JP5709047B2 - Rotor type air treatment device - Google Patents

Rotor type air treatment device Download PDF

Info

Publication number
JP5709047B2
JP5709047B2 JP2011126364A JP2011126364A JP5709047B2 JP 5709047 B2 JP5709047 B2 JP 5709047B2 JP 2011126364 A JP2011126364 A JP 2011126364A JP 2011126364 A JP2011126364 A JP 2011126364A JP 5709047 B2 JP5709047 B2 JP 5709047B2
Authority
JP
Japan
Prior art keywords
regeneration
heat transfer
purge
rotor
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011126364A
Other languages
Japanese (ja)
Other versions
JP2012250208A (en
Inventor
直征 今若
直征 今若
舟里 忠益
忠益 舟里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Original Assignee
Taikisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd filed Critical Taikisha Ltd
Priority to JP2011126364A priority Critical patent/JP5709047B2/en
Publication of JP2012250208A publication Critical patent/JP2012250208A/en
Application granted granted Critical
Publication of JP5709047B2 publication Critical patent/JP5709047B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、空気除湿や空気浄化などの空気処理に用いるロータ式空気処理装置に関する。   The present invention relates to a rotor type air treatment device used for air treatment such as air dehumidification and air purification.

さらに詳しくは、複数の骨材をロータ回転方向に並べて放射状に配置した通気性の吸着剤層からなる吸着ロータを備え、この吸着ロータの回転領域に処理域と再生域とパージ域とをその順にロータ回転方向に並べて区画形成し、吸着ロータの回転に併行して、処理域には、被処理空気を処理域に位置する吸着剤層部分に通過させる状態でロータ回転軸芯方向に通風し、再生域には、高温の再生用気体を再生域に位置する吸着剤層部分に通過させる状態でロータ回転軸芯方向に通風し、パージ域には、パージ用気体をパージ域に位置する吸着剤層部分に通過させる状態でロータ回転軸芯方向に通風するロータ式空気処理装置に関する。   More specifically, an adsorption rotor comprising a breathable adsorbent layer in which a plurality of aggregates are arranged radially in the rotor rotation direction, and a treatment area, a regeneration area, and a purge area are arranged in that order in the rotation area of the adsorption rotor. Arranged in the rotor rotation direction to form compartments, and in parallel with the rotation of the adsorption rotor, the processing area is ventilated in the direction of the rotor rotation axis in a state where the air to be processed passes through the adsorbent layer portion located in the processing area, In the regeneration zone, a high-temperature regeneration gas is passed through the adsorbent layer portion located in the regeneration zone, and is passed in the direction of the rotor rotation axis. In the purge zone, the purge gas is adsorbed in the purge zone. The present invention relates to a rotor type air treatment device that ventilates in the direction of a rotor rotation axis while passing through a layer portion.

従来、この種のロータ式空気処理装置として次の装置が提案されている(特許文献1参照)。   Conventionally, the following apparatus has been proposed as this type of rotor type air treatment apparatus (see Patent Document 1).

吸着ロータにおいて放射状に配置された骨材(隔壁)の夫々に対して伝熱路を個別に装備する。   A heat transfer path is individually provided for each of the aggregates (partition walls) arranged radially in the adsorption rotor.

この構造で、吸着ロータの回転に併行して、放射状配置の骨材のうち再生域後のパージ域に位置する骨材の装備伝熱路に熱回収用流体を通過させ、これにより、ロータ吸着剤層のうちパージ域に位置する吸着剤層部分(即ち、先の再生域において高温再生用空気により加熱された吸着剤層部分)の保有熱を熱回収用流体に回収する。   In this structure, in parallel with the rotation of the adsorption rotor, the heat recovery fluid is passed through the aggregate heat transfer path located in the purge zone after the regeneration zone among the radially arranged aggregates. Of the adsorbent layer, the retained heat of the adsorbent layer portion located in the purge zone (that is, the adsorbent layer portion heated by the high-temperature regeneration air in the previous regeneration zone) is recovered in the heat recovery fluid.

これに続き、熱回収後の熱回収用流体を吸着ロータの回転に併行して、再生域前の予熱域に位置する骨材の装備伝熱路に通過させ、これにより、上記回収熱を用いてロータ吸着剤層のうち予熱域に位置する吸着剤層部分を再生域での加熱に先立ち予熱する。   Following this, the heat recovery fluid after heat recovery is passed along with the rotation of the adsorption rotor and passed through the aggregate heat transfer path located in the preheating area before the regeneration area, thereby using the recovered heat. In the rotor adsorbent layer, the adsorbent layer portion located in the preheating area is preheated prior to heating in the regeneration area.

また、吸着ロータの回転に併行して、放射状配置の骨材のうち処理域に位置する骨材の装備伝熱路に冷却用流体を通過させ、これにより、ロータ吸着剤層のうち処理域に位置する吸着剤層部分に被処理空気を通過させるのに伴い、その吸着剤層部分を冷却用流体により冷却し、この冷却により処理域に位置する吸着剤層部分の吸着性能を高めて、被処理空気に対する処理効率を高める。   In parallel with the rotation of the adsorption rotor, the cooling fluid is passed through the aggregate heat transfer path of the aggregate located in the treatment area among the aggregates in the radial arrangement. As the air to be treated is passed through the adsorbent layer portion positioned, the adsorbent layer portion is cooled by the cooling fluid, and this cooling improves the adsorption performance of the adsorbent layer portion located in the treatment area, Increase processing efficiency for processing air.

特開2003−112008JP2003-112008

しかし、この種のロータ式空気処理装置では、被処理空気に対する処理効率が吸着ロータの回転に伴い周期的に変動する問題があった。   However, this type of rotor-type air treatment apparatus has a problem that the treatment efficiency for the air to be treated fluctuates periodically with the rotation of the adsorption rotor.

つまり、空気の除湿処理の場合では、処理域において吸着剤層による水分吸着により被処理空気を除湿することにおいて、処理域から処理済空気として送出される除湿空気の湿度が、上記処理効率の変動により図6におけるグラフ1で示す如く周期的に上昇する問題があった。   In other words, in the case of air dehumidification processing, when the air to be treated is dehumidified by adsorption of moisture by the adsorbent layer in the treatment area, the humidity of the dehumidified air sent out as treated air from the treatment area varies with the processing efficiency. As a result, there is a problem of periodic rise as shown by graph 1 in FIG.

また、空気の浄化処理の場合では、処理域において吸着剤層による汚染物質の吸着により被処理空気を浄化することにおいて、処理域から処理済空気として送出される浄化空気の汚染物質濃度が、上記処理効率の変動により周期的に上昇する問題があった。   In the case of air purification treatment, in the treatment area, the concentration of the pollutant in the purified air sent out from the treatment area as treated air is purified by purifying the air to be treated by adsorption of the contaminants by the adsorbent layer. There has been a problem of periodic increase due to fluctuations in processing efficiency.

そして、上記した特許文献1における提案装置にしても、処理効率は向上し得るものの、上記の如き周期的な効率変動は回避できないものであった。   And even if it is a proposal apparatus in above-mentioned patent document 1, although processing efficiency can improve, the above periodic efficiency fluctuations cannot be avoided.

この実情に鑑み、本発明の主たる課題は、合理的な改良により上記の如き問題を効果的に解消する点にある。   In view of this situation, the main problem of the present invention is to effectively solve the above problems by rational improvements.

本発明によるロータ式空気処理装置の第1特徴構成は、
複数の骨材をロータ回転方向に並べて放射状に配置した通気性の吸着剤層からなる吸着ロータを備え、
この吸着ロータの回転領域に処理域と再生域とパージ域とをその順にロータ回転方向に並べて区画形成し、
前記吸着ロータの回転に併行して、前記処理域には、被処理空気を処理域に位置する吸着剤層部分に通過させる状態でロータ回転軸芯方向に通風し、
前記再生域には、高温の再生用気体を再生域に位置する吸着剤層部分に通過させる状態でロータ回転軸芯方向に通風し、
前記パージ域には、パージ用気体をパージ域に位置する吸着剤層部分に通過させる状態でロータ回転軸芯方向に通風するロータ式空気処理装置であって、
前記再生域に位置する吸着剤層部分からの伝熱による加熱、及び、その吸着剤層部分を通過する高温再生用気体からの伝熱による加熱とは別に、前記吸着ロータの回転に併行して、前記再生域に位置する前記骨材を選択的に加熱する補助加熱手段を設け、
この補助加熱手段として、前記骨材を伝熱対象とする伝熱路をロータ回転方向に並ぶ前記骨材の夫々に対して個別に装備し、
前記吸着ロータの回転に併行して、前記伝熱路のうち前記再生域に位置する前記骨材の装備伝熱路に対し、再生用加熱手段により加熱した高温再生用気体の一部を選択的に通過させ、
前記再生用加熱手段により加熱した高温再生用気体の他部を、前記再生域に位置する吸着剤層部分に通過させる構成にし、
前記伝熱路の入口を、ロータ回転方向において対応する前記骨材夫々の近傍で前記吸着ロータにおける再生用気体入口側の端面部に形成してある点にある。
The first characteristic configuration of the rotor type air treatment device according to the present invention is as follows.
An adsorption rotor composed of a breathable adsorbent layer in which a plurality of aggregates are arranged radially in the rotor rotation direction,
A processing area, a regeneration area, and a purge area are arranged in this order in the rotation direction of the rotor in the rotation area of the adsorption rotor,
In parallel with the rotation of the adsorption rotor, the processing area is ventilated in the direction of the rotor rotation axis in a state where the air to be processed is passed through the adsorbent layer portion located in the processing area,
In the regeneration zone, a high-temperature regeneration gas is passed through the adsorbent layer part located in the regeneration zone, and is passed in the rotor rotation axis direction,
The purge area is a rotor-type air treatment device that vents the purge gas in the direction of the rotor rotation axis while allowing the purge gas to pass through the adsorbent layer portion located in the purge area,
Separately from the heating by the heat transfer from the adsorbent layer portion located in the regeneration zone and the heating by the heat transfer from the high temperature regeneration gas passing through the adsorbent layer portion, in parallel with the rotation of the adsorption rotor , setting an auxiliary heating means for heating the aggregate positioned in the regeneration zone selectively,
As this auxiliary heating means, a heat transfer path for heat transfer of the aggregate is individually equipped for each of the aggregates arranged in the rotor rotation direction,
Along with the rotation of the adsorption rotor, a part of the high-temperature regeneration gas heated by the regeneration heating means is selectively applied to the aggregate heat transfer path located in the regeneration zone of the heat transfer path. Pass through
The other part of the high temperature regeneration gas heated by the regeneration heating means is passed through the adsorbent layer portion located in the regeneration zone,
The inlet of the heat transfer path is formed at the end surface portion on the regeneration gas inlet side of the adsorption rotor in the vicinity of the corresponding aggregate in the rotor rotation direction .

前述した処理効率の周期的な変動は、吸着ロータにおいて放射状に配置された複数の骨材に原因することが判明した。   It has been found that the periodic fluctuations in the processing efficiency described above are caused by a plurality of aggregates arranged radially in the adsorption rotor.

つまり(図1参照)、吸着ロータ1における骨材25の配置部は、高温再生用気体HAの通過が可能な骨材不存部に比べ再生域4において昇温し難く、その為、ロータ回転方向において骨材配置部の近傍に位置する骨材不存部の吸着剤層部分も、高温再生用空気HAの通過があるにもかかわらず、低温部である骨材配置部への伝熱(特に骨材25への伝熱)のために再生域4において加熱不足の状態になり、再生域通過過程において十分に再生されない再生不足の状態になる傾向がある。   That is, (see FIG. 1), the portion where the aggregate 25 is disposed in the adsorption rotor 1 is less likely to be heated in the regeneration zone 4 than the aggregate-free portion where the high-temperature regeneration gas HA is allowed to pass. In the direction, the adsorbent layer portion of the aggregate absent portion located in the vicinity of the aggregate placement portion also transfers heat to the aggregate placement portion which is the low temperature portion despite the passage of the high-temperature regeneration air HA ( In particular, due to heat transfer to the aggregate 25, there is a tendency for the regeneration zone 4 to become underheated and to become insufficiently regenerated due to insufficient regeneration during the process of passing through the regeneration zone.

そして、このように再生不足となった骨材配置部近傍の吸着剤層部分が骨材配置部とともに周期的に処理域3を通過することが原因で、前述の如き処理効率の周期的な変動が生じる。   Then, the periodic fluctuation of the processing efficiency as described above is caused by the fact that the adsorbent layer portion in the vicinity of the aggregate placement portion that has become insufficiently regenerated passes through the treatment zone 3 together with the aggregate placement portion. Occurs.

