler and sequentially flows through the preheater, the evaporator and the superheater. Since the heating, evaporation and superheating of the feed water up to the saturated steam temperature takes place continuously in the through-flow-at least at full load-no special water and steam separators are required. The once-through steam generator can also be operated under supercritical pressure. The definition of the individual heating surfaces, the preheater, the evaporator and the superheater is not very important because, strictly speaking, this mode of operation produces a continuous phase course.

垂直に配管された貫流蒸気発生器の変形例では、囲壁の配管は下側と上側の部分に分けられ、下側部分は多数の並列接続された第1の蒸気発生管を有し、上側部分は第1の蒸気発生管に直列的に後置接続された多数の並列接続された第2の蒸気発生管を有する。下側および上側部分は通過管寄せにより互いに接続される。これにより一方では並列接続された蒸気発生管間の圧力平衡が達成され、他方では異なる蒸気発生管からの流動媒体の少なくとも部分的な混合も達成される。   In a variant of a vertically piped once-through steam generator, the surrounding pipe is divided into a lower part and an upper part, the lower part having a number of first steam generator tubes connected in parallel, the upper part Has a number of parallel-connected second steam generation pipes connected in series downstream of the first steam generation pipes. The lower and upper parts are connected to each other by passage headers. This achieves on the one hand a pressure balance between the steam generator tubes connected in parallel, and on the other hand at least a partial mixing of the flow medium from the different steam generator tubes.

垂直方向に貫流される蒸気発生管と通過管寄せを備えたこの種の貫流蒸気発生器では、囲壁の上側部分の個々の管が許容できないような高温になり、場合によっては管壁の破損を生じることが最近になって判明している。この場合このような過大温度の発生は一定の運転パラメータが関連している。   In this type of once-through steam generator with a steam generator pipe and a flow header that run vertically, the individual pipes in the upper part of the enclosure will be unacceptably hot and in some cases damage to the pipe wall may occur. It has recently been found that it occurs. In this case, the occurrence of such an excessive temperature is associated with certain operating parameters.

それゆえ本発明の課題は、上述の種類の強制貫流蒸気発生器において運転状態に関係なく特に長い寿命と特に僅かな修理頻度を有するものを提供することにある。   The object of the present invention is therefore to provide a forced once-through steam generator of the kind described above which has a particularly long life and a particularly low repair frequency, irrespective of the operating conditions.

この課題は本発明によれば、通過管寄せに後置接続された蒸気発生管の設定パラメータを次のように、すなわち囲壁の並列接続された蒸気発生管の平均質量流密度が蒸気発生器の全負荷時に1200kg/m2sを下回らないように選択することにより解決される。 According to the present invention, the problem is that, according to the present invention, the setting parameters of the steam generator pipes connected downstream of the passage header are set as follows, that is, the average mass flow density of the steam generator pipes connected in parallel in the surrounding wall is This can be solved by choosing not to go below 1200 kg / m 2 s at full load.

この場合本発明は、個々の蒸気発生管の過熱が流動媒体により導入された熱の不十分な搬出に帰因するという考察から出発している。不十分な熱搬出は、当該蒸気発生管が過度に低い質量流を有するときに生じる。導入蒸気量が極めて少なく且つ熱供給が極めて少ない場合であって、明らかな自然循環特性の場合には、これらの管における流体静力学的な圧力降下は既にほぼ蒸気発生管の入口と出口間の全圧力差とほぼ同じか全く同じ大きさである。流れの駆動力としての残存圧力差は従って極めてわずかであるかまたは完全に消滅するので、最悪の場合には流れは停頓する。   In this case, the invention departs from the consideration that the overheating of the individual steam generator tubes is attributed to inadequate removal of the heat introduced by the fluid medium. Insufficient heat transfer occurs when the steam generator tube has an excessively low mass flow. In the case where the amount of introduced steam is very small and the heat supply is very small, and in the case of obvious natural circulation characteristics, the hydrostatic pressure drop in these tubes is already almost between the inlet and outlet of the steam generating tube. It is almost the same or the same size as the total pressure difference. The residual pressure difference as the driving force of the flow is therefore very small or completely extinguished, so that in the worst case the flow stops.

