JP3819272B2 - Dehumidifying rotor and dehumidifying device using the same - Google Patents

Dehumidifying rotor and dehumidifying device using the same Download PDF

Info

Publication number
JP3819272B2
JP3819272B2 JP2001305709A JP2001305709A JP3819272B2 JP 3819272 B2 JP3819272 B2 JP 3819272B2 JP 2001305709 A JP2001305709 A JP 2001305709A JP 2001305709 A JP2001305709 A JP 2001305709A JP 3819272 B2 JP3819272 B2 JP 3819272B2
Authority
JP
Japan
Prior art keywords
adsorbent
zone
dehumidifying
chamber
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001305709A
Other languages
Japanese (ja)
Other versions
JP2003112008A (en
Inventor
洋介 三野
Original Assignee
株式会社エヌ・ティ・ティ ファシリティーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ ファシリティーズ filed Critical 株式会社エヌ・ティ・ティ ファシリティーズ
Priority to JP2001305709A priority Critical patent/JP3819272B2/en
Publication of JP2003112008A publication Critical patent/JP2003112008A/en
Application granted granted Critical
Publication of JP3819272B2 publication Critical patent/JP3819272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1012Details of the casing or cover
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/108Rotary wheel comprising rotor parts shaped in sector form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1088Rotary wheel comprising three flow rotor segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1092Rotary wheel comprising four flow rotor segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)
  • Drying Of Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、除湿ロータおよびそれを用いた除湿装置に関するものである。
【0002】
【従来の技術】
除湿装置として、ハニカム状あるいはコルゲート状の吸着材からなる除湿ロータに対し、被除湿空気を透過させ、吸着材に被除湿空気中の水分を吸着させることにより上記被除湿空気を除湿するものがある。この除湿装置では、除湿ロータを2つのゾーンに分割し、そのうちの一つが除湿行程を行うとき、もう一つが、加熱された空気を透過させて吸着材から水分を除去させて吸着能力を回復させる再生行程を行い、除湿ロータを連続的に回転させることにより、吸着材が吸着行程と再生行程を交互に経るようになっている。
【0003】
図4は上記除湿装置の最も基本的なものの構成例を示したものである。この除湿装置において、除湿ロータ101は、再生ゾーン102と吸着ゾーン103に分けられ、ゆっくりと回転しながら両ゾーン102,103が吸着行程と再生行程とを繰り返し通過している。空調室106からの戻り空気RAの一部と取り入れた外気(被除湿空気)OAは、吸着行程で給気ファン104によって吸着ゾーン103に入り、ここで除湿された後、冷却コイル105にて顕熱を除去されて適当な温度まで冷却され、その後に除湿空気SAとして空調室106へ供給される。一方、空調室106からの戻り空気RAの一部は、加熱コイル107で所定の温度まで加熱された後、再生行程で再生ゾーン102に入り、除湿ロータ101の吸着材を再生し、排気ファン108にて排気EAとして屋外へ排出される。
【0004】
上記除湿装置においては、除湿ロータ101の再生行程を終えて除湿行程に入った再生ゾーン102または吸着ゾーン103の吸着材は、再生に用いた高温空気により高温となっており、これが吸着反応を阻害するため、被除湿空気OAによって吸着材の温度が下がるまでは十分な除湿が行われず、結果として、上記高温部分を通過した被除湿空気OAは除湿されないまま除湿ロータ101を通過することとなり、除湿装置全体での除湿性能が満足に発揮されない。
【0005】
そこで、特開平06−000320号公報に示されている従来技術においては、除湿ロータを3つのゾーンに分け、再生行程の次に、外気を透過させ吸着材の温度を下げるパージ行程を追加することにより、吸着材が高温のまま除湿行程に入るのを防止して、上記基本的な構成例の除湿装置における問題点の解消を図っている。
【0006】
図5はこの従来技術を用いた除湿装置の構成例を示したものである。この除湿装置おいて、除湿ロータ201は再生ゾーン202、パージゾーン203および吸着ゾーン204の3つのゾーンに分けられ、ゆっくりと回転しながら、それらのゾーン201,202,203が吸着行程、再生行程、パージ行程を繰り返し通過している。空調室207からの戻り空気RAの一部と取り入れ外気OAは、給気ファン205によって、その一部が吸着行程で吸着ゾーン204に入り、ここで除湿された後、冷却コイル206にて適当な温度まで冷却された後、空調室207に除湿空気SAとして供給される。一方、給気ファン205を出た残りの空気は、パージゾーン203に入ってパージ行程で吸着材から熱を奪って温度が上昇し、さらに加熱コイル208で昇温され、再生ゾーンに入って再生行程で吸着材を再生した後、排気ファン209で排気EAとして外気へ排出される。空調室207からの戻り空気RAのうち、給気ファン205に至らなかった分は、そのまま排気EAとして外気へ排出される。
【0007】
また、特開2000−337661号公報に示されている従来技術においては、除湿ロータを4つのゾーンに分け、再生ゾーンの次に熱回収ゾーンを設け、それに続く吸着ゾーンの次に予熱ゾーンを設け、熱回収ゾーンと予熱ゾーンとを管路で回路状に結び、その管路の途中に循環ファンを設けて空気を循環させることにより、熱回収ゾーンで吸着材を予冷すると共に熱回収を行い、予熱ゾーンでその熱を使って吸着材を予熱し、上記基本的な構成例の除湿装置における問題点を改善するだけでなく、エネルギーの有効活用を図っている。
【0008】
図6はこの従来技術を用いた除湿装置の構成例を示したものである。この除湿装置において、除湿ロータ301は再生ゾーン302、熱回収ゾーン303、吸着ゾーン304および予熱ゾーン305の4つに分けられ、ゆっくりと回転しながら、それらのゾーンが吸着行程、予熱行程、再生行程、熱回収行程を繰り返し通過している。取り入れ外気OAは給気ファン306によって吸着ゾーン304に入って除湿された後、冷却コイル307にて適当な温度まで冷却されて空調室308に供給される。空調室308からの戻り空気RAは加熱コイル309で昇温された後、再生ゾーン302に入って吸着材を再生した後、排気ファン310で屋外へ排気EAとして排出される。熱回収ゾーン303を通る空気は、再生のために高温になった吸着材から熱を奪って高温となり、循環ファン311で予熱ゾーン305に送られ、そこで吸着材と熱交換を行い、熱回収ゾーン303で得た熱を吸着材に伝え、再び熱回収ゾーン303に至る。
【0009】
【発明が解決しようとする課題】
ところが、一般に吸着反応は発熱反応であるため、吸着ゾーン204,304では吸着反応に伴って吸着材の温度が上昇し、これが吸着反応を阻害するので、除湿装置としての性能を低下させる問題は、上記いずれの従来技術をもってしても十分に解決されていなかった。
また、熱回収ゾーン303と予熱ゾーン305とを回路状に接続した前記後者の従来技術の場合、熱回収ゾーン303および予熱ゾーン305においては循環空気が吸着材に直接接触するため、顕熱だけでなく潜熱をも回収してしまい、やはり除湿装置としての性能を低下させる問題があった。
【0010】
本発明は、かかる問題点に鑑みてなされたもので、除湿ロータ内部に冷却用の流路を設け、吸着行程において吸着熱を除去し吸着材を低温に保つことにより、吸着材の性能を最大限に引き出し、被除湿空気を効率的に乾燥させることができ、また、顕熱だけを熱回収することにより熱の有効活用を図りつつ除湿性能を向上させることができる除湿ロータおよびそれを用いた除湿装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記課題を解決するために、本発明の請求項1に係る除湿ロータは、円筒形からなるシャフト部と、このシャフト部の外周部に設けられた吸着材とを備え、被除湿空気を前記シャフト部の軸方向に沿って前記吸着材の中を通過させることによって前記被除湿空気を除湿する除湿ロータであって、前記吸着材に、前記シャフト部の軸方向に沿い放射方向に向けられて、前記吸着材を前記シャフト部の周方向に分割するスリットが形成されており、
前記シャフト部の内部に、その中心から放射方向に向けられた仕切板によって、前記スリットと同数に分割されたチャンバが設けられ、前記チャンバは、前記シャフト部の外周部にあけられた軸方向に長い長穴を介して、対応する前記スリットに個別に連絡されて前記吸着材の外周部に通じており、前記スリットは、前記吸着材の外周部と前記チャンバとの間において、前記吸着材を冷却または加熱する流体を、前記吸着材と直接接触させずに前記シャフト部の径方向に流すための流路として構成されていることを特徴とする
【0012】
この除湿ロータにおいては、除湿ロータの吸着材の内部に、シャフト部の内側から吸着材の外周部に通じる流体の流路を設けたので、該流路に対して、被処理空気と同等かそれ以下の温度の流体を冷却流体として通過させることによって、吸着反応に伴う吸着熱が除湿ロータの吸着ゾーンから除去され、吸着材の温度が冷却流体の温度程度まで低下され、これにより、吸着の反応温度が上昇するという阻害要因が除去され、除湿ロータの吸着性能が大幅に上昇される。
【0013】
上記除湿ロータにおいて、前記スリットの両側の前記吸着材に面する部分に、湿気が容易に透過せずに熱が容易に透過できる隔壁を、上記吸着材に接触して設けることが好ましい(請求項2)。
【0014】
また、本発明の請求項3に係る除湿装置は、請求項1または2に記載された除湿ロータを組み込み、かつ該除湿ロータの回転方向に沿って再生ゾーン、熱回収ゾーン、吸着ゾーンおよび予熱ゾーンを順に設けた除湿装置であって、前記シャフト部の軸方向に沿って前記吸着ゾーンに前記被除湿空気を送り込むとともに、前記吸着材を冷却する冷却用流体を、前記吸着ゾーンに配される前記チャンバに送り込み、前記チャンバに連絡されたスリットを介して前記吸着材の外周部から外方に排出することを特徴としている。
また、本発明の請求項4に係る除湿装置は、請求項1または2に記載された除湿ロータを組み込み、かつ該除湿ロータの回転方向に沿って再生ゾーン、熱回収ゾーン、吸着ゾーンおよび予熱ゾーンを順に設けた除湿装置であって、前記熱回収ゾーンに配される前記チャンバと、前記予熱ゾーンに配される前記チャンバとを連絡する連絡用部材を備え、前記除湿ロータのうち前記熱回収ゾーンに配される領域に形成された前記スリットから、前記シャフト部の径方向内方に熱回収用流体を取り込み、この熱回収用流体を予熱用流体として前記連絡用部材を介して前記予熱ゾーンに送り込み、この送り込まれた予熱用流体を予熱後流体として前記予熱ゾーンに配される前記スリットを介して前記吸着材の外周部から排出し、この排出された予熱後流体を加熱して再生用流体として前記シャフト部の軸方向に沿って前記再生ゾーンを通過させて外方に排出することを特徴とする。
【0015】
この除湿装置によれば、除湿ロータの複数の流路が熱回収ゾーンと予熱ゾーン通過するとき、それらの両ゾーンを同時に通過するもの同士の流路が連絡されるので、それらの流路の熱回収ゾーン側から予熱ゾーン側へ流体を流体移送手段によって流すことにより、熱回収ゾーンで回収した熱が予熱ゾーンに伝えられて、吸着材との間で潜熱の授受がなく顕熱だけが熱交換されるため、熱が有効活用されると共に除湿装置の除湿性能が高められる。
【0016】
【発明の実施の形態】
以下、本発明の一実施の形態について添付図面を参照して説明する。
図1、図2において、1は本発明の一実施の形態に係る除湿装置であり、本発明の一実施の形態に係る除湿ロータ2を備えている。
上記除湿ロータ2は、円筒状のシャフト部3の周囲にハニカム状あるいはコルゲート状の吸着材4を保持して構成されている。該吸着材4は、上記シャフト部3の軸方向に沿い、かつ放射方向に向けられた4つ以上(図2の例では16個)のスリット5によってシャフト部3の周方向に16個に分割されており、それらの分割部分は、シャフト部3の周方向において順次吸着ゾーン4a,予熱ゾーン4b、再生ゾーン4c、熱回収ゾーン4dとして使用されるようになっている。上記吸着材4の外形は全体として円筒面状に形成されており、その外周部は、円弧状の外周板2aによって囲まれ、吸着材4をシャフト部3の軸方向に通過する流体が外周側へ流れないようになっている。
【0017】
上記吸着ゾーン4aにはスリット5で8個に分割された吸着材4が、予熱ゾーン4bにはスリット5で2個に分割された吸着材4が、再生ゾーン4cにはスリット5で4個に分割された吸着材4が、予熱ゾーン4dにはスリット5で2個に分割された吸着材4がそれぞれ対応するようになっている。各スリット5の両側には、金属板等の水分を通しにくく熱を伝え易い材料で作られた伝熱板(隔壁)6,6が吸着材4に接触して設けられており、スリット5に空気等の流体を流すことにより、該流体とスリット5の周辺の吸着材4との熱交換が直接接触によらないで可能になっている。上記スリット5のシャフト部3の軸方向における両端部は閉鎖板(図示せず)で閉じられている。
【0018】
また、上記シャフト部3の内部には、その中心から放射方向に向けた仕切板3aによってスリット5と同数に分割されたチャンバ7が設けられており、各チャンバ7は、それぞれ、シャフト部3の外周にあけた軸方向に長い長穴を介して、対応するスリット5に個別に連絡されて、吸着材4の外周部に通じている。上記シャフト部3の吸着材4の側方に突出した両端部が、上記吸着材4の外径と略同一の外径を有する一対の扁平な円筒状の側部チャンバ部材8,9の中心に設けた内筒10,11に嵌合されて、該側部チャンバ部材8,9に除湿ロータ2が周方向に回転可能に支持されている。
【0019】
上記側部チャンバ部材8,9は、除湿ロータ2の両側を閉鎖すると共に、内側に内筒10,11の周部から放射方向に向けて設けた仕切板8a,9aによって側部チャンバ12,13が設けられている。すなわち、一方の側部チャンバ部材8には、上記除湿ロータ2の各ゾーン4a,4b,4c,4dに対応して、被除湿空気入口チャンバ12a、空チャンバ12b、再生空気出口チャンバ12c、空チャンバ12dが順に配置され、他方の側部チャンバ部材9には、上記除湿ロータ2の各ゾーン4a,4b,4c,4dに対応して、被除湿空気出口チャンバ13a、空チャンバ13b、再生空気入口チャンバ13c、空チャンバ13dが順に配置されている。
そして、上記一方の側部チャンバ部材8には被除湿空気入口チャンバ12aと再生空気出口チャンバ12cの内部にそれぞれ連絡する接続管14a,14bが設けられ、他方の側部チャンバ部材9には被除湿空気出口チャンバ13aと再生空気入口チャンバ13cの内部に連絡する接続管15a,15bが設けられている。
【0020】
さらに、上記一方の側部チャンバ8の内筒10における外側へ突出した部分には、内部に上記仕切板8a,9aの位置に対応して仕切板10aが中心から放射方向に設けられており、冷却空気入口チャンバ16aと、その周方向における両側に隣接して予熱空気入口チャンバ16bおよび熱回収空気出口チャンバ16dとが配置され、予熱空気入口チャンバ16bと熱回収空気出口チャンバ16dとが内筒10の外端部に設けた蓋板(図示せず)または配管17で連絡されている。なお、他方の側部チャンバ部材9の内筒11の外端部は蓋板(図示せず)で閉鎖されている。なお、予熱空気出口チャンバ16bと熱回収空気出口チャンバ16dとの間は、外端部が閉鎖された空チャンバ16cとなっている。
【0021】
上記除湿ロータ2の外周部には、これを取り囲むようにして円環筒状の流体用チャンバ18が設けられている。該流体用チャンバ18には、上記側部チャンバ部材8の被除湿空気入口チャンバ12aに対応する位置に、半円環筒状の空間を有する冷却空気出口チャンバ18aが区画され、その周方向における両側に隣接した位置に、予熱空気出口チャンバ18bと熱回収空気入口チャンバ18dがそれぞれ区画されている。なお、予熱空気出口チャンバ18bと熱回収空気入口チャンバ18dの周方向の隣接側は円弧状の連結板18cで連結されている。
また、上記除湿ロータ2は、その外周部の一端側に設けたプーリと油圧モータ、電動機等の駆動手段19のプーリとに巻き掛けたベルト20を介して、駆動手段19の駆動力によって、上記流体用チャンバ18と各側部チャンバ部材8,9に対してゆっくりと回転するようになっている。
【0022】
さらに、上記一方の側部チャンバ部材8の接続管14aには、給気ファン(流体移送手段)21で外気(被除湿空気)OAを被除湿空気入口チャンバ12a内に導入する配管22が接続され、該配管22の給気ファン21の下流側は、分岐管22aによって上記内筒10内の冷却空気入口チャンバ16aに接続されている。上記他方の側部チャンバ部材9の接続管15aは、除湿ロータ2の吸着材4を介して上記接続管14aに連絡されると共に、配管24によって冷却コイル23を介して空調室25に連絡されている。
