JP5709311B2 - Transparent sheet and transparent touch panel - Google Patents

Transparent sheet and transparent touch panel Download PDF

Info

Publication number
JP5709311B2
JP5709311B2 JP2011131408A JP2011131408A JP5709311B2 JP 5709311 B2 JP5709311 B2 JP 5709311B2 JP 2011131408 A JP2011131408 A JP 2011131408A JP 2011131408 A JP2011131408 A JP 2011131408A JP 5709311 B2 JP5709311 B2 JP 5709311B2
Authority
JP
Japan
Prior art keywords
transparent
film
transparent conductive
refractive index
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011131408A
Other languages
Japanese (ja)
Other versions
JP2012025158A (en
Inventor
山下 淳
淳 山下
玲子 小野寺
玲子 小野寺
大介 寺岡
大介 寺岡
石井 良典
良典 石井
泰規 井伊
泰規 井伊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP2011131408A priority Critical patent/JP5709311B2/en
Publication of JP2012025158A publication Critical patent/JP2012025158A/en
Application granted granted Critical
Publication of JP5709311B2 publication Critical patent/JP5709311B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)
  • Position Input By Displaying (AREA)
  • Push-Button Switches (AREA)
  • Polarising Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Description

本発明は、透明面状体及び透明タッチパネルに関する。   The present invention relates to a transparent sheet and a transparent touch panel.

従来、銀行端末(キャッシュディスペンサー)、券売機、パソコン、OA機器、電子手帳、PDA、携帯電話等の表示装置にタッチパネルが使用されている。タッチパネルは画面表示を邪魔せずに、どこをタッチしたかを検出するセンサであり、いろいろな方式が考案され、実用化されている。通常、タッチパネルと表示装置とは別々の部品であり、2つのモジュール部品を組み合わせ(貼り合わせ)、1つのケースに収められて使用する。   Conventionally, touch panels are used for display devices such as bank terminals (cash dispensers), ticket machines, personal computers, office automation equipment, electronic notebooks, PDAs, and mobile phones. The touch panel is a sensor that detects where the user touches without disturbing the screen display, and various methods have been devised and put into practical use. Usually, the touch panel and the display device are separate components, and two module components are combined (bonded) and used in a single case.

代表的な抵抗膜式タッチパネルは、特許文献1に示されているように、透明なベースフィルムの片面にITO等の透明電極(透明導電膜)が形成された2つの透明面状体が、互いに透明導電膜を一定間隔をおいて対向配置された構成を有する。   As shown in Patent Document 1, a typical resistive film type touch panel has two transparent planar bodies each having a transparent electrode (transparent conductive film) such as ITO formed on one side of a transparent base film. It has a configuration in which transparent conductive films are arranged to face each other at regular intervals.

図13は、タッチパネルの断面図である。タッチパネル100は、上側電極フィルム110と下側電極基板120を備え、その隙間にドットスペーサ1
0 3が入れられている。上側電極フィルム110は位相差フィルム111とITO電極112とからなる。下側電極基板120はガラス基板121とITO電極1 2 2とからなる。位相差フィルム111と偏光板101は粘着層1
0 2で貼り合わされている。ガラス基板121と位相差フィルム105は、粘着層104で貼り合わされている。
FIG. 13 is a cross-sectional view of the touch panel. The touch panel 100 includes an upper electrode film 110 and a lower electrode substrate 120, and a dot spacer 1 is interposed in the gap.
0 3 is entered. The upper electrode film 110 includes a retardation film 111 and an ITO electrode 112. The lower electrode substrate 120 includes a glass substrate 121 and ITO electrodes 1 2 2. Retardation film 111 and polarizing plate 101 are adhesive layer 1
It is pasted with 02. The glass substrate 121 and the retardation film 105 are bonded together with an adhesive layer 104.

タッチパネル100において、偏光板101と位相差フィルム111,105を組み合わせて用いるのは、外光反射を抑制して視認性を向上させた表面低反射タッチパネルを得るためである(例えば特許文献2参照)。   In the touch panel 100, the polarizing plate 101 and the retardation films 111 and 105 are used in combination in order to obtain a surface low reflection touch panel that suppresses reflection of external light and improves visibility (see, for example, Patent Document 2). .

従来、位相差フィルム111は、ポリカーボネート、シクロオレフィンポリマーフィルム等で形成されている。   Conventionally, the retardation film 111 is formed of a polycarbonate, a cycloolefin polymer film, or the like.

特開2000−89914号公報JP 2000-89914 A 特開平10−48625号公報Japanese Patent Laid-Open No. 10-48625

しかしながら、ポリカーボネートやシクロオレフィンポリマーフィルム等の、ガラス転移点(Tg)が150℃以下の素材からなる位相差フィルムは、フィルム111上にITO(酸化インジウムスズ)を成膜する際に、例えばTg=150℃のフィルムでは、フィルム温度を140℃以上に設定すると、リタデーションが低下する為、成膜温度や成膜後の熱処理(アニール処理)の温度が上げられず、ITOの結晶化度が低いものしか得られない。この結果、ITO膜の低抵抗化が困難であるという問題があった。   However, a retardation film made of a material having a glass transition point (Tg) of 150 ° C. or lower, such as a polycarbonate or a cycloolefin polymer film, is formed by depositing ITO (indium tin oxide) on the film 111, for example, Tg = When the film temperature is set to 140 ° C. or higher, the retardation of the 150 ° C. film is lowered. Therefore, the film formation temperature and the heat treatment (annealing) temperature after the film formation cannot be increased, and the degree of crystallization of ITO is low. Can only be obtained. As a result, there is a problem that it is difficult to reduce the resistance of the ITO film.

また、透明導電膜を所定のパターン形状を有するように構成した場合(例えば、複数の帯状の導電部の集合体となるように構成した場合)、透明導電膜のパターン形状が目立ってしまい、視認性が低下するという問題もあった。この問題の要因の一つとして、ITOの結晶化が不十分であると、波長400〜450nmの光の吸収が大きくなり、ITO膜が黄色味の強い色目となることが考えられる。   In addition, when the transparent conductive film is configured to have a predetermined pattern shape (for example, configured to be an aggregate of a plurality of strip-shaped conductive portions), the pattern shape of the transparent conductive film becomes conspicuous and is visually recognized. There was also a problem that the performance decreased. As one of the causes of this problem, it is conceivable that if the ITO is not sufficiently crystallized, the absorption of light having a wavelength of 400 to 450 nm is increased, and the ITO film has a strong yellowish color.

また、透明導電膜のパターン形状を目立ちにくくするためには、透明導電膜の厚みを薄くする必要があるが、透明導電膜の厚みを薄くすると抵抗値が上昇してしまうという問題もあった。   Further, in order to make the pattern shape of the transparent conductive film inconspicuous, it is necessary to reduce the thickness of the transparent conductive film, but there is also a problem that the resistance value increases when the thickness of the transparent conductive film is reduced.

本発明は、このような課題を解決するためになされたもので、低抵抗化が可能でかつ視認性を向上させることができる透明面状体及び透明タッチパネルを提供することを目的とする。   The present invention has been made to solve such problems, and an object of the present invention is to provide a transparent planar body and a transparent touch panel that can reduce resistance and improve visibility.

本発明の上記目的は、透明基板の一方面側にパターニングされた透明導電膜を有する透明面状体であって、前記透明基板の他方面側に偏光板を備えており、前記透明基板は、ノルボルネンとエチレンとの共重合比率が80:20〜90:10、MVR(メルトボリュームレート)が0.8〜2.0cm3/10分である環状オレフィンの付加(共)重合体よりなるリタデーション100nm〜150nmの位相差フィルムであり、160℃で30分の熱処理による収縮率がMD(流れ方向)、TD(垂直方向)ともに、0.5%以下である透明面状体により達成される。
The object of the present invention is a transparent planar body having a transparent conductive film patterned on one side of a transparent substrate, comprising a polarizing plate on the other side of the transparent substrate, Retardation 100 nm ~ comprising an addition (co) polymer of a cyclic olefin having a copolymerization ratio of norbornene and ethylene of 80:20 to 90:10 and MVR (melt volume rate) of 0.8 to 2.0 cm3 / 10 min. It is a 150 nm retardation film, and is achieved by a transparent sheet having a shrinkage ratio of 30% by heat treatment at 160 ° C. for both MD (flow direction) and TD (vertical direction) of 0.5% or less .

また、前記透明基板と前記透明導電膜との間にアンダーコート層が介在されており、前記アンダーコート層は、光屈折率が異なる2以上の層の積層体から構成され、低屈折率層側に前記透明導電膜が形成されていることが好ましい。   Moreover, an undercoat layer is interposed between the transparent substrate and the transparent conductive film, and the undercoat layer is composed of a laminate of two or more layers having different optical refractive indexes, and is provided on the low refractive index layer side. It is preferable that the transparent conductive film is formed.

また、前記低屈折率層は、酸化珪素により形成されており、前記高屈折率層は、光屈折率2.0〜2.8の金属酸化物粒子を含む樹脂素材により形成されていることが好ましい。   The low refractive index layer is made of silicon oxide, and the high refractive index layer is made of a resin material containing metal oxide particles having an optical refractive index of 2.0 to 2.8. preferable.

また、本発明の上記目的は、上述の透明面状体を少なくとも1つ備える透明タッチパネルであって、前記透明面状体の透明導電膜と、該透明導電膜とは異なる第2の透明導電膜とが、互いに対向する向き、或いは、同一方向となる向きに配置されている透明タッチパネルにより達成される。   Moreover, the said objective of this invention is a transparent touch panel provided with at least one above-mentioned transparent planar body, Comprising: The transparent conductive film of the said transparent planar body, and the 2nd transparent conductive film different from this transparent conductive film Is achieved by the transparent touch panels arranged in the opposite directions or in the same direction.

本発明によれば、低抵抗化が可能でかつ視認性を向上させることができる透明面状体及び透明タッチパネルを提供することができる。   According to the present invention, it is possible to provide a transparent planar body and a transparent touch panel capable of reducing resistance and improving visibility.