勿論通過管寄せはこれに後置接続された管間のある程度の平衡を図るのでこのような作用を弱める働きをする。しかし通過管寄せは完全な圧力平衡を行うが、これに後置接続された蒸気発生管内の水と蒸気成分の平衡に導くような流入する流動媒体の完全な混合を生じさせるものではないことが判明している。下側部分の加熱の弱い蒸気発生管からの僅かな蒸気量並びに管寄せ内の付加的な局部的分離現象に基づき、それにもかかわらず上側垂直配管の個々の管への流入時に一定の運転状態では蒸気量がゼロになることがある。したがってこのような現象は自然循環特性の十分な弱体化によって回避しなければならない。   Of course, the passage header works to weaken such an action because it establishes a certain balance between the pipes connected downstream of the passage header. However, the passage header provides a perfect pressure balance, but does not result in a complete mixing of the flowing fluid medium leading to the balance of water and steam components in the steam generator tube connected downstream of it. It turns out. Based on a small amount of steam from the lower heating steam generating tube in the lower part and an additional local separation phenomenon in the header, nevertheless a constant operating condition when entering the individual tubes of the upper vertical pipe Then, the amount of steam may become zero. Therefore, such a phenomenon must be avoided by sufficiently weakening the natural circulation characteristics.

これは、通過管寄せに後置接続された蒸気発生管の設定パラメータを適切に選択することにより個々の管に付加的な構造的手段を講じることなく特に簡単に達成可能である。しかしこれらのパラメータは一定の運転状態に対し所期どおりに適合されるのではなく、蒸気発生器の全負荷範囲に亘って一定にされるので、簡単な設定のためには全負荷時における相応する基準が発見されなければならないであろう。本発明により認められたように、自然循環特性の十分な弱体化は、囲壁の並列接続された蒸気発生管の平均質量流密度が蒸気発生器の全負荷時に1200kg/m2sを下回らないように設定パラメータを選択することにより達成される。 This can be achieved particularly easily without taking additional structural measures on the individual pipes by appropriately selecting the setting parameters of the steam generating pipes connected downstream of the passage header. However, these parameters are not adapted as expected for a certain operating condition, but are made constant over the full load range of the steam generator, so that for easy setting, the corresponding value at full load is appropriate. The criteria to do will have to be discovered. As recognized by the present invention, the natural circulation characteristics are sufficiently weakened so that the average mass flow density of the steam generator tubes connected in parallel in the enclosure does not fall below 1200 kg / m 2 s at full load of the steam generator. This is achieved by selecting a setting parameter.

それぞれ有利な実施態様では蒸気発生管の数および/または内径が囲壁の質量流密度の設定の際のパラメータとして考慮される。これらのパラメータはすなわち囲壁内の流動特性に著しい影響を与えると同時に、蒸気発生器の構成の際に特別な出費なしに設定可能である。   In each advantageous embodiment, the number and / or inner diameter of the steam generating tubes are taken into account as parameters in setting the mass flow density of the enclosure. These parameters thus have a significant influence on the flow characteristics in the enclosure, and at the same time can be set without special expense during the construction of the steam generator.

縦置き構造の蒸気発生器の囲壁は種々の水平横断面を有し得る。特に簡単な構造は、横断面がほぼ正方形であるときに可能となる。この種の蒸気発生器では特にエッジ範囲に配置された蒸気発生管が、高温ガスチャネルの中心から最も遠く離れており同時に特に僅かな熱搬入面を有するので、特に弱く加熱される。これにより垂直配管の下側部分の個々のエッジ管の蒸気量はゼロに向かうので、この場合は不均等に分布された水・蒸気混合物が中間管寄せに流入することになる。中間管寄せはここでも十分な混合作用を示さないので、後置接続されたエッジ管における質量流は途絶え、これにより熱搬出は不十分になる。それゆえこの種の蒸気発生器においてはまさに、囲壁の並列接続された蒸気発生管の平均質量流密度が蒸気発生器の全負荷時に1200kg/m2sを下回らないように、通過管寄せに後置接続された蒸気発生管の設定パラメータを選択することが特に有利である。 The vertical wall of the steam generator can have various horizontal cross sections. A particularly simple structure is possible when the cross section is approximately square. In this type of steam generator, the steam generator tube, particularly located in the edge region, is furthest particularly weak because it is farthest from the center of the hot gas channel and at the same time has a particularly slight heat transfer surface. As a result, the amount of steam in the individual edge pipes in the lower part of the vertical pipe is reduced to zero. In this case, an unevenly distributed water / steam mixture flows into the intermediate header. The intermediate header again does not show a sufficient mixing action, so that the mass flow in the post-connected edge tube is interrupted, which results in insufficient heat transfer. Therefore, in this type of steam generator, it is exactly the case that the average mass flow density of the steam generator pipes connected in parallel in the surrounding wall is not later than 1200 kg / m 2 s at the full load of the steam generator. It is particularly advantageous to select the setting parameters for the connected steam generator tubes.