【0023】
また、上記他方の側部チャンバ部材9の接続管15bは、配管26によって加熱コイル27を介して上記予熱空気出口チャンバ18bに連絡されると共に、除湿ロータ2の吸着材4を介して上記接続管14bに連絡され、該接続管14bには排気ファン(流体移送手段)28を有する配管29が接続されている。上記予熱空気出口チャンバ18bは除湿ロータ2の吸着材4を経て上記シャフト部3のチャンバ7から上記内筒10の予熱空気入口チャンバ16bに連絡されている。
【0024】
また、上記熱回収空気入口チャンバ18dは、外気を内部に導入する配管30が接続されると共に、該内部が除湿ロータ2のスリット5を経て上記シャフト部3のチャンバ7から上記内筒10の熱回収出口チャンバ16dに連絡され、さらに、上記配管17を介して予熱空気入口チャンバ16bに連絡されている。上記冷却空気出口チャンバ18aは、除湿ロータ2のスリット5を介して上記冷却空気入口チャンバ16aに連絡されると共に、配管31によって屋外へ開放されている。上記空調室25には余剰空気を屋外へ排出するダクト32が設けられている。
【0025】
次に、前記構成の除湿ロータ2およびこれを用いた除湿装置1の作用について説明する。
前記除湿装置1を使用して空調室25の除湿を行う場合には、上記駆動手段19を作動させて除湿ロータ2をゆっくりと回転させると共に、給気ファン21と排気ファン28を作動させる。給気ファン21の作動により、外気OAの一部(被除湿空気)は、配管22によって接続管14aから一方の側部チャンバ部材8の被除湿空気入口チャンバ12aに入り、除湿ロータ2の吸着ゾーン4aの吸着材4と接触されて除湿されて後、他方の側部チャンバ部材9の被除湿空気出口チャンバ13aから接続管15aを経て配管24に流入される。該配管24に流入した空気は、冷却コイル23で冷却された後除湿空気SAとして空調室25に供給される。
また、外気OAの他の一部は、分岐管22aによって上記一方の側部チャンバ部材8の冷却空気入口チャンバ16aに入り、除湿ロータ2の内筒10のチャンバ7を経て上記吸着ゾーン4aのスリット5内に流れ、該吸着ゾーン4aの吸着材4と直接接触によらないで間接的に熱交換された後、上記冷却空気出口チャンバ18aから配管31によって屋外へ排気EAとして排出される。
【0026】
また、別の外気OAの一部は、配管30によって熱回収空気入口チャンバ18dを経て熱回収ゾーン4dのスリット5に流れ、該熱回収ゾーン4dの吸着材4と間接的に熱交換して、該吸着材4を冷却すると共に自体が加熱されて後、上記シャフト部3のチャンバ7から上記一方の側部チャンバ部材8の内筒10の熱回収空気出口チャンバ16dに至り、配管17によって予熱空気入口チャンバ16bに入り、さらに、上記シャフト部3のチャンバ7から除湿ロータ2の予熱ゾーン4bにおけるスリット5に流れ、予熱ゾーン4bの吸着材4と間接的に熱交換して該吸着材4を予熱した後、予熱空気出口チャンバ18bを経て配管26によって加熱コイル27に送られる。
【0027】
上記加熱コイル27に送られた空気は、そこで加熱された後、接続管15bから他方の側部チャンバ部材9の再生空気入口チャンバ13cに入り、除湿ロータ2の再生ゾーン4cの吸着材4と直接接触して該吸着材を加熱しその水分を蒸発して再生する。吸着材4を再生した空気は、排気ファン28によって吸引されて再生空気出口チャンバ12cから接続管14bと配管29を経て排気EAとして屋外へ排出される。除湿装置1からの給気により空調室25で余剰になった空気は、ダクト32によって直接屋外へ排気EAとして排出される。
【0028】
一般に、吸着材の水分の吸着量は、吸着材表面における相対湿度のみの関数として近似することができ、図3に示すように、相対湿度に対して吸着量は単調に増加する特性を有している。再生ゾーンにおいて吸着量qAまで再生された吸着材に、相対湿度φBである状態Bの空気を被除湿空気として接触させた場合、吸着させ得る水分量は吸着材1kgあたり(qB−qA)kgとなる。同様に、状態Bよりも高い相対湿度φCである状態Cの空気を被除湿空気として接触させた場合、吸着させ得る水分量は吸着材1kgあたり(qC−qA)kgとなり、状態Bよりも多くの水分を吸着させることができる。つまり、相対湿度がより高い状態の被除湿空気を吸着材表面に接触させると、吸着材の性能が高まり、また、吸着材の状態と被除湿空気の状態との差が大きくなることから、吸着速度も高まるということができる。
【0029】
上記実施の形態に係る除湿装置1においては、例えば、被除湿空気である外気OAを乾球温度35°C、相対湿度55%とし、この空気を除湿ロータ2の吸着ゾーン4aに導入したとすると、上記のように、吸着ゾーン4aをその中に設けたスリット5を通過する外気OAにより冷却するため、吸着ゾーン4aの温度を乾球温度を40°C程度に抑えることが可能であり、この場合、吸着ゾーン4aに導入された被除湿空気は相対湿度が42%程度となる。
しかし、図5、図6に示す従来技術の除湿装置における除湿ロータ201,301では、吸着ゾーン204,304を冷却する機構を持たないため、それらの吸着ゾーン内部の温度は乾球温度60°C程度まで上昇する。このとき、被除湿空気は加熱と除湿により相対湿度が16%以下となる。
したがって、上記実施の形態に係る除湿装置1によれば、吸着ゾーン4aを冷却流体で冷却することによって、従来の除湿装置によるよりも、相対湿度がより高い状態の被除湿空気を吸着材表面に接触させることができ、吸着材4の性能を高め、結果として除湿ロータ2の吸湿性能を高めることができる。
【0030】
次に、上記実施の形態に係る除湿装置1の熱回収ゾーン4dにおける熱回収の作用効果について説明する。
図7に示す従来技術の除湿装置においては、熱回収ゾーン303と予熱ゾーン305で循環空気が吸着材に直接接触する状態で熱回収と予熱を行っているので、顕熱だけでなく、潜熱も回収することとなる。つまり、熱回収ゾーン303では、再生された高温かつ乾燥した状態の吸着材に、予熱ゾーン305からの戻り空気が導入されるが、一般にこの戻り空気は再生された吸着材の表面における空気よりも絶対湿度が高いことから、熱回収ゾーン303において吸着反応が起こり、吸着材の乾燥度が下がることとなり、これが除湿装置全体の性能を低下させる。このことは、熱回収ゾーン303に対して予熱ゾーン305からの戻り空気を導入する場合に限らず、外気を導入する場合や空調室308からの戻り空気を導入する場合など、殆どの場合において発生する。
【0031】
これに対して、上記実施の形態に係る除湿装置においては、除湿ロータ2の熱回収ゾーン4dと予熱ゾーン4bでは、それらの中に導入され各スリット5を除湿ロータ2の直径方向に流れる外気OAが、各スリット5の両側に設けた伝熱板6a,6aを介して間接的に吸着材4と接触するようになっているので、外気OAと吸着材4とが直接接触せず、潜熱の熱交換は行われないことから、熱回収ゾーン4dにおいて吸着反応は起こらず、吸着材4の乾燥度は再生ゾーン4cで再生された好適な状態に維持されたままであり、上記従来技術の除湿装置におけるような不都合は生じることがなく、除湿装置1の全体の性能を向上させることができる。
【0032】
なお、以上の実施の形態においては、吸着ゾーン4aを冷却する流体に外気OAを用いたが、被除湿空気と温度が同等かそれ以下の流体であれば外気OAに限るものではない。例えば、空調室や低温倉庫などからの排気、冷水、河川等から得る冷却水などを用いることができる。
【0033】
また、前記実施の形態においては、除湿ロータ2のシャフト部3を全体として円筒状に形成したが、シャフト部3の形状は、これに限らず、吸着材4を装着する部分を横断面が多角形の筒状に形成してもよい。また、上記シャフト部3を両側部チャンバ部材8,9の内筒10、11に嵌合して除湿ロータ2を回転可能に支持する構成にしたが、除湿ロータ2を回転可能に支持する構成は、これに限らず、上記シャフト部3を両側部チャンバ部材8,9の外側に突き出して、別途に用意した支持部材に回転可能に支持したり、除湿ロータ2の外周部を両側部チャンバ部材8,9や流体用チャンバ18に回転可能に支持する構成としてもよい。また、除湿ロータ2をその外周に設けたプーリと駆動手段19のプーリとにベルトを巻き掛けて回転させるようにしたが、プーリとベルトに代えてチェーンホイールとチェーンを使用してもよく、除湿ロータ2の外周にリングギヤを設け、これに噛み合わせたピニオンギヤを駆動手段で回転させて除湿ロータ2を回転させるようにしてもよい。
【0034】
さらに、前記実施の形態においては、除湿ロータ2のスリット5の個数を16個として吸着材4の分割数も16個とすると共に、両側部チャンバ部材8,9に、分割された吸着材4の4個分に相当する位置に吸着ゾーン4aを、その両隣接部の吸着材2個分に相当する位置に予熱ゾーン4bと熱回収ゾーン4dを、これらの予熱ゾーン4bと熱回収ゾーン4dの間の吸着材2個分に相当する位置に再生ゾーン4cを、それぞれ区画する仕切板8a,9aを設けたが、除湿ロータ2のスリット5や吸着材4の分割数は、上記に限らず、4個以上であればいずれの数であってもよく、各ゾーン4a,4b,4c,4dを区画する仕切板8a,9aの位置も、吸着材4の上記各個数に相当する位置に限らず、他の適宜個数に相当する位置であってもよい。この場合、吸着ゾーン4aに相当する区画が一番広く、続いて再生ゾーン4cに相当する区画が広くなるようにするのが好ましい。
【0035】
また、前記実施の形態においては、熱回収ゾーン4dから予熱ゾーン4bに流す外気OAを、配管30,熱回収空気入口チャンバ18d、熱回収ゾーン4d、熱回収空気出口チャンバ16d、配管17、予熱空気入口チャンバ16b、配管17、予熱ゾーン4b、予熱空気出口チャンバ18bの順に流れるようにしたが、これに代えて、配管17を除くと共に熱回収空気入口チャンバ18dと予熱空気入口チャンバ16bとを配管で連絡させ、配管30を上記熱回収空気出口チャンバ16dに接続し、また、配管26の上流側を上記予熱空気入口チャンバ16bに連絡させることにより、熱回収ゾーン4dにおいて外気OAを除湿ロータ2の内側から外側へ流し、予熱ゾーン4bにおいて外気OAを除湿ロータ2の外側から内側へ流れるようにすることもできる。
【0036】
【発明の効果】
以上説明したように、本発明の請求項1に記載の除湿ロータによれば、除湿ロータの吸着材の内部に、シャフト部の内側から吸着材の外周部に通じる流体の流路を設けたので、該流路に対して、被処理空気と同等かそれ以下の温度の流体を冷却流体として通過させることによって、吸着反応に伴う吸着熱を除湿ロータの吸着ゾーンから除去し、吸着材の温度を冷却流体の温度程度まで低下させることができ、除湿ロータの吸着性能を大幅に上昇させることができる。
【0037】
請求項2に記載の除湿ロータによれば、スリットによって流体の通過する流路の表面積を大きく形成することができて、吸着材と熱交換面積を広くすることができると共に、スリットの両側に設けた隔壁によって上記流体と吸着材との直接接触による潜熱の熱交換を確実に防止することができる。
【0038】
請求項4に記載の除湿装置によれば、除湿ロータの複数の流路が熱回収ゾーンと予熱ゾーン通過するとき、それらの両ゾーンを同時に通過するもの同士の流路が連絡されるので、それらの流路の熱回収ゾーン側から予熱ゾーン側へ流体を流体移送手段によって流すことにより、熱回収ゾーンで回収した熱を予熱ゾーンに伝えて吸着材との間で顕熱だけを熱交換させることができるため、熱の有効活用を図りつつ除湿装置の除湿性能を高めることができる。
【図面の簡単な説明】
【図1】 本発明に係る除湿装置の一実施の形態を示す系統図である。
【図2】 同じく要部の分解図である。
【図3】 一般的な吸着材における相対湿度と吸着量の関係を示す線図である。
【図4】 基本的な除湿装置の構成例を示す系統図である。
【図5】 従来の除湿装置の一例を示す系統図である。
【図6】 従来の除湿装置の他の例を示す系統図である。
【符号の説明】
1 除湿装置 2 除湿ロータ
3 シャフト部 4 吸着材
4a 吸着ゾーン 4b 予熱ゾーン
4c 再生ゾーン 4d 熱回収ゾーン
5 スリット 6 伝熱板(隔壁)
7 チャンバ 8,9 側部チャンバ部材
10、11 内筒 12a 被除湿空気入口チャンバ
12c 再生空気出口チャンバ 13a 被除湿空気出口チャンバ
13c 再生空気入口チャンバ
14a,14b,15a,15b 接続管
16b 予熱空気入口チャンバ 16d 熱回収空気出口チャンバ
17 分岐管 18a 冷却空気出口チャンバ
18b 予熱空気出口チャンバ 18d 熱回収空気入口チャンバ
19駆動手段 21 給気ファン(流体移送手段)
23 冷却コイル 25 空調室
27 加熱コイル 28 排気ファン(流体移送手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dehumidifying rotor and a dehumidifying device using the same.
[0002]
[Prior art]
Some dehumidifying devices dehumidify the dehumidified air by allowing the dehumidified air to permeate the dehumidifying rotor made of a honeycomb or corrugated adsorbent and allowing the adsorbent to adsorb moisture in the dehumidified air. . In this dehumidifying device, the dehumidifying rotor is divided into two zones, and when one of them performs the dehumidifying process, the other allows the heated air to permeate and remove moisture from the adsorbent to restore the adsorption capacity. By performing the regeneration process and continuously rotating the dehumidification rotor, the adsorbent is alternately subjected to the adsorption process and the regeneration process.
[0003]
FIG. 4 shows an example of the most basic configuration of the dehumidifier. In this dehumidifier, the dehumidification rotor 101 is divided into a regeneration zone 102 and an adsorption zone 103, and both zones 102 and 103 pass through the adsorption process and the regeneration process repeatedly while rotating slowly. Part of the return air RA from the air-conditioning chamber 106 and the outside air (dehumidified air) OA taken in enter the adsorption zone 103 by the air supply fan 104 in the adsorption process and are dehumidified here, and then appear in the cooling coil 105. The heat is removed and the temperature is cooled to an appropriate temperature, and then supplied to the air conditioning chamber 106 as dehumidified air SA. On the other hand, part of the return air RA from the air conditioning chamber 106 is heated to a predetermined temperature by the heating coil 107 and then enters the regeneration zone 102 in the regeneration process to regenerate the adsorbent of the dehumidifying rotor 101 and exhaust fan 108. Is exhausted outdoors as exhaust EA.
[0004]
In the above dehumidifying apparatus, the adsorbent in the regeneration zone 102 or the adsorption zone 103 that has entered the dehumidification process after the regeneration process of the dehumidification rotor 101 has become hot due to the high-temperature air used for regeneration, which inhibits the adsorption reaction. Therefore, sufficient dehumidification is not performed until the temperature of the adsorbent is lowered by the dehumidified air OA, and as a result, the dehumidified air OA that has passed through the high temperature portion passes through the dehumidification rotor 101 without being dehumidified, and thus dehumidified. The dehumidifying performance of the entire device is not satisfactorily exhibited.