また、前述した特許文献1における提案装置では、再生域HAに位置する骨材25(隔壁)の装備伝熱路fが流体通過停止状態になって、その伝熱路fにおける滞留流体のため再生域4に位置する骨材配置部の保持容量が大きくなり、このことで、骨材配置部への伝熱で骨材配置部近傍の吸着剤層部分が加熱不足で再生不足の状態になるのを却って助長することになり、処理効率の周期的な変動が一層助長される傾向になる。   Further, in the proposed device described in Patent Document 1 described above, the equipment heat transfer path f of the aggregate 25 (partition wall) located in the regeneration zone HA is in a fluid passage stop state and regenerated due to the staying fluid in the heat transfer path f. The holding capacity of the aggregate arrangement part located in the zone 4 is increased, and this causes the heat transfer to the aggregate arrangement part to cause the adsorbent layer portion near the aggregate arrangement part to be in an insufficiently regenerated state due to insufficient heating. Therefore, periodic fluctuations in processing efficiency tend to be further promoted.

これに対し、上記第1特徴構成によれば(同図1参照)、再生域4に位置する吸着剤層部分からの伝熱による加熱、及び、その吸着剤層部分を通過する高温再生用気体HAからの伝熱による加熱とは別に、吸着ロータ1の回転に併行して、再生域4に位置する骨材25を補助加熱手段により選択的に加熱するので、骨材配置部を再生域4において効率的に昇温させることができ、そのことで、骨材不存部における吸着剤層部分からの骨材配置部への伝熱や、その吸着剤層部分を通過する高温再生用気体HAからの骨材配置部への伝熱を効果的に抑止することができる。   On the other hand, according to the first characteristic configuration (see FIG. 1), heating by heat transfer from the adsorbent layer portion located in the regeneration zone 4 and high-temperature regeneration gas passing through the adsorbent layer portion. Apart from the heating by heat transfer from the HA, the aggregate 25 located in the regeneration zone 4 is selectively heated by the auxiliary heating means in parallel with the rotation of the adsorption rotor 1, so that the aggregate placement part is placed in the regeneration zone 4. The heat transfer from the adsorbent layer portion in the aggregate-free portion to the aggregate placement portion, and the high-temperature regeneration gas HA that passes through the adsorbent layer portion Heat transfer from the steel to the aggregate placement part can be effectively suppressed.

即ち、このことにより、骨材配置部の近傍に位置する骨材不存部の吸着剤層部分が再生域4で加熱不足になって再生不足の状態になることを効果的に回避することができて、前述の如き処理効率の周期的な変動を効果的に抑止することができる。   In other words, this effectively avoids that the adsorbent layer portion of the aggregate-free portion located in the vicinity of the aggregate placement portion becomes insufficiently heated due to insufficient heating in the regeneration zone 4. Thus, the periodic fluctuation of the processing efficiency as described above can be effectively suppressed.

また、骨材配置部を再生域4において上記の如く昇温させることで、再生域4に位置する吸着剤層部分に通過させる高温再生用気体HAを再生域4に位置する吸着剤層部分の加熱に無駄なく効率的に寄与させることができて、その分、被処理空気Aに処理効率を高めるとともに、再生域4に対する高温再生用気体HAの通風量も効果的に削減することができ、これにより、補助加熱手段の運転に要するエネルギを含めても、装置全体としての消費エネルギも効果的に低減することができて、省エネルギ面や運転コスト面でも一層有利にすることができる。   In addition, by raising the temperature of the aggregate arrangement portion in the regeneration zone 4 as described above, the high temperature regeneration gas HA that passes through the adsorbent layer portion located in the regeneration zone 4 is increased in the adsorbent layer portion located in the regeneration zone 4. It is possible to efficiently contribute to heating without waste, and to that extent, the processing efficiency can be increased to the air to be treated A, and the air flow rate of the high temperature regeneration gas HA to the regeneration zone 4 can be effectively reduced, Thereby, even if the energy required for the operation of the auxiliary heating means is included, the energy consumption of the entire apparatus can be effectively reduced, which can be further advantageous in terms of energy saving and operation cost.

従って、空気の除湿処理の場合では、処理域3から処理済空気A′として送出される除湿空気の湿度を所要の低い値に精度良く安定的に維持し得るとともに、消費エネルギも効果的に低減し得る装置にすることができる。   Therefore, in the case of air dehumidification treatment, the humidity of the dehumidification air sent out from the treatment area 3 as the treated air A ′ can be stably maintained at a required low value with high accuracy, and energy consumption is also effectively reduced. The device can be made.

また同じく、空気の浄化処理の場合では、処理域3から処理済空気A′として送出される浄化空気の汚染物質濃度を所要の低い値に精度良く安定的に維持し得るとともに、消費エネルギも効果的に低減し得る装置にすることができる。   Similarly, in the case of air purification treatment, the concentration of contaminants in the purified air sent from the treatment area 3 as treated air A ′ can be stably maintained at a required low value with high accuracy and energy consumption is also effective. Can be reduced.

また、前記第1特徴構成では、補助加熱手段として、骨材を伝熱対象とする伝熱路をロータ回転方向に並ぶ骨材の夫々に対して個別に装備し、Further, in the first characteristic configuration, as the auxiliary heating means, a heat transfer path for heat transfer of the aggregate is individually provided for each of the aggregates arranged in the rotor rotation direction,
吸着ロータの回転に併行して、伝熱路のうち再生域に位置する骨材の装備伝熱路に対し、再生用加熱手段により加熱した高温再生用気体の一部を選択的に通過させ、In parallel with the rotation of the adsorption rotor, a part of the high-temperature regeneration gas heated by the regeneration heating means is selectively passed through the aggregate heat-transfer path located in the regeneration zone of the heat-transfer path,
再生用加熱手段により加熱した高温再生用気体の他部を、再生域に位置する吸着剤層部分に通過させる構成にするから、次の作用効果も奏する。Since the other part of the high-temperature regeneration gas heated by the regeneration heating means is passed through the adsorbent layer portion located in the regeneration zone, the following effects are also achieved.

つまり、この構成では(図1参照)、再生域4に位置する吸着剤層部分に通過させる高温再生用気体HAを再生用加熱手段16により加熱生成することにおいて、その再生用加熱手段16で加熱した高温再生用気体HAの一部を利用して再生域4に位置する骨材25を選択的に加熱する。That is, in this configuration (see FIG. 1), the regeneration heating means 16 heats and generates the high-temperature regeneration gas HA that passes through the adsorbent layer portion located in the regeneration zone 4, and is heated by the regeneration heating means 16. The aggregate 25 located in the regeneration zone 4 is selectively heated using a part of the high temperature regeneration gas HA.

従って、高温再生用空気HAとは別の加熱源を用いて再生域4に位置する骨材25を加熱する装置構成を採るのに比べ、骨材加熱用の専用熱源装置を不要にして装置構成を簡素にすることができ、その分、装置コストを安価にするとともに、装置を小型化することができる。Therefore, compared to the case where an apparatus configuration for heating the aggregate 25 located in the regeneration zone 4 using a heating source different from the high-temperature regeneration air HA is adopted, an apparatus configuration in which a dedicated heat source apparatus for heating the aggregate is unnecessary. As a result, the apparatus cost can be reduced and the apparatus can be miniaturized.

さらにまた、前記第1特徴構成では、伝熱路の入口を、ロータ回転方向において対応する骨材夫々の近傍で吸着ロータにおける再生用気体入口側の端面部に形成するから、次の作用効果も奏する。Furthermore, in the first characteristic configuration, since the inlet of the heat transfer path is formed on the end surface portion on the regeneration gas inlet side of the adsorption rotor in the vicinity of each of the corresponding aggregates in the rotor rotation direction, the following effects are also obtained. Play.

つまり、この構成によれば(図1参照)、再生域4において高温再生用気体HAを吸着ロータ1における再生用気体入口側の端面部(ロータ回転軸芯方向の一方側の端面部)から再生域4に位置する吸着剤層部分に通過させるのに伴い、その高温再生用気体HAの一部を吸着ロータ1における再生用気体入口側の端面部に形成された複数の伝熱路入口fiのうち再生域4に位置する伝熱路入口fiを通じて再生域4に位置する骨材25の装備伝熱路fに通過させることができる。That is, according to this configuration (see FIG. 1), the high-temperature regeneration gas HA is regenerated from the end surface portion on the regeneration gas inlet side of the adsorption rotor 1 (the end surface portion on one side in the rotor rotation axis direction) in the regeneration zone 4. Along with passing through the adsorbent layer portion located in the zone 4, a part of the high temperature regeneration gas HA of the plurality of heat transfer path inlets fi formed on the end surface portion of the adsorption rotor 1 on the regeneration gas inlet side is provided. Of these, the heat transfer path inlet fi located in the regeneration zone 4 can be passed through the equipment heat transfer path f of the aggregate 25 located in the regeneration zone 4.

即ち、この構成によれば、高温再生用気体HAの一部を再生域4に位置する骨材25の装備伝熱路fに対して選択的に通過させるための専用の流路切換手段を不要にすることができて、装置構成を一層簡素にすることができる。That is, according to this configuration, a dedicated flow path switching means for selectively passing a part of the high temperature regeneration gas HA through the equipment heat transfer path f of the aggregate 25 located in the regeneration zone 4 is not necessary. Therefore, the device configuration can be further simplified.

本発明よるロータ式空気処理装置の第2特徴構成は、The second characteristic configuration of the rotor type air treatment device according to the present invention is as follows.
前記パージ域に位置する吸着剤層部分への放熱による冷却、及び、その吸着剤層部分を通過するパージ用気体への放熱による冷却とは別に、前記吸着ロータの回転に併行して、前記パージ域に位置する前記骨材を選択的に冷却する補助冷却手段を設け、Separately from the cooling by the heat radiation to the adsorbent layer portion located in the purge zone and the cooling by the heat radiation to the purge gas passing through the adsorbent layer portion, the purge is performed in parallel with the rotation of the adsorption rotor. Providing auxiliary cooling means for selectively cooling the aggregate located in the zone,
前記伝熱路のうち前記パージ域に位置する前記骨材の装備伝熱路を前記補助冷却手段として、前記パージ域に位置する前記骨材の装備伝熱路に対し冷却用流体を通過させる構成にしてある点にある。A configuration in which the cooling fluid is passed through the aggregated heat transfer path located in the purge area, with the aggregated heat transfer path located in the purge area as the auxiliary cooling means in the heat transfer path. It is in a certain point.

この構成によれば(図1参照)、再生域4に位置する骨材25を前述の如く補助加熱手段により加熱しながらも、再生域4に続くパージ域5において、上記の如くパージ域5に位置する吸着剤層部分への放熱による冷却、及び、その吸着剤層部分を通過するパージ用気体PAへの放熱による冷却とは別に、パージ域5に位置する骨材25を、補助冷却手段としての装備伝熱路fに対する冷却用流体の通過により選択的に冷却することで、処理域3に先立つパージ域5において骨材配置部を効率的に冷却することができて、その分、パージ域5に通風するパージ用気体PAをパージ域5に位置する吸着剤層部分の冷却に無駄なく効率的に寄与させることができる。According to this configuration (see FIG. 1), while the aggregate 25 located in the regeneration zone 4 is heated by the auxiliary heating means as described above, in the purge zone 5 following the regeneration zone 4, the purge zone 5 is changed as described above. Separately from the cooling by the heat radiation to the adsorbent layer portion positioned and the cooling by the heat radiation to the purge gas PA passing through the adsorbent layer portion, the aggregate 25 located in the purge area 5 is used as an auxiliary cooling means. By selectively cooling by the passage of the cooling fluid to the equipment heat transfer path f, the aggregate placement portion can be efficiently cooled in the purge zone 5 prior to the processing zone 3, and the purge zone accordingly. Thus, the purge gas PA that is ventilated to the gas can be efficiently contributed to cooling the adsorbent layer portion located in the purge zone 5 without waste.

即ち、このことにより、処理域3の高温化による処理効率の低下を効果的に回避することができて、前述の如く再生域4での加熱不足を防止して十分に再生した吸着剤層部分を処理域3において被処理空気Aに対し効果的に処理機能させることができる。That is, this makes it possible to effectively avoid a reduction in processing efficiency due to a high temperature in the processing area 3, and prevent the insufficient heating in the regeneration area 4 as described above and sufficiently regenerate the adsorbent layer portion. Can be effectively treated with respect to the air to be treated A in the treatment area 3.