通過管寄せは水平方向に連続して囲繞的に配置し得る、すなわち通過管寄せは囲壁の下側もしくは上側に配置されたすべての蒸気発生管を互いに接続する。すべての管に亘る完全な圧力平衡にも拘わらず水および蒸気成分の分離が生じることがある。それゆえこの種の強制貫流蒸気発生器においても通過管寄せに後置接続された蒸気発生管は、囲壁の並列接続された蒸気発生管の平均質量流密度が蒸気発生器の全負荷時に1200kg/m2sを下回らないように設定されると有利である。 The passage header can be arranged continuously in a horizontal manner in the horizontal direction, i.e. the passage header connects all steam generating tubes arranged below or above the enclosure. Separation of water and vapor components can occur despite complete pressure balance across all tubes. Therefore, even in this type of forced once-through steam generator, the steam generation pipe connected downstream of the passage header has an average mass flow density of the steam generation pipes connected in parallel of the surrounding wall of 1200 kg / at the full load of the steam generator. It is advantageous if it is set so as not to fall below m 2 s.

通過管寄せの下側の配管はスパイラル状に囲繞するように配置することができる。配管は囲壁全体を囲繞するように配置される。もちろんこれにより複雑な構造が生じ、下側範囲の蒸気発生管の数もわずかになり、特にこれにより囲壁の種々の範囲における加熱差が大幅に平衡される。それにも拘らず、この種の構造においても通過管寄せに偶発的な局部的分離が生じ、通過管寄せに後置接続された管における過度に少ない質量流という上述の問題を惹起し得る。それゆえこの種の構造においても通過管寄せに後置接続された蒸気発生管は、囲壁の並列接続された蒸気発生管の平均質量流密度が蒸気発生器の全負荷時に1200kg/m2sを下回らないように設定される。 The piping below the passage header can be arranged so as to surround the spiral. The piping is arranged so as to surround the entire surrounding wall. This, of course, creates a complex structure and also reduces the number of steam generation tubes in the lower range, and in particular this greatly balances the heating differences in the various ranges of the enclosure. Nevertheless, even with this type of structure, accidental local separation occurs in the passage header, which can lead to the above-mentioned problems of excessively low mass flow in the tube post-connected to the passage header. Therefore, even in this type of structure, the steam generating pipe connected downstream of the passage header has an average mass flow density of steam generating pipes connected in parallel of the surrounding wall of 1200 kg / m 2 s at the full load of the steam generator. It is set not to fall below.

化石燃料の燃焼による蒸気発生器では燃焼室の蒸気発生管への熱搬入はもっぱら対流により行われるのではなく、熱成分の大部分は蒸気発生管への熱放射によりもたらされる。特にこの種の蒸気発生器ではそれゆえ個々の蒸気発生管の加熱差が特に大きく成り得る。それゆえ化石燃料用の多数の燃焼器を有する燃焼室を備えた蒸気発生器は全負荷時における囲壁の蒸気発生管の質量流密度を上記のように設定すると有利である。   In a steam generator by burning fossil fuel, heat is not carried into the steam generating pipe of the combustion chamber exclusively by convection, but most of the heat component is brought about by heat radiation to the steam generating pipe. Particularly in this type of steam generator, the heating difference of the individual steam generating tubes can therefore be particularly large. Therefore, it is advantageous for a steam generator with a combustion chamber having a number of combustors for fossil fuels to set the mass flow density of the steam generating tube of the surrounding wall at full load as described above.