[0005]
Therefore, in the prior art disclosed in Japanese Patent Application Laid-Open No. 06-000320, the dehumidification rotor is divided into three zones, and after the regeneration process, a purge process is performed that allows the outside air to pass therethrough and lowers the temperature of the adsorbent. Thus, the adsorbent is prevented from entering the dehumidifying process at a high temperature, and the problem in the dehumidifying apparatus of the basic configuration example is solved.
[0006]
FIG. 5 shows an example of the configuration of a dehumidifier using this prior art. In this dehumidifier, the dehumidification rotor 201 is divided into three zones, a regeneration zone 202, a purge zone 203, and an adsorption zone 204, and these zones 201, 202, 203 are rotated slowly while the adsorption process, the regeneration process, The purge process is repeated. A part of the return air RA from the air-conditioning room 207 and the intake outside air OA are entered into the adsorption zone 204 by the air supply fan 205 in the adsorption process, and are dehumidified here, and then the air is cooled by the cooling coil 206. After being cooled to the temperature, the air-conditioned room 207 is supplied as dehumidified air SA. On the other hand, the remaining air exiting the air supply fan 205 enters the purge zone 203 and takes heat from the adsorbent in the purge process, and then rises in temperature, and further heated by the heating coil 208 and enters the regeneration zone for regeneration. After the adsorbent is regenerated in the process, the exhaust fan 209 exhausts it to the outside air as exhaust EA. Of the return air RA from the air conditioning chamber 207, the portion that has not reached the air supply fan 205 is directly discharged to the outside air as exhaust EA.
[0007]
In the prior art disclosed in Japanese Patent Laid-Open No. 2000-337661, the dehumidification rotor is divided into four zones, a heat recovery zone is provided next to the regeneration zone, and a preheating zone is provided next to the adsorption zone. The heat recovery zone and the preheating zone are connected in a circuit form by a pipeline, and a circulating fan is provided in the middle of the pipeline to circulate the air, thereby precooling the adsorbent in the heat recovery zone and recovering the heat, The heat is used to preheat the adsorbent in the preheating zone to improve the problems in the dehumidifier of the basic configuration example described above and to make effective use of energy.
[0008]
FIG. 6 shows an example of the configuration of a dehumidifying device using this prior art. In this dehumidifier, the dehumidification rotor 301 is divided into four zones, a regeneration zone 302, a heat recovery zone 303, an adsorption zone 304, and a preheating zone 305, and these zones rotate while slowly adsorbing, preheating stroke, and regeneration stroke. The heat recovery process is repeated. The intake outside air OA enters the adsorption zone 304 by the air supply fan 306 and is dehumidified, then cooled to an appropriate temperature by the cooling coil 307 and supplied to the air conditioning room 308. The return air RA from the air conditioning chamber 308 is heated by the heating coil 309, then enters the regeneration zone 302 to regenerate the adsorbent, and is then discharged to the outdoors by the exhaust fan 310 as exhaust EA. The air passing through the heat recovery zone 303 takes heat from the adsorbent that has become high due to regeneration and becomes high temperature, and is sent to the preheating zone 305 by the circulation fan 311, where it exchanges heat with the adsorbent, and the heat recovery zone The heat obtained at 303 is transferred to the adsorbent and reaches the heat recovery zone 303 again.
[0009]
[Problems to be solved by the invention]
However, since the adsorption reaction is generally an exothermic reaction, the temperature of the adsorbent rises with the adsorption reaction in the adsorption zones 204 and 304, and this inhibits the adsorption reaction. None of the above prior arts have been sufficiently solved.
Further, in the case of the latter prior art in which the heat recovery zone 303 and the preheating zone 305 are connected in a circuit shape, the circulating air is in direct contact with the adsorbent in the heat recovery zone 303 and the preheating zone 305. Also, there was a problem that the latent heat was recovered and the performance as a dehumidifying device was lowered.
[0010]
The present invention has been made in view of such problems, and by providing a cooling flow path inside the dehumidifying rotor and removing the heat of adsorption during the adsorption process to keep the adsorbent at a low temperature, the performance of the adsorbent is maximized. A dehumidification rotor that can efficiently pull out the air to be dehumidified and efficiently dry the sensible heat and improve the dehumidification performance while effectively utilizing heat by recovering only the sensible heat, and the same It aims at providing a dehumidification apparatus.
[0011]
[Means for Solving the Problems]
  In order to solve the above-described problem, a dehumidifying rotor according to claim 1 of the present invention includes:A cylindrical shaft portion and an adsorbent provided on the outer periphery of the shaft portion,A dehumidification rotor that dehumidifies the dehumidified air by passing the dehumidified air through the adsorbent along the axial direction of the shaft portion;The adsorbent is formed with a slit that is directed in a radial direction along the axial direction of the shaft portion and divides the adsorbent in the circumferential direction of the shaft portion,
  A chamber divided into the same number as the slit is provided in the shaft portion by a partition plate directed radially from the center thereof, and the chamber is formed in an axial direction opened in an outer peripheral portion of the shaft portion. Via a long slot, the corresponding adjoining slit is individually communicated with the outer periphery of the adsorbent, and the slit passes the adsorbent between the outer periphery of the adsorbent and the chamber. The cooling or heating fluid is configured as a flow path for flowing in the radial direction of the shaft portion without directly contacting the adsorbent..
[0012]
In this dehumidifying rotor, a fluid flow path leading from the inside of the shaft portion to the outer peripheral portion of the adsorbing material is provided inside the adsorbing material of the dehumidifying rotor. By passing a fluid of the following temperature as a cooling fluid, the heat of adsorption accompanying the adsorption reaction is removed from the adsorption zone of the dehumidification rotor, and the temperature of the adsorbent is lowered to the temperature of the cooling fluid, thereby causing the adsorption reaction. The obstruction factor that the temperature rises is removed, and the adsorption performance of the dehumidifying rotor is significantly increased.
[0013]
  In the dehumidification rotor,SaidIt is preferable to provide a partition wall in contact with the adsorbent on the both sides of the slit so as to allow heat to pass through without easily transmitting moisture (Claim 2).
[0014]
  Further, a dehumidifying device according to claim 3 of the present invention incorporates the dehumidifying rotor according to claim 1 or 2, and along the rotation direction of the dehumidifying rotor, a regeneration zone, a heat recovery zone, an adsorption zone, and a preheating zone. In order,The dehumidified air is sent to the adsorption zone along the axial direction of the shaft portion, and a cooling fluid for cooling the adsorbent is sent to the chamber arranged in the adsorption zone, and communicated to the chamber. Discharge outward from the outer periphery of the adsorbent through a slitIt is characterized by that.