また、パージ用気体PAをパージ域5に位置する吸着剤層部分の冷却に無駄なく効率的に寄与させ得る分、パージ域5に対するパージ用気体PAの通風量も効果的に削減することができ、これにより、装置全体としての消費エネルギも一層効果的に低減することができる。Further, since the purge gas PA can efficiently contribute to the cooling of the adsorbent layer portion located in the purge zone 5, the ventilation amount of the purge gas PA to the purge zone 5 can be effectively reduced. As a result, the energy consumption of the entire apparatus can be further effectively reduced.

本発明によるロータ式空気処理装置の第特徴構成は、
前記再生域に対する高温再生用気体の通風向きと前記パージ域に対するパージ用気体の通風向きとをロータ回転軸芯方向において同じ向きにして、
前記再生域に位置する前記伝熱路の入口には、前記再生用加熱手段から前記再生域に供給される高温再生用気体の一部が流入し、
前記パージ域に位置する前記伝熱路の入口には、前記パージ域に供給されるパージ用気体の一部が流入する構成にしてある点にある。
The third characteristic configuration of the rotor type air treatment device according to the present invention is as follows.
The direction of ventilation of the high temperature regeneration gas with respect to the regeneration area and the direction of ventilation of the purge gas with respect to the purge area are the same in the rotor rotation axis direction,
A part of the high temperature regeneration gas supplied from the regeneration heating means to the regeneration region flows into the inlet of the heat transfer path located in the regeneration region,
A part of the purge gas supplied to the purge zone flows into the inlet of the heat transfer path located in the purge zone.

この構成によれば(図1参照)、再生域4に位置する伝熱路入口fiから再生域4に位置する骨材25の装備伝熱路fに高温再生気体HAの一部を流入させて再生域4に位置する骨材25を加熱するのに伴い、パージ域5に位置する骨材25の装備伝熱路fを前記補助冷却手段として、パージ域5に位置する伝熱路入口fiからパージ域5に位置する骨材25の装備伝熱路fにパージ用気体PAの一部を流入させ、その流入パージ用気体PAによりパージ域5に位置する骨材25を選択的に冷却することができる。   According to this configuration (see FIG. 1), a part of the high temperature regeneration gas HA is caused to flow from the heat transfer path inlet fi located in the regeneration zone 4 into the equipment heat transfer path f of the aggregate 25 located in the regeneration zone 4. As the aggregate 25 located in the regeneration zone 4 is heated, the equipment heat transfer path f of the aggregate 25 located in the purge zone 5 is used as the auxiliary cooling means from the heat transfer path inlet fi located in the purge zone 5. A part of the purge gas PA is caused to flow into the equipment heat transfer path f of the aggregate 25 located in the purge zone 5, and the aggregate 25 located in the purge zone 5 is selectively cooled by the inflow purge gas PA. Can do.

即ち、この構成によれば、再生域4に位置する骨材25の装備伝熱路fに対して高温再生用気体HAの一部を選択的に通過させるとともに、パージ域5に位置する骨材25の装備伝熱路fに対してパージ用気体PAの一部を選択的に通過させるための専用の流路切換手段を不要にしながら、パージ域5に位置する骨材25をパージ域5に位置する吸着剤層部分への放熱による冷却、及び、その吸着剤層部分を通過するパージ用気体PAへの放熱による冷却とは別に、パージ用気体PAの一部を利用して効果的に冷却することができる。   That is, according to this configuration, a part of the high-temperature regeneration gas HA is selectively passed through the equipment heat transfer path f of the aggregate 25 located in the regeneration zone 4 and the aggregate located in the purge zone 5 The aggregate 25 located in the purge zone 5 is moved to the purge zone 5 while eliminating the need for a dedicated channel switching means for selectively passing a part of the purge gas PA through the equipment heat transfer path f. Separately from cooling by heat radiation to the adsorbent layer portion positioned and cooling by heat radiation to the purge gas PA passing through the adsorbent layer portion, cooling is effectively performed using a part of the purge gas PA. can do.

本発明によるロータ式空気処理装置の第特徴構成は、
前記伝熱路の出口を、ロータ回転方向において対応する前記骨材夫々の近傍で前記吸着ロータの外周面部に形成し、
前記吸着ロータの回転領域における外周部のうち、前記再生域に対応する部分及び前記パージ域に対応する部分に、前記伝熱路の出口から排出される気体を受け入れる排気チャンバを形成し、
この排気チャンバに受け入れた排出気体を前記再生用加熱手段に導く回収用排気路を設けてある点にある。
The fourth characteristic configuration of the rotor type air treatment device according to the present invention is as follows.
Forming an outlet of the heat transfer path on an outer peripheral surface portion of the adsorption rotor in the vicinity of each of the corresponding aggregates in the rotor rotation direction;
Of the outer peripheral portion in the rotation region of the adsorption rotor, an exhaust chamber for receiving the gas discharged from the outlet of the heat transfer path is formed in a portion corresponding to the regeneration region and a portion corresponding to the purge region,
A recovery exhaust path is provided for guiding the exhaust gas received in the exhaust chamber to the regeneration heating means.

この構成では(図1参照)、再生域4に位置する伝熱路入口fiからの流入に伴い再生域4に位置する伝熱路出口foから排出される気体HA″(即ち、再生域4に位置する骨材25の加熱に用いた高温再生用気体HA″)、及び、パージ域5に位置する伝熱路入口fiからの流入に伴いパージ域5に位置する伝熱路出口foから排出される気体PA″(即ち、パージ域5に位置する骨材25の冷却に用いたパージ用気体PA″)を排気チャンバ31に受け入れる。   In this configuration (see FIG. 1), the gas HA ″ discharged from the heat transfer path outlet fo located in the regeneration zone 4 (that is, in the regeneration zone 4 as it flows from the heat transfer path inlet fi located in the regeneration zone 4). The high-temperature regeneration gas HA ″) used for heating the aggregate 25 located in the position is discharged from the heat transfer path outlet fo located in the purge area 5 along with the inflow from the heat transfer path inlet fi located in the purge area 5. Gas PA ″ (that is, the purge gas PA ″ used for cooling the aggregate 25 located in the purge zone 5) is received in the exhaust chamber 31.

そして、この排気チャンバ31に受け入れた排出気体HA″,PA″を回収用排気路33を通じて再生用加熱手段16に導くことで、それら排出気体HA″,PA″の保有熱(即ち、再生域4での骨材25の加熱に用いた高温再生用気体HA″の残熱、及び、パージ域5での骨材25の冷却においてパージ用気体PA″に回収した熱)を有効利用した状態で、それら排出気体HA″,PA″を原材気体として再生域4に供給する高温再生用気体HAを再生用加熱手段16において加熱生成する。   The exhaust gases HA ″ and PA ″ received in the exhaust chamber 31 are guided to the regeneration heating means 16 through the recovery exhaust passage 33, so that the retained heat of the exhaust gases HA ″ and PA ″ (that is, the regeneration zone 4). In the state where the residual heat of the high temperature regeneration gas HA ″ used for heating the aggregate 25 and the heat recovered in the purge gas PA ″ in the cooling of the aggregate 25 in the purge zone 5 is effectively used, The regeneration heating means 16 heats and generates the high temperature regeneration gas HA that supplies the exhaust gases HA ″ and PA ″ as raw material gases to the regeneration zone 4.

従って、この構成によれば、高温再生用気体HAを生成する再生用加熱手段16の消費エネルギを効果的に低減することができ、省エネルギ面や運転コスト面で一層有利にすることができる。   Therefore, according to this configuration, the energy consumption of the regeneration heating means 16 that generates the high temperature regeneration gas HA can be effectively reduced, which can be further advantageous in terms of energy saving and operation cost.

本発明によるロータ式空気処理装置の第特徴構成は、
前記再生域に位置する前記伝熱路の出口から排出される気体、及び、前記パージ域に位置する前記伝熱路の出口から排出される気体を前記再生用加熱手段に送給する回収用ファンを設けてある点にある。
The fifth characteristic configuration of the rotor type air treatment device according to the present invention is:
A recovery fan that supplies the gas discharged from the outlet of the heat transfer path located in the regeneration zone and the gas discharged from the outlet of the heat transfer path located in the purge zone to the heating means for regeneration. It is in the point which is provided.

この構成によれば(図8参照)、各伝熱路出口foから排出される気体HA″,PA″を回収用ファン35の送風機能により再生用加熱手段16に確実に送ることができ、これにより、装置を所期の運転状態で確実かつ安定的に運転することができる。   According to this configuration (see FIG. 8), the gas HA ″ and PA ″ discharged from each heat transfer path outlet fo can be reliably sent to the regeneration heating means 16 by the blowing function of the recovery fan 35. Thus, the apparatus can be reliably and stably operated in an intended operation state.

そしてまた、回収用ファン35の吸引作用により各伝熱路fにおける気体通過を促進することもでき、そのことで、伝熱路fに高温再生用気体HAの一部を通過させることによる骨材25の加熱や、伝熱路fにパージ用気体PAの一部を通過させることによる骨材25の冷却を一層効果的なものにすることができる。   Further, it is possible to promote gas passage in each heat transfer path f by the suction action of the recovery fan 35, and as a result, aggregate by passing a part of the high temperature regeneration gas HA through the heat transfer path f. Thus, the cooling of the aggregate 25 by passing a part of the purge gas PA through the heat transfer path f can be made more effective.

本発明によるロータ式空気処理装置の第特徴構成は、
前記処理域に対する被処理空気の通風向きと前記再生域に対する高温再生用気体の通風向きとをロータ回転軸芯方向において互いに逆向きにしてある点にある。
The sixth characteristic configuration of the rotor type air treatment device according to the present invention is as follows.
The ventilation direction of the air to be treated with respect to the treatment area and the ventilation direction of the high temperature regeneration gas with respect to the regeneration area are opposite to each other in the rotor rotation axis direction.

つまり(図1参照)、伝熱路fの出口foを前述の如く吸着ロータ1の外周面に設ける構成であれば、処理域3に対する被処理空気Aの通風向きと再生域4に対する高温再生用気体HAの通風向きとを上記の如く互いに逆向きにしたとしても、処理域3に通風する被処理空気Aの一部が処理域3に位置する伝熱路出口foから処理域3に位置する骨材25の装備伝熱路fに侵入して、処理域3に位置する吸着剤層部分を通過せずに処理されないままで処理域3から送出される素通り的漏洩を防止することができる。   In other words (see FIG. 1), if the outlet fo of the heat transfer path f is provided on the outer peripheral surface of the adsorption rotor 1 as described above, the direction of ventilation of the air to be treated A with respect to the treatment area 3 and the high temperature regeneration with respect to the regeneration area 4 Even if the ventilation direction of the gas HA is opposite to each other as described above, a part of the air to be treated A that is ventilated in the processing zone 3 is located in the processing zone 3 from the heat transfer path outlet fo located in the processing zone 3. By entering the heat transfer path f of the aggregate 25 and passing through the adsorbent layer located in the processing area 3 and not being processed, it is possible to prevent the through leakage sent from the processing area 3.

そして、上記構成によれば、このような被処理空気Aの素通り的漏洩を防止しながら、、処理域3に対する被処理空気Aの通風向きと再生域4に対する高温再生用気体HAの通風向きとをロータ回転軸芯方向において互いに逆向きにすることで、処理域3に位置する吸着剤層部分で被処理空気Aが進行して処理が進むほど再生域4での再生度の高い吸着剤層が位置するようにした通過形態で、被処理空気Aの全量を処理域3に位置する吸着剤層部分に通過させることができ、これにより、被処理空気Aに対する処理効率を一層効果的に高めることができる。   And according to the said structure, the ventilation direction of the to-be-processed air A with respect to the process area 3 and the ventilation direction of the high temperature reproduction | regeneration gas HA with respect to the reproduction | regeneration area 4 are prevented, preventing such a through leakage of the to-be-processed air A. Are made to be opposite to each other in the rotor rotation axis direction, so that the air to be treated advances in the adsorbent layer portion located in the processing area 3 and the processing proceeds, so that the adsorbent layer has a higher degree of regeneration in the regeneration area 4. The entire amount of air to be treated A can be passed through the adsorbent layer portion located in the processing zone 3 in a passing configuration in which the air is positioned, thereby further effectively increasing the processing efficiency for the air to be processed A. be able to.

なお、本発明によるロータ式空気処理装置の第〜第特徴構成のいずれかの実施においては、伝熱路入口fiから伝熱路出口foに向う短絡的な気流が伝熱路fの内部で形成されるのを防止する通過気流案内手段を設けたり、伝熱路fにおける通過気体と骨材25との間での伝熱を促進する伝熱用突起を伝熱路fの内壁面に設けるなどしてもよい。 In the implementation of any one of the first to sixth characteristic configurations of the rotor type air treatment device according to the present invention, a short-circuit air flow from the heat transfer path inlet fi to the heat transfer path outlet fo is generated inside the heat transfer path f. On the inner wall surface of the heat transfer path f, there is provided a passing air flow guide means for preventing the heat transfer from being formed or a heat transfer projection for promoting heat transfer between the passing gas and the aggregate 25 in the heat transfer path f. It may be provided.

ロータ式空気除湿装置の全体構成図Overall configuration diagram of rotor type air dehumidifier 吸着ロータの構造図Structure of adsorption rotor 吸着ロータ周りの構造図Structure diagram around the suction rotor 骨材における伝熱路の構造図Structural diagram of heat transfer path in aggregate 伝熱路の断面図Cross section of heat transfer path 処理済空気の湿度状態を示すグラフGraph showing humidity status of treated air 伝熱路を装備した装置と伝熱路の装備がない装置との比較表Comparison table of equipment with heat transfer path and equipment without heat transfer path 別実施形態を示すロータ式空気除湿装置の全体構成図Whole block diagram of a rotor type air dehumidifier showing another embodiment

図1はロータ式空気除湿装置を示し、1はハニカム構造などの通気性の吸着剤層Xからなる吸着ロータであり、この吸着剤層Xにはゼオライトや活性炭などの吸着剤を保持させてある。   FIG. 1 shows a rotor-type air dehumidifier, and 1 is an adsorption rotor composed of a breathable adsorbent layer X such as a honeycomb structure, and this adsorbent layer X holds an adsorbent such as zeolite or activated carbon. .

吸着ロータ1の回転領域2には、処理域3と再生域4とパージ域5とをその順にロータ回転方向Rに並べて区画形成してあり、吸着ロータ1を回転させるのに伴い、ロータ各部の吸着剤層Xを処理域3と再生域4とパージ域5とにその順で繰り返し位置させる。   In the rotation area 2 of the adsorption rotor 1, a processing area 3, a regeneration area 4, and a purge area 5 are arranged in the rotor rotation direction R in that order, and are partitioned and formed as the adsorption rotor 1 rotates. The adsorbent layer X is repeatedly positioned in the processing zone 3, the regeneration zone 4, and the purge zone 5 in that order.

なお、図1においては理解を容易にするため吸着ロータ1及びその回転領域2をロータ回転方向Rで展開して示してある。   In FIG. 1, the suction rotor 1 and its rotation region 2 are developed in the rotor rotation direction R for easy understanding.

処理域3には、被処理空気路6を通じて給気ファン7により供給される除湿対象の被処理空気Aを通風し、この通風により、被処理空気Aをロータ吸着剤層Xのうち処理域3に位置する吸着剤層部分に通過させることで、その通過過程において吸着剤層Xによる水分吸着により被処理空気Aを除湿する。   Through the air to be treated 3, the air to be treated A to be dehumidified supplied by the air supply fan 7 is passed through the air to be treated 6, and the air to be treated A is removed from the rotor adsorbent layer X by the ventilation. By passing it through the adsorbent layer portion located at the position, the air to be treated A is dehumidified by moisture adsorption by the adsorbent layer X during the passage process.

処理域3において除湿した処理済空気A′は調整用空気SAとして処理済空気路8を通じて調整対象室9に供給し、これにより、調整対象室9の室内を所定の低湿度状態に調整する。   The processed air A ′ dehumidified in the processing area 3 is supplied to the adjustment target chamber 9 through the processed air passage 8 as the adjustment air SA, thereby adjusting the interior of the adjustment target chamber 9 to a predetermined low humidity state.

被処理空気Aは外気OAと調整対象室9から戻る還気空気RAとの混合空気であり、外気導入路10を通じて外気OAを導入するとともに、調整対象室9における室内空気を還気空気RAとして還気路11に導出し、これら導入外気OAと還気空気RAとを合流させた空気を被処理空気Aとして被処理空気路6を通じて処理域3に供給する。   The air A to be treated is a mixed air of the outside air OA and the return air RA returning from the adjustment target chamber 9, introduces the outside air OA through the outside air introduction path 10, and uses the room air in the adjustment target chamber 9 as the return air RA. The air led out to the return air passage 11 and combined with the introduced outside air OA and the return air RA is supplied to the treatment area 3 through the treatment air passage 6 as the treatment air A.

また、調整対象室9に対する調整用空気SAの供給に伴い、外気導入路10を通じた外気OAの導入風量に相当する風量の室内空気を排気空気EAとして排気路12を通じ調整対象室9から排出する。   Further, along with the supply of the adjustment air SA to the adjustment target chamber 9, the indoor air having an air volume corresponding to the introduction air amount of the outside air OA through the external air introduction path 10 is discharged from the adjustment target chamber 9 through the exhaust path 12 as the exhaust air EA. .

13は外気導入路10を通じて導入する外気OAを冷却する外気処理クーラ、14は還気路11を通じて導く還気空気RAを冷却する還気処理クーラであり、これらクーラ13、14による外気OA及び還気空気RAの冷却により被処理空気Aを低温にすることで、処理域3での被処理空気Aに対する除湿効率(換言すれば、吸着剤層Xの水分吸着効率)を高める。   Reference numeral 13 denotes an outside air processing cooler that cools the outside air OA introduced through the outside air introduction path 10, and reference numeral 14 denotes a return air processing cooler that cools the return air RA guided through the return air path 11, and the outside air OA and return by these coolers 13 and 14. By reducing the temperature of the air to be treated A by cooling the air air RA, the dehumidifying efficiency of the air to be treated A in the treatment area 3 (in other words, the moisture adsorption efficiency of the adsorbent layer X) is increased.

15は外気処理クーラ13及び還気処理クーラ14による冷却に対し、処理済空気路8を通じて調整対象室9に供給する調整用空気SAを調整対象室9の用途に応じた所要温度に加熱するアフターヒータである。   Reference numeral 15 denotes an after-heating for heating the adjustment air SA supplied to the adjustment target chamber 9 through the processed air passage 8 to a required temperature corresponding to the use of the adjustment target chamber 9 for cooling by the outside air processing cooler 13 and the return air processing cooler 14. It is a heater.

再生域4には、再生用ヒータ16(再生用加熱手段の一例)から再生用給気路17を通じて再生用ファン18により供給される高温再生用空気HAを通風し、この通風により、高温再生用空気HAをロータ吸着剤層Xのうち再生域4に位置する吸着剤層部分に通過させることで、再生域4に位置する吸着剤層部分を加熱して、その吸着剤層部分が先の処理域3で被処理空気Aから吸着した水分を脱着させ、これにより、再生域4に位置する吸着剤層部分を再生する。   A high temperature regeneration air HA supplied by a regeneration fan 18 is passed through a regeneration heater 16 (an example of a regeneration heating means) from a regeneration heater 16 through a regeneration air supply path 17, and this ventilation allows high temperature regeneration. By passing the air HA through the adsorbent layer portion located in the regeneration zone 4 of the rotor adsorbent layer X, the adsorbent layer portion located in the regeneration zone 4 is heated, and the adsorbent layer portion is processed in the previous process. The moisture adsorbed from the air to be treated A in the zone 3 is desorbed, and thereby the adsorbent layer portion located in the regeneration zone 4 is regenerated.

再生域4に対する高温再生用空気HAの通風向きと、処理域3に対する被処理空気Aの通風向きとはロータ回転軸芯方向において互いに逆向きにしてあり、再生域4では、高温再生用空気HAを吸着ロータ1の回転軸芯方向における一方側の端面部(再生用空気入口側の端面部)から再生域内の吸着剤層部分に通過させるのに対し、処理域3では、被処理空気Aを吸着ロータ1の回転軸芯方向における他方側の端面部(被処理空気入口側の端面部)から処理域内の吸着剤層部分に通過させる。   The direction of ventilation of the high-temperature regeneration air HA with respect to the regeneration zone 4 and the direction of ventilation of the air to be treated A with respect to the treatment zone 3 are opposite to each other in the rotor rotation axis direction. Is passed through the adsorbent layer portion in the regeneration zone from one end surface portion (end surface portion on the regeneration air inlet side) in the rotational axis direction of the adsorption rotor 1, whereas in the treatment zone 3, the air to be treated A The adsorption rotor 1 is passed through the adsorbent layer portion in the treatment area from the other end surface portion (end surface portion on the treated air inlet side) in the rotation axis direction.

このように、再生域4に対する高温再生用空気HAの通風向きと、処理域3に対する被処理空気Aの通風向きとを互いに逆向きにすることにより、処理域3に位置する吸着剤層部分で被処理空気Aが進行して除湿が進むほど再生域4での再生度の高い吸着剤層が位置するようにし、これにより、被処理空気Aに対する除湿効率を高く確保する。   Thus, the adsorbent layer portion located in the processing area 3 is made by reversing the airflow direction of the high temperature regeneration air HA with respect to the regeneration area 4 and the airflow direction of the air to be processed A with respect to the processing area 3. As the air to be treated A advances and the dehumidification progresses, an adsorbent layer having a higher degree of regeneration in the regeneration zone 4 is positioned, thereby ensuring high dehumidification efficiency for the air to be treated A.

処理域3で除湿されて処理済空気路8に送出される処理済空気A′の一部はアフターヒータ15よりも上流側でパージ用給気路19に分流し、パージ域5には、このパージ用給気路19に分流した処理済空気A′をパージ用空気PAとして再生域4に対する高温再生用空気HAの通風向きと同じ向きで通風する。   Part of the processed air A ′ dehumidified in the processing area 3 and sent to the processed air path 8 is diverted to the purge air supply path 19 on the upstream side of the after heater 15. The treated air A ′ divided into the purge air supply passage 19 is vented in the same direction as the ventilation direction of the high-temperature regeneration air HA to the regeneration zone 4 as purge air PA.

この通風により、パージ用空気PAをロータ吸着剤層Xのうちパージ域5に位置するする吸着剤層部分に通過させることで、先の再生域4において加熱された吸着剤層部分をパージ域5において冷却し、この冷却により、再生域4で再生した吸着剤層部分を次の処理域3において被処理空気Aに対し効率的に除湿機能(水分吸着機能)させる。   By this ventilation, the purge air PA is passed through the adsorbent layer portion located in the purge region 5 of the rotor adsorbent layer X, so that the adsorbent layer portion heated in the previous regeneration region 4 is purged. By this cooling, the adsorbent layer portion regenerated in the regeneration zone 4 is efficiently dehumidified (moisture adsorption function) for the air to be treated A in the next treatment zone 3.

再生域4から再生用排気路20に送出される使用済の高温再生用空気HA′の一部は、再生用排気路20に介装した再生用ファン18の送風作用により再生用循環路21を通じて再生用ヒータ16に送り、また、この再生用循環路21には、パージ域5から送出される使用済のパージ用空気PA′を導くパージ用排気路22を接続してある。   Part of the used high-temperature regeneration air HA ′ sent from the regeneration zone 4 to the regeneration exhaust passage 20 passes through the regeneration circulation passage 21 by the blowing action of the regeneration fan 18 interposed in the regeneration exhaust passage 20. A purge exhaust path 22 is connected to the regeneration circulation path 21 and leads the used purge air PA ′ sent from the purge zone 5 to the regeneration circulation path 21.

つまり、再生域4から送出される使用済の高温再生用空気HA′の一部、及び、パージ域5から送出される使用済のパージ用空気PA′を再生用循環路21を通じて再生用ヒータ16に送り、これら使用済空気HA′,PA′を再生用ヒータ16により加熱することで、再生域4に供給する高温再生用空気HAを生成する。   That is, a part of the used high-temperature regeneration air HA ′ sent from the regeneration zone 4 and the used purge air PA ′ sent from the purge zone 5 are passed through the regeneration circuit 21 to the regeneration heater 16. The spent air HA ′, PA ′ is heated by the regeneration heater 16 to generate the high temperature regeneration air HA to be supplied to the regeneration zone 4.

このように使用済の高温再生用空気HA′の一部及び使用済のパージ用空気PA′を原材空気として高温再生用空気HAを加熱生成することで、使用済の高温再生用空気HA′が保有する残熱及び使用済のパージ用空気PA′が保有する回収熱(即ち、パージ域5に位置する吸着剤層部分からの回収熱)を利用して高温再生用空気HAを加熱生成し、これにより、高温再生用空気HAの生成に要するエネルギを低減する。   In this way, by using a part of the used high temperature regeneration air HA ′ and the used purge air PA ′ as raw material air, the high temperature regeneration air HA is heated and generated, so that the used high temperature regeneration air HA ′ is used. The high-temperature regeneration air HA is heated and generated using the residual heat held by the gas and the recovered heat held by the used purge air PA ′ (that is, the recovered heat from the adsorbent layer portion located in the purge zone 5). This reduces the energy required to generate the high temperature regeneration air HA.

なお、再生域4から送出される使用済の高温再生用空気HA′のうちの残部は再生用排気路20を通じて装置外に排出する。   The remaining portion of the used high-temperature regeneration air HA ′ delivered from the regeneration zone 4 is discharged out of the apparatus through the regeneration exhaust passage 20.

図2に示すように、吸着ロータ1は構造材として、ロータ中心に位置するロータ回転軸23と、ロータ外周面を形成するロータ外周リム24と、これらロータ回転軸23とロータ外周リム24とにわたるスポーク状の骨材25とを備え、スポーク状の骨材25はロータ回転方向に等間隔に並べて放射状に4箇所配置してある。   As shown in FIG. 2, the adsorption rotor 1 includes, as a structural material, a rotor rotating shaft 23 located at the center of the rotor, a rotor outer peripheral rim 24 that forms a rotor outer peripheral surface, and the rotor rotating shaft 23 and the rotor outer peripheral rim 24. The spoke-like aggregate 25 is arranged in four radial positions, arranged at equal intervals in the rotor rotation direction.

ハニカム構造の吸着剤層Xは、ロータ回転方向において複数の吸着剤層ブロックxbに分割してあり、これら吸着剤層ブロックxbの各々をロータ回転軸23とロータ外周リム24との間でスポーク状の骨材25どうしの間に収容配置することで吸着ロータ1を構成してある。   The adsorbent layer X having a honeycomb structure is divided into a plurality of adsorbent layer blocks xb in the rotor rotation direction, and each of the adsorbent layer blocks xb is spoke-shaped between the rotor rotation shaft 23 and the rotor outer peripheral rim 24. The adsorption rotor 1 is configured by being housed and arranged between the aggregates 25.

25aは、吸着剤層ブロックxbと骨材25との間をシールするシール部材であり、Pはロータ回転軸芯でありロータ回転軸23の中心軸芯である。   25 a is a seal member that seals between the adsorbent layer block xb and the aggregate 25, and P is the rotor rotation axis and the center axis of the rotor rotation axis 23.

図3に示すように、吸着ロータ1の回転領域2におけるロータ回転軸芯方向の一端部には、吸着ロータ1の一方側の端面部(再生用空気入口側の端面部)に対して開口部を近接対向させた一方側の給排チャンバ26を配置し、同様に、吸着ロータ1の回転領域2におけるロータ回転軸芯方向の他端部には、吸着ロータ1の他方側の端面部(被処理空気入口側の端面部)に対して開口部を近接対向させた他方側の給排チャンバ27を配置してある。   As shown in FIG. 3, at one end portion of the rotation region 2 of the adsorption rotor 1 in the rotor rotation axis direction, an opening is formed with respect to one end surface portion (end surface portion on the regeneration air inlet side) of the adsorption rotor 1. Are arranged in close proximity to each other, and similarly, at the other end of the rotation region 2 of the suction rotor 1 in the direction of the rotor rotational axis, the other end surface portion (covered) of the suction rotor 1 is disposed. The supply / discharge chamber 27 on the other side is arranged with the opening facing the process air inlet side end face).

一方側の給排チャンバ26は、その内部を仕切壁26aにより、処理域3に対応位置する処理域出口チャンバ3oと、再生域4に対応位置する再生域入口チャンバ4iと、パージ域5に対応位置するパージ域入口チャンバ5iとに区画してあり、また、他方側の給排チャンバ27は、その内部を仕切壁27aにより、処理域3に対応位置する処理域入口チャンバ3iと、再生域4に対応位置する再生域出口チャンバ4oと、パージ域5に対応位置するパージ域出口チャンバ5oとに区画してある。   The supply / discharge chamber 26 on one side corresponds to a processing area outlet chamber 3o positioned corresponding to the processing area 3, a regeneration area inlet chamber 4i corresponding to the regeneration area 4, and a purge area 5 by a partition wall 26a. The supply / exhaust chamber 27 on the other side is partitioned by a partition wall 27a and a regeneration region inlet chamber 3i positioned corresponding to the treatment region 3 and a regeneration region 4 Is divided into a regeneration zone outlet chamber 4o positioned corresponding to the purge zone 5 and a purge zone outlet chamber 5o positioned corresponding to the purge zone 5.

即ち、他方側の給排チャンバ27における処理域入口チャンバ3iに被処理空気路6を接続するとともに、一方側の給排チャンバ26における処理域出口チャンバ3oに処理済空気路8を接続することで、被処理空気Aを処理域3に通風して処理域3に位置する吸着剤層部分に通過させる構造にしてある。   That is, by connecting the processing air passage 6 to the processing region inlet chamber 3i in the other supply / discharge chamber 27 and connecting the processed air passage 8 to the processing region outlet chamber 3o in the one supply / discharge chamber 26. The structure is such that the air to be treated A is passed through the treatment area 3 and passed through the adsorbent layer portion located in the treatment area 3.

また、一方側の給排チャンバ26における再生域入口チャンバ4iに再生用給気路17を接続するとともに、他方側の給排チャンバ27における再生域出口チャンバ4oに再生用排気路20を接続することで、高温再生用空気HAを再生域4に通風して再生域4に位置する吸着剤層部分に通過させる構造にしてある。   Further, the regeneration air supply path 17 is connected to the regeneration area inlet chamber 4 i in the one supply / discharge chamber 26, and the regeneration exhaust path 20 is connected to the regeneration area outlet chamber 4 o in the other supply / discharge chamber 27. Thus, the high-temperature regeneration air HA is passed through the regeneration zone 4 and passed through the adsorbent layer portion located in the regeneration zone 4.

そしてまた、一方側の給排チャンバ26におけるパージ域入口チャンバ5iにパージ用給気路19を接続するとともに、他方側の給排チャンバ27におけるパージ域出口チャンバ5oにパージ用排気路22を接続することで、パージ用空気PAをパージ域5に通風してパージ域5に位置する吸着剤層部分に通過させる構造にしてある。   Further, the purge air supply path 19 is connected to the purge area inlet chamber 5i in the one supply / discharge chamber 26, and the purge exhaust path 22 is connected to the purge area outlet chamber 5o in the other supply / discharge chamber 27. Thus, the purge air PA is ventilated through the purge zone 5 and passed through the adsorbent layer portion located in the purge zone 5.

図2〜図5に示すように、吸着ロータ1において隣合う吸着剤層ブロックxbどうしの間に位置させるスポーク状の骨材25は夫々、ロータ回転軸芯方向において吸着ロータ1の全長にわたり、かつ、ロータ回転半径方向においてロータ回転軸23からロータ外周リム24にわたる偏平なボックス構造にしてあり、この偏平ボックス構造におけるロータ回転軸芯方向の一方側の側面部は、伝熱路入口fiとして吸着ロータ1の一方側端面部(再生用空気入口側の端面部)において開口させてある。   As shown in FIGS. 2 to 5, the spoke-like aggregate 25 positioned between the adsorbent layer blocks xb adjacent to each other in the adsorption rotor 1 extends over the entire length of the adsorption rotor 1 in the rotor rotation axis direction, and A flat box structure extending from the rotor rotary shaft 23 to the rotor outer peripheral rim 24 in the rotor rotational radius direction, and a side surface portion on one side in the rotor rotational axis direction in the flat box structure serves as a heat transfer path inlet fi. 1 is opened at one end face (end face on the regeneration air inlet side).

また、骨材25の偏平ボックス構造におけるロータ外周側の側面部のうち、吸着ロータ1の他方側端面部(被処理空気入口の端面部)寄りの部分は、伝熱路出口foとしてロータ外周リム24において開口させてあり、これにより、各骨材25の偏平ボックス構造におけるボックス内部は、各骨材25に対して装備した伝熱路fにしてある。   Of the side surface portion of the rotor 25 in the flat box structure of the aggregate 25, the portion near the other end surface portion (end surface portion of the air inlet to be treated) of the adsorption rotor 1 serves as the heat transfer path outlet fo. Accordingly, the inside of the box in the flat box structure of each aggregate 25 is a heat transfer path f provided for each aggregate 25.

この伝熱路fの内壁面には、伝熱路fにおける通過空気と骨材25との間での伝熱を促進する複数の伝熱リブ28(伝熱用突起の一例)を形成してあり、また、骨材25の偏平ボックス構造における内部には、伝熱路入口fiから伝熱路出口foに向う短絡的な直線状の気流が伝熱路fの内部に形成されるのを防止して伝熱路fを実質上の屈曲流路にする気流案内板29(通過気流案内手段の一例)を装備してある。   On the inner wall surface of the heat transfer path f, a plurality of heat transfer ribs 28 (an example of heat transfer protrusions) that promote heat transfer between the air passing through the heat transfer path f and the aggregate 25 are formed. In addition, in the inside of the flat box structure of the aggregate 25, a short-circuited linear air flow from the heat transfer path inlet fi to the heat transfer path outlet fo is prevented from being formed inside the heat transfer path f. Thus, an airflow guide plate 29 (an example of a passing airflow guide means) that makes the heat transfer path f a substantially bent flow path is provided.

各伝熱路fの出口foをロータ外周リム24に形成するのに対して、吸着ロータ1の回転領域2における外周部には、ロータ外周リム24の全周に対して開口部を近接対向させた環状チャンバ30を配置し、この環状チャンバ30は、その内部を仕切壁30aにより、ロータ回転方向において再生域4とパージ域5とに対応位置する排気チャンバ31と、ロータ回転方向において処理域3に対応位置する閉塞チャンバ32とに区画してある。   While the outlet fo of each heat transfer path f is formed in the rotor outer rim 24, the outer peripheral portion in the rotation region 2 of the adsorption rotor 1 has an opening adjacent to the entire outer periphery of the rotor outer rim 24. An annular chamber 30 is disposed inside the annular chamber 30 by a partition wall 30a. The exhaust chamber 31 is positioned corresponding to the regeneration region 4 and the purge region 5 in the rotor rotational direction, and the processing region 3 in the rotor rotational direction. And a closed chamber 32 corresponding to each other.

つまり、再生域4では、再生用給気路17を通じて一方側の給排チャンバ26における再生域入口チャンバ4iに供給される高温再生用空気HAをロータ吸着剤層Xのうち再生域4に位置する吸着剤層部分に通過させるのに併行して、再生域入口チャンバ4iに供給される高温再生用空気HAの一部を、吸着ロータ1の一方側端面部でロータ回転方向に並ぶ伝熱路入口fiのうち再生域4に位置する伝熱路入口fi(即ち、再生域入口チャンバ4iに臨む伝熱路入口fi)に流入させて、再生域4に位置する骨材25の装備伝熱路fに通過させる。   That is, in the regeneration zone 4, the high temperature regeneration air HA supplied to the regeneration zone inlet chamber 4 i in the supply / discharge chamber 26 on one side through the regeneration air supply path 17 is located in the regeneration zone 4 of the rotor adsorbent layer X. Along with passing through the adsorbent layer portion, a part of the high-temperature regeneration air HA supplied to the regeneration zone inlet chamber 4i is aligned in the rotor rotation direction at one end face of the adsorption rotor 1 in the rotor rotation direction. Of the fi, the heat transfer path inlet fi located in the regeneration zone 4 (that is, the heat transfer path inlet fi facing the regeneration zone inlet chamber 4i) flows into the heat transfer path f of the aggregate 25 located in the regeneration zone 4 To pass through.

これにより、再生域4に位置する骨材25の装備伝熱路fを補助加熱手段として、再生域4に位置する吸着剤層部分からの伝熱による加熱、及び、その吸着剤層部分を通過する高温再生用空気HAからの伝熱による加熱とは別に、再生域4に位置する骨材25をその装備伝熱路fに通過させる高温再生用空気HAにより選択的かつ直接的に加熱し、これにより、吸着ロータ1における複数箇所の骨材配置部(即ち、吸着剤層ブロックxbどうしの間の境界部)のうち再生域4に位置する骨材配置部を効率的に昇温させる。   As a result, heating by heat transfer from the adsorbent layer portion located in the regeneration zone 4 and passing through the adsorbent layer portion using the equipment heat transfer path f of the aggregate 25 located in the regeneration zone 4 as auxiliary heating means. In addition to heating by heat transfer from the high temperature regeneration air HA, the aggregate 25 located in the regeneration zone 4 is selectively and directly heated by the high temperature regeneration air HA that passes through the equipment heat transfer path f. Thereby, the aggregate arrangement part located in the reproduction | regeneration area 4 among the aggregate arrangement parts (namely, boundary part between adsorption agent layer blocks xb) of the several places in the adsorption | suction rotor 1 is heated efficiently.

即ち、吸着ロータ1における骨材25の配置部は、高温再生用気体HAの通過が可能な骨材不存部に比べ再生域4において昇温し難く、その為、ロータ回転方向において骨材配置部の近傍に位置する骨材不存部の吸着剤層部分も、高温再生用空気HAの通過があるにもかかわらず、低温部である骨材配置部への伝熱のために再生域4において加熱不足の状態になり、再生域通過過程において十分に再生されない再生不足の状態になる傾向がある。   That is, the arrangement portion of the aggregate 25 in the adsorption rotor 1 is less likely to be heated in the regeneration region 4 than the aggregate-free portion where the high temperature regeneration gas HA can pass, and therefore the aggregate arrangement in the rotor rotation direction. The adsorbent layer part of the aggregate-free part located in the vicinity of the part also has a regeneration zone 4 for heat transfer to the aggregate placement part which is the low temperature part, despite the passage of the high temperature regeneration air HA. In this case, there is a tendency to be in a state of insufficient regeneration that is not sufficiently regenerated in the process of passing through the regeneration zone.

そして、このように再生不足となった骨材配置部近傍の吸着剤層部分が骨材配置部とともに周期的に処理域3を通過することが原因で、被処理空気Aに対する除湿効率が周期的に変動して処理域3から送出される処理済空気A′の湿度(即ち、調整対象室9に供給する調整用空気SAの湿度)が図6におけるグラフ1に示されるように周期的に上昇するといった問題が生じる。   And the dehumidification efficiency with respect to the to-be-processed air A is periodic because the adsorbent layer part in the vicinity of the aggregate placement part that has become insufficiently regenerated passes through the treatment zone 3 together with the aggregate placement part. The humidity of the processed air A ′ sent out from the processing area 3 (ie, the humidity of the adjustment air SA supplied to the adjustment target chamber 9) periodically rises as shown in the graph 1 in FIG. Problem arises.

これに対し、上記の如く、再生域4に位置する吸着剤層部分からの伝熱による加熱、及び、その吸着剤層部分を通過する高温再生用空気HAからの伝熱による加熱とは別に、吸着ロータ1の回転に併行して、再生域4に位置する骨材25をその装備伝熱路fに通過させる高温再生用空気HAにより選択的かつ直接的に加熱して、再生域4に位置する骨材配置部を効率的に昇温させることで、上記の如き除湿効率の周期的な変動を防止するとともに平均除湿効率も向上させ、これにより、図6のグラフ2に示す如く、処理域3から送出される処理済空気A′の湿度を一層低減するとともに精度良く安定的に維持し得るようにしてある。   On the other hand, as described above, apart from heating by heat transfer from the adsorbent layer portion located in the regeneration zone 4 and heating by heat transfer from the high-temperature regeneration air HA passing through the adsorbent layer portion, Along with the rotation of the adsorption rotor 1, the aggregate 25 located in the regeneration zone 4 is selectively and directly heated by the high-temperature regeneration air HA passing through the equipment heat transfer path f to be located in the regeneration zone 4. By efficiently raising the temperature of the aggregate placement section, the periodic dehumidification efficiency as described above can be prevented and the average dehumidification efficiency can be improved. As a result, as shown in the graph 2 of FIG. The humidity of the processed air A ′ sent out from No. 3 can be further reduced and maintained stably with high accuracy.

再生域入口チャンバ4iに供給される高温再生用空気HAの一部を再生域4に位置する骨材25の装備伝熱路fに通過させるのに伴い、その装備伝熱路fの出口foから排出される使用済の高温再生用空気HA″は環状チャンバ30における排気チャンバ31に受け入れられる。   As part of the high-temperature regeneration air HA supplied to the regeneration zone inlet chamber 4i passes through the equipment heat transfer path f of the aggregate 25 located in the regeneration area 4, the outlet heat fo of the equipment heat transfer path f The exhausted high-temperature regeneration air HA ″ that is discharged is received by the exhaust chamber 31 in the annular chamber 30.

また同様に、パージ域5では、パージ用給気路19を通じて一方側の給排チャンバ26におけるパージ域入口チャンバ5iに供給されるパージ用空気PAをロータ吸着剤層Xのうちパージ域5に位置する吸着剤層部分に通過させるのに併行して、パージ域入口チャンバ5iに供給されるパージ用空気PAの一部を、吸着ロータ1の一方側端面部でロータ回転方向に並ぶ伝熱路入口fiのうちパージ域5に位置する伝熱路入口fi(即ち、パージ域入口チャンバ5iに臨む伝熱路入口fi)に流入させて、パージ域5に位置する骨材25の装備伝熱路fに通過させる。
Similarly, in the purge zone 5, the purge air PA supplied to the purge zone inlet chamber 5 i in the supply / discharge chamber 26 on one side through the purge air passage 19 is positioned in the purge zone 5 of the rotor adsorbent layer X. A part of the purge air PA supplied to the purge zone inlet chamber 5i is lined up in the rotor rotation direction at one end surface of the adsorption rotor 1 in parallel with passing through the adsorbent layer portion. The heat transfer path f of the aggregate 25 located in the purge zone 5 is caused to flow into the heat transfer path inlet fi located in the purge zone 5 (ie, the heat transfer passage inlet fi facing the purge zone inlet chamber 5i). To pass through.

即ち、このようにパージ域5に位置する骨材25の装備伝熱路fにパージ用空気PAを通過させることにより、パージ域5に位置する骨材25の装備伝熱路fを補助冷却手段として、パージ域5に位置する吸着剤層部分への放熱による冷却、及び、その吸着剤層部分を通過するパージ用空気PAへの放熱による冷却とは別に、パージ域5に位置する骨材25をその装備伝熱路fに通過させるパージ用空気PAにより選択的かつ直接的に冷却する。   That is, by passing the purge air PA through the equipment heat transfer path f of the aggregate 25 located in the purge zone 5 in this way, the equipment heat transfer path f of the aggregate 25 located in the purge zone 5 is passed through the auxiliary cooling means. In addition to the cooling by the heat radiation to the adsorbent layer portion located in the purge area 5 and the cooling by the heat radiation to the purge air PA passing through the adsorbent layer portion, the aggregate 25 located in the purge area 5 Is selectively and directly cooled by the purge air PA passing through the heat transfer path f.

これにより、処理域3に先立つパージ域5において骨材配置部(即ち、先の再生域4で加熱した骨材配置部)を効率的に冷却するとともに、その分、パージ域5に位置する吸着剤層部分に通風するパージ用空気PAをパージ域5に位置する吸着剤層部分の冷却に無駄なく効率的に寄与させさせるようにして、前述の如く再生域4での加熱不足を防止して十分に再生した吸着剤層部分を処理域3において被処理空気Aに対し効果的に除湿機能させる。   Thus, the aggregate placement portion (that is, the aggregate placement portion heated in the previous regeneration zone 4) is efficiently cooled in the purge zone 5 prior to the processing zone 3, and the adsorption located in the purge zone 5 correspondingly. The purge air PA vented to the agent layer portion is allowed to efficiently contribute to the cooling of the adsorbent layer portion located in the purge zone 5 without waste, thereby preventing insufficient heating in the regeneration zone 4 as described above. The sufficiently regenerated adsorbent layer portion is effectively dehumidified with respect to the air to be treated A in the treatment zone 3.

パージ域入口チャンバ5iに供給されるパージ用空気PAの一部をパージ域5に位置する骨材25の装備伝熱路fに通過させるのに伴い、その装備伝熱路fの出口foから排出される使用済のパージ用空気PA″は、再生域4に位置する骨材25の装備伝熱路fから排出される使用済の高温再生用空気HA″とともに、環状チャンバ30における排気チャンバ31に受け入れられる。   As part of the purge air PA supplied to the purge zone inlet chamber 5i passes through the equipment heat transfer path f of the aggregate 25 located in the purge area 5, it is discharged from the outlet fo of the equipment heat transfer path f. The used purge air PA ″ is used in the exhaust chamber 31 of the annular chamber 30 together with the used high-temperature regeneration air HA ″ discharged from the equipment heat transfer path f of the aggregate 25 located in the regeneration zone 4. Accepted.

図7は上記の如き伝熱路fを設けていないロータ式空気除湿装置と伝熱路fを設けたロータ式空気除湿装置との比較表であり、この表に示されるように、伝熱路fを設けたロータ式空気除湿装置では、前述の如く処理域3から送出される処理済空気A′の周期的な湿度変動を効果的に防止しながら、再生域4に位置する吸着剤層部分に通過させる高温再生用空気HAを再生域4に位置する吸着剤層部分の加熱に効率的に寄与させ得る分だけ、高温再生用空気HAの必要風量を低減することができ、また、パージ域5に位置する吸着剤層部分に通過させるパージ用空気PAをパージ域5に位置する吸着剤層部分の冷却に効率的に寄与させ得る分だけ、パージ用空気PAの必要風量も低減することができ、これらのことで装置の消費エネルギも効果的に低減することができる。   FIG. 7 is a comparison table between the rotor-type air dehumidifying apparatus not provided with the heat transfer path f as described above and the rotor-type air dehumidifying apparatus provided with the heat transfer path f. In the rotor type air dehumidifier provided with f, the adsorbent layer portion located in the regeneration zone 4 while effectively preventing periodic humidity fluctuations of the treated air A ′ delivered from the treatment zone 3 as described above. The amount of air required for the high-temperature regeneration air HA can be reduced by the amount that can efficiently contribute to the heating of the adsorbent layer portion located in the regeneration zone 4, and the purge zone. The amount of air required for the purge air PA can be reduced by the amount that the purge air PA passing through the adsorbent layer portion located at 5 can efficiently contribute to cooling the adsorbent layer portion located in the purge zone 5. This also makes the energy consumption of the device effective. It can be reduced.

各伝熱路fの出口foはロータ外周リム24に形成してあることで、被処理空気路6を通じて他方側の給排チャンバ27における処理域入口チャンバ3iに供給される被処理空気Aは処理域3に位置する骨材25の装備伝熱路fに流入することが阻止され、これにより、被処理空気Aが骨材25の装備伝熱路fを通じて吸着剤層Xによる除湿処理を受けないままで外部に送出されることが防止される。   Since the outlet fo of each heat transfer path f is formed in the rotor outer peripheral rim 24, the air to be processed A supplied to the processing area inlet chamber 3i in the supply / discharge chamber 27 on the other side through the air flow path 6 to be processed is treated. It is prevented from flowing into the equipment heat transfer path f of the aggregate 25 located in the zone 3, whereby the air to be treated A is not subjected to the dehumidification treatment by the adsorbent layer X through the equipment heat transfer path f of the aggregate 25. It is prevented from being sent outside.

即ち、他方側の給排チャンバ27における処理域入口チャンバ3iに供給された被処理空気Aはその全量が、ロータ吸着剤層Xのうち処理域3に位置する吸着剤層部分を通過して除湿処理された上で一方側の給排チャンバ26における処理域出口チャンバ3oに導かれる。   That is, the entire amount of the air to be processed A supplied to the processing area inlet chamber 3i in the other supply / exhaust chamber 27 passes through the adsorbent layer portion located in the processing area 3 of the rotor adsorbent layer X and dehumidifies. After being processed, it is guided to the processing area outlet chamber 3o in the supply / discharge chamber 26 on one side.

環状チャンバ30における排気チャンバ31は、回収用排気路33を通じて再生用排気路20における再生用ファン18の吸入側箇所に接続してあり、これにより、排気チャンバ31に受け入れた使用済の高温再生用空気HA″及び使用済のパージ用空気PA″(即ち、骨材25の装備伝熱路fを通過した空気)は、回収用排気路33を通じて再生用ファン18の吸引作用により再生用排気路20に導かれる。   The exhaust chamber 31 in the annular chamber 30 is connected to the suction side portion of the regeneration fan 18 in the regeneration exhaust passage 20 through the recovery exhaust passage 33, and thus the used high temperature regeneration received in the exhaust chamber 31. The air HA ″ and the used purge air PA ″ (that is, the air that has passed through the heat transfer path f of the aggregate 25) are recovered through the recovery exhaust path 33 by the suction action of the regeneration fan 18, and the regeneration exhaust path 20. Led to.

即ち、この構造により、再生用ファン18を回収用ファンとして利用する形態で、再生用ファン18の吸引作用により、再生域4に位置する骨材25の装備伝熱路fに対する高温再生用空気HAの通過、及び、パージ域5に位置する骨材25の装備伝熱路fに対するパージ用空気PAの通過を促進して、再生域4に位置する骨材25の加熱及びパージ5に位置する骨材25の冷却を一層促進する。   That is, with this structure, the regeneration fan 18 is used as a recovery fan. By the suction action of the regeneration fan 18, the high-temperature regeneration air HA with respect to the equipment heat transfer path f of the aggregate 25 located in the regeneration zone 4 is obtained. And the passage of the purge air PA to the heat transfer path f of the aggregate 25 located in the purge zone 5 and the heating of the aggregate 25 located in the regeneration zone 4 and the bone located in the purge 5 The cooling of the material 25 is further promoted.