本発明の一実施形態に係る透明タッチパネルの概略断面図である。It is a schematic sectional drawing of the transparent touch panel which concerns on one Embodiment of this invention. 図1に示す透明タッチパネルの一部を示す平面図である。It is a top view which shows a part of transparent touch panel shown in FIG. 図1に示す透明タッチパネルの他の一部を示す平面図である。It is a top view which shows a part of other transparent touch panel shown in FIG. 図1に示す透明タッチパネルの変形例の一部を示す平面図である。It is a top view which shows a part of modification of the transparent touch panel shown in FIG. 図1に示す透明タッチパネルの変形例の他の一部を示す平面図である。It is a top view which shows another part of the modification of the transparent touch panel shown in FIG. 実施例1で得られたITO膜の結晶化度の測定結果を示す図である。FIG. 4 is a diagram showing measurement results of the crystallinity of the ITO film obtained in Example 1. 実施例2で得られたITO膜の結晶化度の測定結果を示す図である。It is a figure which shows the measurement result of the crystallinity degree of the ITO film | membrane obtained in Example 2. FIG. 実施例3で得られたITO膜の結晶化度の測定結果を示す図である。It is a figure which shows the measurement result of the crystallinity degree of the ITO film | membrane obtained in Example 3. FIG. 図1に示す透明タッチパネルの変形例を示す概略断面図である。It is a schematic sectional drawing which shows the modification of the transparent touch panel shown in FIG. 図1に示す透明タッチパネルの他の変形例を示す概略断面図である。It is a schematic sectional drawing which shows the other modification of the transparent touch panel shown in FIG. 官能試験に用いた透明面状体サンプルの概略断面図である。It is a schematic sectional drawing of the transparent planar body sample used for the sensory test. 透明基板に対して熱処理(アニール処理)を行った場合のリタデーション値の変化確認実験の結果を示すグラフである。It is a graph which shows the result of the change confirmation experiment of the retardation value at the time of performing heat processing (annealing process) with respect to a transparent substrate. 従来のタッチパネルの概略断面図である。It is a schematic sectional drawing of the conventional touch panel.

以下、本発明の実態形態について添付図面を参照して説明する。尚、各図面は、構成の理解を容易にするため、実寸比ではなく部分的に拡大又は縮小されている。   Hereinafter, actual forms of the present invention will be described with reference to the accompanying drawings. Each drawing is partially enlarged or reduced to facilitate understanding of the configuration, not the actual size ratio.

図1は、本発明の一実施形態に係る透明タッチパネルの概略構成断面図である。この透明タッチパネル100は、静電容量式のタッチパネルであり、第1透明面状体1と第2透明面状体2とを備えている。第1透明面状体1は、一方面側にパターニングされた透明導電膜11を有する透明基板12と、該透明基板12の他方面側に配置される偏光板13とを備えている。この偏光板13は、通常、図示しないエポキシ系やアクリル系などの一般的な透明接着剤を介して透明基板12に貼着されている。第2透明面状体2は、一方面側にパターニングされた透明導電膜21が形成された透明基板22を備えている。第1の透明面状体1と第2の透明面状体2とは、それぞれの透明導電膜11,21が互いに離間して対向するようにして、粘着層3を介して貼着されている。なお、それぞれの透明導電膜11,21が同一方向を向くようにして配置してもよい。   FIG. 1 is a schematic cross-sectional view of a transparent touch panel according to an embodiment of the present invention. The transparent touch panel 100 is a capacitive touch panel and includes a first transparent planar body 1 and a second transparent planar body 2. The first transparent planar body 1 includes a transparent substrate 12 having a transparent conductive film 11 patterned on one surface side, and a polarizing plate 13 disposed on the other surface side of the transparent substrate 12. The polarizing plate 13 is usually attached to the transparent substrate 12 via a general transparent adhesive such as epoxy or acrylic (not shown). The 2nd transparent planar body 2 is provided with the transparent substrate 22 with which the transparent conductive film 21 patterned by the one surface side was formed. The first transparent planar body 1 and the second transparent planar body 2 are attached via the adhesive layer 3 so that the transparent conductive films 11 and 21 are opposed to each other. . In addition, you may arrange | position so that each transparent conductive film 11 and 21 may face the same direction.

このような構成のタッチパネル100は、例えば、銀行端末(キャッシュディスペンサー)、券売機、パソコン、OA機器、電子手帳、PDA、携帯電話等の表示装置に取り付けられて使用される。なお、タッチパネル100の取り付けに際しては、偏光板13側が露出面(タッチ面)となるように、透明な粘着層を介して表示装置に取り付けられる。   The touch panel 100 having such a configuration is used by being attached to a display device such as a bank terminal (cash dispenser), a ticket vending machine, a personal computer, an OA device, an electronic notebook, a PDA, or a mobile phone. When the touch panel 100 is attached, the touch panel 100 is attached to the display device via a transparent adhesive layer so that the polarizing plate 13 side becomes an exposed surface (touch surface).

透明基板12,22は、ノルボルネンとエチレンとの共重合比率が80:20〜90:10、MVR(メルトボリュームレート)が0.8〜2.0cm/10分である、ガラス転移温度が170〜200℃の環状オレフィンの付加(共)重合体(環状オレフィンコポリマー:COC)よりなるリタデーション100nm〜150nmの位相差フィルムにより形成している。なお、位相差フィルムである各透明基板12,22は、それぞれの遅相軸が、直交する角度となるように配置されている。 Transparent substrate 12, 22, the copolymerization ratio of norbornene and ethylene is 80: 20~90: 10, MVR (melt volume rate) is 0.8 to 2.0 3/10 min, a glass transition temperature of 170 It is formed by a retardation film having a retardation of 100 nm to 150 nm made of an addition (co) polymer (cyclic olefin copolymer: COC) of a cyclic olefin at ˜200 ° C. In addition, each transparent substrate 12 and 22 which is a phase difference film is arrange | positioned so that each slow axis may become an angle orthogonal.

ノルボルネンとエチレンとの付加共重合体である環状オレフィンコポリマー(COC)としては、例えば、市販品を使用することができる。市販品としては、TOPAS Advanced Polymers(TAP)社製、商品名「TOPAS」等を挙げることができる。ノルボルネンとエチレンとの共重合比率は、質量比で80:20〜90:10とすることが好ましい。このような共重合比率とすることにより、ガラス転移温度(Tg)が170〜200℃の環状オレフィンの付加共重合体を得ることができる。なお、ノルボルネンの比率を80質量%未満に設定すると、表1に示すように、170℃以上の高いガラス転移温度を得ることができない。また、エチレンの比率を10質量%未満に設定すると、得られるフィルムの強度が低下し、必要な後加工工程(コーティング工程、薄膜形成工程等)に耐えることが困難となる。ここで、ガラス転移温度(Tg)は、JIS K7121に準拠して示差走査熱量測定器(株式会社島津製作所製DSC−60)により測定される値である。

Figure 0005709311
As the cyclic olefin copolymer (COC) which is an addition copolymer of norbornene and ethylene, for example, a commercially available product can be used. As a commercial item, the product name "TOPAS" by TOPAS Advanced Polymers (TAP) company etc. can be mentioned. The copolymerization ratio of norbornene and ethylene is preferably 80:20 to 90:10 by mass ratio. By setting it as such a copolymerization ratio, the addition copolymer of the cyclic olefin whose glass transition temperature (Tg) is 170-200 degreeC can be obtained. When the norbornene ratio is set to less than 80% by mass, a high glass transition temperature of 170 ° C. or higher cannot be obtained as shown in Table 1. Moreover, when the ratio of ethylene is set to less than 10% by mass, the strength of the obtained film is lowered, and it is difficult to endure necessary post-processing steps (coating step, thin film forming step, etc.). Here, the glass transition temperature (Tg) is a value measured by a differential scanning calorimeter (DSC-60 manufactured by Shimadzu Corporation) in accordance with JIS K7121.
Figure 0005709311

また、環状オレフィンコポリマー(COC)について、MVRが0.7cm/10分、1.8cm/10分、1.9cm/10分、2.2cm/10分、の4種類の樹脂を用い、ペレット化した後、フィルム化する際の加工性を評価した。その結果、表2に示すように、MVR=0.7cm/10分のものでは、ペレット化及びフィルム化共に加工が困難であった。また、MVR=2.2cm/10分のものでは、得られるフィルムの強度が低く、フィルム化が困難であった。これに対し、MVR=1.8cm/10分及びMVR=1.9cm/10分のものでは、ペレット化及びフィルム化の双方の加工性に優れていた。したがって、ノルボルネンとエチレンとの付加共重合体である環状オレフィンコポリマー(COC)のMVRは、0.8〜2.0cm/10分であることが好ましく、更には、1.5〜2.0cm/10分であることが好ましい。なお、MVRは、例えば共重合時の熱量調整等により調整することができる。

Figure 0005709311
Further, the cyclic olefin copolymer (COC), MVR is 0.7 cm 3/10 min, 1.8 cm 3/10 min, 1.9 cm 3/10 min, 2.2 cm 3/10 min, the four types of resins After using and pelletizing, the workability at the time of forming into a film was evaluated. As a result, as shown in Table 2, by way of MVR = 0.7cm 3/10 min, processing the pelletizing and film interpolymer is difficult. Moreover, in the thing of MVR = 2.2cm < 3 > / 10min, the intensity | strength of the film obtained was low and film formation was difficult. In contrast, those of MVR = 1.8cm 3/10 min and MVR = 1.9cm 3/10 min, it was excellent in both workability pelletizing and film reduction. Thus, the MVR of the cyclic olefin copolymer is an addition copolymer of norbornene and ethylene (COC), is preferably from 0.8 to 2.0 3/10 min, further, 1.5~2.0Cm it is preferably 3/10 min. In addition, MVR can be adjusted, for example by heat quantity adjustment at the time of copolymerization.
Figure 0005709311

ここで、異方性物質に入射する光が互いに垂直な振動方向を持つ2つの光(常光線と異常光線)に分離する現象を複屈折といい、リタデーション(Retardation)とは常光線と異常光線との位相差をいう(位相遅れともいう)。本発明では、フィルム面内のMD方向(流れ方向)の屈折率をnx、TD方向(垂直方向)の屈折率をnyとし、フィルムの厚みをdとすると、リタデーション(Re)は、MD方向の屈折率(nx)とTD方向の屈折率(ny)の差(△n)と、フィルムの厚み(d)から式(1)であらわされ、例えば、王子計測機器製自動複屈折計 KOBRA
21-ADHで測定可能である。ノルボルネンとエチレンとの共重合体フィルムの延伸によって、リタデーションは制御されるが、その延伸手法に特に限定はない。外部応力が強いほど複屈折が大きくなり、リタデーションも大きくなる。
Re=△nd=|nx−ny|×d ・・・式(1)
Here, the phenomenon in which light incident on an anisotropic material is separated into two lights (ordinary ray and extraordinary ray) having vibration directions perpendicular to each other is called birefringence. Retardation is ordinary ray and extraordinary ray. Phase difference (also called phase delay). In the present invention, when the refractive index in the MD direction (flow direction) in the film plane is nx, the refractive index in the TD direction (vertical direction) is ny, and the film thickness is d, the retardation (Re) is the MD direction. The difference (Δn) between the refractive index (nx) and the refractive index (ny) in the TD direction and the thickness (d) of the film is expressed by the equation (1). For example, an automatic birefringence meter KOBRA manufactured by Oji Scientific Instruments
It can be measured with 21-ADH. Although the retardation is controlled by stretching the copolymer film of norbornene and ethylene, the stretching technique is not particularly limited. The stronger the external stress, the greater the birefringence and the greater the retardation.
Re = Δnd = | nx−ny | × d (1)

また、160℃で30分の熱処理による収縮率がMD(流れ方向)、TD(垂直方向)ともに、0.5%以下であるのが好ましい。収縮率が0.5%を超えると、例えば高結晶の透明導電膜(ITO膜)を形成するために150℃のような高温でスパッタリング加工する際に、フィルムのフラット性が維持できずに変形したり、さらには表面に形成したITO膜にクラックが発生する不具合が生じる。収縮率を0.5%以下に抑えるための手段は特に制限はないが、ノルボルネンとエチレンとの共重合比率が80:20〜90:10、MVR(メルトボリュームレート)が0.8〜2.0cm
10分である、ガラス転移温度が170〜200℃の環状オレフィンの付加(共)重合体を使用し、例えば180℃以上で延伸加工を行うことによって得られる。
Moreover, it is preferable that the shrinkage rate by heat treatment at 160 ° C. for 30 minutes is 0.5% or less for both MD (flow direction) and TD (vertical direction). If the shrinkage rate exceeds 0.5%, for example, when sputtering is performed at a high temperature such as 150 ° C. to form a highly crystalline transparent conductive film (ITO film), the flatness of the film cannot be maintained and the film is deformed. In addition, there is a problem that cracks occur in the ITO film formed on the surface. The means for suppressing the shrinkage ratio to 0.5% or less is not particularly limited, but the copolymerization ratio of norbornene and ethylene is 80:20 to 90:10, and MVR (melt volume rate) is 0.8 to 2. 0 cm 3 /
The cyclic olefin addition (co) polymer having a glass transition temperature of 170 to 200 ° C., which is 10 minutes, is used, for example, by stretching at 180 ° C. or higher.