  A dehumidifying apparatus according to claim 4 of the present invention incorporates the dehumidifying rotor according to claim 1 or 2, and along the rotational direction of the dehumidifying rotor, a regeneration zone, a heat recovery zone, an adsorption zone, and a preheating zone. In order,A communication member that communicates between the chamber disposed in the heat recovery zone and the chamber disposed in the preheating zone, and formed in a region of the dehumidification rotor disposed in the heat recovery zone. From the slit, heat recovery fluid is taken inward in the radial direction of the shaft portion, and this heat recovery fluid is sent as a preheating fluid to the preheating zone via the connecting member. The preheated fluid is discharged from the outer peripheral portion of the adsorbent through the slit disposed in the preheated zone, and the discharged preheated fluid is heated to regenerate the fluid along the axial direction of the shaft portion. Pass through the regeneration zone and discharge outwardIt is characterized by that.
[0015]
According to this dehumidifier, when the plurality of flow paths of the dehumidification rotor pass through the heat recovery zone and the preheating zone, the flow paths of those passing through both zones are communicated with each other. By flowing the fluid from the recovery zone side to the preheating zone side by the fluid transfer means, the heat recovered in the heat recovery zone is transmitted to the preheating zone, and no sensible heat is exchanged with the adsorbent, and only sensible heat is exchanged. Therefore, the heat is effectively utilized and the dehumidifying performance of the dehumidifying device is enhanced.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
1 and 2, reference numeral 1 denotes a dehumidifying device according to an embodiment of the present invention, which includes a dehumidifying rotor 2 according to an embodiment of the present invention.
The dehumidifying rotor 2 is configured by holding a honeycomb or corrugated adsorbent 4 around a cylindrical shaft portion 3. The adsorbent 4 is divided into 16 pieces in the circumferential direction of the shaft portion 3 by four or more (16 pieces in the example of FIG. 2) slits 5 along the axial direction of the shaft portion 3 and directed in the radial direction. These divided portions are sequentially used as an adsorption zone 4a, a preheating zone 4b, a regeneration zone 4c, and a heat recovery zone 4d in the circumferential direction of the shaft portion 3. The outer shape of the adsorbent 4 is formed in a cylindrical surface as a whole, the outer peripheral portion thereof is surrounded by an arc-shaped outer peripheral plate 2a, and the fluid passing through the adsorbent 4 in the axial direction of the shaft portion 3 is on the outer peripheral side. It will not flow to.
[0017]
The adsorption zone 4a is divided into eight adsorbents 4 by the slit 5, the preheating zone 4b is divided into two adsorbents 4 by the slit 5, and the regeneration zone 4c is divided into four by the slit 5. The divided adsorbent 4 corresponds to the adsorbent 4 divided into two by the slit 5 in the preheating zone 4d. On both sides of each slit 5, heat transfer plates (partition walls) 6, 6 made of a material that is difficult to transmit moisture such as a metal plate are provided in contact with the adsorbent 4. By flowing a fluid such as air, heat exchange between the fluid and the adsorbent 4 around the slit 5 is possible without direct contact. Both ends in the axial direction of the shaft portion 3 of the slit 5 are closed by a closing plate (not shown).
[0018]
Further, inside the shaft portion 3, there are provided chambers 7 that are divided into the same number as the slits 5 by a partition plate 3 a that is directed in the radial direction from the center thereof. Each is connected individually to the corresponding slit 5 through an elongated hole in the axial direction that is opened in the outer periphery, and communicates with the outer peripheral portion of the adsorbent 4. Both end portions of the shaft portion 3 protruding to the side of the adsorbent 4 are at the center of a pair of flat cylindrical side chamber members 8 and 9 having an outer diameter substantially the same as the outer diameter of the adsorbent 4. The dehumidification rotor 2 is supported by the side chamber members 8 and 9 so as to be rotatable in the circumferential direction by being fitted to the provided inner cylinders 10 and 11.
[0019]
The side chamber members 8 and 9 close both sides of the dehumidifying rotor 2 and the side chambers 12 and 13 by partition plates 8a and 9a provided on the inner side from the peripheral portions of the inner cylinders 10 and 11 in the radial direction. Is provided. That is, the one side chamber member 8 includes a dehumidified air inlet chamber 12a, an empty chamber 12b, a regeneration air outlet chamber 12c, an empty chamber corresponding to the zones 4a, 4b, 4c, and 4d of the dehumidifying rotor 2. 12d are arranged in order, and the other side chamber member 9 corresponds to the zones 4a, 4b, 4c, 4d of the dehumidifying rotor 2 and is to be dehumidified air outlet chamber 13a, empty chamber 13b, regeneration air inlet chamber. 13c and the empty chamber 13d are arranged in this order.
The one side chamber member 8 is provided with connecting pipes 14a and 14b communicating with the inside of the dehumidified air inlet chamber 12a and the regeneration air outlet chamber 12c, respectively, and the other side chamber member 9 is dehumidified. Connection pipes 15a and 15b communicating with the inside of the air outlet chamber 13a and the regeneration air inlet chamber 13c are provided.
[0020]
Furthermore, a partition plate 10a is provided in a radial direction from the center corresponding to the position of the partition plates 8a and 9a in a portion of the inner cylinder 10 of the one side chamber 8 protruding outward. A cooling air inlet chamber 16a and a preheating air inlet chamber 16b and a heat recovery air outlet chamber 16d are arranged adjacent to both sides in the circumferential direction, and the preheating air inlet chamber 16b and the heat recovery air outlet chamber 16d are arranged in the inner cylinder 10. It connects with the cover plate (not shown) or the piping 17 provided in the outer end part. The outer end portion of the inner cylinder 11 of the other side chamber member 9 is closed with a lid plate (not shown). A space between the preheated air outlet chamber 16b and the heat recovery air outlet chamber 16d is an empty chamber 16c whose outer end is closed.
[0021]
An annular cylindrical fluid chamber 18 is provided on the outer periphery of the dehumidifying rotor 2 so as to surround the rotor. In the fluid chamber 18, a cooling air outlet chamber 18 a having a semi-annular cylindrical space is defined at a position corresponding to the dehumidified air inlet chamber 12 a of the side chamber member 8. A preheated air outlet chamber 18b and a heat recovery air inlet chamber 18d are partitioned at positions adjacent to each other. Note that the adjacent sides in the circumferential direction of the preheating air outlet chamber 18b and the heat recovery air inlet chamber 18d are connected by an arc-shaped connecting plate 18c.
Further, the dehumidifying rotor 2 is driven by the driving force of the driving means 19 via a belt 20 wound around a pulley provided on one end of the outer peripheral portion thereof and a pulley of the driving means 19 such as a hydraulic motor or an electric motor. The fluid chamber 18 and the side chamber members 8 and 9 rotate slowly.
[0022]
Further, a pipe 22 for introducing outside air (dehumidified air) OA into the dehumidified air inlet chamber 12a by an air supply fan (fluid transfer means) 21 is connected to the connecting pipe 14a of the one side chamber member 8. The downstream side of the air supply fan 21 of the pipe 22 is connected to the cooling air inlet chamber 16a in the inner cylinder 10 by a branch pipe 22a. The connecting pipe 15a of the other side chamber member 9 is connected to the connecting pipe 14a via the adsorbent 4 of the dehumidifying rotor 2, and is connected to the air conditioning room 25 via the cooling coil 23 by the pipe 24. Yes.