また、排気チャンバ31に受け入れた使用済の高温再生用空気HA″の一部及び使用済のパージ用空気PA″の一部を、再生用ファン18の送風機能により、再生域4から再生用排気路20に送出される使用済の高温再生用空気HA′の一部及びパージ域5からパージ用排気路22に送出される使用済のパージ用空気PA′とともに、再生用循環路21を通じ高温再生用空気HAの原材空気として再生用ヒータ16に送り、これにより、排気チャンバ31に受け入れた使用済の高温再生用空気HA″及び使用済のパージ用空気PA″の保有熱(即ち、再生域4での骨材加熱に用いた高温再生用気体HA″の残熱、及び、パージ域5での骨材冷却においてパージ用空気PA″に回収した熱)も高温再生用空気HAの加熱生成に利用するようにしてある。   Further, a part of the used high-temperature regeneration air HA ″ received in the exhaust chamber 31 and a part of the used purge air PA ″ are exhausted from the regeneration zone 4 by the blowing function of the regeneration fan 18. A part of the used high-temperature regeneration air HA ′ sent to the passage 20 and the used purge air PA ′ sent from the purge zone 5 to the purge exhaust passage 22 together with the regeneration circulation passage 21 for high-temperature regeneration. As a raw material air for the production air HA, it is sent to the regeneration heater 16 so that the retained heat of the used high temperature regeneration air HA ″ and the used purge air PA ″ received in the exhaust chamber 31 (that is, the regeneration region). The residual heat of the high temperature regeneration gas HA ″ used for heating the aggregate in 4 and the heat recovered in the purge air PA ″ in the cooling of the aggregate in the purge zone 5) are also used to generate the high temperature regeneration air HA. To use A.

なお、この構造において再生用ファン18とは別に回収用ファンを回収用排気路33に付加装備し、これにより、再生域4に位置する骨材25の装備伝熱路fに対する高温再生用空気HAの通過、及び、パージ域5に位置する骨材25の装備伝熱路fに対するパージ用空気PAの通過を一層促進するようにしてもよい。   In this structure, in addition to the regeneration fan 18, a recovery fan is additionally provided in the recovery exhaust passage 33, whereby the high-temperature regeneration air HA for the equipment heat transfer path f of the aggregate 25 located in the regeneration zone 4. And the passage of the purge air PA to the equipment heat transfer path f of the aggregate 25 located in the purge zone 5 may be further promoted.

環状チャンバ30において排気チャンバ31と閉塞チャンバ32とを仕切る仕切壁30aの先端部には、吸着ロータ1の回転を許しながら仕切壁30aとロータ外周リム24との間の隙間をシールするシール部材34を取り付けてあり、これにより、一方側の給排チャンバ26における処理域出口チャンバ3oに受け入れた処理済空気A′が処理域3に位置する骨材25の装備伝熱路f及び閉塞チャンバ32を通じて排気チャンバ31に侵入することを防止する。   In the annular chamber 30, a seal member 34 that seals a gap between the partition wall 30 a and the rotor outer rim 24 while allowing the suction rotor 1 to rotate is provided at the tip of the partition wall 30 a that partitions the exhaust chamber 31 and the closed chamber 32. As a result, the processed air A ′ received in the processing area outlet chamber 3 o in the supply / exhaust chamber 26 on one side passes through the equipment heat transfer path f of the aggregate 25 located in the processing area 3 and the closing chamber 32. Intrusion into the exhaust chamber 31 is prevented.

〔別実施形態〕
上述の実施形態では再生用循環路21を設けた装置例を示したが、図8に示すように、再生用循環路21を省略してもよい。
[Another embodiment]
In the above-described embodiment, an example of an apparatus in which the regeneration circulation path 21 is provided has been described, but the regeneration circulation path 21 may be omitted as shown in FIG.

そして、この場合、同図8に示すように、パージ域5に位置する吸着剤層部分を通過した使用済のパージ用空気PAをパージ用排気路22を通じて再生用ヒータ16に送る構成にし、この構成において、排気チャンバ31への受け入れ空気HA″,PA″を導く回収用排気路33をパージ用排気路22に接続して、排気チャンバ31への受け入れ空気HA″,PA″を高温再生用空気HAの原材空気として再生用ヒータ16に送るようにしてもよい。   In this case, as shown in FIG. 8, the used purge air PA that has passed through the adsorbent layer portion located in the purge zone 5 is sent to the regeneration heater 16 through the purge exhaust passage 22. In the configuration, the recovery exhaust passage 33 that guides the reception air HA ″, PA ″ to the exhaust chamber 31 is connected to the purge exhaust passage 22 so that the reception air HA ″, PA ″ to the exhaust chamber 31 is the high temperature regeneration air. The raw material air of HA may be sent to the regeneration heater 16.

また、この場合、回収用排気路33に回収用ファン35を介装して、再生域4に位置する骨材25の装備伝熱路fに対する高温再生用空気HAの通過、及び、パージ5に位置する骨材25の装備伝熱路fに対するパージ用空気PAの通過を促進するようにするのが望ましい。   Further, in this case, the recovery fan 35 is interposed in the recovery exhaust passage 33, the passage of the high-temperature regeneration air HA to the equipment heat transfer path f of the aggregate 25 located in the regeneration zone 4, and the purge 5 It is desirable to facilitate the passage of the purge air PA to the equipment heat transfer path f of the aggregate 25 located.

前述の実施形態では、再生域4に位置する骨材25の装備伝熱路fを通過した使用済の高温再生空気HA″とパージ域5に位置する骨材26の装備伝熱路fを通過した使用済のパージ用空気PA″とを共通の排気チャンバ31に受け入れるようにしたが、これに代え、再生域4に位置する骨材25の装備伝熱路fを通過した使用済の高温再生空気HA″を受け入れる排気チャンバと、パージ域5に位置する骨材25の装備伝熱路fを通過した使用済のパージ用空気PA″を受け入れる排気チャンバとを各別に設けてもよい。   In the above-described embodiment, the used high-temperature regeneration air HA ″ passed through the equipment heat transfer path f of the aggregate 25 located in the regeneration zone 4 and the equipment heat transfer path f of the aggregate 26 located in the purge zone 5 pass. The used purge air PA ″ is received in the common exhaust chamber 31. Instead of this, the used high temperature regeneration that has passed through the heat transfer path f of the aggregate 25 located in the regeneration zone 4 is used. An exhaust chamber that receives the air HA ″ and an exhaust chamber that receives the used purge air PA ″ that has passed through the heat transfer path f of the aggregate 25 located in the purge zone 5 may be provided separately.

また、その場合、再生域4に位置する骨材25の装備伝熱路fを通過した使用済の高温再生空気HA″とパージ域5に位置する骨材25の装備伝熱路fを通過した使用済のパージ用空気PA″とのいずれか一方のみを再生用ヒータ16に送るようにするなど、使用済の高温再生空気HA″と使用済のパージ用空気PA″との送り先を異ならせるようにしてもよい。   In that case, the used high-temperature regeneration air HA ″ that has passed through the equipment heat transfer path f of the aggregate 25 located in the regeneration zone 4 and the equipment heat transfer path f of the aggregate 25 located in the purge zone 5 have passed. Only one of the used purge air PA ″ is sent to the regeneration heater 16 so that the destinations of the used high temperature regeneration air HA ″ and the used purge air PA ″ are made different. It may be.

各骨材25に装備する伝熱路fの具体的構造は、前述の実施形態で示した構造に限らず、種々の変更が可能であり、例えば、骨材25の内部に伝熱路fを形成するのに代え、骨材25との間での伝熱が可能な状態で骨材25に隣接ないし近接させて伝熱路fを装備してもよい。   The specific structure of the heat transfer path f equipped in each aggregate 25 is not limited to the structure shown in the above-described embodiment, and various modifications are possible. For example, the heat transfer path f is provided inside the aggregate 25. Instead of forming, the heat transfer path f may be provided adjacent to or close to the aggregate 25 in a state where heat transfer with the aggregate 25 is possible.

また、再生域4に位置する骨材25の装備伝熱路fに高温再生用空気HAの一部ないし他の加熱用流体を選択的に通過させるとともに、パージ域5に位置する骨材25の装備伝熱路fにパージ用空気PAの一部ないし他の冷却用流体を選択的に通過させるための構造についても、各伝熱路fの入口fiを対応骨材25の近傍で吸着ロータ1の端面部に開口させる構造に代えて種々の変更が可能である。   Further, a part of the high temperature regeneration air HA or other heating fluid is selectively passed through the equipment heat transfer path f of the aggregate 25 located in the regeneration zone 4 and the aggregate 25 located in the purge zone 5 Also for the structure for selectively passing a part of the purge air PA or other cooling fluid through the equipment heat transfer path f, the adsorption rotor 1 is placed near the corresponding aggregate 25 at the inlet fi of each heat transfer path f. Various modifications can be made in place of the structure that opens at the end face portion.

各伝熱路25の出口foを吸着ロータ1の回転軸芯方向における端面部に形成し、この構成において、処理域3に位置する骨材25の装備伝熱路fに対する被処理空気Aを通過を阻止する手段を装備するようにしてもよい。   An outlet fo of each heat transfer path 25 is formed at an end surface portion in the direction of the rotation axis of the adsorption rotor 1, and in this configuration, the air to be processed A passes through the heat transfer path f of the aggregate 25 located in the processing zone 3. You may make it equip with the means to prevent.

再生域4に位置する吸着剤層部分からの伝熱による加熱、及び、その吸着剤層部分を通過する高温再生用空気HAからの伝熱による加熱とは別に、再生域4に位置する骨材25を選択的に加熱する補助加熱手段は、各骨材25に装備する前記の如き伝熱路fに限らず、例えば、再生域4に位置する骨材25を電熱により選択的に加熱するものなどにすることも考えられる。 Separately from the heating by heat transfer from the adsorbent layer portion located in the regeneration zone 4 and the heating by heat transfer from the high temperature regeneration air HA passing through the adsorbent layer portion, the aggregate located in the regeneration zone 4 The auxiliary heating means for selectively heating 25 is not limited to the heat transfer path f provided in each aggregate 25, and for example, the aggregate 25 located in the regeneration zone 4 is selectively heated by electric heat. It can be considered to be.

また同様に、パージ域5に位置する吸着剤層部分への放熱による冷却、及び、その吸着剤層部分を通過するパージ用空気PAへの放熱による冷却とは別に、パージ域5に位置する骨材25を選択的に冷却する補助冷却手段を設ける場合、その補助冷却手段にも種々の冷却形式のものを採用することが考えられる。 Similarly, the bone located in the purge area 5 is separated from the cooling due to the heat radiation to the adsorbent layer portion located in the purge area 5 and the cooling due to the heat radiation to the purge air PA passing through the adsorbent layer portion. When an auxiliary cooling means for selectively cooling the material 25 is provided, it is conceivable to employ various cooling types as the auxiliary cooling means .

再生域4に位置する吸着剤層部分に通過させる高温再生用気体HAは高温空気に限らず、水蒸気や燃焼ガスなど、どのような高温気体であってもよい。また、パージ域5に位置する吸着剤層部分に通過させるパージ用気体PAも処理済空気A′に限らず、被処理空気Aや外気など、どのような気体であってもよい。   The high temperature regeneration gas HA passed through the adsorbent layer portion located in the regeneration zone 4 is not limited to high temperature air, and may be any high temperature gas such as water vapor or combustion gas. Further, the purge gas PA to be passed through the adsorbent layer portion located in the purge zone 5 is not limited to the treated air A ′, and may be any gas such as the air to be treated A or the outside air.

骨材25の具体的な構造は種々の変更が可能であり、例えば、骨材25をロータ回転方向及びロータ回転軸芯方向の夫々において複数配置する構造にしてもよい、また、前述の実施形態では骨材25を4箇所に配置した吸着ロータ1を示したが吸着ロータ1における骨材25の配置箇所数は4箇所に限られるものではない   The specific structure of the aggregate 25 can be variously changed. For example, a plurality of aggregates 25 may be arranged in each of the rotor rotation direction and the rotor rotation axis direction. Then, although the adsorption | suction rotor 1 which has arrange | positioned the aggregate 25 in four places was shown, the arrangement | positioning location number of the aggregate 25 in the adsorption rotor 1 is not restricted to four places.