透明導電膜11,21の材料としては、インジウム錫酸化物(ITO)、酸化インジウム、アンチモン添加酸化錫、フッ素添加酸化錫、アルミニウム添加酸化亜鉛、カリウム添加酸化亜鉛、シリコン添加酸化亜鉛や、酸化亜鉛−酸化錫系、酸化インジウム−酸化錫系、酸化亜鉛−酸化インジウム−酸化マグネシウム系、酸化亜鉛、スズ酸化等の透明導電材料、或いは、スズ、銅、アルミニウム、ニッケル、クロムなどの金属材料、金属酸化物材料を例示することができ、これら2種以上を複合して形成してもよい。また、酸やアルカリに弱い金属単体でも導電材料として使用できる。   The materials of the transparent conductive films 11 and 21 include indium tin oxide (ITO), indium oxide, antimony-added tin oxide, fluorine-added tin oxide, aluminum-added zinc oxide, potassium-added zinc oxide, silicon-added zinc oxide, and zinc oxide. -Transparent conductive materials such as tin oxide, indium oxide-tin oxide, zinc oxide-indium oxide-magnesium oxide, zinc oxide and tin oxide, or metal materials such as tin, copper, aluminum, nickel and chromium, metals An oxide material can be exemplified, and two or more of these may be formed in combination. In addition, a simple metal weak against acid or alkali can be used as a conductive material.

また、カーボンナノチューブやカーボンナノホーン、カーボンナノワイヤ、カーボンナノファイバー、グラファイトフィブリルなどの極細導電炭素繊維や銀素材からなる極細導電繊維をバインダーとして機能するポリマー材料に分散させた複合材を透明導電膜11,21の材料として用いることもできる。ここでポリマー材料としては、ポリアニリン、ポリピロール、ポリアセチレン、ポリチオフェン、ポリフェニレンビニレン、ポリフェニレンスルフィド、ポリp−フェニレン、ポリ複素環ビニレン、PEDOT:poly(3,4-ethylenedioxythiophene)などの導電性ポリマーを採用することができる。また、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリエーテルエーテルケトン(PEEK)、ポリカーボネート(PC)、ポリプロピレン(PP)、ポリアミド(PA)、ポリアクリル(PAC)、ポリイミド、エポキシ樹脂、フェノール樹脂、脂肪族環状ポリオレフィン、ノルボルネン系の熱可塑性透明樹脂などの非導電性ポリマーを採用することができる。   Further, a transparent conductive film 11, a composite material in which ultrafine conductive carbon fibers such as carbon nanotubes, carbon nanohorns, carbon nanowires, carbon nanofibers, and graphite fibrils, or ultrafine conductive fibers made of silver are dispersed in a polymer material that functions as a binder. It can also be used as 21 materials. Here, a conductive polymer such as polyaniline, polypyrrole, polyacetylene, polythiophene, polyphenylene vinylene, polyphenylene sulfide, poly p-phenylene, polyheterocyclic vinylene, PEDOT: poly (3,4-ethylenedioxythiophene) should be adopted as the polymer material. Can do. Polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetheretherketone (PEEK), polycarbonate (PC), polypropylene (PP), polyamide (PA), polyacrylic (PAC) ), Non-conductive polymers such as polyimide, epoxy resin, phenol resin, aliphatic cyclic polyolefin, norbornene-based thermoplastic transparent resin can be employed.

透明導電膜11,21の材料として、特にカーボンナノチューブを非導電性ポリマー材料に分散させたカーボンナノチューブ複合材を採用した場合、カーボンナノチューブは、直径が一般的には0.8nm〜1.4nm(1nm前後)と極めて細いので、1本或いは1束ずつ非導電性ポリマー材料中に分散することでカーボンナノチューブが光透過を阻害することが少なくなり透明導電膜11,21の透明性を確保する上で好ましい。   When a carbon nanotube composite material in which carbon nanotubes are dispersed in a non-conductive polymer material is employed as the material of the transparent conductive films 11 and 21, the carbon nanotubes generally have a diameter of 0.8 nm to 1.4 nm ( Since it is extremely thin (around 1 nm), it is possible to prevent the carbon nanotubes from obstructing light transmission by dispersing them one by one or in bundles in the non-conductive polymer material, thereby ensuring the transparency of the transparent conductive films 11 and 21. Is preferable.

透明導電膜11,21の形成方法は、スパッタリング法、真空蒸着法、イオンプレーティング法などのPVD法や、CVD法、塗工法、印刷法などを例示することができる。具体的には、上記特徴を有する透明基板(位相差フィルム)上に、該基板の温度を140℃以上に保って透明導電膜をスパッタリング法等により形成する。あるいは、上記特徴を有する透明基板(位相差フィルム)上に、該フィルムの温度を−10℃〜150℃に保って透明導電膜をスパッタリング法等により形成した後、140〜180℃の温度で熱処理を行うことにより形成することができる。また厚みについて、例えばスパッタリング法でITO膜を成膜する場合は、透明導電膜11,21の厚みは、60nm以下であることが好ましく、30nm以下であることがより好ましい。なお、膜厚が5nm以下では連続した膜になり難く、安定な導電層を形成することは困難である。   Examples of methods for forming the transparent conductive films 11 and 21 include PVD methods such as sputtering, vacuum deposition, and ion plating, CVD, coating, and printing. Specifically, a transparent conductive film is formed on a transparent substrate (retardation film) having the above characteristics by sputtering or the like while keeping the temperature of the substrate at 140 ° C. or higher. Alternatively, on the transparent substrate (retardation film) having the above characteristics, a transparent conductive film is formed by sputtering or the like while maintaining the temperature of the film at −10 ° C. to 150 ° C., and then heat-treated at a temperature of 140 to 180 ° C. Can be formed. Regarding the thickness, for example, when an ITO film is formed by sputtering, the thickness of the transparent conductive films 11 and 21 is preferably 60 nm or less, and more preferably 30 nm or less. Note that when the film thickness is 5 nm or less, it is difficult to form a continuous film, and it is difficult to form a stable conductive layer.

透明導電膜11,21は、図2及び図3に示すように、平行に延びる複数の帯状導電部11a,21aの集合体としてそれぞれ形成されており、各透明導電膜11,21の帯状導電部11a,21aは、互いに直交するように配置されている。透明導電膜11,21は、導電性インクなどからなる引き廻し回路(図示せず)を介して外部の駆動回路(図示せず)に接続される。透明導電膜11,21のパターン形状は、本実施形態のものに限定されず、指などの接触ポイントを検出可能である限り、任意の形状とすることが可能である。例えば、図4及び図5に示すように、透明導電膜11,21を、複数の菱形状導電部11b,21bが直線状に連結された構成とし、各透明導電膜11,21における菱形状導電部11b,21bの連結方向が互いに直交し、且つ、平面視において上下の菱形状導電部11b,21bが重なり合わないように配置してもよい。なお、透明タッチパネル100の分解能などの動作性能については、第1透明面状体1と第2透明面状体2とを重ね合わせた場合に、導電部が存在しない領域を少なくする構成を採用する方が優れている。このような観点から、透明導電膜11,21のパターン形状として、矩形状の構成よりも、複数の菱形状導電部11b,21bが直線状に連結された構成の方が望ましい。   As shown in FIGS. 2 and 3, the transparent conductive films 11 and 21 are each formed as an aggregate of a plurality of strip-shaped conductive portions 11 a and 21 a extending in parallel, and the strip-shaped conductive portions of the transparent conductive films 11 and 21 are formed. 11a and 21a are arrange | positioned so that it may mutually orthogonally cross. The transparent conductive films 11 and 21 are connected to an external drive circuit (not shown) through a routing circuit (not shown) made of conductive ink or the like. The pattern shape of the transparent conductive films 11 and 21 is not limited to that of the present embodiment, and may be any shape as long as a contact point such as a finger can be detected. For example, as shown in FIGS. 4 and 5, the transparent conductive films 11 and 21 have a configuration in which a plurality of rhombus-shaped conductive portions 11 b and 21 b are linearly connected, and the rhombus-shaped conductivity in each of the transparent conductive films 11 and 21. The connecting directions of the portions 11b and 21b may be orthogonal to each other and arranged so that the upper and lower rhombus-shaped conductive portions 11b and 21b do not overlap in plan view. As for the operation performance such as the resolution of the transparent touch panel 100, a configuration is adopted in which when the first transparent planar body 1 and the second transparent planar body 2 are overlapped, the area where no conductive portion is present is reduced. Is better. From such a viewpoint, the pattern shape of the transparent conductive films 11 and 21 is preferably a configuration in which a plurality of rhombus-shaped conductive portions 11b and 21b are connected in a straight line rather than a rectangular configuration.

透明導電膜11,21のパターニングは、珪素含有層上又は透明基板上にそれぞれ形成された透明導電膜11,21の表面に、所望のパターン形状を有するマスク部を形成して露出部分を酸液などでエッチング除去した後、アルカリ液などによりマスク部を溶解させて行うことができる。   Patterning of the transparent conductive films 11 and 21 is performed by forming a mask portion having a desired pattern shape on the surface of the transparent conductive films 11 and 21 formed on the silicon-containing layer or the transparent substrate, respectively, and removing the exposed portion with an acid solution. Etching and removal can be performed by dissolving the mask portion with an alkaline solution or the like.