[0023]
The connecting pipe 15b of the other side chamber member 9 is connected to the preheated air outlet chamber 18b through a heating coil 27 by a pipe 26 and is connected to the connecting pipe 15b through the adsorbent 4 of the dehumidifying rotor 2. 14b, and a pipe 29 having an exhaust fan (fluid transfer means) 28 is connected to the connecting pipe 14b. The preheated air outlet chamber 18b is connected to the preheated air inlet chamber 16b of the inner cylinder 10 from the chamber 7 of the shaft portion 3 through the adsorbent 4 of the dehumidifying rotor 2.
[0024]
  The heat recovery air inlet chamber 18d is connected to a pipe 30 for introducing outside air to the inside, and the inside passes through the slit 5 of the dehumidifying rotor 2 to heat the inner cylinder 10 from the chamber 7 of the shaft portion 3. It communicates with the recovery outlet chamber 16d, and further communicates with the preheated air inlet chamber 16b via the pipe 17. The cooling air outlet chamber 18 a is connected to the dehumidifying rotor 2 through the slit 5.Cooling air inlet chamber 16aAnd is opened to the outdoors by a pipe 31. The air conditioning room 25 is provided with a duct 32 for discharging excess air to the outdoors.
[0025]
Next, the operation of the dehumidifying rotor 2 having the above-described configuration and the dehumidifying device 1 using the same will be described.
When the dehumidifying device 1 is used to dehumidify the air conditioning chamber 25, the driving means 19 is operated to slowly rotate the dehumidifying rotor 2, and the air supply fan 21 and the exhaust fan 28 are operated. Due to the operation of the air supply fan 21, a part of the outside air OA (dehumidified air) enters the dehumidified air inlet chamber 12 a of the one side chamber member 8 from the connection pipe 14 a through the pipe 22, and the adsorption zone of the dehumidifying rotor 2. After being dehumidified by being brought into contact with the adsorbent 4a of 4a, the dehumidified air outlet chamber 13a of the other side chamber member 9 flows into the pipe 24 through the connecting pipe 15a. The air flowing into the pipe 24 is cooled by the cooling coil 23 and then supplied to the air conditioning chamber 25 as dehumidified air SA.
Further, another part of the outside air OA enters the cooling air inlet chamber 16a of the one side chamber member 8 through the branch pipe 22a, passes through the chamber 7 of the inner cylinder 10 of the dehumidifying rotor 2, and is slit in the adsorption zone 4a. 5 and is indirectly heat-exchanged without being in direct contact with the adsorbent 4 in the adsorption zone 4a, and then discharged from the cooling air outlet chamber 18a to the outside through the pipe 31 as exhaust EA.
[0026]
Further, a part of the other outside air OA flows through the heat recovery air inlet chamber 18d through the piping 30 to the slit 5 of the heat recovery zone 4d, and indirectly exchanges heat with the adsorbent 4 in the heat recovery zone 4d. After cooling the adsorbent 4 and heating itself, the adsorbent 4 is heated to reach the heat recovery air outlet chamber 16 d of the inner cylinder 10 of the one side chamber member 8 from the chamber 7 of the shaft portion 3, and preheated air is supplied by the pipe 17. The adsorbent 4 enters the inlet chamber 16b and flows from the chamber 7 of the shaft portion 3 to the slit 5 in the preheating zone 4b of the dehumidifying rotor 2, and indirectly heat-exchanges with the adsorbent 4 in the preheating zone 4b to preheat the adsorbent 4. After that, it is sent to the heating coil 27 by the pipe 26 through the preheated air outlet chamber 18b.
[0027]
After the air sent to the heating coil 27 is heated there, it enters the regeneration air inlet chamber 13c of the other side chamber member 9 from the connection pipe 15b and directly with the adsorbent 4 in the regeneration zone 4c of the dehumidifying rotor 2. The adsorbent is heated by contact to evaporate the moisture and regenerate. The air regenerated from the adsorbent 4 is sucked by the exhaust fan 28 and is discharged from the regeneration air outlet chamber 12c to the outside through the connection pipe 14b and the pipe 29 as exhaust EA. The surplus air in the air conditioning chamber 25 due to the supply of air from the dehumidifying device 1 is directly discharged to the outside as exhaust EA through the duct 32.
[0028]
In general, the amount of moisture adsorbed by the adsorbent can be approximated as a function of only the relative humidity on the surface of the adsorbent, and as shown in FIG. 3, the amount of adsorption monotonously increases relative to the relative humidity. ing. When the air in the state B having the relative humidity φB is brought into contact with the adsorbent regenerated up to the adsorption amount qA in the regeneration zone as the dehumidified air, the amount of water that can be adsorbed is (qB−qA) kg per kg of the adsorbent. Become. Similarly, when the air in the state C having a relative humidity φC higher than that in the state B is brought into contact as the dehumidified air, the amount of moisture that can be adsorbed is (qC−qA) kg per 1 kg of the adsorbent, which is larger than in the state B. Of water can be adsorbed. In other words, if the dehumidified air with a higher relative humidity is brought into contact with the adsorbent surface, the performance of the adsorbent increases, and the difference between the adsorbent condition and the dehumidified air condition increases. It can be said that the speed is also increased.
[0029]
In the dehumidifying apparatus 1 according to the above embodiment, for example, it is assumed that the outside air OA as dehumidified air has a dry bulb temperature of 35 ° C. and a relative humidity of 55%, and this air is introduced into the adsorption zone 4 a of the dehumidifying rotor 2. As described above, since the adsorption zone 4a is cooled by the outside air OA passing through the slit 5 provided therein, it is possible to suppress the temperature of the adsorption zone 4a to about 40 ° C. In this case, the dehumidified air introduced into the adsorption zone 4a has a relative humidity of about 42%.
However, since the dehumidifying rotors 201 and 301 in the conventional dehumidifying apparatus shown in FIGS. 5 and 6 do not have a mechanism for cooling the adsorption zones 204 and 304, the temperature inside these adsorption zones is the dry bulb temperature of 60 ° C. Rises to a degree. At this time, the relative humidity of the dehumidified air becomes 16% or less by heating and dehumidification.
Therefore, according to the dehumidifying apparatus 1 according to the above-described embodiment, by desorbing the adsorption zone 4a with the cooling fluid, the dehumidified air having a higher relative humidity than the conventional dehumidifying apparatus is applied to the adsorbent surface. The performance of the adsorbent 4 can be increased, and as a result, the moisture absorption performance of the dehumidifying rotor 2 can be increased.
[0030]
Next, the effect of heat recovery in the heat recovery zone 4d of the dehumidifier 1 according to the above embodiment will be described.
In the conventional dehumidifier shown in FIG. 7, heat recovery and preheating are performed in a state where the circulating air is in direct contact with the adsorbent in the heat recovery zone 303 and the preheating zone 305, so that not only sensible heat but also latent heat is generated. It will be collected. That is, in the heat recovery zone 303, the return air from the preheating zone 305 is introduced into the regenerated adsorbent at a high temperature and in a dry state. Generally, this return air is more than the air on the surface of the regenerated adsorbent. Since the absolute humidity is high, an adsorption reaction occurs in the heat recovery zone 303, and the dryness of the adsorbent decreases, which deteriorates the performance of the entire dehumidifier. This occurs not only when the return air from the preheating zone 305 is introduced into the heat recovery zone 303 but also in most cases such as when outside air is introduced or when return air from the air conditioning chamber 308 is introduced. To do.