処理域3に位置する骨材25の装備伝熱路fに低温空気などの冷却用流体を通過させて処理域3に位置する骨材25を冷却するなど、処理域3に位置する骨材25をロータ回転に伴い選択的に冷却する処理域用の補助冷却手段を設けてもよい。   Aggregate 25 located in the processing area 3, such as cooling the aggregate 25 located in the processing area 3 by passing a cooling fluid such as low temperature air through the heat transfer path f of the aggregate 25 located in the processing area 3. There may be provided auxiliary cooling means for the processing area that selectively cools as the rotor rotates.

本発明によるロータ式空気処理装置は、被処理空気Aの除湿を目的とするものに限らず、被処理空気Aの浄化を目的とするものであってもよい。   The rotor type air treatment apparatus according to the present invention is not limited to the purpose of dehumidifying the air to be treated A, but may be intended to purify the air to be treated A.

本発明によるロータ式空気処理装置は、各種分野において種々の目的の空気除湿や空気浄化に利用することができる。   The rotor type air treatment apparatus according to the present invention can be used for various purposes of air dehumidification and air purification in various fields.

25 骨材
X 吸着剤層
1 吸着ロータ
2 ロータ回転領域
3 処理域
4 再生域
5 パージ域
A 被処理空気
P ロータ回転軸芯
HA 高温再生用気体
PA パージ用気体
f 補助加熱手段,補助冷却手段,伝熱路
16 再生用加熱手段
fi 伝熱路入口
fo 伝熱路出口
31 排気チャンバ
HA″,PA″ 排出気体
33 回収用排気路
35 回収用ファン
25 Aggregate X Adsorbent layer 1 Adsorption rotor 2 Rotor rotation area 3 Processing area 4 Regeneration area 5 Purge area A Processed air P Rotor rotation axis HA High temperature regeneration gas PA Purge gas f Auxiliary heating means, auxiliary cooling means, Heat transfer path 16 Heating means for regeneration fi Heat transfer path inlet fo Heat transfer path outlet 31 Exhaust chamber HA ″, PA ″ Exhaust gas 33 Recovery exhaust path 35 Recovery fan

Claims (6)

複数の骨材をロータ回転方向に並べて放射状に配置した通気性の吸着剤層からなる吸着ロータを備え、
この吸着ロータの回転領域に処理域と再生域とパージ域とをその順にロータ回転方向に並べて区画形成し、
前記吸着ロータの回転に併行して、前記処理域には、被処理空気を処理域に位置する吸着剤層部分に通過させる状態でロータ回転軸芯方向に通風し、
前記再生域には、高温の再生用気体を再生域に位置する吸着剤層部分に通過させる状態でロータ回転軸芯方向に通風し、
前記パージ域には、パージ用気体をパージ域に位置する吸着剤層部分に通過させる状態でロータ回転軸芯方向に通風するロータ式空気処理装置であって、
前記再生域に位置する吸着剤層部分からの伝熱による加熱、及び、その吸着剤層部分を通過する高温再生用気体からの伝熱による加熱とは別に、前記吸着ロータの回転に併行して、前記再生域に位置する前記骨材を選択的に加熱する補助加熱手段を設け、
この補助加熱手段として、前記骨材を伝熱対象とする伝熱路をロータ回転方向に並ぶ前記骨材の夫々に対して個別に装備し、
前記吸着ロータの回転に併行して、前記伝熱路のうち前記再生域に位置する前記骨材の装備伝熱路に対し、再生用加熱手段により加熱した高温再生用気体の一部を選択的に通過させ、
前記再生用加熱手段により加熱した高温再生用気体の他部を、前記再生域に位置する吸着剤層部分に通過させる構成にし、
前記伝熱路の入口を、ロータ回転方向において対応する前記骨材夫々の近傍で前記吸着ロータにおける再生用気体入口側の端面部に形成してあるロータ式空気処理装置。
An adsorption rotor composed of a breathable adsorbent layer in which a plurality of aggregates are arranged radially in the rotor rotation direction,
A processing area, a regeneration area, and a purge area are arranged in this order in the rotation direction of the rotor in the rotation area of the adsorption rotor,
In parallel with the rotation of the adsorption rotor, the processing area is ventilated in the direction of the rotor rotation axis in a state where the air to be processed is passed through the adsorbent layer portion located in the processing area,
In the regeneration zone, a high-temperature regeneration gas is passed through the adsorbent layer part located in the regeneration zone, and is passed in the rotor rotation axis direction,
The purge area is a rotor-type air treatment device that vents the purge gas in the direction of the rotor rotation axis while allowing the purge gas to pass through the adsorbent layer portion located in the purge area,
Separately from the heating by the heat transfer from the adsorbent layer portion located in the regeneration zone and the heating by the heat transfer from the high temperature regeneration gas passing through the adsorbent layer portion, in parallel with the rotation of the adsorption rotor , setting an auxiliary heating means for heating the aggregate positioned in the regeneration zone selectively,
As this auxiliary heating means, a heat transfer path for heat transfer of the aggregate is individually equipped for each of the aggregates arranged in the rotor rotation direction,
Along with the rotation of the adsorption rotor, a part of the high-temperature regeneration gas heated by the regeneration heating means is selectively applied to the aggregate heat transfer path located in the regeneration zone of the heat transfer path. Pass through
The other part of the high temperature regeneration gas heated by the regeneration heating means is passed through the adsorbent layer portion located in the regeneration zone,
A rotor-type air treatment device in which the inlet of the heat transfer path is formed in an end surface portion on the regeneration gas inlet side of the adsorption rotor in the vicinity of each of the aggregates corresponding in the rotor rotation direction .
前記パージ域に位置する吸着剤層部分への放熱による冷却、及び、その吸着剤層部分を通過するパージ用空気への放熱による冷却とは別に、前記吸着ロータの回転に併行して、前記パージ域に位置する前記骨材を選択的に冷却する補助冷却手段を設け、
前記伝熱路のうち前記パージ域に位置する前記骨材の装備伝熱路を前記補助冷却手段として、前記パージ域に位置する前記骨材の装備伝熱路に対し冷却用流体を通過させる構成にしてある請求項1記載のロータ式空気処理装置。
Separately from the cooling by the heat radiation to the adsorbent layer portion located in the purge area and the cooling by the heat radiation to the purge air passing through the adsorbent layer portion, the purge is performed in parallel with the rotation of the adsorption rotor. setting an auxiliary cooling means for selectively cooling the aggregate located pass,
A configuration in which the cooling fluid is passed through the aggregated heat transfer path located in the purge area, with the aggregated heat transfer path located in the purge area as the auxiliary cooling means in the heat transfer path. rotor type air treatment apparatus which to Aru claim 1, wherein the.
前記再生域に対する高温再生用気体の通風向きと前記パージ域に対するパージ用気体の通風向きとをロータ回転軸芯方向において同じ向きにして、
前記再生域に位置する前記伝熱路の入口には、前記再生用加熱手段から前記再生域に供給される高温再生用気体の一部が流入し、
前記パージ域に位置する前記伝熱路の入口には、前記パージ域に供給されるパージ用気体の一部が流入する構成にしてある請求項2記載のロータ式空気処理装置。
The direction of ventilation of the high temperature regeneration gas with respect to the regeneration area and the direction of ventilation of the purge gas with respect to the purge area are the same in the rotor rotation axis direction,
A part of the high temperature regeneration gas supplied from the regeneration heating means to the regeneration region flows into the inlet of the heat transfer path located in the regeneration region,
The rotor type air processing apparatus according to claim 2, wherein a part of the purge gas supplied to the purge zone flows into an inlet of the heat transfer path located in the purge zone .
前記伝熱路の出口を、ロータ回転方向において対応する前記骨材夫々の近傍で前記吸着ロータの外周面部に形成し、
前記吸着ロータの回転領域における外周部のうち、前記再生域に対応する部分及び前記パージ域に対応する部分に、前記伝熱路の出口から排出される気体を受け入れる排気チャンバを形成し、
この排気チャンバに受け入れた排出気体を前記再生用加熱手段に導く回収用排気路を設けてある請求項3記載のロータ式空気処理装置。
Forming an outlet of the heat transfer path on an outer peripheral surface portion of the adsorption rotor in the vicinity of each of the corresponding aggregates in the rotor rotation direction;
Of the outer peripheral portion in the rotation region of the adsorption rotor, an exhaust chamber for receiving the gas discharged from the outlet of the heat transfer path is formed in a portion corresponding to the regeneration region and a portion corresponding to the purge region,
4. The rotor type air processing apparatus according to claim 3, further comprising a recovery exhaust path for guiding exhaust gas received in the exhaust chamber to the regeneration heating means .
前記再生域に位置する前記伝熱路の出口から排出される気体、及び、前記パージ域に位置する前記伝熱路の出口から排出される気体を前記再生用加熱手段に送給する回収用ファンを設けてある請求項3又は4記載のロータ式空気処理装置。 A recovery fan that supplies the gas discharged from the outlet of the heat transfer path located in the regeneration zone and the gas discharged from the outlet of the heat transfer path located in the purge zone to the heating means for regeneration. The rotor type air treatment device according to claim 3 or 4, wherein 前記処理域に対する被処理空気の通風向きと前記再生域に対する高温再生用気体の通風向きとをロータ回転軸芯方向において互いに逆向きにしてある請求項4記載のロータ式空気処理装置。 The rotor type air treatment device according to claim 4, wherein the direction of ventilation of the air to be treated with respect to the treatment area and the direction of ventilation of the high temperature regeneration gas with respect to the regeneration area are opposite to each other in the rotor rotation axis direction .
JP2011126364A 2011-06-06 2011-06-06 Rotor type air treatment device Active JP5709047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011126364A JP5709047B2 (en) 2011-06-06 2011-06-06 Rotor type air treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011126364A JP5709047B2 (en) 2011-06-06 2011-06-06 Rotor type air treatment device

Publications (2)

Publication Number Publication Date
JP2012250208A JP2012250208A (en) 2012-12-20
JP5709047B2 true JP5709047B2 (en) 2015-04-30

Family

ID=47523539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011126364A Active JP5709047B2 (en) 2011-06-06 2011-06-06 Rotor type air treatment device

Country Status (1)

Country Link
JP (1) JP5709047B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108939912B (en) * 2018-08-15 2024-01-23 西安热工研究院有限公司 Combined desulfurization and denitrification arrangement system based on rotation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062242A (en) * 1999-08-30 2001-03-13 Seibu Giken Co Ltd Dehumidifying device
JP2002085934A (en) * 2000-09-12 2002-03-26 Daikin Ind Ltd Adsorption and desorption apparatus
JP3819272B2 (en) * 2001-10-01 2006-09-06 株式会社エヌ・ティ・ティ ファシリティーズ Dehumidifying rotor and dehumidifying device using the same

Also Published As

Publication number Publication date
JP2012250208A (en) 2012-12-20

Similar Documents

Publication Publication Date Title
JP5045088B2 (en) Deodorization device
JPH11226342A (en) Method and apparatus for cleaning gas
US20050167077A1 (en) Heat exchanger unit
JP2008246438A (en) Dehumidifier and dehumidification method
KR101887478B1 (en) Voc reduction system
KR102127842B1 (en) System for removing volatility organic compound
TW201719083A (en) Air conditioning system
KR20200132300A (en) Modularized VOCs removal system using adsorption rotor, oxidation catalyst, heat exchanger
KR20190062153A (en) Low Energy Consumption Concentrating Rotor For Treating Dehumidifier Comprising The Same
JP4754358B2 (en) Adsorption tower for gas purification and method for regenerating adsorbent in adsorption tower
KR20190096716A (en) Apparatus for processing gas containing volatile organic compounds
JP5709047B2 (en) Rotor type air treatment device
JP2008142656A (en) Dehumidification apparatus
JP2008101796A (en) Dehumidification air conditioner
JP5684478B2 (en) Gas dehumidifier
JP3819272B2 (en) Dehumidifying rotor and dehumidifying device using the same
KR101903080B1 (en) desiccant dehumidifying Apparatus
JP4250380B2 (en) Gas concentrating device and gas concentrating method
KR101453739B1 (en) Rotor type dry dehumidifier applied with microwave heater
JP2002186822A (en) Adsorbing and desorbing apparatus
JP5823334B2 (en) Adsorption system
KR102068183B1 (en) System for removing volatility organic compound
WO2021085307A1 (en) Dehumidification system
KR101623941B1 (en) Apparatus for purifying gas containing volatile organic compound
TWI813857B (en) Gas Removal and Concentration Unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150219

R150 Certificate of patent or registration of utility model

Ref document number: 5709047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250