偏光板13は、例えば、ポリビニルアルコール(PVA)を延伸し、ヨウ素で染色した層を偏光子として、その両側に保護層のセルローストリアセテート層(TAC層)を重ねて構成されている。透過軸方向の透過率が高く、吸収軸方向の透過率が低くなるような構成であれば、PVA以外に親水性高分子フィルム、ヨウ素以外に2色性色素、TAC以外に透明フィルム材料を用いて偏光板13を構成してもよい。このような偏光板13は、その透過軸と、位相差フィルムである透明基板12の遅相軸とが45度の角度をなすように貼り合わせられている。また、偏光板13の露出面を保護するために、図1に示すように、当該露出面上に被覆層4を設けるように構成してもよい。被覆層4は、透明性が高い材料からなることが好ましく、具体的には、ポリエチレンテレフタレート(PET)、ポリイミド(PI)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリエーテルエーテルケトン(PEEK)、ポリカーボネート(PC)、ポリプロピレン(PP)、ポリアミド(PA)、ポリアクリル(PAC)、アクリル、非晶質ポリオリフィン系樹脂、環状ポリオリフィン系樹脂、脂肪族環状ポリオレフィン、ノルボルネン系の熱可塑性透明樹脂などの可撓性フィルムやこれら2種以上の積層体、およびガラスなどを挙げることができる。なお、偏光板13または被覆層4の露出面に対して、耐擦傷性、耐摩耗性、耐指紋性、反射防止性、ノングレア性の向上のため、表面処理加工を施してもよい。また、被覆層は、通常、図示しないエポキシ系やアクリル系などの一般的な透明接着剤を介して偏光板13に貼着されている。   The polarizing plate 13 is configured, for example, by stacking a cellulose triacetate layer (TAC layer) as a protective layer on both sides of a layer obtained by stretching polyvinyl alcohol (PVA) and staining with iodine as a polarizer. As long as the transmittance in the transmission axis direction is high and the transmittance in the absorption axis direction is low, a hydrophilic polymer film other than PVA, a dichroic dye other than iodine, and a transparent film material other than TAC are used. The polarizing plate 13 may be configured. Such a polarizing plate 13 is bonded so that the transmission axis and the slow axis of the transparent substrate 12 which is a retardation film form an angle of 45 degrees. Moreover, in order to protect the exposed surface of the polarizing plate 13, as shown in FIG. 1, you may comprise so that the coating layer 4 may be provided on the said exposed surface. The coating layer 4 is preferably made of a highly transparent material, specifically, polyethylene terephthalate (PET), polyimide (PI), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherether. Ketone (PEEK), polycarbonate (PC), polypropylene (PP), polyamide (PA), polyacryl (PAC), acrylic, amorphous polyolefin resin, cyclic polyolefin resin, aliphatic cyclic polyolefin, norbornene thermoplastic Examples thereof include a flexible film such as a transparent resin, a laminate of two or more of these, and glass. The exposed surface of the polarizing plate 13 or the coating layer 4 may be subjected to a surface treatment for improving scratch resistance, abrasion resistance, fingerprint resistance, antireflection, and non-glare properties. In addition, the coating layer is usually attached to the polarizing plate 13 via a general transparent adhesive such as epoxy or acrylic (not shown).

粘着層3は、エポキシ系やアクリル系など、一般的な透明接着剤を用いることができ、ノルボルネン系樹脂の透明性フィルムからなる芯材を含むものであってもよい。また、シート状粘着材を複数枚重ね合わせることにより粘着層3を形成してもよく、更に、複数種類のシート状粘着材を重ね合わせて形成してもよい。粘着層3の厚みは、特に指定はないが、実用上では200μm以下であることが好ましい。また、粘着層3の光屈折率は、1.40〜1.70が好ましく、1.46〜1.57であることが更に好ましい。粘着層の屈折率は透明導電膜の屈折率に近づける(高くする)と、界面での屈折率差が小さくなり、パターン形状を目立たなくする効果は高まるが、粘着層3の高屈折率化には高屈折材微粒子の添加等が必要であり、透明面状体としての透過率が下がる問題がある。また粘着層3は透明導電膜と接しており、酸など透明導電膜へダメージを与える材料を含むものは好ましくない。   The adhesive layer 3 may be made of a general transparent adhesive such as epoxy or acrylic, and may include a core made of a norbornene resin transparent film. Further, the adhesive layer 3 may be formed by overlapping a plurality of sheet-like adhesive materials, and further, a plurality of types of sheet-like adhesive materials may be overlapped. The thickness of the pressure-sensitive adhesive layer 3 is not particularly specified, but is practically preferably 200 μm or less. Moreover, 1.40-1.70 are preferable and, as for the optical refractive index of the adhesion layer 3, it is still more preferable that it is 1.46-1.57. When the refractive index of the adhesive layer is made close to (higher) the refractive index of the transparent conductive film, the difference in refractive index at the interface is reduced, and the effect of making the pattern shape inconspicuous increases, but the refractive index of the adhesive layer 3 is increased. Requires the addition of fine particles of high refractive material, and there is a problem that the transmittance as a transparent sheet is lowered. Moreover, the adhesion layer 3 is in contact with the transparent conductive film, and it is not preferable to include a material that damages the transparent conductive film such as an acid.

ここで、本発明に係る透明基板12,22の材料であるノルボルネンとエチレンとの共重合体は、その吸水率(23℃/24時間)が、通常、0.005〜0.1%程度であるのが好ましい。吸水率(ISO 62準拠、23℃/24時間)が、0.1%を超えると、得られる基板の寸法安定性が低下する傾向にある。透明基板12,22で使用するノルボルネンとエチレンとの共重合体の光屈折率(JIS K7142準拠)は、通常、1.49〜1.55程度であり、光線透過率(JIS K7361−1準拠(日本電色工業株式会社へ―ズメーターNDH5000にて測定))は、90.8%〜93.0%程度である。ノルボルネンとエチレンとの共重合体には紫外線吸収剤、無機や有機のアンチブロツキング剤、滑剤、静電気防止剤、安定剤等各種公知の添加剤を合目的に添加してもよい。MVR(メルトボリュームレート)は温度260℃、荷重2.16kgの条件での10分あたりの吐出体積(cm)が0.8〜2.0 cm/10分であることが好ましい。0.8cm/10分未満では、原料製造時あるいはフィルム製造時に成形機内の圧力が高くなりすぎ製造できない。また、2.0cm
1 0分よりも大きい場合には、得られる位相差フィルムの強度が弱すぎてタッチパネル等に必要な加工(スパッタリング等)工程に耐えることができない。
Here, the copolymer of norbornene and ethylene, which is the material of the transparent substrates 12 and 22 according to the present invention, has a water absorption rate (23 ° C./24 hours) of usually about 0.005 to 0.1%. Preferably there is. If the water absorption rate (ISO 62 compliant, 23 ° C./24 hours) exceeds 0.1%, the dimensional stability of the resulting substrate tends to decrease. The photorefractive index (based on JIS K7142) of the norbornene and ethylene copolymer used in the transparent substrates 12 and 22 is usually about 1.49 to 1.55, and the light transmittance (based on JIS K7361-1 ( Nippon Denshoku Industries Co., Ltd.-Measured with a meter NDH5000)) is about 90.8% to 93.0%. Various known additives such as an ultraviolet absorber, an inorganic or organic antiblocking agent, a lubricant, an antistatic agent, and a stabilizer may be added to the copolymer of norbornene and ethylene for the purpose. MVR (melt volume rate) Temperature 260 ° C., it is preferred that the discharge volume per 10 minutes under a load of 2.16 kg (cm 3) is 0.8 to 2.0 cm 3/10 min. The 0.8cm less than 3/10 min, the pressure of the molding machine can not be prepared too high at the time or a film raw material production. Also, 2.0 cm 3 /
When the time is longer than 10 minutes, the strength of the obtained retardation film is too weak to withstand the processing (sputtering or the like) process required for the touch panel or the like.

ノルボルネンとエチレンとの共重合体から透明基板12,22用のフィルムを得る方法は特に限定はなく、例えば溶液流延法、押出し法、カレンダー法等が例示できる。ノルボルネンとエチレンとの共重合体フィルムの厚みは、20〜300μmが好ましく、さらに好ましくは、40〜200μmである。薄すぎるとフィルム強度が不足する傾向にあり、フィルム強度が十分であれば必要以上に厚くする必要はない。   A method for obtaining a film for the transparent substrates 12 and 22 from a copolymer of norbornene and ethylene is not particularly limited, and examples thereof include a solution casting method, an extrusion method, and a calendar method. As for the thickness of the copolymer film of norbornene and ethylene, 20-300 micrometers is preferable, More preferably, it is 40-200 micrometers. If the film strength is too thin, the film strength tends to be insufficient, and if the film strength is sufficient, it is not necessary to make it thicker than necessary.

ノルボルネンとエチレンとの共重合体フィルム表面の濡れ性及び接着性を向上させるために、フレーム処理、紫外線照射処理、コロナ放電処理、プラズマ処理、イトロ処理、プライマー処理、化学薬品処理などの表面改質処理を行ってもよい。コロナ放電処理及び紫外線照射処理は、空気中、窒素ガス中、希ガス中等で行うことができる。このような表面改質処理によって、環状オレフィン系樹脂フィルム表面の濡れ張力を、450μN/cm(23℃)以上とすることが好ましく、500μN/cm(23℃)以上とすることがより好ましい。   To improve the wettability and adhesion of the copolymer film of norbornene and ethylene, surface modification such as flame treatment, ultraviolet irradiation treatment, corona discharge treatment, plasma treatment, itro treatment, primer treatment, chemical treatment, etc. Processing may be performed. The corona discharge treatment and the ultraviolet irradiation treatment can be performed in air, nitrogen gas, rare gas, or the like. By such surface modification treatment, the wetting tension on the surface of the cyclic olefin resin film is preferably 450 μN / cm (23 ° C.) or more, and more preferably 500 μN / cm (23 ° C.) or more.

収縮率の測定は、100×100mmのサイズに切り出したフィルムの4辺の長さを測長機を用い、0.001mm単位で測定し、次いで測定したフィルムを160℃に設定したオーブンに30分間投入した後取りだし、再度フィルムの4辺の長さを測長機を用い、0.001mm単位で測定し、4辺の長さのそれぞれの変化量を求めた。2枚ずつ測定し、MD方向、TD方向それぞれについて平均値を求め収縮率とした。値がマイナスの場合は収縮を意味し、プラスの場合は膨張を意味する。   The shrinkage rate was measured by measuring the length of four sides of a film cut into a size of 100 × 100 mm in units of 0.001 mm using a length measuring machine, and then measuring the measured film in an oven set at 160 ° C. for 30 minutes. Then, the length of the four sides of the film was measured again in units of 0.001 mm using a length measuring device, and the amount of change in the length of each of the four sides was determined. Two sheets were measured, the average value was obtained for each of the MD direction and the TD direction, and the shrinkage was obtained. A negative value means contraction, and a positive value means expansion.