[0031]
On the other hand, in the dehumidifying device according to the above embodiment, in the heat recovery zone 4d and the preheating zone 4b of the dehumidifying rotor 2, the outside air OA introduced into them and flowing through the slits 5 in the diameter direction of the dehumidifying rotor 2 However, since the adsorbent 4 is indirectly contacted through the heat transfer plates 6a and 6a provided on both sides of each slit 5, the outside air OA and the adsorbent 4 are not in direct contact with each other. Since heat exchange is not performed, the adsorption reaction does not occur in the heat recovery zone 4d, and the dryness of the adsorbent 4 is maintained in a suitable state regenerated in the regeneration zone 4c. Thus, the overall performance of the dehumidifying device 1 can be improved.
[0032]
In the above embodiment, the outside air OA is used as the fluid for cooling the adsorption zone 4a. However, the fluid is not limited to the outside air OA as long as the temperature is equal to or lower than that of the dehumidified air. For example, exhaust from an air-conditioning room or a low-temperature warehouse, cold water, cooling water obtained from a river or the like can be used.
[0033]
Moreover, in the said embodiment, although the shaft part 3 of the dehumidification rotor 2 was formed in the cylindrical shape as a whole, the shape of the shaft part 3 is not restricted to this, and the part which mounts the adsorbent 4 has many cross sections. You may form in a rectangular cylinder shape. Moreover, although the said shaft part 3 was fitted to the inner cylinders 10 and 11 of the both-side chamber members 8 and 9, and it was set as the structure which supports the dehumidification rotor 2 rotatably, the structure which supports the dehumidification rotor 2 rotatably is comprised. However, the present invention is not limited to this, and the shaft portion 3 protrudes to the outside of the both side chamber members 8 and 9 so as to be rotatably supported by a separately prepared support member, or the outer peripheral portion of the dehumidifying rotor 2 is supported on the both side chamber members 8. 9 or the fluid chamber 18 may be rotatably supported. In addition, the dehumidification rotor 2 is rotated by winding a belt around a pulley provided on the outer periphery of the rotor 2 and the pulley of the driving means 19, but a chain wheel and a chain may be used instead of the pulley and the belt. A ring gear may be provided on the outer periphery of the rotor 2, and a deionizing rotor 2 may be rotated by rotating a pinion gear meshed with the ring gear by a driving unit.
[0034]
Further, in the above-described embodiment, the number of slits 5 of the dehumidifying rotor 2 is set to 16, and the number of divisions of the adsorbent 4 is also set to 16, and the divided adsorbent 4 is divided into the side chamber members 8 and 9. The adsorption zone 4a is located at a position corresponding to four pieces, the preheating zone 4b and the heat recovery zone 4d are located at positions corresponding to two adsorbents at both adjacent portions, and the space between these preheating zones 4b and 4d. Although the partition plates 8a and 9a for partitioning the regeneration zone 4c at the positions corresponding to the two adsorbents are provided, the number of divisions of the slit 5 of the dehumidification rotor 2 and the adsorbent 4 is not limited to the above. Any number may be used as long as it is greater than or equal to the number, and the positions of the partition plates 8a and 9a that partition the zones 4a, 4b, 4c, and 4d are not limited to the positions corresponding to the respective numbers of the adsorbents 4, Even if it is a position corresponding to other appropriate number There. In this case, it is preferable that the section corresponding to the adsorption zone 4a is the widest and the section corresponding to the regeneration zone 4c is subsequently widened.
[0035]
In the above embodiment, the outside air OA flowing from the heat recovery zone 4d to the preheating zone 4b is supplied to the pipe 30, the heat recovery air inlet chamber 18d, the heat recovery zone 4d, the heat recovery air outlet chamber 16d, the pipe 17, and the preheated air. The inlet chamber 16b, the piping 17, the preheating zone 4b, and the preheating air outlet chamber 18b flow in this order, but instead of this, the piping 17 is removed and the heat recovery air inlet chamber 18d and the preheating air inlet chamber 16b are connected by piping. The piping 30 is connected to the heat recovery air outlet chamber 16d, and the upstream side of the piping 26 is connected to the preheating air inlet chamber 16b, so that the outside air OA is placed inside the dehumidification rotor 2 in the heat recovery zone 4d. So that the outside air OA flows from the outside to the inside of the dehumidifying rotor 2 in the preheating zone 4b. It is also possible to.
[0036]
【The invention's effect】
As described above, according to the dehumidifying rotor of the first aspect of the present invention, the fluid flow path leading from the inside of the shaft portion to the outer peripheral portion of the adsorbing material is provided inside the adsorbing material of the dehumidifying rotor. By passing a fluid having a temperature equal to or lower than the air to be treated as a cooling fluid through the flow path, the heat of adsorption accompanying the adsorption reaction is removed from the adsorption zone of the dehumidifying rotor, and the temperature of the adsorbent is set. The temperature can be lowered to the temperature of the cooling fluid, and the adsorption performance of the dehumidifying rotor can be significantly increased.
[0037]
According to the dehumidifying rotor according to claim 2, the surface area of the flow path through which the fluid passes can be formed by the slit, the heat exchange area with the adsorbent can be increased, and provided on both sides of the slit. The partition wall can reliably prevent heat exchange of latent heat due to direct contact between the fluid and the adsorbent.
[0038]
  Claim 4According to the described dehumidifying device, when the plurality of flow paths of the dehumidification rotor pass through the heat recovery zone and the preheating zone, the flow paths of those passing through both the zones are communicated with each other. By flowing the fluid from the heat recovery zone side to the preheating zone side by the fluid transfer means, the heat recovered in the heat recovery zone can be transferred to the preheating zone and only sensible heat can be exchanged with the adsorbent, The dehumidifying performance of the dehumidifying device can be enhanced while effectively utilizing heat.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of a dehumidifying apparatus according to the present invention.
FIG. 2 is an exploded view of the main part of the same.
FIG. 3 is a diagram showing the relationship between relative humidity and adsorption amount in a general adsorbent.
FIG. 4 is a system diagram showing a configuration example of a basic dehumidifying device.
FIG. 5 is a system diagram showing an example of a conventional dehumidifying device.
FIG. 6 is a system diagram showing another example of a conventional dehumidifier.
[Explanation of symbols]
1 Dehumidifying device 2 Dehumidifying rotor
3 Shaft 4 Adsorbent
4a Adsorption zone 4b Preheating zone
4c regeneration zone 4d heat recovery zone
5 Slit 6 Heat transfer plate (partition)
7 Chamber 8, 9 Side chamber member
10, 11 Inner cylinder 12a Dehumidified air inlet chamber
12c Regenerative air outlet chamber 13a Dehumidified air outlet chamber
13c Regenerative air inlet chamber
14a, 14b, 15a, 15b Connecting pipe
16b Preheated air inlet chamber 16d Heat recovery air outlet chamber
17 Branch pipe 18a Cooling air outlet chamber
18b Preheated air outlet chamber 18d Heat recovery air inlet chamber
19 Driving means 21 Air supply fan (fluid transfer means)
23 Cooling coil 25 Air conditioning room
27 Heating coil 28 Exhaust fan (fluid transfer means)