有利な実施態様では強制貫流蒸気発生器には蒸気タービンがたとえば電流発生のため流動媒体側に後置接続される。さらに発電設備がこの種の蒸気発生器を有すると有利である。   In a preferred embodiment, the forced once-through steam generator is connected downstream of the steam medium, for example for generating electric current, on the fluid medium side. Furthermore, it is advantageous if the power plant has such a steam generator.

本発明により得られる利点は特に、囲壁の通過管寄せに後置接続された蒸気発生管の設定パラメータを適切に選択することにより各管における十分な熱搬出が保証され、それにより管壁の損傷をもたらすような許容できない高温が回避されることにある。その場合このような処置は、強制貫流蒸気発生器においても無視できない自然循環特性が存在し、全負荷時の所定の最小質量流密度を弱めるという認識に基づく。最終的にこれにより発電設備の運転時の制限は回避される。   The advantage obtained by the present invention is in particular that sufficient heat transfer in each pipe is ensured by appropriate selection of the setting parameters of the steam generating pipes connected downstream of the enclosure header, thereby causing damage to the pipe walls. This is to avoid unacceptably high temperatures that lead to Such treatment is then based on the recognition that there is a natural circulation characteristic that is not negligible even in a forced once-through steam generator and weakens the predetermined minimum mass flow density at full load. Ultimately, this avoids restrictions during operation of the power plant.

以下に本発明を図面に基づき詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

図1は通過管寄せを備えた垂直に配管した強制貫流蒸気発生器の概略図である。FIG. 1 is a schematic view of a vertically piped forced once-through steam generator with a passage header. 図2は全負荷時に種々に質量流密度を設定した強制貫流蒸気発生器の比較的弱く加熱されたエッジ管の出口における質量流密度と流体温度のグラフ図である。FIG. 2 is a graph of mass flow density and fluid temperature at the outlet of a relatively weakly heated edge tube of a forced through-flow steam generator with various mass flow densities at full load.

同一部分はすべての図において同一符号を付けられている。   The same parts are denoted by the same reference numerals in all the drawings.

図1は化石燃焼型の垂直に配管した本発明による強制貫流蒸気発生器1を示す。強制貫流蒸気発生器1は気密に溶接された蒸気発生管2から形成された囲壁4を有する。囲壁4はこの場合ほぼ正方形の水平横断面6を有する。強制貫流蒸気発生器1の下側範囲には燃焼室8が配置されており、化石燃料を燃焼するための詳細には示さない多数の燃焼器が蒸気発生管への熱供給を準備する。
FIG. 1 shows a fossil combustion type vertically forced steam generator 1 according to the present invention. The forced once-through steam generator 1 has a surrounding wall 4 formed from a steam generating pipe 2 which is hermetically welded. The enclosure 4 in this case has a substantially square horizontal cross section 6. A combustion chamber 8 is arranged in the lower region of the forced once-through steam generator 1, and a number of combustors not shown in detail for burning fossil fuels prepare the heat supply to the steam generator tube 2 .

囲壁4は上側部分10と下側部分12に区分され、これらの部分10、12は通過管寄せ14を介して互いに接続されている。下側部分12の配管はここでは垂直に配置されているが、囲壁を囲繞するようにスパイラル状に配置することも可能である。通過管寄せ14は下側部分12の蒸気発生管2から流出するすべての流動媒体を集めて、並列接続された蒸気発生管2の間の圧力平衡を可能にする。続いて流動媒体は通過管寄せ14から上側部分10の蒸気発生管2に導かれ、そこでさらに加熱され場合によっては過熱される。過熱された蒸気は図示しない加熱面においてさらに過熱されて発電設備の図示しない蒸気タービンに供給される。   The surrounding wall 4 is divided into an upper part 10 and a lower part 12, and these parts 10, 12 are connected to each other via a passage header 14. The piping of the lower portion 12 is arranged vertically here, but can also be arranged in a spiral shape so as to surround the surrounding wall. The passage header 14 collects all the flowing medium flowing out of the steam generating pipe 2 of the lower part 12 and enables a pressure balance between the steam generating pipes 2 connected in parallel. Subsequently, the fluid medium is led from the passage header 14 to the steam generating pipe 2 of the upper part 10 where it is further heated and possibly superheated. The superheated steam is further heated on a heating surface (not shown) and supplied to a steam turbine (not shown) of the power generation facility.