ノルボルネンとエチレンとの共重合体フィルムを延伸することによって、リタデーションを制御する手法は特に限定はなく、例えばロール延伸法、テンタークリップ延伸法、圧延法等が例示できる。   The method for controlling the retardation by stretching a copolymer film of norbornene and ethylene is not particularly limited, and examples thereof include a roll stretching method, a tenter clip stretching method, and a rolling method.

本発明者らは、上記構成を有する透明基板12(22)を評価するために、透明基板12(22)上に透明導電膜(ITO膜)を形成し、透明導電膜の結晶化度の測定を行ったので、その結果について説明する。   In order to evaluate the transparent substrate 12 (22) having the above-described configuration, the present inventors formed a transparent conductive film (ITO film) on the transparent substrate 12 (22), and measured the crystallinity of the transparent conductive film. The results will be described.

まず、ノルボルネンとエチレンとの共重合比率が、82:18であり、ガラス転移温度180℃、MVR=1.5の共重合体を溶融押出法にて樹脂温度300℃、引取りロール温度130℃で、厚みが100μmになるようにフィルムを作成した。次いでロール周速が7.0m/minと、ロール周速が14.0m/minの2本の異なる周速の金属ロール間を、フィルム温度を190℃に保った状態で走行させることにより、延伸倍率2.0倍、リタデーション138nm、Nz係数=1.0、フィルム厚み86μmの位相差フィルムを得た。Nz係数は、屈折率成分nx,ny,nzの大小関係を表す指標の1つで、式(式2)で定義される。ここで、nx及びnyはフィルム面内の屈折率、nzはフィルム面に垂直な方向の屈折率である。
Nz=(nx−nz)/|nx−ny| ・・・式(2)
得られた位相差フィルムの160℃で30分での寸法変化率はMD=−0.46%、TD=0.22%であった。得られた位相差フィルムの強度は十分使用できるものであった。
First, the copolymerization ratio of norbornene and ethylene is 82:18, a glass transition temperature of 180 ° C., and a copolymer with MVR = 1.5 is melt extruded to have a resin temperature of 300 ° C. and a take-up roll temperature of 130 ° C. And the film was created so that thickness might be set to 100 micrometers. Next, stretching is performed by running between two metal rolls having a roll peripheral speed of 7.0 m / min and a roll peripheral speed of 14.0 m / min while maintaining the film temperature at 190 ° C. A retardation film having a magnification of 2.0 times, a retardation of 138 nm, an Nz coefficient of 1.0, and a film thickness of 86 μm was obtained. The Nz coefficient is one of indices indicating the magnitude relationship between the refractive index components nx, ny, and nz, and is defined by an expression (Expression 2). Here, nx and ny are refractive indexes in the film plane, and nz is a refractive index in a direction perpendicular to the film plane.
Nz = (nx−nz) / | nx−ny | Expression (2)
The dimensional change rate of the obtained retardation film at 160 ° C. in 30 minutes was MD = −0.46% and TD = 0.22%. The strength of the obtained retardation film was sufficiently usable.

次に、得られた位相差フィルムの両面に、紫外線硬化型のアクリル系塗料を用い、厚みが表裏それぞれ6μmになるようにハードコート層を設けた。得られたフィルムの表面の鉛筆硬度はHBであった。   Next, on both surfaces of the obtained retardation film, an ultraviolet curable acrylic paint was used, and a hard coat layer was provided so that the thickness was 6 μm on each side. The pencil hardness of the surface of the obtained film was HB.

上記で得られたフィルムの片面に、フィルム温度を150℃に保った状態で、抵抗値256Ω/□のITO透明導電膜をスパッタリング法により形成した。得られたITO膜(実施例1)の結晶化度の測定結果を図6に示す。
また、上記で得られたフィルムの片面に、フィルム温度を90℃に保った状態で、抵抗値450Ω/□のITO透明導電膜をスパッタリング法により形成した。さらに165℃温度で1時間熱処理を行うことによって抵抗値240Ω/□のITO透明導電膜を形成した。得られたITO膜(実施例2)の結晶化度の測定結果を図7に示す。
An ITO transparent conductive film having a resistance value of 256Ω / □ was formed on one side of the film obtained above by a sputtering method with the film temperature kept at 150 ° C. The measurement result of the crystallinity of the obtained ITO film (Example 1) is shown in FIG.
In addition, an ITO transparent conductive film having a resistance value of 450Ω / □ was formed on one side of the film obtained above by a sputtering method while maintaining the film temperature at 90 ° C. Further, an ITO transparent conductive film having a resistance value of 240Ω / □ was formed by heat treatment at a temperature of 165 ° C. for 1 hour. The measurement result of the crystallinity of the obtained ITO film (Example 2) is shown in FIG.

また、ノルボルネンとエチレンとの共重合比率が、82:18であり、ガラス転移温度180℃、MVR=1.5の共重合体を溶融押出法にて樹脂温度300℃、引取りロール温度130℃で、厚みが200μmになるようにフィルムを作成した。次いでテンタークリップ方式の延伸機にて、速度1.0m/min、延伸倍率2.0倍、フィルム温度を185.5℃にて横延伸することにより、リタデーション138nm、Nz係数=1.5、フィルム厚み95μmの位相差フィルムを得た。得られた位相差フィルムの160℃で30分での寸法変化率はMD=−0.06%、TD=−0.12%であった。得られた位相差フィルムの強度は十分使用できるものであった。   Further, the copolymerization ratio of norbornene and ethylene is 82:18, a glass transition temperature of 180 ° C., and a copolymer having an MVR = 1.5 is melt extruded and a resin temperature of 300 ° C. and a take-up roll temperature of 130 ° C. And the film was created so that thickness might be set to 200 micrometers. Next, with a tenter clip type stretching machine, the film was transversely stretched at a speed of 1.0 m / min, a stretching ratio of 2.0 times, and a film temperature of 185.5 ° C., whereby retardation 138 nm, Nz coefficient = 1.5, film A retardation film having a thickness of 95 μm was obtained. The dimensional change rate of the obtained retardation film at 160 ° C. in 30 minutes was MD = −0.06% and TD = −0.12%. The strength of the obtained retardation film was sufficiently usable.

得られた位相差フィルムの両面に、紫外線硬化型のアクリル系塗料を用い、厚みが表裏それぞれ6μmになるようにハードコート層を設けた。得られたフィルムの表面の鉛筆硬度はHBであった。上記で得られたフィルムの片面に、フィルム温度を1
5 0℃に保った状態で抵抗値236Ω/□のITO透明導電膜をスパッタリング法により形成した。得られたITO膜(実施例3)の結晶化度の測定結果を図8に示す。
An ultraviolet curable acrylic paint was used on both surfaces of the obtained retardation film, and hard coat layers were provided so that the thicknesses of the front and back surfaces were 6 μm. The pencil hardness of the surface of the obtained film was HB. The film temperature is 1 on one side of the film obtained above.
An ITO transparent conductive film having a resistance value of 236Ω / □ was formed by sputtering while maintaining the temperature at 50 ° C. The measurement result of the crystallinity of the obtained ITO film (Example 3) is shown in FIG.

図6〜図8に示ように、X線によるITO膜の結晶化度の測定結果から、実施例1〜3は全て、2θ=約30°付近のITO特有の(222)配向によるX線強度ピークが強く、得られた膜質の結晶化度が高いことが確認された。   As shown in FIGS. 6 to 8, from the measurement results of the degree of crystallinity of the ITO film by X-rays, Examples 1 to 3 all have X-ray intensities due to the (222) orientation unique to ITO around 2θ = about 30 °. It was confirmed that the peak was strong and the crystallinity of the obtained film quality was high.

以上の構成を備える透明タッチパネル100において、タッチ位置の検出方法は、従来の静電容量式のタッチパネルと同様であり、第1透明面状体1の表面側における任意の位置を指などで触れると、透明導電膜11,21は接触位置において人体の静電容量を介して接地され、透明導電膜11,21を流れる電流値を検出することにより、接触位置の座標が演算される。   In the transparent touch panel 100 having the above configuration, the touch position detection method is the same as that of a conventional capacitive touch panel, and when an arbitrary position on the surface side of the first transparent planar body 1 is touched with a finger or the like. The transparent conductive films 11 and 21 are grounded through the capacitance of the human body at the contact position, and the coordinates of the contact position are calculated by detecting the current value flowing through the transparent conductive films 11 and 21.

本発明に係る透明面状体1,2は、ノルボルネンとエチレンとの共重合比率が80:20〜90:10、MVR(メルトボリュームレート)が0.8〜2.0cm/10分である、ガラス転移温度が170〜200℃の環状オレフィンの付加(共)重合体よりなるリタデーション100nm〜150nmの位相差フィルムである透明基板12,22を備えている為、透明基板12,22上に透明導電膜11,21を成膜する際、もしくは成膜後の熱処理(アニール)の際に、透明基板12,22の温度を140℃以上に設定することが可能となり、成膜される透明導電膜11,21の結晶化度を高めることができる。この結果、透明導電膜11,21の低抵抗化が可能となる。 Transparent planar member according to the present invention 1 and 2, the copolymerization ratio of norbornene and ethylene is 80: 20~90: 10, MVR (melt volume rate) is 0.8 to 2.0 3/10 min The transparent substrates 12 and 22 which are retardation films of retardation 100 nm to 150 nm made of an addition (co) polymer of cyclic olefin having a glass transition temperature of 170 to 200 ° C. are transparent on the transparent substrates 12 and 22. When the conductive films 11 and 21 are formed, or when heat treatment (annealing) after the film formation, the temperature of the transparent substrates 12 and 22 can be set to 140 ° C. or higher. The crystallinity of 11 and 21 can be increased. As a result, the resistance of the transparent conductive films 11 and 21 can be reduced.

また、透明導電膜11,21の結晶化度を高めることができる結果、ITO膜が黄色味の強い色目となることを防止することができ、透明導電膜のパターン形状を目立ちにくくして透明面状体及びタッチパネルの視認性を向上させることができる。さらに、透明導電膜11,21の結晶化度を高めて低抵抗化が可能になるため、透明導電膜の厚みをより一層薄くすることができ、更に視認性を向上させることができる。   Moreover, as a result of increasing the crystallinity of the transparent conductive films 11 and 21, it is possible to prevent the ITO film from having a strong yellowish color, making the pattern shape of the transparent conductive film less noticeable and the transparent surface The visibility of the body and the touch panel can be improved. Furthermore, since the crystallinity of the transparent conductive films 11 and 21 can be increased and the resistance can be lowered, the thickness of the transparent conductive film can be further reduced, and the visibility can be further improved.