Claims (4)

円筒形からなるシャフト部と、このシャフト部の外周部に設けられた吸着材とを備え、被除湿空気を前記シャフト部の軸方向に沿って前記吸着材の中を通過させることによって前記被除湿空気を除湿する除湿ロータであって、
前記吸着材に、前記シャフト部の軸方向に沿い放射方向に向けられて、前記吸着材を前記シャフト部の周方向に分割するスリットが形成されており、
前記シャフト部の内部に、その中心から放射方向に向けられた仕切板によって、前記スリットと同数に分割されたチャンバが設けられ、
前記チャンバは、前記シャフト部の外周部にあけられた軸方向に長い長穴を介して、対応する前記スリットに個別に連絡されて前記吸着材の外周部に通じており、
前記スリットは、前記吸着材の外周部と前記チャンバとの間において、前記吸着材を冷却または加熱する流体を、前記吸着材と直接接触させずに前記シャフト部の径方向に流す流路として構成されていることを特徴とする除湿ロータ。
The dehumidifying device includes a cylindrical shaft portion and an adsorbent provided on an outer peripheral portion of the shaft portion, and the dehumidifying air is passed through the adsorbing material along the axial direction of the shaft portion. A dehumidifying rotor for dehumidifying air,
The adsorbent is formed with a slit that is directed in a radial direction along the axial direction of the shaft portion and divides the adsorbent in the circumferential direction of the shaft portion,
A chamber divided into the same number as the slits is provided in the shaft portion by a partition plate directed radially from the center thereof,
The chamber is individually connected to the corresponding slit through an elongated hole in the axial direction opened in the outer peripheral portion of the shaft portion, and communicates with the outer peripheral portion of the adsorbent.
The slit is configured as a flow path for allowing a fluid that cools or heats the adsorbent between the outer periphery of the adsorbent and the chamber to flow in the radial direction of the shaft portion without directly contacting the adsorbent. A dehumidification rotor characterized by being made .
前記スリットの両側の前記吸着材に面する部分に、湿気が容易に透過せずに熱が容易に透過できる隔壁が、上記吸着材に接触して設けられていることを特徴とする請求項1に記載の除湿ロータ。 The partition facing the adsorbent is provided on a portion facing the adsorbent on both sides of the slit so as to allow moisture to pass therethrough without easily passing moisture. The dehumidifying rotor described in 1. 請求項1または2に記載された除湿ロータを組み込み、かつ該除湿ロータの回転方向に沿って再生ゾーン、熱回収ゾーン、吸着ゾーンおよび予熱ゾーンを順に設けた除湿装置であって、
前記シャフト部の軸方向に沿って前記吸着ゾーンに前記被除湿空気を送り込むとともに、
前記吸着材を冷却する冷却用流体を、前記吸着ゾーンに配される前記チャンバに送り込み、前記チャンバに連絡されたスリットを介して前記吸着材の外周部から外方に排出することを特徴とする除湿装置。
A dehumidifying device in which the dehumidifying rotor according to claim 1 or 2 is incorporated, and a regeneration zone, a heat recovery zone, an adsorption zone, and a preheating zone are provided in this order along the rotation direction of the dehumidifying rotor,
While sending the dehumidified air to the adsorption zone along the axial direction of the shaft portion,
A cooling fluid for cooling the adsorbent is fed into the chamber arranged in the adsorption zone, and is discharged outwardly from an outer peripheral portion of the adsorbent through a slit connected to the chamber. Dehumidifier.
請求項1または2に記載された除湿ロータを組み込み、かつ該除湿ロータの回転方向に沿って再生ゾーン、熱回収ゾーン、吸着ゾーンおよび予熱ゾーンを順に設けた除湿装置であって、
前記熱回収ゾーンに配される前記チャンバと、前記予熱ゾーンに配される前記チャンバとを連絡する連絡用部材を備え、
前記除湿ロータのうち前記熱回収ゾーンに配される領域に形成された前記スリットから、前記シャフト部の径方向内方に熱回収用流体を取り込み、
この熱回収用流体を予熱用流体として前記連絡用部材を介して前記予熱ゾーンに送り込み、
この送り込まれた予熱用流体を予熱後流体として前記予熱ゾーンに配される前記スリットを介して前記吸着材の外周部から排出し、
この排出された予熱後流体を加熱して再生用流体として前記シャフト部の軸方向に沿って前記再生ゾーンを通過させて外方に排出することを特徴とする除湿装置。
A dehumidifying device in which the dehumidifying rotor according to claim 1 or 2 is incorporated, and a regeneration zone, a heat recovery zone, an adsorption zone, and a preheating zone are provided in this order along the rotation direction of the dehumidifying rotor,
A communication member that communicates between the chamber disposed in the heat recovery zone and the chamber disposed in the preheating zone;
From the slit formed in the region disposed in the heat recovery zone of the dehumidifying rotor, the heat recovery fluid is taken inward in the radial direction of the shaft portion,
This heat recovery fluid is sent as a preheating fluid to the preheating zone via the connecting member,
The preheating fluid sent in is discharged from the outer periphery of the adsorbent as the preheated fluid through the slit disposed in the preheating zone,
The dehumidifying device is characterized in that the discharged preheated fluid is heated and passed through the regeneration zone along the axial direction of the shaft portion as a regeneration fluid and discharged outward .
JP2001305709A 2001-10-01 2001-10-01 Dehumidifying rotor and dehumidifying device using the same Expired - Fee Related JP3819272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001305709A JP3819272B2 (en) 2001-10-01 2001-10-01 Dehumidifying rotor and dehumidifying device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001305709A JP3819272B2 (en) 2001-10-01 2001-10-01 Dehumidifying rotor and dehumidifying device using the same