燃焼器により作られた熱のほとんどは熱放射により蒸気発生管2により吸収される。特に下側部分12のエッジ管16ではその位置が強制貫流蒸気発生器1の中心部から最も遠い距離にあり、特に少なく熱を受ける表面の幾何学的配置により熱搬入量はわずかなので、下側部分12のエッジ管16から通過管寄せ14に入る流動媒体は比較的わずかな蒸気量を有する。   Most of the heat generated by the combustor is absorbed by the steam generator tube 2 by heat radiation. Especially in the edge pipe 16 of the lower part 12, the position is farthest from the center of the forced once-through steam generator 1, and the amount of heat carried in is small due to the geometrical arrangement of the surface that receives particularly little heat. The flowing medium entering the passage header 14 from the edge tube 16 of the portion 12 has a relatively small amount of steam.

通過管寄せ14は完全な圧力平衡を生じさせるが、入ってくる流動媒体の完全な混合は行わない。下側部分12のエッジ管16から出る蒸気量が上述のように少ないこと並びに通過管寄せ14における付加的な局部的分離現象により上側部分10の個々の蒸気発生管2に入る蒸気量は極めて少なくなることがある。強制貫流蒸気発生器1の運転状態に応じて上側部分10の配管の設定が不都合な場合個々の蒸気発生管2の貫流が明らかに破綻し停頓に至ることがある。これは同様に不十分な熱搬出および許容できない高い流体温度を結果として生じ得るので、最終的には管壁は許容できない高温になり破壊される。   Passage header 14 provides complete pressure balance but does not provide complete mixing of the incoming fluid medium. Due to the small amount of steam exiting the edge tube 16 of the lower part 12 as described above and the additional local separation phenomenon in the passage header 14, the amount of steam entering the individual steam generating tubes 2 of the upper part 10 is very small. May be. When the setting of the piping of the upper portion 10 is inconvenient depending on the operation state of the forced once-through steam generator 1, the through-flow of the individual steam generation pipes 2 may clearly break down and stop. This can likewise result in inadequate heat transfer and unacceptably high fluid temperatures, so that eventually the tube wall becomes unacceptably high and is destroyed.

このような損傷を回避するために上側部分10の通過管寄せ14に後置接続された蒸気発生管2は平方メートル・秒あたり1230キログラム(kg/m2s)に設定される。これによりすべての並列管に対する全圧力損失が高められる。この結果各蒸気発生管2における、特にエッジ管16における流体静力学的圧力降下は比較的に見て減少される。従って流れの駆動力としての十分な圧力差が常に存続する。この効果を図2により説明する。 In order to avoid such damage, the steam generating pipe 2 post-connected to the passage header 14 of the upper part 10 is set to 1230 kilograms per second per square meter (kg / m 2 s). This increases the total pressure loss for all parallel tubes. As a result, the hydrostatic pressure drop in each steam generating tube 2, in particular in the edge tube 16, is relatively reduced. Therefore, a sufficient pressure difference as a flow driving force always remains. This effect will be described with reference to FIG.

図2は、全負荷時でしかも比較的わずかな熱供給時における上側部分10の配管の平均質量流密度の種々の設定および蒸気発生器1の部分負荷運転に対する上側部分10のエッジ管16における流動媒体のパラメータをグラフで示したものである。左の目盛はエッジ管16の質量流密度をkg/m2sで、右の目盛にはエッジ管16の出口における流体温度を摂氏度(℃)で示し、それぞれ管入口における流動媒体の蒸気成分に対して示したものである。 FIG. 2 shows various settings of the average mass flow density of the piping of the upper part 10 at full load and relatively little heat supply and the flow in the edge pipe 16 of the upper part 10 for partial load operation of the steam generator 1. The media parameters are shown graphically. The left scale shows the mass flow density of the edge tube 16 in kg / m 2 s, and the right scale shows the fluid temperature at the outlet of the edge tube 16 in degrees Celsius (° C.). Is shown.

曲線20は全負荷時における平均質量流密度870kg/m2sに配管を設定した場合のエッジ管16の質量流密度を示す。グラフの左側の曲線20の降下は蒸気成分が少なくなるにつれてエッジ管16の質量流密度が減少することを明確に示す。蒸気成分が0の場合には質量流密度は40kg/m2sに低下し、これは実質的に管における流れの停頓に相当する。管内の十分な熱搬出はもはや保証されず、それに応じて流動媒体、したがってエッジ管16の温度は約0.2の蒸気成分から曲線22に示すように著しく上昇する。 Curve 20 shows the mass flow density of edge tube 16 when the pipe is set to an average mass flow density of 870 kg / m 2 s at full load. The drop in the curve 20 on the left side of the graph clearly shows that the mass flow density of the edge tube 16 decreases as the vapor component decreases. When the vapor component is zero, the mass flow density is reduced to 40 kg / m 2 s, which substantially corresponds to a flow stagnation in the tube. Sufficient heat transfer in the tube is no longer guaranteed, and accordingly the temperature of the fluid medium, and therefore the edge tube 16, rises significantly as shown in curve 22 from a vapor component of about 0.2.

しかし上側部分10の蒸気発生管2の全負荷時の平均質量流密度を1200kg/m2s、この実施例では1230kg/m2sに設定した場合には上述のように自然循環特性が減少し、エッジ管16における過度の相対流体静力学的圧力の降下が減少する。曲線24は蒸気成分が少なくなるにつれてエッジ管16の質量流密度が減少することを勿論示す。しかしこの場合質量流密度の値は、蒸気成分が0の場合でも全負荷時の平均質量密度を870kg/m2sに設定した場合よりも著しく高い値(ここでは330kg/m2s)を示す。曲線26が示すようにこの結果蒸気成分がどんな場合でもエッジ管16における十分な熱搬出が保証される、すなわち温度はごくわずかだけ上昇するか一定に保たれる。これにより過度の温度による上側範囲10における囲壁4の損傷が回避され、強制貫流蒸気発生器1の全体としてより長い寿命が達成される。 But the average mass flow density 1200 kg / m 2 s total load of the steam generation tube 2 of the upper portion 10, in this embodiment natural circulation characteristics as described above is reduced in the case of setting to 1230kg / m 2 s , Excessive relative hydrostatic pressure drop in the edge tube 16 is reduced. Curve 24 of course shows that the mass flow density of edge tube 16 decreases as the vapor content decreases. However, in this case, the mass flow density value is significantly higher (330 kg / m 2 s in this case) than when the average mass density at full load is set to 870 kg / m 2 s even when the steam component is zero. . As the curve 26 shows, this results in a sufficient heat transfer in the edge tube 16 whatever the vapor component, i.e. the temperature rises only slightly or remains constant. This avoids damage to the enclosure 4 in the upper range 10 due to excessive temperatures, and a longer overall life of the forced flow steam generator 1 is achieved.

1 強制貫流蒸気発生器
2 蒸気発生管
4 囲壁
6 水平横断面
8 燃焼室
10 上側部分
12 下側部分
14 通過管寄せ
16 エッジ管
DESCRIPTION OF SYMBOLS 1 Forced through-flow steam generator 2 Steam generating pipe 4 Enclosure 6 Horizontal cross section 8 Combustion chamber 10 Upper part 12 Lower part 14 Passage header 16 Edge pipe

Claims (8)

正方形の水平横断面(6)を有し、気密に溶接され垂直方向に貫流可能な複数の蒸気発生管(2)から形成される囲壁(4)を備え前記囲壁(4)内に通過管寄せ(14)を配置し、これにより、前記囲壁(4)の下側部分(12)に並列接続された複数の第1の蒸気発生管(2)と、前記囲壁(4)の上側部分(10)に並列接続された複数の第2の蒸気発生管(2)とを流動媒体側で接続するようにし、前記通過管寄せ(14)に後置接続された前記上側部分(10)の蒸気発生管(2)の設定パラメータを次のように、すなわち前記囲壁(4)の上側部分(10)に並列接続された複数の第2の蒸気発生管(2)の平均質量流密度が蒸気発生器の全負荷時に1200kg/m2sを下回らないように選択する強制貫流蒸気発生器。 Has a horizontal square cross section (6) comprises a surrounding wall (4) formed from a plurality of steam generator tubes which can flow in the vertical direction is hermetically welded to (2), passage tube to said enclosure (4) in A plurality of first steam generation pipes (2) connected in parallel to the lower part (12) of the surrounding wall (4), and the upper part of the surrounding wall (4) ( a plurality of second steam generator tubes connected in parallel to 10) and (2) to be connected in a fluid medium side, steam downstream connected the upper part (10) in said passage tube jogger (14) generating tube configuration parameters (2) as follows, namely the average mass flow density of the upper portion a plurality of second steam generator tubes connected in parallel (10) of said enclosure (4) (2) steam generator Forced once-through steam generator selected so that it does not fall below 1200 kg / m 2 s at full load. 前記囲壁(4)の上側部分(10)に並列接続された複数の第2の蒸気発生管(2)の数が設定パラメータの1つである請求項1記載の強制貫流式蒸気発生器。 The forced once-through steam generator according to claim 1, wherein the number of the plurality of second steam generation pipes (2) connected in parallel to the upper part (10) of the surrounding wall (4) is one of the setting parameters. 前記複数の第2の蒸気発生管(2)の内径が設定パラメータの1つである請求項1または2記載の強制貫流蒸気発生器器。 The forced flow-through steam generator according to claim 1 or 2, wherein an inner diameter of the plurality of second steam generation pipes (2) is one of set parameters. 通過管寄せ(14)が囲壁を水平方向に囲繞するように配置され、囲壁(4)の下側に全部が配置され並列接続された第1の複数の蒸気発生管(2)と囲壁(4)の上側に全部が配置され並列接続された第2の複数の蒸気発生管(2)とを有する請求項1からの1つに記載の強制貫流蒸気発生器。 A first plurality of steam generating pipes (2) and a surrounding wall (4) are arranged so that the passage header (14) surrounds the surrounding wall in the horizontal direction, and all of them are arranged under the surrounding wall (4) and connected in parallel. A forced through-flow steam generator according to one of claims 1 to 3 , further comprising a second plurality of steam generating pipes (2) arranged in parallel and connected in parallel on the upper side. 通過管寄せ(14)に前置接続された蒸気発生管(2)が囲壁(4)内にスパイラル状に囲繞するように配置される請求項1からの1つに記載の強制貫流蒸気発生器。 The forced through-flow steam generation according to one of claims 1 to 4 , wherein the steam generating pipe (2) connected in front of the passage header (14) is arranged so as to spirally surround in the surrounding wall (4). vessel. 化石燃料用の複数の燃焼器を有する燃焼室を備える請求項1からの1つに記載の強制貫流蒸気発生器。 Forced once-through steam generator according to one of claims 1 5 comprising a combustion chamber having a plurality of combustors for fossil fuels. 流動媒体側に蒸気タービンを後置接続する請求項1からの1つに記載の強制貫流蒸気発生器。 Forced once-through steam generator according to one of claims 1 to 6 which connected downstream of the steam turbine flow medium side. 請求項1からの1つに記載の強制貫流蒸気発生器を備える発電設備。
A power generation facility comprising the forced once-through steam generator according to one of claims 1 to 7 .
JP2013522156A 2010-08-04 2011-06-16 Forced once-through steam generator Active JP5709995B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010038885.8 2010-08-04
DE102010038885.8A DE102010038885B4 (en) 2010-08-04 2010-08-04 Once-through steam generator
PCT/EP2011/059989 WO2012016750A2 (en) 2010-08-04 2011-06-16 Forced-flow steam generator

Publications (2)

Publication Number Publication Date
JP2013532814A JP2013532814A (en) 2013-08-19
JP5709995B2 true JP5709995B2 (en) 2015-04-30

Family

ID=44627107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013522156A Active JP5709995B2 (en) 2010-08-04 2011-06-16 Forced once-through steam generator

Country Status (8)

Country Link
EP (1) EP2601442A2 (en)
JP (1) JP5709995B2 (en)
KR (1) KR20130098993A (en)
CN (1) CN103052848B (en)
AU (1) AU2011287836B2 (en)
DE (1) DE102010038885B4 (en)
WO (1) WO2012016750A2 (en)
ZA (1) ZA201300582B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2631202B1 (en) 2012-02-27 2015-05-20 Trumpf Sachsen GmbH Apparatus for taking up goods and method for discharging or processing workpieces
DE102013215457A1 (en) 2013-08-06 2015-02-12 Siemens Aktiengesellschaft Continuous steam generator in two-pass boiler design

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1114443A (en) * 1964-05-27 1968-05-22 Foster Wheeler Corp Multiple pass construction for once-through steam generators
DE2144675C3 (en) * 1971-09-07 1981-05-27 Kraftwerk Union AG, 4330 Mülheim Continuous steam generator
DE2557427A1 (en) * 1975-12-19 1977-06-30 Kraftwerk Union Ag CIRCUIT OF A FIRE ROOM LUG IN A FLOW-THROUGH BOILER WITH GAS-TIGHT WELDED WALLS IN TWO CONSTRUCTION
CH666532A5 (en) * 1984-12-27 1988-07-29 Mustafa Youssef Dr Ing Brennkammer-rohranordnung in zwangdurchlauf-dampferzeugern.
JPS61211606A (en) * 1985-01-04 1986-09-19 ザ・バブコツク・アンド・ウイルコツクス・カンパニ− Shroud pipe wall of furnace
JPH08565Y2 (en) * 1990-06-18 1996-01-10 三菱重工業株式会社 Heat transfer tube for uniform distribution of two-layer fluid
DE4333404A1 (en) * 1993-09-30 1995-04-06 Siemens Ag Continuous steam generator with vertically arranged evaporator tubes
DE19602680C2 (en) * 1996-01-25 1998-04-02 Siemens Ag Continuous steam generator
DE19645748C1 (en) * 1996-11-06 1998-03-12 Siemens Ag Steam generator operating method
DE60325393D1 (en) * 2002-09-09 2009-01-29 Babcock Hitachi Kk FURNACE WALL CONSTRUCTION
CN1831426A (en) * 2005-03-10 2006-09-13 三井巴布科克能源公司 Supercritical downshot boiler
CN101586802B (en) * 2009-06-23 2011-05-11 东方锅炉(集团)股份有限公司 Water wall of monotube boiler

Also Published As

Publication number Publication date
CN103052848A (en) 2013-04-17
WO2012016750A2 (en) 2012-02-09
DE102010038885A1 (en) 2012-02-09
JP2013532814A (en) 2013-08-19
AU2011287836A1 (en) 2013-02-07
ZA201300582B (en) 2013-09-25
CN103052848B (en) 2015-09-30
DE102010038885B4 (en) 2017-01-19
AU2011287836B2 (en) 2014-06-05
KR20130098993A (en) 2013-09-05
WO2012016750A3 (en) 2013-01-10
EP2601442A2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
TWI529350B (en) Once through evaporator
US9267678B2 (en) Continuous steam generator
JP5709995B2 (en) Forced once-through steam generator
JP6056371B2 (en) Boiler system
JP5225469B2 (en) Once-through boiler
JP5345217B2 (en) Once-through boiler
JP4489306B2 (en) Fossil fuel once-through boiler
JP4953506B2 (en) Fossil fuel boiler
JP4489307B2 (en) Fossil fuel once-through boiler
JP6203958B2 (en) Continuous flow steam generator with two-pass boiler structure
KR20140003372A (en) Forced-flow steam generator
TW201418567A (en) Rapid startup heat recovery steam generator
EP1929205B1 (en) Water tube boiler
RU2382938C2 (en) Steam generator
WO2006044886A2 (en) Dual pressure recovery boiler
KR101662348B1 (en) Continuous evaporator
EP3803204B1 (en) Steam boiler assembly
MX2011004906A (en) Continuous steam generator.
KR101749288B1 (en) Steam generator
US2067670A (en) Fluid heater
CN109163320A (en) High-pressure boiler
JP2008076020A (en) Once-through exhaust heat recovery boiler

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150303

R150 Certificate of patent or registration of utility model

Ref document number: 5709995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350