更に、本実施形態の透明面状体1は、位相差フィルムである透明基板12の他方面側(透明導電膜11が形成されている面とは反対側)に偏光板13を供えているため、偏光板13側から入射する外光が、パターニングされた透明導電膜11,21の表面で反射して、偏光板13を再度通過することを効果的に防止することができる。具体的に説明すると、タッチパネル100に入射した外光(図1において、被覆層4側から入射した外光)は、偏光板13を通過する際に水平の直線偏光に偏光されて位相差フィルムからなる透明基板12に入射する。透明基板12に入射した水平の直線偏光は、右回りの円偏光に偏光されて、パターニングされた透明導電膜11,21の表面や、透明導電膜11,21が形成されていない透明基板12,22の表面にて反射する。反射した右回りの円偏光は、反射時に左回りの円偏光になり、再度位相差フィルムである透明基板12に入射する。透明基板12に入射した左回りの円偏光は、透明基板12通過時に垂直の直線偏光に偏光されて偏光板13に入射する。偏光板13に入射した垂直の直線偏光は、この偏光板13を通過することができないため、パターニングされた透明導電膜11,21の表面や、透明導電膜11,21が形成されていない透明基板12,22の表面での反射光が視認できなくなる。このように円偏光構成を備えることにより、外光反射を防止できる結果、パターニングされた透明導電膜11,21のパターン形状を目立たなくできると共に、タッチパネルが設置される表示装置により表示される文字情報や画像情報をより見易くすることができる。   Furthermore, since the transparent planar body 1 of this embodiment is provided with the polarizing plate 13 on the other surface side (the side opposite to the surface on which the transparent conductive film 11 is formed) of the transparent substrate 12 that is a retardation film. Thus, it is possible to effectively prevent external light incident from the polarizing plate 13 side from being reflected by the surfaces of the patterned transparent conductive films 11 and 21 and passing through the polarizing plate 13 again. Specifically, external light incident on the touch panel 100 (external light incident from the side of the coating layer 4 in FIG. 1) is polarized into horizontal linearly polarized light when passing through the polarizing plate 13 and from the retardation film. The incident light enters the transparent substrate 12. The horizontal linearly polarized light incident on the transparent substrate 12 is polarized into clockwise circularly polarized light, and the surfaces of the patterned transparent conductive films 11 and 21 or the transparent substrate 12 on which the transparent conductive films 11 and 21 are not formed, Reflected on the surface of 22. The reflected clockwise circularly polarized light becomes counterclockwise circularly polarized light at the time of reflection, and is incident on the transparent substrate 12 which is a retardation film again. The counterclockwise circularly polarized light incident on the transparent substrate 12 is polarized into vertical linearly polarized light when passing through the transparent substrate 12 and is incident on the polarizing plate 13. Since the vertical linearly polarized light incident on the polarizing plate 13 cannot pass through the polarizing plate 13, the surfaces of the patterned transparent conductive films 11 and 21 and the transparent substrate on which the transparent conductive films 11 and 21 are not formed. Reflected light on the surfaces of 12 and 22 becomes invisible. By providing such a circularly polarized light structure, it is possible to prevent external light reflection, and as a result, the pattern shape of the patterned transparent conductive films 11 and 21 can be made inconspicuous, and character information displayed by a display device on which a touch panel is installed And image information can be made easier to see.

以上、本発明に係る透明面状体1,2及びこれを使用する透明タッチパネル100の実施形態について説明したが、具体的構成は、上記実施形態に限定されない。例えば、図9に示すように、第2透明面状体2が有する透明基板22を、ノルボルネンとエチレンとの共重合比率が80:20〜90:10、MVR(メルトボリュームレート)が0.8〜2.0cm/10分である、ガラス転移温度が170〜200℃の環状オレフィンの付加(共)重合体よりなる光等方性フィルムにより形成すると共に、ポリカーボネート(PC)フィルムやポリビニルアルコール(PVA)フィルムを延伸して複屈折を付与した位相差板5を配置して透明タッチパネルを構成してもよい。 As mentioned above, although embodiment of the transparent planar bodies 1 and 2 which concern on this invention, and the transparent touch panel 100 which uses this was demonstrated, a specific structure is not limited to the said embodiment. For example, as shown in FIG. 9, the transparent substrate 22 of the second transparent planar body 2 has a copolymerization ratio of norbornene and ethylene of 80:20 to 90:10, and an MVR (melt volume rate) of 0.8. a ~2.0cm 3/10 min, with a glass transition temperature formed by the light isotropic film made of addition (co) polymer of a cyclic olefin of 170 to 200 ° C., polycarbonate (PC) film or polyvinyl alcohol ( A transparent touch panel may be configured by disposing the retardation film 5 provided with birefringence by stretching the PVA) film.

また、上記実施形態において、図10に示すように、透明基板12,22と透明導電膜11,21との間にアンダーコート層14,24が介在される構成を採用することができる。アンダーコート層14,24は、それぞれ低屈折率層14a,24aと、低屈折率層14a,24aよりも光屈折率が高い高屈折率層14b,24bとの積層体から構成されており、低屈折率層14a,24a側に透明導電膜11,21が形成されるように配置されている。   Moreover, in the said embodiment, as shown in FIG. 10, the structure by which the undercoat layers 14 and 24 are interposed between the transparent substrates 12 and 22 and the transparent conductive films 11 and 21 is employable. The undercoat layers 14 and 24 are each composed of a laminate of low refractive index layers 14a and 24a and high refractive index layers 14b and 24b having a higher optical refractive index than the low refractive index layers 14a and 24a. It arrange | positions so that the transparent conductive films 11 and 21 may be formed in the refractive index layers 14a and 24a side.

低屈折率層14a,24aの材料としては、シリコン錫酸化物(silicon-tin oxide)、酸化珪素、酸化アルミなどの無機酸化物とこれらを組み合わせからなる組成物やフッソ系有機物素材、酸化ケイ素系ゾルゲル素材、酸化ケイ素系やフッソ系の微多孔質素材等を例示することができ、視認性・生産性向上の観点から特に好ましいのは、光屈折率が1.3〜1.5のものである。低屈折率層14a,24aは、スパッタリング法、抵抗蒸着法、電子ビーム蒸着法、種々ウエットコーティング法、などにより形成することができる。   As the material for the low refractive index layers 14a and 24a, a composition comprising a combination of inorganic oxides such as silicon-tin oxide, silicon oxide, aluminum oxide and the like, a fluorine-based organic material, or a silicon oxide-based material. Examples thereof include sol-gel materials, silicon oxide-based and fluorine-based microporous materials, and those having an optical refractive index of 1.3 to 1.5 are particularly preferable from the viewpoint of improving visibility and productivity. is there. The low refractive index layers 14a and 24a can be formed by sputtering, resistance vapor deposition, electron beam vapor deposition, various wet coating methods, and the like.

高屈折率層14b,24bは、光屈折率1.60〜1.80であることが望ましく、1.65を超え1.80以下であることがより望ましい。屈折率が1.60未満であると透明導電膜の有る部分と無い部分の光学特性を近似させ難くなり、透明導電膜のパターン形状が目立ってしまい、良好な視認性が得られ難い。光屈折率が1.65を超えると非常に良好な視認性が得られるようになる。また、光屈折率が1.80を超える場合、透明基板12,22や粘着層3との屈折率差が大きくなり、この素材界面での反射光と高屈折率層14b,24bと低屈折率層14a,24aとの界面での反射光との光干渉による干渉斑が強く発生する結果、透明導電膜11,21のパターン形状が見えやすくなり、視認性が悪化する為好ましくない。また、屈折率が1.8を超え、傷つき性を改良できる程度の硬度と厚みを有する層を工業的に効率よく形成できる素材や手法が得られ難い事実もある。屈折率が1.65を超え1.80以下である高屈折率層14b,24b用のハードコート素材としては、アクリル系の紫外線硬化型樹脂や熱硬化型樹脂等の樹脂素材を例示できる。また、これら樹脂素材に酸化チタン(屈折率:2.5〜2.8)、酸化ジルコニウム(屈折率:2.4)、酸化セリウム(屈折率:2.2)、酸化アンチモン(屈折率:2.0〜2.3)等の屈折率の高い金属酸化物の微粒子を添加したものが例示できる。この場合、添加する金属酸化物微粒子は透明性を阻害しないように数十nm程度の粒子径であることが必要である。高屈折率層14b,24bの厚みは3μm以上が好ましい。3μm未満であると、透明基板12,22や粘着層3との界面での反射光と、高屈折率層14b,24bと低屈折率層14a,24aとの界面での反射光との光干渉による干渉斑が強く発生する結果、透明導電膜11,21のパターン形状が見えやすくなり、視認性が悪化する為好ましくない。   The high refractive index layers 14b and 24b preferably have an optical refractive index of 1.60 to 1.80, more preferably more than 1.65 and not more than 1.80. When the refractive index is less than 1.60, it becomes difficult to approximate the optical characteristics of the portion with and without the transparent conductive film, the pattern shape of the transparent conductive film becomes conspicuous, and good visibility is difficult to obtain. When the optical refractive index exceeds 1.65, very good visibility can be obtained. When the optical refractive index exceeds 1.80, the refractive index difference between the transparent substrates 12 and 22 and the adhesive layer 3 increases, and the reflected light at the material interface, the high refractive index layers 14b and 24b, and the low refractive index. As a result of strong occurrence of interference spots due to optical interference with the reflected light at the interfaces with the layers 14a and 24a, the pattern shape of the transparent conductive films 11 and 21 becomes easy to see and visibility is deteriorated. In addition, there is also a fact that it is difficult to obtain a material and method that can industrially efficiently form a layer having a refractive index exceeding 1.8 and having a hardness and thickness that can improve scratch resistance. Examples of the hard coat material for the high refractive index layers 14b and 24b having a refractive index exceeding 1.65 and not more than 1.80 include resin materials such as acrylic ultraviolet curable resins and thermosetting resins. These resin materials include titanium oxide (refractive index: 2.5 to 2.8), zirconium oxide (refractive index: 2.4), cerium oxide (refractive index: 2.2), and antimony oxide (refractive index: 2). Examples include those obtained by adding fine particles of a metal oxide having a high refractive index such as 0.0 to 2.3). In this case, it is necessary that the metal oxide fine particles to be added have a particle size of about several tens of nanometers so as not to disturb the transparency. The thickness of the high refractive index layers 14b and 24b is preferably 3 μm or more. If it is less than 3 μm, optical interference between the reflected light at the interface with the transparent substrates 12 and 22 and the adhesive layer 3 and the reflected light at the interface between the high refractive index layers 14b and 24b and the low refractive index layers 14a and 24a. As a result of the strong occurrence of interference spots due to the above, the pattern shape of the transparent conductive films 11 and 21 becomes easy to see and visibility is deteriorated, which is not preferable.

このような構成のアンダーコート層14,24を透明基板12,22と透明導電膜11,21との間に介在させることにより、光の可視範囲波長である450nm〜700nmにおいて、透明導電膜11,21が形成された部分(パターン形成領域)を透過する光の透過スペクトルと、透明導電膜11,21が形成されていない部分(非パターン形成領域)を透過する光の透過スペクトルとの差を小さくすることができ、透明導電膜11,21のパターン形状が目立ちにくい視認性が良好な透明面状体1,2及び透明タッチパネル100を得ることが可能になる。なお、上記薄膜構成以外にも、光の可視範囲波長において、パターン形成領域を透過する光の透過スペクトルと、非パターン形成領域を透過する光の透過スペクトルとの差を小さくする構成であれば同様の効果が得られる。   By interposing the undercoat layers 14, 24 having such a configuration between the transparent substrates 12, 22 and the transparent conductive films 11, 21, the transparent conductive film 11, in the visible wavelength range of 450 nm to 700 nm. The difference between the transmission spectrum of the light transmitted through the portion (pattern forming region) 21 and the transmission spectrum of the light transmitted through the portion (non-pattern forming region) where the transparent conductive films 11 and 21 are not formed is reduced. Therefore, it is possible to obtain the transparent planar bodies 1 and 2 and the transparent touch panel 100 with good visibility, in which the pattern shapes of the transparent conductive films 11 and 21 are not noticeable. In addition to the above thin film configuration, the same applies to any configuration that reduces the difference between the transmission spectrum of light transmitted through the pattern formation region and the transmission spectrum of light transmitted through the non-pattern formation region in the visible wavelength range of light. The effect is obtained.

本発明者らは、アンダーコート層14を透明基板12と透明導電膜11との間に介在させた、図11に示す構造を有するサンプルを作成して、透過光を照射した場合に、透明導電膜11のパターン形状が目立たないか否かの官能試験、及びシート抵抗値の測定を行った。
[実施例1]
本サンプルは、図11に示す構造を有しており、アンダーコート層14を構成する低屈折率層14aと高屈折率層14bとは、それぞれ、スパッタで成膜したSiO薄膜(屈折率:1.46)と、酸化ジルコニウム微粒子を含有するハードコート剤(東洋インキ製造株式会社製リオデュラス)をコーティングして成膜した高屈折率ハードコート層(屈折率:1.65)と、により形成した。また、パターニングされた透明導電膜は、スパッタで成膜したITO膜をエッチングして形成した。低屈折率層14a(SiO薄膜)の厚みを7.5nmとし、高屈折率層14b(高屈折率ハードコート層)の厚みを5μmとし、透明導電膜(ITO膜)の厚みを20nmとした。また、粘着層3の厚みは、25μmであり、粘着層3の屈折率は、1.47である。また、透明基板12は、ノルボルネンとエチレンとの共重合比率が、82:18であり、ガラス転移温度180℃、MVR=1.5の共重合体を溶融押出法にて樹脂温度300℃、引取りロール温度130℃で、厚みが100μmになるようにフィルムを作成し、次いでロール周速が7.0m/minと、ロール周速が14.0m/minの2本の異なる周遠の金属ロール間を、フィルム温度を190℃に保った状態で走行させることにより、延伸倍率2.0倍、リタデーション138nm、Nz係数=1.0、フィルム厚み86μmの位相差フィルムにより形成している。得られた位相差フィルムの160℃で30分での寸法変化率はMD=−0.46%、TD=0.22%である。なお、この位相差フィルム(透明基板12)の屈折率は、1.53である。また、透明基板12の他方面(透明導電膜11が形成されていない側の面)には、アクリル系UV硬化樹脂からなるハードコート層6が配置されている。このハードコート層の厚みは、5μmである。
The inventors have prepared a sample having a structure shown in FIG. 11 in which the undercoat layer 14 is interposed between the transparent substrate 12 and the transparent conductive film 11, and when the sample is irradiated with transmitted light, A sensory test was performed to determine whether the pattern shape of the film 11 was not noticeable, and a sheet resistance value was measured.
[Example 1]
This sample has the structure shown in FIG. 11, and the low refractive index layer 14a and the high refractive index layer 14b constituting the undercoat layer 14 are each made of an SiO 2 thin film (refractive index: 1.46) and a high refractive index hard coat layer (refractive index: 1.65) formed by coating a hard coat agent (Rioduras manufactured by Toyo Ink Manufacturing Co., Ltd.) containing zirconium oxide fine particles. . The patterned transparent conductive film was formed by etching an ITO film formed by sputtering. The thickness of the low refractive index layer 14a (SiO 2 thin film) is 7.5 nm, the thickness of the high refractive index layer 14b (high refractive index hard coat layer) is 5 μm, and the thickness of the transparent conductive film (ITO film) is 20 nm. . Moreover, the thickness of the adhesion layer 3 is 25 micrometers, and the refractive index of the adhesion layer 3 is 1.47. The transparent substrate 12 has a copolymerization ratio of norbornene and ethylene of 82:18, a glass transition temperature of 180 ° C., and a MVR = 1.5 copolymer at a resin temperature of 300 ° C. by a melt extrusion method. A film was formed so that the thickness was 100 μm at a take-up roll temperature of 130 ° C., and then two different metal rolls with a roll peripheral speed of 7.0 m / min and a roll peripheral speed of 14.0 m / min. By running the film while keeping the film temperature at 190 ° C., a retardation film having a draw ratio of 2.0 times, a retardation of 138 nm, an Nz coefficient of 1.0, and a film thickness of 86 μm is formed. The dimensional change rate of the obtained retardation film at 160 ° C. in 30 minutes is MD = −0.46% and TD = 0.22%. In addition, the refractive index of this retardation film (transparent substrate 12) is 1.53. A hard coat layer 6 made of an acrylic UV curable resin is disposed on the other surface of the transparent substrate 12 (the surface on which the transparent conductive film 11 is not formed). The thickness of this hard coat layer is 5 μm.

また、本サンプルは、透明導電膜11(ITO膜)を温度140℃下でスパッタ成膜した後、温度140℃下にて30分の熱処理(アニール処理)を行った。   In this sample, the transparent conductive film 11 (ITO film) was formed by sputtering at a temperature of 140 ° C., and then heat treatment (annealing treatment) was performed at a temperature of 140 ° C. for 30 minutes.

本サンプルに対して透過光を照射した場合、いずれも透明導電膜11のパターン形状を確認することができず、視認性が良好であるという結果を得た。なお、パターン形状の確認に際しては、三波長蛍光灯(27W)により透過光を照射し、本サンプルと目との距離を20cmに設定して行った。また、三波長蛍光灯の背景が白背景となるようにして判定を行なった。   In the case where the sample was irradiated with transmitted light, the pattern shape of the transparent conductive film 11 could not be confirmed in any case, and the result that the visibility was good was obtained. The pattern shape was confirmed by irradiating transmitted light with a three-wavelength fluorescent lamp (27 W) and setting the distance between this sample and the eyes to 20 cm. Further, the determination was performed such that the background of the three-wavelength fluorescent lamp was a white background.

また、シート抵抗値は200Ω/□以下であり、透明面状体の低抵抗化を図ることができた(表3参照)。なお、シート抵抗値は、三菱化学株式会社製の抵抗率計であるロレスターEP
四探針プローブにて測定した。
Further, the sheet resistance value was 200Ω / □ or less, and the resistance of the transparent sheet was reduced (see Table 3). The sheet resistance value is Lorester EP, a resistivity meter manufactured by Mitsubishi Chemical Corporation.
Measurement was performed with a four-probe probe.

[比較例1]
上記サンプルの比較例として、図11に示す透明面状体の構成において、透明基板をゼオノアフィルム[日本ゼオン(株)製 ZMシリーズ]に変更した比較サンプルを作成した。なお、透明導電膜11(ITO膜)は、温度120℃下でスパッタリング法で成膜した後、温度120℃下にて30分の熱処理(アニール処理)を行った。透過光を照射した場合に、透明導電膜11のパターン形状が目立たないか否かの官能試験も行ったが、比較例1においては、透明導電膜11のパターン形状が確認され、視認性が悪いという結果であった(表3参照)。これは、ITO膜の結晶化が不十分のため、ITO膜が黄色味の強い色目になることで、パターンが視認されたと考えられる。

Figure 0005709311
[Comparative Example 1]
As a comparative example of the above sample, a comparative sample in which the transparent substrate was changed to a ZEONOR film [ZM series manufactured by Nippon Zeon Co., Ltd.] in the configuration of the transparent sheet shown in FIG. The transparent conductive film 11 (ITO film) was formed by sputtering at a temperature of 120 ° C., and then heat-treated (annealed) for 30 minutes at a temperature of 120 ° C. A sensory test was performed to determine whether the pattern shape of the transparent conductive film 11 was not noticeable when irradiated with transmitted light. In Comparative Example 1, the pattern shape of the transparent conductive film 11 was confirmed, and the visibility was poor. (See Table 3). This is thought to be because the ITO film had a strong yellowish color due to insufficient crystallization of the ITO film, and thus the pattern was visually recognized.
Figure 0005709311

また、本発明者らは、実施例1及び比較例1における透明基板について、各所定温度において30分間の熱処理(アニール処理)を行った場合のリタデーション値の変化を確認する実験を行ったので、その結果について以下説明する。図12に実験結果を示す。この図12より、実施例1における透明基板は、アニール温度が150℃であっても、リタデーション値が約134nmと高い値を示すのに対し、比較例1における透明基板は、アニール温度:140℃を超えると、リタデーション値が急激に低下し、アニール温度:150℃でリタデーション値が約128nmとなることが分かる。   Moreover, since the present inventors conducted the experiment which confirms the change of the retardation value at the time of performing the heat processing (annealing treatment) for 30 minutes at each predetermined temperature about the transparent substrate in Example 1 and Comparative Example 1, The results will be described below. FIG. 12 shows the experimental results. From FIG. 12, the transparent substrate in Example 1 shows a high retardation value of about 134 nm even when the annealing temperature is 150 ° C., whereas the transparent substrate in Comparative Example 1 has an annealing temperature of 140 ° C. It is found that the retardation value is drastically lowered when the temperature exceeds 1, and the retardation value becomes about 128 nm at an annealing temperature of 150 ° C.

このように、本発明に係る透明面状体を構成する透明基板12は、140℃を越える高温環境下でもそのリタデーション値を維持できることが分かる。その結果、透明基板12,22上に透明導電膜11,21を成膜する際、もしくは成膜後の熱処理(アニール)の際に、透明基板12,22の温度を140℃以上に設定することが可能となり、成膜される透明導電膜11,21の結晶化度を高めることができ、透明導電膜11,21の低抵抗化が可能になることが分かる。   Thus, it turns out that the transparent substrate 12 which comprises the transparent planar body based on this invention can maintain the retardation value also in the high temperature environment over 140 degreeC. As a result, the temperature of the transparent substrates 12 and 22 should be set to 140 ° C. or higher when the transparent conductive films 11 and 21 are formed on the transparent substrates 12 and 22 or when heat treatment (annealing) is performed after the film formation. It is understood that the crystallinity of the transparent conductive films 11 and 21 to be formed can be increased, and the resistance of the transparent conductive films 11 and 21 can be reduced.

100 透明タッチパネル
1 第1透明面状体
2 第2透明面状体
11,21 透明導電膜
12,22 透明基板
13 偏光板
14,24 アンダーコート層
14a,24a 低屈折率層
14b,24b 高屈折率層
3 粘着層
DESCRIPTION OF SYMBOLS 100 Transparent touch panel 1 1st transparent planar body 2 2nd transparent planar body 11,21 Transparent electrically conductive film 12,22 Transparent substrate 13 Polarizing plate 14,24 Undercoat layer 14a, 24a Low refractive index layer 14b, 24b High refractive index Layer 3 Adhesive layer

Claims (4)

透明基板の一方面側にパターニングされた透明導電膜を有する透明面状体であって、
前記透明基板の他方面側に偏光板を備えており、
前記透明基板は、ノルボルネンとエチレンとの共重合比率が80:20〜90:10、MVR(メルトボリュームレート)が0.8〜2.0cm3/10分である環状オレフィンの付加(共)重合体よりなるリタデーション100nm〜150nmの位相差フィルムであり、160℃で30分の熱処理による収縮率がMD(流れ方向)、TD(垂直方向)ともに、0.5%以下であることを特徴とする透明面状体。
A transparent planar body having a transparent conductive film patterned on one side of a transparent substrate,
A polarizing plate is provided on the other side of the transparent substrate,
The transparent substrate is a cyclic olefin addition (co) polymer having a copolymerization ratio of norbornene and ethylene of 80:20 to 90:10 and MVR (melt volume rate) of 0.8 to 2.0 cm3 / 10 min. A retardation film having a retardation of 100 nm to 150 nm, and having a shrinkage ratio by heat treatment at 160 ° C. for 30 minutes of 0.5% or less in both MD (flow direction) and TD (vertical direction). Planar body.
前記透明基板と前記透明導電膜との間にアンダーコート層が介在されており、
前記アンダーコート層は、光屈折率が異なる2以上の層の積層体から構成され、低屈折率層側に前記透明導電膜が形成されている請求項に記載の透明面状体。
An undercoat layer is interposed between the transparent substrate and the transparent conductive film,
2. The transparent planar body according to claim 1 , wherein the undercoat layer is composed of a laminate of two or more layers having different optical refractive indexes, and the transparent conductive film is formed on the low refractive index layer side.
前記低屈折率層は、酸化珪素により形成されており、
前記高屈折率層は、光屈折率2.0〜2.8の金属酸化物粒子を含む樹脂素材により形成されている請求項に記載の透明面状体。
The low refractive index layer is formed of silicon oxide,
The transparent planar body according to claim 2 , wherein the high refractive index layer is formed of a resin material including metal oxide particles having a light refractive index of 2.0 to 2.8.
請求項1からのいずれかに記載の透明面状体を少なくとも1つ備える透明タッチパネルであって、前記透明面状体の透明導電膜と、該透明導電膜とは異なる第2の透明導電膜とが、互いに対向する向き、或いは、同一方向となる向きに配置されている透明タッチパネル。
A transparent touch panel comprising at least one transparent sheet according to any one of claims 1 to 3 , wherein the transparent conductive film of the transparent sheet and a second transparent conductive film different from the transparent conductive film Are arranged in directions facing each other or in the same direction.
JP2011131408A 2010-06-25 2011-06-13 Transparent sheet and transparent touch panel Active JP5709311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011131408A JP5709311B2 (en) 2010-06-25 2011-06-13 Transparent sheet and transparent touch panel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010144739 2010-06-25
JP2010144739 2010-06-25
JP2011131408A JP5709311B2 (en) 2010-06-25 2011-06-13 Transparent sheet and transparent touch panel

Publications (2)

Publication Number Publication Date
JP2012025158A JP2012025158A (en) 2012-02-09
JP5709311B2 true JP5709311B2 (en) 2015-04-30

Family

ID=45371576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011131408A Active JP5709311B2 (en) 2010-06-25 2011-06-13 Transparent sheet and transparent touch panel

Country Status (3)

Country Link
JP (1) JP5709311B2 (en)
TW (1) TW201201225A (en)
WO (1) WO2011162414A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8900719B2 (en) 2010-04-14 2014-12-02 Avery Dennison Corporation Blends of ethylene copolymers and propylene based plastomers in multilayer films for low noise and RF welding
EP2918408A1 (en) 2011-12-22 2015-09-16 Avery Dennison Corporation Flexible Barrier Films Containing Cyclic Olefins
US9417746B2 (en) 2012-02-09 2016-08-16 Sharp Kabushiki Kaisha Touch-panel substrate
KR101862876B1 (en) 2012-03-27 2018-05-31 엘지이노텍 주식회사 Touch panel
KR101890790B1 (en) * 2012-03-30 2018-08-22 어플라이드 머티어리얼스, 인코포레이티드 Transparent body for use in a touch screen panel manufacturing method and system
JP6010992B2 (en) * 2012-04-11 2016-10-19 日油株式会社 Transparent conductive film
JP5988671B2 (en) * 2012-04-24 2016-09-07 グンゼ株式会社 Conductive substrate, touch panel, and method of manufacturing conductive substrate
JP5708565B2 (en) * 2012-06-08 2015-04-30 大日本印刷株式会社 Touch panel material
WO2014020656A1 (en) * 2012-07-30 2014-02-06 株式会社麗光 Transparent conductive film and touch panel
JP5988867B2 (en) * 2012-12-27 2016-09-07 リンテック株式会社 Transparent conductive film
KR20140101200A (en) * 2013-02-08 2014-08-19 삼성전자주식회사 Display device
JP6207846B2 (en) 2013-03-04 2017-10-04 富士フイルム株式会社 Transparent conductive film and touch panel
JP6121204B2 (en) * 2013-03-15 2017-04-26 富士フイルム株式会社 Touch panel laminate and method for manufacturing touch panel laminate
WO2014148521A1 (en) * 2013-03-21 2014-09-25 株式会社村田製作所 Displacement sensor, pushing amount detection sensor, and touch input device
JP6275961B2 (en) 2013-06-26 2018-02-07 富士フイルム株式会社 Optical film and display device
GB201313167D0 (en) * 2013-07-24 2013-09-04 Ibm Automatic rotation of display contents of a handheld companion device rigidly attached to a handheld mobile device
KR101401050B1 (en) * 2013-08-09 2014-06-27 동우 화인켐 주식회사 Touch sensing electrode and touch screen panel comprising the same
KR101443689B1 (en) * 2013-08-23 2014-09-23 동우 화인켐 주식회사 Touch sensing electrode combined with polarization plate
JP2015050100A (en) * 2013-09-03 2015-03-16 日東電工株式会社 Transparent conductive film
KR101444132B1 (en) * 2013-11-20 2014-11-04 동우 화인켐 주식회사 Touch sensing electrode combined with complexed polarization plate and touch screen panel comprising the same
CN106132687B (en) * 2014-03-28 2018-05-11 富士胶片株式会社 Conductive film layer stack and the touch panel using the conductive film layer stack
JP6361026B2 (en) * 2014-10-15 2018-07-25 パナソニックIpマネジメント株式会社 Touch panel
KR102286521B1 (en) * 2016-03-30 2021-08-04 동우 화인켐 주식회사 Film touch sensor
CN106527814A (en) * 2016-11-23 2017-03-22 业成科技(成都)有限公司 Protective cover plate
JP6905343B2 (en) * 2017-01-26 2021-07-21 日東電工株式会社 Transparent conductive film with adhesive layer, laminate, and organic EL display device
TWI661343B (en) * 2018-03-31 2019-06-01 友達光電股份有限公司 Touch display device and method for frabricating touch display device
WO2023210436A1 (en) * 2022-04-27 2023-11-02 日東電工株式会社 Antireflection film and method for producing same, and image display device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080624A (en) * 2001-09-07 2003-03-19 Nof Corp Transparent conducting material and touch panel
US7833588B2 (en) * 2002-12-20 2010-11-16 Teijin Limited Transparent conductive laminate, touch panel and touch panel-equipped liquid crystal display
JP2007272259A (en) * 2004-04-08 2007-10-18 Gunze Ltd Transparent touch switch
CN101568862A (en) * 2006-12-27 2009-10-28 郡是株式会社 Polarizing plate protective film, polarizing plate and resistive touch panel
JP2009003439A (en) * 2007-05-23 2009-01-08 Daicel Chem Ind Ltd Optical film
JP2009187687A (en) * 2008-02-04 2009-08-20 Jsr Corp Method of manufacturing transparent conductive film, touch panel which has film obtained by the method, and display device which has the touch panel
JP2011063629A (en) * 2008-05-12 2011-03-31 Polyplastics Co Cyclic olefin-based resin, and film using the resin
JP2011043628A (en) * 2009-08-20 2011-03-03 Gunze Ltd Retardation film, method for producing transparent conductive laminate for touch panel, and the touch panel

Also Published As

Publication number Publication date
WO2011162414A1 (en) 2011-12-29
TW201201225A (en) 2012-01-01
JP2012025158A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
JP5709311B2 (en) Transparent sheet and transparent touch panel
US10656468B2 (en) Display device with a capacitive touch panel
JP5078534B2 (en) Transparent sheet and transparent touch switch
US10175831B2 (en) Display device with a capacitive touch panel
JP5512624B2 (en) Capacitive touch sensor and display device having the same
US10481743B2 (en) High-performance touch sensor and manufacturing method thereof
EP2615527A1 (en) Touch panel device and display device with touch panel device
US20140049699A1 (en) Polarizing plate, touch liquid crystal panel and touch display
KR102085877B1 (en) Display apparatus with capacitive touch panel
JPWO2014167815A1 (en) Display device with capacitive touch panel
KR102047504B1 (en) Touch Sensor and Display Device Including the Same
JP2008243622A (en) Transparent planar body and transparent touch switch
CN105164620B (en) Transparent electrode pattern layered product and the touch screen panel for having the layered product
JP5610592B2 (en) Touch panel and film body
TWI581162B (en) Transparent conductive film, transparent conductive film manufacturing method and touch panel
JP5515567B2 (en) Transparent conductive film
KR101555080B1 (en) Touch sensor intergrated with a polarizer and display device comprising the same
JP2011043628A (en) Retardation film, method for producing transparent conductive laminate for touch panel, and the touch panel
US20190278399A1 (en) Input sensor and display device including the same
US20150169104A1 (en) Touch panel
JP2012173976A (en) Touch panel
JP6127251B2 (en) Touch panel
TWI490743B (en) Film sensor
WO2016190412A1 (en) Electroconductive film and method for producing same
WO2015033521A1 (en) Touch panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150302

R150 Certificate of patent or registration of utility model

Ref document number: 5709311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250