Publications (2)

Publication Number Publication Date
JP2003112008A JP2003112008A (en) 2003-04-15
JP3819272B2 true JP3819272B2 (en) 2006-09-06

Family

ID=19125458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001305709A Expired - Fee Related JP3819272B2 (en) 2001-10-01 2001-10-01 Dehumidifying rotor and dehumidifying device using the same

Country Status (1)

Country Link
JP (1) JP3819272B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164148A (en) * 2003-12-03 2005-06-23 Daikin Ind Ltd Humidity conditioning device
JP2006240956A (en) * 2005-03-07 2006-09-14 National Institute Of Advanced Industrial & Technology Amorphous aluminum silicate, adsorbent having the same, dehumidifying rotor and air conditioner
JP4185965B2 (en) 2007-02-21 2008-11-26 五和工業株式会社 A device that recirculates moisture emitted from workers in a dry room to the workers
KR101026394B1 (en) 2008-11-04 2011-04-07 김천곤 Air circulation system for hygroscopic tower
JP5805978B2 (en) * 2011-04-05 2015-11-10 株式会社西部技研 Adsorption dehumidifier
JP5709047B2 (en) * 2011-06-06 2015-04-30 株式会社大気社 Rotor type air treatment device
KR101196775B1 (en) * 2011-10-25 2012-11-05 (주)에이티이엔지 Desiccant rotor cassette
CN103075874B (en) * 2012-12-19 2015-01-28 宁波斯曼尔电器有限公司 Multi-zone transformation plastic dehumidifier and dehumidifying method
CN113278455B (en) * 2021-06-04 2023-09-08 邓燕龙 Natural gas dewatering device

Also Published As

Publication number Publication date
JP2003112008A (en) 2003-04-15

Similar Documents

Publication Publication Date Title
KR100956356B1 (en) The system of treating odor and hazardrous gas with rotary regenerative heat exchanger and its apparatus
CA2195282C (en) Unitary heat exchanger for the air-to-air transfer of water vapor and sensible heat
USRE38181E1 (en) Dehumidifying mechanism for auto air conditioner with improved space utilization and thermal efficiency
JP3339935B2 (en) Absorbers for use in cooling devices, air conditioners, etc.
EP1081440B1 (en) Dehumidifier
JPH0438444B2 (en)
JPH09136033A (en) Method and apparatus for regenerating adsorbent containing water
JP3819272B2 (en) Dehumidifying rotor and dehumidifying device using the same
JP5521106B1 (en) Dehumidification system
JPH0133207B2 (en)
JP6550121B2 (en) Adsorption type hybrid dehumidifying cooling system
JP2008142656A (en) Dehumidification apparatus
TW201819026A (en) Rotary wheel having enhanced structural strength
JP2681403B2 (en) Gas sorption method and gas sorption device
JP3842476B2 (en) Dry dehumidification system
JP4523146B2 (en) Organic solvent vapor processing equipment
JP6559055B2 (en) Desiccant humidity controller
JP2002186822A (en) Adsorbing and desorbing apparatus
JPS61212313A (en) Dehumidifying device
JPH038346Y2 (en)
JP2000291979A (en) Dehumidifier
JPH01291023A (en) Batch type humidity controlling device
JP2002066248A (en) Adsorbing and desorbing device
TWI683696B (en) Rotary wheel having enhanced structural strength and fluid processing equipment including the same
CN117073082A (en) Rotary drum dehydrating unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060614

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees