JP5707961B2 - Storage device separator - Google Patents
Storage device separator Download PDFInfo
- Publication number
- JP5707961B2 JP5707961B2 JP2011009765A JP2011009765A JP5707961B2 JP 5707961 B2 JP5707961 B2 JP 5707961B2 JP 2011009765 A JP2011009765 A JP 2011009765A JP 2011009765 A JP2011009765 A JP 2011009765A JP 5707961 B2 JP5707961 B2 JP 5707961B2
- Authority
- JP
- Japan
- Prior art keywords
- porous film
- polyolefin
- particle
- mass
- containing layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003860 storage Methods 0.000 title claims description 16
- 239000002245 particle Substances 0.000 claims description 132
- 229920000098 polyolefin Polymers 0.000 claims description 70
- -1 polypropylene Polymers 0.000 claims description 67
- 229920005989 resin Polymers 0.000 claims description 43
- 239000011347 resin Substances 0.000 claims description 43
- 239000004743 Polypropylene Substances 0.000 claims description 40
- 238000002844 melting Methods 0.000 claims description 40
- 229920001155 polypropylene Polymers 0.000 claims description 40
- 230000008018 melting Effects 0.000 claims description 38
- 239000013078 crystal Substances 0.000 claims description 31
- 230000035699 permeability Effects 0.000 claims description 24
- 229920005992 thermoplastic resin Polymers 0.000 claims description 21
- 239000010954 inorganic particle Substances 0.000 claims description 15
- 230000005611 electricity Effects 0.000 claims description 12
- 230000008859 change Effects 0.000 claims description 11
- 239000011148 porous material Substances 0.000 claims description 11
- 239000010410 layer Substances 0.000 description 131
- 238000000576 coating method Methods 0.000 description 101
- 239000011248 coating agent Substances 0.000 description 96
- 239000007788 liquid Substances 0.000 description 65
- 238000000034 method Methods 0.000 description 50
- 239000000126 substance Substances 0.000 description 49
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 30
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 30
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 27
- 239000000203 mixture Substances 0.000 description 24
- 150000001875 compounds Chemical class 0.000 description 23
- 239000004698 Polyethylene Substances 0.000 description 18
- 229920000573 polyethylene Polymers 0.000 description 18
- 239000001768 carboxy methyl cellulose Substances 0.000 description 17
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 17
- 238000001035 drying Methods 0.000 description 16
- 125000000466 oxiranyl group Chemical group 0.000 description 15
- 239000003822 epoxy resin Substances 0.000 description 14
- 229920000647 polyepoxide Polymers 0.000 description 14
- 239000000243 solution Substances 0.000 description 13
- 229920002678 cellulose Polymers 0.000 description 11
- 239000001913 cellulose Substances 0.000 description 11
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 8
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 8
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 8
- 229910001416 lithium ion Inorganic materials 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 239000000919 ceramic Substances 0.000 description 7
- 238000003475 lamination Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000003484 crystal nucleating agent Substances 0.000 description 6
- 238000001125 extrusion Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 229920005672 polyolefin resin Polymers 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- AOBIOSPNXBMOAT-UHFFFAOYSA-N 2-[2-(oxiran-2-ylmethoxy)ethoxymethyl]oxirane Chemical compound C1OC1COCCOCC1CO1 AOBIOSPNXBMOAT-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 229920001451 polypropylene glycol Polymers 0.000 description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000007334 copolymerization reaction Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 239000011255 nonaqueous electrolyte Substances 0.000 description 3
- 229920003986 novolac Polymers 0.000 description 3
- 229910052574 oxide ceramic Inorganic materials 0.000 description 3
- 239000011224 oxide ceramic Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000004711 α-olefin Substances 0.000 description 3
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229930003836 cresol Natural products 0.000 description 2
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000009998 heat setting Methods 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 229920005633 polypropylene homopolymer resin Polymers 0.000 description 2
- 230000002040 relaxant effect Effects 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 239000004846 water-soluble epoxy resin Substances 0.000 description 2
- LTVUCOSIZFEASK-MPXCPUAZSA-N (3ar,4s,7r,7as)-3a-methyl-3a,4,7,7a-tetrahydro-4,7-methano-2-benzofuran-1,3-dione Chemical compound C([C@H]1C=C2)[C@H]2[C@H]2[C@]1(C)C(=O)OC2=O LTVUCOSIZFEASK-MPXCPUAZSA-N 0.000 description 1
- KNDQHSIWLOJIGP-UMRXKNAASA-N (3ar,4s,7r,7as)-rel-3a,4,7,7a-tetrahydro-4,7-methanoisobenzofuran-1,3-dione Chemical compound O=C1OC(=O)[C@@H]2[C@H]1[C@]1([H])C=C[C@@]2([H])C1 KNDQHSIWLOJIGP-UMRXKNAASA-N 0.000 description 1
- MUTGBJKUEZFXGO-OLQVQODUSA-N (3as,7ar)-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1CCC[C@@H]2C(=O)OC(=O)[C@@H]21 MUTGBJKUEZFXGO-OLQVQODUSA-N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 1
- MBSRTKPGZKQXQR-UHFFFAOYSA-N 2-n,6-n-dicyclohexylnaphthalene-2,6-dicarboxamide Chemical compound C=1C=C2C=C(C(=O)NC3CCCCC3)C=CC2=CC=1C(=O)NC1CCCCC1 MBSRTKPGZKQXQR-UHFFFAOYSA-N 0.000 description 1
- XYXBMCIMPXOBLB-UHFFFAOYSA-N 3,4,5-tris(dimethylamino)-2-methylphenol Chemical compound CN(C)C1=CC(O)=C(C)C(N(C)C)=C1N(C)C XYXBMCIMPXOBLB-UHFFFAOYSA-N 0.000 description 1
- XBIUWALDKXACEA-UHFFFAOYSA-N 3-[bis(2,4-dioxopentan-3-yl)alumanyl]pentane-2,4-dione Chemical compound CC(=O)C(C(C)=O)[Al](C(C(C)=O)C(C)=O)C(C(C)=O)C(C)=O XBIUWALDKXACEA-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- ODJUOZPKKHIEOZ-UHFFFAOYSA-N 4-[2-(4-hydroxy-3,5-dimethylphenyl)propan-2-yl]-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(C(C)(C)C=2C=C(C)C(O)=C(C)C=2)=C1 ODJUOZPKKHIEOZ-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 241000692870 Inachis io Species 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 241000446313 Lamella Species 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- OKIZCWYLBDKLSU-UHFFFAOYSA-M N,N,N-Trimethylmethanaminium chloride Chemical compound [Cl-].C[N+](C)(C)C OKIZCWYLBDKLSU-UHFFFAOYSA-M 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- JKIJEFPNVSHHEI-UHFFFAOYSA-N Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1) Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C JKIJEFPNVSHHEI-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000004844 aliphatic epoxy resin Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- HPTYUNKZVDYXLP-UHFFFAOYSA-N aluminum;trihydroxy(trihydroxysilyloxy)silane;hydrate Chemical compound O.[Al].[Al].O[Si](O)(O)O[Si](O)(O)O HPTYUNKZVDYXLP-UHFFFAOYSA-N 0.000 description 1
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical compound NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 238000007611 bar coating method Methods 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- HTZCNXWZYVXIMZ-UHFFFAOYSA-M benzyl(triethyl)azanium;chloride Chemical compound [Cl-].CC[N+](CC)(CC)CC1=CC=CC=C1 HTZCNXWZYVXIMZ-UHFFFAOYSA-M 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 238000012661 block copolymerization Methods 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- BUZRUIZTMOKRPB-UHFFFAOYSA-N carboxycarbamic acid Chemical compound OC(=O)NC(O)=O BUZRUIZTMOKRPB-UHFFFAOYSA-N 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 1
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- ZZTCPWRAHWXWCH-UHFFFAOYSA-N diphenylmethanediamine Chemical compound C=1C=CC=CC=1C(N)(N)C1=CC=CC=C1 ZZTCPWRAHWXWCH-UHFFFAOYSA-N 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- JDVIRCVIXCMTPU-UHFFFAOYSA-N ethanamine;trifluoroborane Chemical compound CCN.FB(F)F JDVIRCVIXCMTPU-UHFFFAOYSA-N 0.000 description 1
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 1
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 1
- 239000005042 ethylene-ethyl acrylate Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 229910052621 halloysite Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010220 ion permeability Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910001337 iron nitride Inorganic materials 0.000 description 1
- 229910052622 kaolinite Inorganic materials 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 229920005679 linear ultra low density polyethylene Polymers 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229940018564 m-phenylenediamine Drugs 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- QOHMWDJIBGVPIF-UHFFFAOYSA-N n',n'-diethylpropane-1,3-diamine Chemical compound CCN(CC)CCCN QOHMWDJIBGVPIF-UHFFFAOYSA-N 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 150000003961 organosilicon compounds Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- VSXGXPNADZQTGQ-UHFFFAOYSA-N oxirane;phenol Chemical compound C1CO1.OC1=CC=CC=C1 VSXGXPNADZQTGQ-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920002432 poly(vinyl methyl ether) polymer Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000223 polyglycerol Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 229920005629 polypropylene homopolymer Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229920002717 polyvinylpyridine Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229910052903 pyrophyllite Inorganic materials 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229920001862 ultra low molecular weight polyethylene Polymers 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Laminated Bodies (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Cell Separators (AREA)
Description
本発明は、電気特性、安全性に優れる蓄電デバイス用セパレータに関する。詳しくは、ポリオレフィン系多孔フィルムに無機粒子や熱可塑性樹脂粒子を含む粒子含有層を設けることで、耐熱寸法安定性に優れるだけでなく、ポリオレフィン系多孔フィルムの優れた電気特性を併せ持ち、さらには、蓄電デバイスの異常発熱時にはシャットダウン機能により、イオン電導性を喪失せしめることが可能な、高出力用リチウムイオン二次電池に好適に用いることができる高安全な蓄電デバイス用セパレータに関する。 The present invention relates to an electrical storage device separator having excellent electrical characteristics and safety. Specifically, by providing a particle-containing layer containing inorganic particles and thermoplastic resin particles in a polyolefin-based porous film, not only has excellent heat-resistant dimensional stability, but also has excellent electrical characteristics of the polyolefin-based porous film, The present invention relates to a highly safe separator for an electricity storage device that can be suitably used for a high-power lithium ion secondary battery capable of losing ionic conductivity by a shutdown function during abnormal heat generation of the electricity storage device.
ポリオレフィン系多孔フィルムは、電気絶縁性やイオン透過性に加えて、力学特性にも優れることから、特にリチウムイオン二次電池のセパレータ用途に広く用いられており、なおかつ、電池の高出力密度、高エネルギー密度化に伴い、フィルムの大孔径化、薄膜化、高空孔率化などが検討されている(例えば、特許文献1、2参照)。また、これらのフィルムを使用する際に安全性を確保するために結着剤および低融点樹脂粒子や無機粒子からなる層をフィルムの最表層に設ける提案がなされている(例えば、特許文献3〜5)。しかし、上記の層をフィルムに設けた場合、基材に用いたフィルムと比較して透気抵抗が低下し、セパレータとして用いた際の電池特性に悪影響を及ぼすという問題があった。また、上記の層を低融点樹脂粒子のみで構成することにより透気抵抗を保持する提案がなされているが(例えば、特許文献6)、セパレータとして用いた際の耐熱性が低く、安全性を確保できないといった問題があった。粒子含有層の積層方法に関しては、ポリオレフィン系多孔フィルムに定着剤を塗布する方法(例えば、特許文献7)が提案されているが、ポリオレフィン系多孔フィルムの開孔表面から塗液がフィルム内部に浸透し、透気抵抗が高くなるといった問題があった。 Polyolefin-based porous films are widely used in separator applications for lithium ion secondary batteries because they are excellent in mechanical properties in addition to electrical insulation and ion permeability. With increasing energy density, studies have been made on increasing the diameter of a film, reducing the thickness of the film, increasing the porosity, and the like (see, for example, Patent Documents 1 and 2). In addition, in order to ensure safety when using these films, proposals have been made to provide a layer composed of a binder and low-melting point resin particles or inorganic particles on the outermost layer of the film (for example, Patent Documents 3 to 3). 5). However, when the above layer is provided on the film, there is a problem in that the air permeability resistance is lowered as compared with the film used for the substrate, and the battery characteristics when used as a separator are adversely affected. In addition, although proposals have been made to maintain air permeability resistance by configuring the above layer only with low-melting point resin particles (for example, Patent Document 6), the heat resistance when used as a separator is low and safety is improved. There was a problem that it could not be secured. As a method for laminating the particle-containing layer, a method of applying a fixing agent to a polyolefin-based porous film (for example, Patent Document 7) has been proposed, but the coating liquid penetrates into the film from the open surface of the polyolefin-based porous film. However, there has been a problem that air permeability resistance becomes high.
本発明の課題は、上記した問題点を解決することにある。すなわち、本発明の目的は、ポリオレフィン系多孔フィルムに粒子含有層を設けることにより、透気抵抗の悪化を抑制し、優れた電池性能と安全性を高いレベルで両立した蓄電デバイス用セパレータ用として好適な多孔質フィルムを提供することにある。 An object of the present invention is to solve the above-described problems. That is, the object of the present invention is to provide a particle-containing layer on a polyolefin-based porous film, thereby suppressing deterioration of air permeability resistance and suitable for a separator for an electricity storage device that achieves both excellent battery performance and safety at a high level. It is to provide a porous film.
上記目的を達成するための本発明は、以下の特徴を有する。 In order to achieve the above object, the present invention has the following features.
ポリオレフィン系多孔フィルムの少なくとも片面に、無機粒子を含む粒子含有層が形成されてなり、当該粒子含有層が少なくとも2層の積層構成を有し、以下で定義される透気抵抗変化率(Gd)が10%以下であり、かつ透気抵抗(Ga)が50〜500秒/100mlである多孔質フィルム。 A particle-containing layer containing inorganic particles is formed on at least one surface of the polyolefin-based porous film, and the particle-containing layer has a laminate structure of at least two layers, and the air resistance change rate (Gd) defined below. Is a porous film having an air permeability resistance (Ga) of 50 to 500 seconds / 100 ml.
Gd={(Ga−Gb)/Gb}×100
Gd:透気抵抗変化率(%)
Ga:多孔質フィルムの透気抵抗(秒/100ml)
Gb:ポリオレフィン系多孔フィルムの透気抵抗(秒/100ml)
Gd = {(Ga−Gb) / Gb} × 100
Gd: Permeability change rate (%)
Ga: Air permeability resistance of the porous film (second / 100 ml)
Gb: Air permeation resistance of polyolefin-based porous film (sec / 100 ml)
本発明のポリオレフィン系多孔質フィルムは、耐熱性、高い透気度、シャットダウン性が良好であり、セパレータとして用いた際に優れた特性を示す多孔質フィルムとして提供することができる。 The polyolefin-based porous film of the present invention has good heat resistance, high air permeability, and good shutdown properties, and can be provided as a porous film that exhibits excellent characteristics when used as a separator.
本発明において用いるポリオレフィン系多孔フィルムは、フィルムの両表面を貫通し、透気性を有する微細な貫通孔を多数有している。フィルムに貫通孔を形成する方法としては、湿式法、乾式法どちらでも構わないが、工程を簡略化できることから乾式法が望ましい。 The polyolefin-based porous film used in the present invention has many fine through holes that penetrate both surfaces of the film and have air permeability. As a method for forming a through-hole in the film, either a wet method or a dry method may be used, but a dry method is desirable because the process can be simplified.
ポリオレフィン系多孔フィルムを構成するポリオレフィンとしては、ポリエチレンやポリプロピレン、ポリブテン−1、ポリ4−メチルペンテン−1などの単一ポリオレフィン樹脂や、これら樹脂の混合物、さらには、単量体同士をランダム共重合やブロック共重合した樹脂を用いることができる。 Polyolefins constituting the polyolefin-based porous film include single polyolefin resins such as polyethylene, polypropylene, polybutene-1 and poly-4-methylpentene-1, mixtures of these resins, and random copolymerization of monomers. Alternatively, a block copolymerized resin can be used.
ポリオレフィン系多孔フィルムは、耐熱性の観点で融点が155〜180℃であることが好ましい。融点が155℃未満であると粒子含有層をポリオレフィン系多孔フィルム上に積層する際に多孔フィルムが寸法変化してしまう場合がある。一方、ポリオレフィン系多孔フィルムの融点が180℃を超える温度にするためには、ポリオレフィン樹脂以外の耐熱性樹脂を多量に添加する必要があり、その場合、セパレータとしての基本特性であるイオン電導性が著しく低下してしまう場合ある。なお、ポリオレフィン系多孔フィルムの融点は、単一の融点を示す場合はもちろんその融点をいうが、例えばポリオレフィン系多孔フィルムがポリオレフィンの混合物から構成されるなど、複数の融点を有している場合は、そのうち最も高温側に現れる融点をポリオレフィン系多孔フィルムの融点とする。ポリオレフィン系多孔フィルムの融点は、より好ましくは耐熱性の観点から160〜180℃、さらに好ましくは165〜180℃である。また、上記したように、ポリオレフィン系多孔フィルムが複数の融点を示す場合は、それら全てが上記範囲内にあることが好ましい。 The polyolefin-based porous film preferably has a melting point of 155 to 180 ° C. from the viewpoint of heat resistance. When the melting point is lower than 155 ° C., the porous film may change dimensions when the particle-containing layer is laminated on the polyolefin-based porous film. On the other hand, in order to set the melting point of the polyolefin-based porous film to a temperature exceeding 180 ° C., it is necessary to add a large amount of heat-resistant resin other than the polyolefin resin. In that case, ion conductivity, which is a basic characteristic as a separator, is required. There is a case where it drops significantly. The melting point of the polyolefin-based porous film refers to the melting point of course when showing a single melting point, but when the polyolefin-based porous film has a plurality of melting points, for example, the polyolefin-based porous film is composed of a mixture of polyolefins. Of these, the melting point appearing on the highest temperature side is defined as the melting point of the polyolefin-based porous film. The melting point of the polyolefin-based porous film is more preferably 160 to 180 ° C., further preferably 165 to 180 ° C. from the viewpoint of heat resistance. Moreover, as above-mentioned, when a polyolefin-type porous film shows several melting | fusing point, it is preferable that all of them exist in the said range.
ポリオレフィン系多孔フィルムは、優れた電池特性を実現するために、ポリプロピレン樹脂からなることが好ましく、特にβ晶法と呼ばれる多孔化法を用いて製造された多孔フィルムであることが好ましい。β晶法を用いてフィルムに貫通孔を形成するためには、ポリプロピレン樹脂中にβ晶を多量に生成させることが重要となるが、そのためにはβ晶核剤と呼ばれる、ポリプロピレン樹脂中に添加することでβ晶を選択的に生成させる結晶化核剤を添加剤として用いることが好ましい。β晶核剤としては種々の顔料系化合物やアミド系化合物などを挙げることができるが、特に特開平5−310665号公報に開示されているアミド系化合物を好ましく用いることができる。β晶核剤の含有量としては、ポリプロピレン樹脂全体を100質量部とした場合、0.05〜0.5質量部であることが好ましく、0.1〜0.3質量部であればより好ましい。 In order to realize excellent battery characteristics, the polyolefin-based porous film is preferably made of a polypropylene resin, and is particularly preferably a porous film manufactured using a porosification method called a β crystal method. In order to form through-holes in the film using the β crystal method, it is important to generate a large amount of β crystals in the polypropylene resin. For this purpose, it is added to the polypropylene resin, which is called a β crystal nucleating agent. Thus, it is preferable to use a crystallization nucleating agent that selectively generates β crystals as an additive. Examples of the β crystal nucleating agent include various pigment compounds and amide compounds. In particular, amide compounds disclosed in JP-A-5-310665 can be preferably used. As content of (beta) crystal nucleating agent, when the whole polypropylene resin is 100 mass parts, it is preferable that it is 0.05-0.5 mass part, and more preferable if it is 0.1-0.3 mass part. .
ポリオレフィン系多孔フィルムを構成するポリプロピレン樹脂はメルトフローレート(以下、MFRと表記する、測定条件は230℃、2.16kg)が2〜30g/10分の範囲のアイソタクチックポリプロピレン樹脂であることが好ましい。MFRが上記した好ましい範囲を外れると延伸フィルムを得ることが困難となる場合がある。より好ましくは、MFRが3〜20g/10分である。また、アイソタクチックポリプロピレン樹脂のアイソタクチックインデックスは90〜99.9%であれば好ましい。アイソタクチックインデックスが90%未満であると、樹脂の結晶性が低く、高い透気性を達成するのが困難な場合がある。アイソタクチックポリプロピレン樹脂は市販されている樹脂を用いることができる。 The polypropylene resin constituting the polyolefin-based porous film is an isotactic polypropylene resin having a melt flow rate (hereinafter referred to as MFR, measurement conditions are 230 ° C., 2.16 kg) in the range of 2 to 30 g / 10 min. preferable. If the MFR is out of the above preferred range, it may be difficult to obtain a stretched film. More preferably, the MFR is 3 to 20 g / 10 minutes. The isotactic index of the isotactic polypropylene resin is preferably 90 to 99.9%. If the isotactic index is less than 90%, the crystallinity of the resin is low, and it may be difficult to achieve high air permeability. A commercially available resin can be used as the isotactic polypropylene resin.
ポリオレフィン系多孔フィルムにはホモポリプロピレン樹脂を用いることができるのはもちろんのこと、製膜工程での安定性や造膜性、物性の均一性の観点から、ポリプロピレンにエチレン成分やブテン、ヘキセン、オクテンなどのα−オレフィン成分を5質量%以下の範囲で共重合してもよい。なお、ポリプロピレンへのコモノマーの導入形態としては、ランダム共重合でもブロック共重合でもいずれでも構わない。また、上記のポリプロピレン樹脂は0.5〜5質量%の範囲で高溶融張力ポリプロピレンを含有させることが製膜性向上の点で好ましい。高溶融張力ポリプロピレンとは高分子量成分や分岐構造を有する成分をポリプロピレン樹脂中に混合したり、ポリプロピレンに長鎖分岐成分を共重合させたりすることで溶融状態での張力を高めたポリプロピレン樹脂であるが、中でも長鎖分岐成分を共重合させたポリプロピレン樹脂を用いることが好ましい。この高溶融張力ポリプロピレンは市販されており、たとえば、Basell社製ポリプロピレン樹脂PF814、PF633、PF611やBorealis社製ポリプロピレン樹脂WB130HMS、Dow社製ポリプロピレン樹脂D114、D206を用いることができる。 Of course, homopolypropylene resin can be used for the polyolefin-based porous film, and from the viewpoint of stability in the film-forming process, film-forming property, and uniformity of physical properties, polypropylene may contain an ethylene component, butene, hexene, octene. The α-olefin component such as may be copolymerized within a range of 5% by mass or less. The form of the comonomer introduced into the polypropylene may be either random copolymerization or block copolymerization. Moreover, it is preferable that said polypropylene resin contains a high melt tension polypropylene in 0.5-5 mass% at the point of film forming property improvement. High melt tension polypropylene is a polypropylene resin whose tension in the molten state is increased by mixing a high molecular weight component or a component having a branched structure into the polypropylene resin or by copolymerizing a long-chain branched component with polypropylene. However, among these, it is preferable to use a polypropylene resin copolymerized with a long chain branching component. This high melt tension polypropylene is commercially available, and for example, polypropylene resins PF814, PF633, and PF611 manufactured by Basel, polypropylene resin WB130HMS manufactured by Borealis, and polypropylene resins D114 and D206 manufactured by Dow can be used.
ポリオレフィン系多孔フィルムを構成するポリプロピレン樹脂には、延伸時の空隙形成効率を高め、孔径が拡大することで透気性が向上することから、ポリプロピレン樹脂にエチレン・α−オレフィン共重合体を1〜10質量%添加することが好ましい。ここで、エチレン・α−オレフィン共重合体としては直鎖状低密度ポリエチレンや超低密度ポリエチレンを挙げることができ、中でも、オクテン−1を共重合したエチレン・オクテン−1共重合体を好ましく用いることができる。このエチレン・オクテン−1共重合体は市販されている樹脂を用いることができる。 In the polypropylene resin constituting the polyolefin-based porous film, the void formation efficiency at the time of stretching is increased, and the air permeability is improved by expanding the pore diameter. Therefore, 1 to 10 ethylene / α-olefin copolymer is added to the polypropylene resin. It is preferable to add mass%. Here, examples of the ethylene / α-olefin copolymer include linear low density polyethylene and ultra-low density polyethylene. Among them, ethylene / octene-1 copolymer obtained by copolymerization of octene-1 is preferably used. be able to. A commercially available resin can be used for the ethylene-octene-1 copolymer.
ポリオレフィン系多孔フィルムの透気抵抗は50〜500秒/100mlであることが好ましい。透気抵抗が50秒/100ml未満では粒子が軟化しても孔を完全に塞ぐことが困難であり、シャットダウン性が不十分となる。また、500秒/100mlを超えると多孔質フィルムをセパレータとして用いた際の電池特性が悪化する傾向にある。 The air resistance of the polyolefin-based porous film is preferably 50 to 500 seconds / 100 ml. When the air permeation resistance is less than 50 seconds / 100 ml, it is difficult to completely close the pores even if the particles are softened, and the shutdown property is insufficient. Moreover, when it exceeds 500 seconds / 100 ml, it exists in the tendency for the battery characteristic at the time of using a porous film as a separator to deteriorate.
ポリオレフィン系多孔フィルムの透気抵抗は、用途にもよるが、好ましくは80〜400秒/100ml、より好ましくは100〜300秒/100ml、さらに好ましくは150〜250秒/100mlである。 The air resistance of the polyolefin-based porous film is preferably 80 to 400 seconds / 100 ml, more preferably 100 to 300 seconds / 100 ml, and still more preferably 150 to 250 seconds / 100 ml, although it depends on the application.
ポリオレフィン系多孔フィルムはβ晶法により多孔化することが好ましいため、フィルムを構成する(含まれる)ポリプロピレン樹脂のβ晶形成能が40〜90%であることが好ましい。 Since the polyolefin-based porous film is preferably made porous by the β crystal method, the β crystal forming ability of the polypropylene resin constituting (included) in the film is preferably 40 to 90%.
ここで、β晶形成能とは以下の条件で測定される、一定条件下におけるポリプロピレン樹脂中のβ晶の存在比率を示しており、β晶をどれだけ形成する能力があるのかを示す値である。β晶形成能の測定は、ポリプロピレン樹脂あるいはポリプロピレンフィルム5mgを示差走査熱量計を用いて窒素雰囲気下で室温から240℃まで10℃/分で昇温(ファーストラン)し、10分間保持した後、30℃まで10℃/分で冷却する。5分保持後、再度10℃/分で昇温(セカンドラン)した際に観察される融解ピークについて、145〜157℃の温度領域にピークが存在する融解をβ晶の融解ピーク、158℃以上にピークが観察される融解をα晶の融解ピークとして、それぞれ融解熱量を求め、α晶の融解熱量をΔHα、β晶の融解熱量をΔHβとしたとき、以下の式で計算される値をβ晶形成能とする。 Here, the β crystal-forming ability indicates the ratio of β crystals existing in the polypropylene resin under certain conditions, measured under the following conditions, and is a value indicating how much β crystals are formed. is there. The β crystal-forming ability was measured by heating 5 mg of polypropylene resin or polypropylene film at a rate of 10 ° C./min from room temperature to 240 ° C. in a nitrogen atmosphere using a differential scanning calorimeter and holding for 10 minutes. Cool to 30 ° C. at 10 ° C./min. About the melting peak observed when the temperature is raised (second run) again at 10 ° C./min after holding for 5 minutes, the melting having a peak in the temperature range of 145 to 157 ° C. is the melting peak of β crystal, 158 ° C. or more The melting at which the peak is observed is the melting peak of the α crystal, and the heat of fusion is determined. The heat of fusion of the α crystal is ΔHα and the heat of fusion of the β crystal is ΔHβ. Crystal formation ability.
β晶形成能(%)=〔ΔHβ/(ΔHα+ΔHββ〕×100
β晶形成能が40%未満ではフィルム製造時にβ晶量が少ないためにα晶への転移を利用してフィルム中に形成される空隙数が少なくなり、その結果透過性の低いフィルムしか得られない場合がある。また、β晶形成能が90%を超える場合は、粗大孔が形成され、蓄電デバイス用セパレータとしての機能を有さなくなる場合がある。β晶形成能を40〜90%の範囲内にするためには、アイソタクチックインデックスの高いポリプロピレン樹脂を使用し、かつ、上述のβ晶核剤を添加することが好ましい。β晶形成能としては45〜80%であればより好ましい。
β crystal forming ability (%) = [ΔHβ / (ΔHα + ΔHββ] × 100
If the β-crystal forming ability is less than 40%, the amount of β-crystal is small at the time of film production, so the number of voids formed in the film is reduced by utilizing the transition to α-crystal, and as a result, only a film with low permeability is obtained. There may not be. In addition, when the β-crystal forming ability exceeds 90%, coarse pores are formed, and the function as a power storage device separator may not be provided. In order to make the β crystal forming ability in the range of 40 to 90%, it is preferable to use a polypropylene resin having a high isotactic index and to add the above-mentioned β crystal nucleating agent. The β crystal forming ability is more preferably 45 to 80%.
また、上記β晶法以外にポリオレフィン系多孔フィルムを製造する方法としては、ポリプロピレンをマトリックス樹脂として、シート化する際、抽出する被抽出物を添加、混合し、被抽出物の良溶媒を使用して添加物のみを抽出することで、マトリックス樹脂中に空隙を形成する抽出法と呼ばれる方法や、溶融押出時に低温押出、高ドラフト比を採用することにより、シート化した延伸前フィルム中のラメラ構造を制御し、これを一軸延伸することでラメラ界面での開裂を発生させ、空隙を形成するラメラ延伸法と呼ばれる方法などがあり、いずれも用いることができる。 In addition to the above β crystal method, a method for producing a polyolefin-based porous film is to use polypropylene as a matrix resin, add a material to be extracted when mixing into a sheet, mix, and use a good solvent for the material to be extracted. By extracting only the additives, a so-called extraction method that forms voids in the matrix resin, low-temperature extrusion at the time of melt extrusion, and using a high draft ratio, a lamellar structure in the pre-stretched film formed into a sheet There is a method called a lamellar stretching method in which cleavage at the lamella interface is generated by controlling the uniaxial stretching to form a void, and any of them can be used.
本発明において用いるポリオレフィン系多孔フィルムは空孔率が60〜90%であることが好ましい。60%未満ではポリオレフィン系多孔フィルムをセパレータとして用いた際の特性が不十分となる場合がある。90%を超えるとセパレータ特性、および強度の観点から不十分となる場合がある。 ポリオレフィン系多孔フィルムの空孔率はポリオレフィン系多孔フィルムの比重(ρ)とポリオレフィン系樹脂の比重(d)より下記式より求めることができる。 The polyolefin porous film used in the present invention preferably has a porosity of 60 to 90%. If it is less than 60%, the characteristics when a polyolefin-based porous film is used as a separator may be insufficient. If it exceeds 90%, it may be insufficient from the viewpoint of separator characteristics and strength. The porosity of the polyolefin-based porous film can be obtained from the following formula from the specific gravity (ρ) of the polyolefin-based porous film and the specific gravity (d) of the polyolefin-based resin.
空孔率(%)=〔(d−ρ)/d〕×100
本発明において用いるポリオレフィン系多孔フィルムは少なくとも一軸方向に延伸されていることが好ましい。未延伸のフィルムを用いた場合、フィルムの空孔率や機械強度が不十分となる場合がある。ポリオレフィン系多孔フィルムを少なくとも一軸方向に延伸する方法としては、加熱後、テンター法、ロール法、インフレーション法、又はこれらの組合せにより所定の倍率で延伸するのが好ましい。延伸は一軸延伸でも二軸延伸でもよい。二軸延伸の場合、同時二軸延伸、逐次延伸及び多段延伸(例えば同時二軸延伸及び逐次延伸の組合せ)のいずれでもよいが、逐次二軸延伸が好ましい。
Porosity (%) = [(d−ρ) / d] × 100
The polyolefin-based porous film used in the present invention is preferably stretched at least in a uniaxial direction. When an unstretched film is used, the porosity and mechanical strength of the film may be insufficient. As a method for stretching the polyolefin-based porous film in at least a uniaxial direction, it is preferable to stretch the film at a predetermined magnification by heating, a tenter method, a roll method, an inflation method, or a combination thereof. The stretching may be uniaxial stretching or biaxial stretching. In the case of biaxial stretching, any of simultaneous biaxial stretching, sequential stretching, and multistage stretching (for example, a combination of simultaneous biaxial stretching and sequential stretching) may be used, but sequential biaxial stretching is preferable.
ポリオレフィン系多孔フィルムは、貫通孔の平均孔径が40〜400nmであることが好ましい。40nm未満ではセパレータとして用いた際の特性が不十分となり、400nmを超えると粒子の脱落や微短絡が起こりやすくなり電池の寿命に対して悪影響を及ぼすなどの問題が起こるおそれがある。 The polyolefin-based porous film preferably has an average pore diameter of 40 to 400 nm. If the thickness is less than 40 nm, the characteristics when used as a separator are insufficient. If the thickness exceeds 400 nm, particles are likely to fall off or slightly short-circuit, which may cause problems such as adversely affecting the battery life.
本発明の多孔質フィルムは、上記したポリオレフィン系多孔フィルムの少なくとも片面に、無機粒子と熱可塑性樹脂粒子とを含む粒子含有層が設けられている。当該粒子含有層を設けることで、ポリオレフィン系多孔フィルムに優れた耐熱性、力学特性を具備させることができる。以下に当該粒子含有層について、詳しく説明する。 In the porous film of the present invention, a particle-containing layer containing inorganic particles and thermoplastic resin particles is provided on at least one surface of the above-described polyolefin-based porous film. By providing the particle-containing layer, the polyolefin porous film can have excellent heat resistance and mechanical properties. The particle-containing layer will be described in detail below.
本発明の多孔質フィルムの粒子含有層には無機粒子が含まれている。 The particle-containing layer of the porous film of the present invention contains inorganic particles.
無機粒子の種類は、例えば、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄などの酸化物系セラミックスや窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物系セラミックス、シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、チタン酸カリウム、タルク、カオリンクレー、カオリナイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、ケイ砂等のセラミックス、ガラス繊維等のセラミックスなどが挙げられるが、電気化学的な安定性の観点から、酸化物系セラミックスを用いることが好ましく、これらを単独で用いてもよいし、複数を混合して用いてもよい。 The types of inorganic particles include, for example, oxide ceramics such as alumina, silica, titania, zirconia, magnesia, ceria, yttria, zinc oxide and iron oxide, and nitride ceramics such as silicon nitride, titanium nitride and boron nitride, and silicon. Carbide, calcium carbonate, aluminum sulfate, potassium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, sericite, mica, amicite, bentonite, asbestos, zeolite, calcium silicate, magnesium silicate, Examples thereof include ceramics such as diatomaceous earth and silica sand, and ceramics such as glass fiber. From the viewpoint of electrochemical stability, it is preferable to use oxide ceramics, which may be used alone. Mix several It may be used.
さらに、リチウムイオン電池内での安定性の観点から、含水量が1質量%以下の無機粒子が好ましい。より好ましくは、含水量が0.5質量%以下であることが好ましい。 Furthermore, from the viewpoint of stability in the lithium ion battery, inorganic particles having a water content of 1% by mass or less are preferable. More preferably, the water content is preferably 0.5% by mass or less.
本発明において、含水量が1質量%以下の無機粒子としては、内部に細孔を持たないような緻密な構造を有する無機粒子が好ましい。例えば、アルミナ、乾式法で製造されたシリカ、乾式法で製造されたジルコニアなどの酸化物系セラミックスや窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物系セラミックス、シリコンカーバイド、炭酸カルシウム、硫酸アルミニウムケイ砂等のセラミックス、ガラス繊維等のセラミックスなどが挙げられるが、電気化学的な安定性の観点から、アルミナ、乾式法で製造されたシリカ、乾式法で製造されたジルコニアを用いることが好ましく、これらを単独で用いてもよいし、複数を混合して用いてもよい。また、アルミナ、乾式法で製造されたシリカ、乾式法で製造されたジルコニアはシランカップリング処理を行っても構わない。 In the present invention, the inorganic particles having a water content of 1% by mass or less are preferably inorganic particles having a dense structure having no pores inside. For example, alumina, silica produced by dry method, oxide ceramics such as zirconia produced by dry method, nitride ceramics such as silicon nitride, titanium nitride, boron nitride, silicon carbide, calcium carbonate, aluminum sulfate silica Examples include ceramics such as sand, ceramics such as glass fiber, etc. From the viewpoint of electrochemical stability, it is preferable to use alumina, silica produced by a dry method, zirconia produced by a dry method, May be used alone, or a plurality may be used in combination. Alumina, silica produced by a dry method, and zirconia produced by a dry method may be subjected to a silane coupling treatment.
これらの無機粒子については、粒子含有層の透気性と力学特性の両立の観点から、平均粒子径が0.05〜2μmであることが好ましく、0.05〜1μmであればより好ましい。特に好ましくは0.1〜0.6μmである。平均粒子径が0.05μm未満では、粒子がポリオレフィン系多孔フィルムの開孔表面からフィルム内部に浸透し、ポリオレフィン系多孔フィルムの透気抵抗が高くなる場合がある。一方、平均粒子径が2μmを超えると、粒子同士の間隙が大きくなってしまい、粒子含有層の力学特性が低くなってしまう場合がある。ここで、無機粒子の平均粒子径の測定方法は、詳細は後述するが、粒子の透過型電子顕微鏡写真から画像処理により得られる円相当径を用い、質量平均径を算出して採用する。 About these inorganic particles, it is preferable that an average particle diameter is 0.05-2 micrometers from a viewpoint of coexistence of the air permeability of a particle content layer, and a dynamic characteristic, and it is more preferable if it is 0.05-1 micrometers. Especially preferably, it is 0.1-0.6 micrometer. If the average particle size is less than 0.05 μm, the particles may permeate into the film from the open surface of the polyolefin porous film, and the air permeation resistance of the polyolefin porous film may increase. On the other hand, if the average particle diameter exceeds 2 μm, the gap between the particles becomes large, and the mechanical properties of the particle-containing layer may be lowered. Here, the method for measuring the average particle diameter of the inorganic particles will be described in detail later, but the mass average diameter is calculated and adopted using the equivalent circle diameter obtained by image processing from the transmission electron micrograph of the particles.
本発明の多孔質フィルムの粒子含有層にはフィルムにシャットダウン性を付与する観点から、融点が100〜140℃の熱可塑性樹脂粒子を用いることが好ましい。熱可塑性樹脂粒子の融点が100℃未満であると、使用環境が蓄電デバイスの他の素材には問題のない100℃程度の低温でフィルムの貫通孔を遮蔽してしまい、シャットダウンしてしまう誤作動が発生してしまう。一方、融点が140℃を超えるとシャットダウンする前に蓄電デバイス内で自己発熱反応が開始してしまうことがある。シャットダウンはリチウムイオン電池で多く使用されているコバルト系正極の場合、正極の熱安定性の観点から125〜140℃で機能することが好ましいので、熱可塑性樹脂粒子の融点は120〜140℃であることがより好ましく、正極の熱安定性を考慮して融点を変更することが好ましい。なお、熱可塑性樹脂粒子が複数の融点を有する場合には、最も高温の融点が上記範囲内であればよい。 It is preferable to use thermoplastic resin particles having a melting point of 100 to 140 ° C. in the particle-containing layer of the porous film of the present invention from the viewpoint of imparting shutdown property to the film. If the melting point of the thermoplastic resin particles is less than 100 ° C, the operating environment will shut down the through-holes of the film at a low temperature of about 100 ° C, which is not a problem for other materials of the electricity storage device, and will malfunction Will occur. On the other hand, if the melting point exceeds 140 ° C., a self-heating reaction may start in the electricity storage device before shutting down. In the case of a cobalt-based positive electrode that is often used in lithium ion batteries, the shutdown preferably functions at 125 to 140 ° C. from the viewpoint of thermal stability of the positive electrode, and therefore the melting point of the thermoplastic resin particles is 120 to 140 ° C. More preferably, the melting point is preferably changed in consideration of the thermal stability of the positive electrode. When the thermoplastic resin particles have a plurality of melting points, the highest temperature melting point may be within the above range.
本発明で用いる熱可塑性樹脂粒子としては、融点が上記範囲に入る熱可塑性樹脂から構成されていれば特に限定されるものではないが、ポリオレフィン系樹脂からなる粒子が好ましく、特に、ポリエチレン、ポリエチレン共重合体、ポリプロピレン、ポリプロピレン共重合体などのポリオレフィン系樹脂からなる熱可塑性樹脂粒子が好ましい。また、熱可塑性樹脂粒子の平均粒子径としては0.5〜5μmであれば好ましく、0.8〜3μmであればより好ましい。 The thermoplastic resin particles used in the present invention are not particularly limited as long as they are made of a thermoplastic resin having a melting point within the above range, but particles made of a polyolefin resin are preferred. Thermoplastic resin particles made of a polyolefin resin such as a polymer, polypropylene, and a polypropylene copolymer are preferred. The average particle size of the thermoplastic resin particles is preferably 0.5 to 5 μm, more preferably 0.8 to 3 μm.
本発明において、多孔フィルムと粒子含有層との接着性向上のためにオキシラン環含有化合物が粒子含有層に存在することが好ましい。オキシラン環含有化合物としては、各種エポキシ樹脂、グリシジル(メタ)クリレート等のエポキシ基含有(メタ)クリレート、Y−グリシドキシプロピルメチルジエトキシシラン等のエポキシ基含有有機ケイ素化合物挙げられるが、耐電解液性の観点からエポキシ樹脂が好ましく使用される。エポキシ樹脂の具体例としては、ビスフェノールA型エポキシ樹脂、テトラメチルビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フルオレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ポリエチレンオキシド型エポキシ樹脂、ポリプロピレンオキシド型エポキシ樹脂等が挙げられる。これらは、1種あるいは2種以上の混合物として使用できる。また、耐電解液性の観点から、2官能以上のエポキシ樹脂を用いるのが好ましく、可撓性の観点からは、エポキシ当量100以上がよく、300以上がさらに好ましい。また、環境、作業性の観点から、水溶性エポキシ樹脂の使用が好ましく、ソルビトールポリグリシドキシエーテル、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル等の2官能以上の脂肪族エポキシ樹脂が挙げられ、1種あるいは2種以上の混合物として使用できる。 In the present invention, an oxirane ring-containing compound is preferably present in the particle-containing layer in order to improve the adhesion between the porous film and the particle-containing layer. Examples of the oxirane ring-containing compound include various epoxy resins, epoxy group-containing (meth) acrylates such as glycidyl (meth) acrylate, and epoxy group-containing organosilicon compounds such as Y-glycidoxypropylmethyldiethoxysilane. From the viewpoint of liquidity, an epoxy resin is preferably used. Specific examples of the epoxy resin include bisphenol A type epoxy resin, tetramethylbisphenol A type epoxy resin, bisphenol F type epoxy resin, tetramethylbisphenol F type epoxy resin, bisphenol S type epoxy resin, fluorene type epoxy resin, and biphenyl type epoxy. Examples thereof include resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, polyethylene oxide type epoxy resins, and polypropylene oxide type epoxy resins. These can be used as one kind or a mixture of two or more kinds. Moreover, it is preferable to use a bifunctional or higher functional epoxy resin from the viewpoint of electrolytic solution resistance. From the viewpoint of flexibility, an epoxy equivalent of 100 or higher is preferable, and 300 or higher is more preferable. From the viewpoint of environment and workability, it is preferable to use a water-soluble epoxy resin. Sorbitol polyglycidoxy ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, polypropylene glycol diglycidyl ether, polyethylene Bifunctional or higher aliphatic epoxy resins such as glycol diglycidyl ether can be used, and one or a mixture of two or more can be used.
具体的には、ポリプロピレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル等の水溶性エポキシ樹脂が特に好ましい。また、可撓性付与の目的で、フェノールエチレンオキシドグリシジルエーテル(エチレンオキシド鎖の繰り返し単位が、5〜10程度のものが特に好ましい)、ラウリルアルコールエチレンオキシドグリシジルエーテル(エチレンオキシド鎖の繰り返し単位が、10〜18程度のものが特に好ましい)等のモノエポキシ化合物、エポキシ化植物油等を使用してもさしつかえなく、クレゾールノボラック型エポキシ等のエポキシエマルジョンも使用できる。 Specifically, water-soluble epoxy resins such as polypropylene glycol diglycidyl ether and polyethylene glycol diglycidyl ether are particularly preferable. Further, for the purpose of imparting flexibility, phenol ethylene oxide glycidyl ether (particularly preferably having a repeating unit of ethylene oxide chain of about 5 to 10), lauryl alcohol ethylene oxide glycidyl ether (repeating unit of ethylene oxide chain of about 10 to 18). Monoepoxy compounds such as epoxidized vegetable oil and the like can be used, and epoxy emulsions such as cresol novolac type epoxy can also be used.
さらに、これらオキシラン環含有化合物の硬化促進、低温硬化を目的として、各種硬化触媒を併用してもよい。硬化剤としては、ルイス酸等の酸、無水フタル酸、ヘキサヒドロ無水フタル酸、無水ナジック酸、無水メチルナジック酸等の酸無水物、アルウミニウムアセチルアセトネート等の各種金属錯体化合物、金属アルコキシド、アルカリ金属の有機カルボン酸塩および炭酸塩、ジエチレントリアミン、トリエチレンテトラアミン、テトラエチレンペンタアミン、ジエチルアミノプロピルアミン等の脂肪族アミン、変性脂肪族ポリアミン、変性芳香族ポリアミン、トリエチルアミン、ベンジルジメチルアミン、トリブチルアミン、トリス(ジメチルアミノ)メチルフェノール等の第三級アミン、m−フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン等の芳香族アミン、アミノエチルピペラジン等の環状アミン、2−メチル−4−エチルイミダゾール、2−メチルイミダゾール等のイミダゾール化合物、トリエチルベンジルアンモニウムクロライド、テトラメチルアンモニウムクロライド等の第四級アンモニウム塩、三フッ化硼素、三フッ化硼素−モノエチルアミンコンプレックスなどが挙げられ、単独あるいは2種以上の混合物として使用できる。 Further, various curing catalysts may be used in combination for the purpose of promoting the curing of the oxirane ring-containing compound and curing at a low temperature. Curing agents include acids such as Lewis acids, phthalic anhydride, hexahydrophthalic anhydride, nadic anhydride, acid anhydrides such as methyl nadic anhydride, various metal complex compounds such as aluminum acetylacetonate, metal alkoxides, Alkali metal organic carboxylates and carbonates, aliphatic amines such as diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, diethylaminopropylamine, modified aliphatic polyamines, modified aromatic polyamines, triethylamine, benzyldimethylamine, tributylamine Tertiary amines such as tris (dimethylamino) methylphenol, aromatic amines such as m-phenylenediamine, diaminodiphenylmethane and diaminodiphenylsulfone, cyclic amines such as aminoethylpiperazine, 2-methyl Examples include imidazole compounds such as ru-4-ethylimidazole and 2-methylimidazole, quaternary ammonium salts such as triethylbenzylammonium chloride and tetramethylammonium chloride, boron trifluoride, boron trifluoride-monoethylamine complex, and the like. These can be used alone or as a mixture of two or more.
本発明において粒子含有層を形成する方法として、無機粒子や熱可塑性樹脂粒子、オキシラン環含有化合物などを含有する塗液を塗布する方法が好ましく採用される。塗布する方法としては、一般に行われるどのような方法を用いてもよいが、例えば、オキシラン環含有化合物をイオン交換水などに分散させて作成した粒子懸濁液をリバースコート法、バーコート法、グラビアコート法、ロッドコート法、ダイコート法、スプレーコート法などの塗布方法によりフィルム上に塗布し、乾燥してコーティング層(粒子含有層)とすればよい。また、懸濁液を調製する際にはコーティング層における粒子の偏在を防止するために分散剤などを適宜添加してもよい。 As a method for forming the particle-containing layer in the present invention, a method of applying a coating liquid containing inorganic particles, thermoplastic resin particles, an oxirane ring-containing compound, or the like is preferably employed. As a method of coating, any generally performed method may be used.For example, a particle suspension prepared by dispersing an oxirane ring-containing compound in ion-exchanged water or the like is a reverse coating method, a bar coating method, What is necessary is just to apply | coat on a film by application methods, such as a gravure coat method, a rod coat method, a die coat method, and a spray coat method, and to make it a coating layer (particle content layer). Further, when preparing the suspension, a dispersant or the like may be appropriately added in order to prevent uneven distribution of particles in the coating layer.
本発明において多孔質フィルムの透気抵抗は50〜500秒/100mlであることが好ましい。透気抵抗が50秒/100ml未満では粒子が軟化しても孔を完全に塞ぐことが困難であり、シャットダウン性が不十分となる。また、500秒/100mlを超えると多孔質フィルムをセパレータとして用いた際の電池特性が悪化する傾向にある。 In the present invention, the air resistance of the porous film is preferably 50 to 500 seconds / 100 ml. When the air permeation resistance is less than 50 seconds / 100 ml, it is difficult to completely close the pores even if the particles are softened, and the shutdown property is insufficient. Moreover, when it exceeds 500 seconds / 100 ml, it exists in the tendency for the battery characteristic at the time of using a porous film as a separator to deteriorate.
多孔質フィルムの透気抵抗は、用途にもよるが、好ましくは80〜400秒/100ml、より好ましくは100〜300秒/100ml、さらに好ましくは150〜250秒/100mlである。 The air resistance of the porous film is preferably 80 to 400 seconds / 100 ml, more preferably 100 to 300 seconds / 100 ml, still more preferably 150 to 250 seconds / 100 ml, although it depends on the application.
本発明においてポリオレフィン系多孔フィルムの透気抵抗と多孔質フィルムの透気抵抗から算出される透気抵変化率(Gd)は10%以下であることがこのましい。透気抵抗変化率(Gd)は下記式で定義される。 In the present invention, the rate of change in air permeability (Gd) calculated from the air resistance of the polyolefin-based porous film and the air resistance of the porous film is preferably 10% or less. The air resistance change rate (Gd) is defined by the following equation.
Gd={(Ga−Gb)/Gb}×100
ここで、Gdは透気抵抗変化率(%)、Gaは多孔質フィルムの透気抵抗(秒/100ml)、Gbはポリオレフィン系多孔フィルムの透気抵抗(秒/100ml)を意味する。Gdが10%を超えるとポリオレフィン系多孔フィルム上に粒子含有層を形成する際に使用した塗液がポリオレフィン系多孔フィルムの開孔表面からフィルム内部に浸透し、開孔部を閉塞する場合があり、ポリオレフィン系多孔フィルムにくらべ電池特性が悪くなる場合がある。上記の観点からGdは10%以下が好ましく、5%以下であればより好ましい。
Gd = {(Ga−Gb) / Gb} × 100
Here, Gd means the air resistance change rate (%), Ga means the air resistance (second / 100 ml) of the porous film, and Gb means the air resistance (second / 100 ml) of the polyolefin-based porous film. If Gd exceeds 10%, the coating solution used to form the particle-containing layer on the polyolefin-based porous film may permeate into the film from the opening surface of the polyolefin-based porous film and block the opening. The battery characteristics may be worse than that of the polyolefin-based porous film. From the above viewpoint, Gd is preferably 10% or less, and more preferably 5% or less.
本発明において粒子含有層は、少なくとも2層の層構成を有していることが好ましい。粒子含有層を少なくとも2層の積層構成とするには、ポリオレフィン系多孔フィルムの少なくとも片面に粒子含有層を1層設けた後、その粒子含有層上にさらに粒子含有層を積層させる。2層以上の積層構成を有していることにより、後述するように粒子含有層を塗布により形成する場合に発生する塗布抜けを抑制でき、電池のセパレータとして用いた際の安全性を高めることができる。粒子含有層が1層のみの単層構成である場合、塗布工程で生じた塗布抜け部分を補修することができない場合がある。 In the present invention, the particle-containing layer preferably has a layer structure of at least two layers. In order to make the particle-containing layer have a laminate structure of at least two layers, one particle-containing layer is provided on at least one surface of the polyolefin-based porous film, and then the particle-containing layer is further laminated on the particle-containing layer. By having a laminated structure of two or more layers, it is possible to suppress coating omission that occurs when a particle-containing layer is formed by coating as described later, and to improve safety when used as a battery separator. it can. When the particle-containing layer has a single-layer structure consisting of only one layer, it may not be possible to repair a coating omission part generated in the coating process.
上記において、粒子含有層のポリオレフィン系多孔フィルム側の層をA層、最表層側をB層とした場合、A層を形成するための塗液の粘度を25℃において20Pa・s以上50Pa・s以下とし、B層を形成するための塗液の粘度を25℃において0.001Pa・s以上20Pa・s以下として、それぞれ塗液を用いて粒子含有層を形成することが好ましい。上記の方法を用いることでポリオレフィン系多孔フィルムと塗液との馴染みを向上させポリオレフィン系多孔フィルムと粒子含有層との接着性を高めると共に、塗液粘度を制御することで、塗液の塗布によるポリオレフィン系多孔フィルムの開孔部の閉塞を抑制することができる。A層を形成する塗液について粘度が20Pa・sを下回る塗液を用いると塗液の流動性がよくなりポリオレフィン系多孔フィルムの開口部に目詰まりを起こす場合がある。また、粘度が50Pa・sを超えるものを用いると、塗液の流動性が悪化するため、厚み斑や塗り斑、塗液による開孔部の閉塞がおこり透気抵抗の高い部分が発生する。B層を形成する塗液について20Pa・sを超えるものを用いると、塗液の流動性が低くなり、塗布工程で生じた塗布抜け部分を補修する効果が薄れる場合がある。上記の観点からA層を形成するための塗液の粘度を25℃において20Pa・s以上50Pa・s以下とし、B層を形成するための塗液の粘度を25℃において0.001Pa・s以上20Pa・s以下とすることが好ましく、A層を形成するための塗液の粘度を25℃において30Pa・s以上40Pa・s以下とし、B層を形成するための塗液の粘度を25℃において0.001Pa・s以上15Pa・s以下とすることがより好ましい。 In the above, when the layer on the polyolefin-based porous film side of the particle-containing layer is A layer and the outermost layer side is B layer, the viscosity of the coating liquid for forming the A layer is 20 Pa · s to 50 Pa · s at 25 ° C. Preferably, the viscosity of the coating liquid for forming the B layer is 0.001 Pa · s to 20 Pa · s at 25 ° C., and the particle-containing layer is preferably formed using the coating liquid. By using the above-mentioned method, the compatibility between the polyolefin-based porous film and the coating liquid is improved, the adhesion between the polyolefin-based porous film and the particle-containing layer is improved, and the viscosity of the coating liquid is controlled, thereby applying the coating liquid. It is possible to suppress the clogging of the opening portion of the polyolefin-based porous film. When a coating liquid having a viscosity of less than 20 Pa · s is used as the coating liquid for forming the A layer, the fluidity of the coating liquid is improved, and the opening of the polyolefin-based porous film may be clogged. Moreover, since the fluidity | liquidity of a coating liquid will deteriorate when the viscosity exceeds 50 Pa * s, obstruction | occlusion of the aperture part by thickness spots, coating spots, and a coating liquid will occur, and a part with high air permeability resistance will generate | occur | produce. If the coating liquid for forming the B layer is more than 20 Pa · s, the fluidity of the coating liquid is lowered, and the effect of repairing a portion where the coating is lost in the coating process may be reduced. From the above viewpoint, the viscosity of the coating liquid for forming the A layer is 20 Pa · s or more and 50 Pa · s or less at 25 ° C., and the viscosity of the coating liquid for forming the B layer is 0.001 Pa · s or more at 25 ° C. The viscosity of the coating liquid for forming the A layer is preferably 30 Pa · s to 40 Pa · s at 25 ° C., and the viscosity of the coating liquid for forming the B layer is 25 ° C. More preferably, it is 0.001 Pa · s or more and 15 Pa · s or less.
本発明において粒子含有層を形成するA層およびB層を形成するための塗液粘度の比(A層用の塗剤粘度/B層用の塗剤粘度)が1.5〜10であることが好ましく、2〜5であることがより好ましい。A層およびB層を形成するための塗液粘度の比が上記の範囲外であると、粒子含有層を積層する塗布によるポリオレフィン系多孔フィルムの開孔部の閉塞を抑制する効果や塗布抜けを抑制する効果が低下する場合がある。 In the present invention, the ratio of the coating liquid viscosity for forming the A layer and the B layer forming the particle-containing layer (the coating viscosity for the A layer / the coating viscosity for the B layer) is 1.5 to 10. Is preferable, and it is more preferable that it is 2-5. When the ratio of the coating liquid viscosity for forming the A layer and the B layer is out of the above range, the effect of suppressing the blockage of the pores of the polyolefin-based porous film due to the application of laminating the particle-containing layer and the coating omission The suppression effect may be reduced.
上記した塗剤の粘度は、塗液中の固形成分含量を変えたり、塗液に公知の増粘剤を加えたりすることで調節できる。また、増粘剤の使用により、塗液の乾燥性も調節することができる。 The viscosity of the coating agent can be adjusted by changing the solid component content in the coating solution or adding a known thickener to the coating solution. Moreover, the drying property of a coating liquid can also be adjusted by use of a thickener.
本発明において粒子含有層を形成する塗液には、多孔化の観点から水に分散または溶融可能な化合物を添加することが好ましい。水に分散または溶融可能な化合物としては、ポリ塩化ビニリデン、ポリフッ化ビニリデン(PVDF)、アクリル、セルロースおよび/またはセルロース塩、アクリル系樹脂、エチレンビニルアルコール(EVA:酢酸ビニル由来の構造単位が20〜35モル%のもの)、エチレン−エチルアクリレート共重合体(EEA)などのエチレン−アクリル酸共重合体、フッ素系ゴム、スチレンブタジエンゴム(SBR)、架橋アクリル樹脂、ポリウレタン、ポリビニルブチラール、ポリエチレン、ポリビニルアルコール、ポリテトラフルオロエチレン、ポリビニルピロリドン、ポリイミド、ポリアミド、ポリサルファイド、ポリビニルメチルエーテル、ポリエチレンオキシド、ポリプロピレンオキシド、メラミン樹脂、ポリビニルピリジン、高級アルコール類等の樹脂およびこれらの塩が挙げられる。これらの化合物は他の材料間(粒子間、粒子−基材間など)を結着させることができる。水に分散または溶融可能な化合物は例示のものを1種で用いてもよく、2種以上を併用してもよい。これらの樹脂の中でも、セルロースおよび/またはセルロース塩よりなる群から選択される少なくとも1種とセルロースおよび/またはセルロース塩以外の水に分散または溶融可能な化合物を併用することが好ましい。セルロースおよび/またはセルロース塩はセルロースの分子量を調整することで、塗剤の粘度を調整できる。セルロースおよび/またはセルロース塩は、特に限定されるものではないが、好ましい具体例としては、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、カルボキシメチルセルロースおよびこれらのナトリウム塩、アンモニウム塩などが挙げられる。なかでも、カルボキシメチルセルロースまたはその塩およびヒドロキシエチルセルロースまたはその塩よりなる群から選択される少なくとも1種を含むことが特に好ましい。 In the present invention, a compound that can be dispersed or melted in water is preferably added to the coating liquid for forming the particle-containing layer from the viewpoint of porosity. Examples of the compound that can be dispersed or melted in water include polyvinylidene chloride, polyvinylidene fluoride (PVDF), acrylic, cellulose and / or cellulose salt, acrylic resin, ethylene vinyl alcohol (EVA: structural unit derived from vinyl acetate, 20 to 35 mol%), ethylene-acrylic acid copolymer such as ethylene-ethyl acrylate copolymer (EEA), fluorine rubber, styrene butadiene rubber (SBR), cross-linked acrylic resin, polyurethane, polyvinyl butyral, polyethylene, polyvinyl Alcohol, polytetrafluoroethylene, polyvinyl pyrrolidone, polyimide, polyamide, polysulfide, polyvinyl methyl ether, polyethylene oxide, polypropylene oxide, melamine resin, polyvinyl pyridine, higher alcohol And resins such as these and salts thereof. These compounds can bind other materials (between particles, between particles and a substrate, etc.). As the compound that can be dispersed or melted in water, one of the exemplified compounds may be used, or two or more may be used in combination. Among these resins, it is preferable to use at least one selected from the group consisting of cellulose and / or cellulose salt and a compound that can be dispersed or melted in water other than cellulose and / or cellulose salt. Cellulose and / or cellulose salt can adjust the viscosity of the coating composition by adjusting the molecular weight of cellulose. Cellulose and / or cellulose salt are not particularly limited, but preferred specific examples include hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, carboxymethyl cellulose, and sodium salts and ammonium salts thereof. Among them, it is particularly preferable to include at least one selected from the group consisting of carboxymethyl cellulose or a salt thereof and hydroxyethyl cellulose or a salt thereof.
本発明において塗布後の乾燥条件として、乾燥温度は、80〜120℃、乾燥時間は、1〜10分間が好ましい。乾燥温度は、80℃未満の場合、粒子含有層が未乾燥となり、粒子含有層内に水分を多量に含む場合があり、120℃より高い場合、熱可塑性樹脂粒子が溶融し、多孔質フィルムの透気性が悪化する場合がある。乾燥時間が1分間未満の場合、粒子含有層が未乾燥となり、粒子含有層内に水分を多量に含む場合があり、10分より長い場合、熱可塑性樹脂粒子が溶融し、多孔質フィルムの透気性が悪化する場合がある。さらに好ましくは、多孔質フィルムの透気性の観点から、乾燥温度は、90〜110℃、乾燥時間は、2〜5分間が好ましい。 In the present invention, as drying conditions after coating, the drying temperature is preferably 80 to 120 ° C., and the drying time is preferably 1 to 10 minutes. When the drying temperature is less than 80 ° C., the particle-containing layer may be undried, and the particle-containing layer may contain a large amount of moisture. When the drying temperature is higher than 120 ° C., the thermoplastic resin particles melt and the porous film Air permeability may deteriorate. When the drying time is less than 1 minute, the particle-containing layer becomes undried, and the particle-containing layer may contain a large amount of moisture. When the drying time is longer than 10 minutes, the thermoplastic resin particles melt and the porous film penetrates. Temper may worsen. More preferably, from the viewpoint of air permeability of the porous film, the drying temperature is preferably 90 to 110 ° C., and the drying time is preferably 2 to 5 minutes.
本発明の多孔質フィルムは全体の総厚みが15〜40μmであることが好ましく、18〜35μmであればより好ましい。その中でも、ポリオレフィン系多孔フィルムの厚みは、セパレータとしての電気特性の点で12〜35μmであればより好ましく、15〜30μmであればより好ましい。また、粒子含有層の積層厚みは耐熱性、力学特性の観点から、1〜9μmであることが好ましく、3〜7μmであればより好ましい。 The total thickness of the porous film of the present invention is preferably 15 to 40 μm, and more preferably 18 to 35 μm. Among these, the thickness of the polyolefin-based porous film is more preferably 12 to 35 μm in terms of electrical characteristics as a separator, and more preferably 15 to 30 μm. Moreover, it is preferable that it is 1-9 micrometers from the viewpoint of heat resistance and a dynamic characteristic, and, as for the lamination | stacking thickness of a particle content layer, it is more preferable if it is 3-7 micrometers.
本発明において、粒子含有層中のA層の積層厚みは1〜3μmであることが好ましい。この範囲を超えると乾燥後の多孔質フィルムが脆くなり、ひび割れが発生する場合や透気抵抗が悪化する場合がある。またB層の積層厚みは2〜4μmであることが多孔質フィルムの均質化の観点から好ましい。 In this invention, it is preferable that the lamination | stacking thickness of A layer in a particle | grain content layer is 1-3 micrometers. When this range is exceeded, the porous film after drying becomes brittle and cracks may occur or air permeability resistance may deteriorate. Moreover, it is preferable from a viewpoint of the homogenization of a porous film that the lamination | stacking thickness of B layer is 2-4 micrometers.
本発明の多孔質フィルムは、ポリオレフィン系多孔フィルムの両面に粒子含有層を設けることが好ましい。粒子含有層が片面だけであると、セパレータ(多孔質フィルム)がカールしてしまい、取扱性に劣る場合がある。 In the porous film of the present invention, it is preferable to provide particle-containing layers on both sides of the polyolefin-based porous film. If the particle-containing layer is only on one side, the separator (porous film) may be curled, resulting in poor handleability.
本発明の多孔質フィルムを構成するポリオレフィン系多孔フィルムには、本発明の効果を損なわない範囲において、酸化防止剤、熱安定剤、帯電防止剤や無機あるいは有機粒子からなる滑剤、さらにはブロッキング防止剤や充填剤、非相溶性ポリマーなどの各種添加剤を含有させてもよい。特に、ポリプロピレン樹脂の熱履歴による酸化劣化を抑制する目的で、ポリプロピレン樹脂100質量部に対して酸化防止剤を0.01〜0.5質量部含有せしめることは好ましいことである。 The polyolefin-based porous film constituting the porous film of the present invention includes an antioxidant, a heat stabilizer, an antistatic agent, a lubricant composed of inorganic or organic particles, and an anti-blocking agent as long as the effects of the present invention are not impaired. Various additives such as an agent, a filler and an incompatible polymer may be contained. In particular, it is preferable to contain 0.01 to 0.5 parts by mass of an antioxidant with respect to 100 parts by mass of the polypropylene resin for the purpose of suppressing oxidative deterioration due to the thermal history of the polypropylene resin.
以下に本発明の多孔質フィルムを構成するポリオレフィン系多孔フィルムの製造方法、および、多孔質フィルムの製造方法を具体的に説明する。なお、本発明のポリオレフィン系多孔フィルムの製造方法はこれに限定されるものではないが、β晶法によるポリプロピレン多孔フィルムを例として説明する。 Below, the manufacturing method of the polyolefin-type porous film which comprises the porous film of this invention, and the manufacturing method of a porous film are demonstrated concretely. In addition, although the manufacturing method of the polyolefin-type porous film of this invention is not limited to this, the polypropylene porous film by (beta) crystal method is demonstrated as an example.
ポリプロピレン樹脂として、MFR8g/10分の市販のホモポリプロピレン樹脂94質量部、同じく市販のMFR2.5g/10分高溶融張力ポリプロピレン樹脂1質量部、さらにメルトインデックス18g/10分の超低密度ポリエチレン樹脂5質量部にN,N’−ジシクロヘキシル−2,6−ナフタレンジカルボキシアミド0.2質量部を混合し、二軸押出機を使用して予め所定の割合で混合した原料を準備する。この際、溶融温度は270〜300℃とすることが好ましい。 As a polypropylene resin, 94 parts by mass of a commercially available homopolypropylene resin with an MFR of 8 g / 10 minutes, 1 part by mass of a commercially available MFR of 2.5 g / 10 minutes with a high melt tension polypropylene resin, and an ultra low density polyethylene resin 5 with a melt index of 18 g / 10 minutes. A raw material is prepared by mixing 0.2 parts by mass of N, N′-dicyclohexyl-2,6-naphthalenedicarboxamide and 2 parts by mass in advance using a twin-screw extruder. At this time, the melting temperature is preferably 270 to 300 ° C.
次に、上記の混合原料を単軸の溶融押出機に供給し、200〜230℃にて溶融押出を行う。そして、ポリマー管の途中に設置したフィルターにて異物や変性ポリマーなどを除去した後、Tダイよりキャストドラム上に吐出し、未延伸シートを得る。この際、キャストドラムは表面温度が105〜130℃であることが、キャストフィルムのβ晶分率を高く制御する観点から好ましい。また、特にシートの端部の成形が後の延伸性に影響するので、端部にスポットエアーを吹き付けてドラムに密着させることが好ましい。なお、シート全体のドラム上への密着状態から必要に応じて全面にエアナイフを用いて空気を吹き付ける方法や、静電印加法を用いてキャストドラムにポリマーを密着させてもよい。 Next, the mixed raw material is supplied to a single-screw melt extruder, and melt extrusion is performed at 200 to 230 ° C. And after removing a foreign material, a modified polymer, etc. with the filter installed in the middle of the polymer pipe | tube, it discharges on a cast drum from T-die, and an unstretched sheet is obtained. At this time, the surface temperature of the cast drum is preferably 105 to 130 ° C. from the viewpoint of controlling the β crystal fraction of the cast film to be high. In particular, since the forming of the end portion of the sheet affects the subsequent stretchability, it is preferable that the end portion is sprayed with spot air to adhere to the drum. Note that the polymer may be brought into close contact with the cast drum using a method in which air is blown over the entire surface from the contact state of the entire sheet on the drum using an air knife or an electrostatic application method as necessary.
次に得られた未延伸シートを二軸配向させ、フィルム中に空孔を形成する。二軸配向させる方法としては、フィルム長手方向に延伸後幅方向に延伸、あるいは幅方向に延伸後長手方向に延伸する逐次二軸延伸法、またはフィルムの長手方向と幅方向をほぼ同時に延伸していく同時二軸延伸法などを用いることができるが、高透気性フィルムを得やすいという点で逐次二軸延伸法を採用することが好ましく、特に長手方向に延伸後、幅方向に延伸することが好ましい。 Next, the obtained unstretched sheet is biaxially oriented to form pores in the film. As a biaxial orientation method, the film is stretched in the longitudinal direction of the film and then stretched in the width direction, or the sequential biaxial stretching method in which the film is stretched in the width direction and then stretched in the longitudinal direction. The simultaneous biaxial stretching method can be used, but it is preferable to adopt the sequential biaxial stretching method in that it is easy to obtain a highly air-permeable film, and in particular, it is possible to stretch in the width direction after stretching in the longitudinal direction. preferable.
具体的な延伸条件としては、まず未延伸シートを長手方向に延伸する温度に制御する。温度制御の方法は、温度制御された回転ロールを用いる方法、熱風オーブンを使用する方法などを採用することができる。長手方向の延伸温度としては110〜140℃、より好ましくは120〜135℃、さらに好ましくは123〜130℃の温度を採用することが好ましい。延伸倍率としては3〜6倍、より好ましくは4〜5.5倍である。次に、いったん冷却後、ステンター式延伸機にフィルム端部を把持させて導入する。そして、130〜155℃、より好ましくは145〜153℃に加熱して幅方向に4〜12倍、より好ましくは6〜11倍、さらに好ましくは6.5〜10倍に延伸を行う。なお、このときの横延伸速度としては300〜5,000%/分で行うことが好ましく、500〜3,000%/分であればより好ましい。ついで、そのままステンター内で熱固定を行うが、その温度は横延伸温度以上160℃以下が好ましい。さらに、熱固定時にはフィルムの長手方向および/もしくは幅方向に弛緩させながら行ってもよく、特に幅方向の弛緩率を5〜20%とすることが、熱寸法安定性の観点から好ましい。 As specific stretching conditions, first, the temperature is controlled so that the unstretched sheet is stretched in the longitudinal direction. As a temperature control method, a method using a temperature-controlled rotating roll, a method using a hot air oven, or the like can be adopted. The stretching temperature in the longitudinal direction is preferably 110 to 140 ° C, more preferably 120 to 135 ° C, and still more preferably 123 to 130 ° C. The stretching ratio is 3 to 6 times, more preferably 4 to 5.5 times. Next, after cooling, the end of the film is gripped and introduced into a stenter type stretching machine. And it heats to 130-155 degreeC, More preferably, it is 145-153 degreeC, and it extends | stretches 4 to 12 times in the width direction, More preferably, it is 6 to 11 times, More preferably, it is 6.5 to 10 times. The transverse stretching speed at this time is preferably 300 to 5,000% / min, more preferably 500 to 3,000% / min. Subsequently, heat setting is performed in the stenter as it is, and the temperature is preferably from the transverse stretching temperature to 160 ° C. Further, the heat setting may be performed while relaxing in the longitudinal direction and / or the width direction of the film, and in particular, the relaxation rate in the width direction is preferably 5 to 20% from the viewpoint of thermal dimensional stability.
上記製造方法によって作製した多孔フィルムに無機粒子として乾式法で作製したシリカ粒子15質量部と、熱可塑性樹脂粒子としてポリエチレン粒子10質量部と、オキシラン環含有化合物2.0質量部と、カルボキシメチルセルロース2.0質量部と、イオン交換水71質量部とを混合し、粘度が35Pa・sとなるよう調整する。この塗液を4時間攪拌した後にダイコーターを用いた塗布方法により多孔フィルム上に塗布し、100℃で1分間乾燥させて、積層厚みが1〜3μmの粒子含有層のA層とする。さらに、このフィルムにシリカ粒子15質量部と、熱可塑性樹脂粒子としてポリエチレン粒子の10質量部と、オキシラン環含有化合物2.0質量部と、カルボキシメチルセルロース1.0質量部と、イオン交換水71質量部とを混合し、粘度が10Pa・sとなるよう調整した塗液を4時間攪拌した後にダイコーターを用いた塗布方法により多孔フィルム上に塗布し、100℃で1分間乾燥させて積層厚みが2〜4μmの粒子含有層のB層とする。 15 parts by mass of silica particles produced by a dry method as inorganic particles in the porous film produced by the above production method, 10 parts by mass of polyethylene particles as thermoplastic resin particles, 2.0 parts by mass of an oxirane ring-containing compound, and carboxymethylcellulose 2 0.0 parts by mass and 71 parts by mass of ion-exchanged water are mixed and adjusted so that the viscosity is 35 Pa · s. After stirring this coating liquid for 4 hours, it is apply | coated on a porous film with the application | coating method using a die coater, and it is made to dry at 100 degreeC for 1 minute, and it is set as the A layer of a particle | grain containing layer whose laminated thickness is 1-3 micrometers. Further, 15 parts by mass of silica particles, 10 parts by mass of polyethylene particles as thermoplastic resin particles, 2.0 parts by mass of an oxirane ring-containing compound, 1.0 part by mass of carboxymethyl cellulose, and 71 parts by mass of ion-exchanged water are added to the film. The coating thickness was adjusted to a viscosity of 10 Pa · s, stirred for 4 hours, and then coated on the porous film by a coating method using a die coater, and dried at 100 ° C. for 1 minute to obtain a laminated thickness. Let it be B layer of a 2-4 micrometers particle | grain containing layer.
本発明の多孔質フィルムは、優れた透気性、力学特性を有するだけでなく、シャットダウン性、耐メルトダウン性を有していることから、特にリチウムイオン二次電池などの非水電解液二次電池のセパレータとして好ましく用いることができる。 The porous film of the present invention not only has excellent air permeability and mechanical properties, but also has shutdown properties and meltdown resistance, so that it is particularly suitable for non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries. It can be preferably used as a battery separator.
本発明の多孔質フィルムは優れた透気性と力学特性を併せ持ち、なおかつ耐メルトダウン性をも有していることから、蓄電デバイスのセパレータとして好適に使用することができる。 Since the porous film of the present invention has both excellent air permeability and mechanical properties, and also has melt-down resistance, it can be suitably used as a separator for an electricity storage device.
ここで、蓄電デバイスとしては、リチウムイオン二次電池に代表される非水電解液二次電池や、リチウムイオンキャパシタなどの電気二重層キャパシタなどを挙げることができる。このような蓄電デバイスは充放電することで繰り返し使用することができるので、産業装置や生活機器、電気自動車やハイブリッド電気自動車などの電源装置として使用することができる。本発明のセパレータとして使用した蓄電デバイスは、セパレータの優れた特性から産業機器や自動車の電源装置に好適に用いることができる。 Here, examples of the electricity storage device include a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery, and an electric double layer capacitor such as a lithium ion capacitor. Since such an electricity storage device can be repeatedly used by charging and discharging, it can be used as a power supply device for industrial devices, household equipment, electric vehicles, hybrid electric vehicles, and the like. The electricity storage device used as the separator of the present invention can be suitably used for power supplies for industrial equipment and automobiles because of the excellent characteristics of the separator.
以下、実施例により本発明を詳細に説明する。なお、特性は以下の方法により測定、評価を行った。 Hereinafter, the present invention will be described in detail by way of examples. The characteristics were measured and evaluated by the following methods.
(1)β晶形成能
ポリオレフィン系多孔フィルムを構成する樹脂またはポリオレフィン系多孔フィルムそのもの5mgを試料としてアルミニウム製のパンに採取し、示差走査熱量計(セイコー電子工業製RDC220)を用いて測定した。まず、窒素雰囲気下で室温から280℃まで10℃/分で昇温(ファーストラン)し、10分間保持した後、30℃まで10℃/分で冷却する。5分保持後、再度10℃/分で昇温(セカンドラン)した際に観測される融解ピークにについて、145〜157℃の温度領域にピークが存在する融解をβ晶の融解ピーク、158℃以上にピークが観察される融解をα晶の融解ピークとして、高温側の平坦部を基準に引いたベースラインとピークに囲まれる領域の面積から、それぞれの融解熱量を求め、α晶の融解熱量をΔHα、β晶の融解熱量をΔHβとしたとき、以下の式で計算される値をβ晶形成能とする。なお、融解熱量の校正はインジウムを用いて行った。
(1) β-crystal forming ability 5 mg of the resin constituting the polyolefin-based porous film or the polyolefin-based porous film itself was sampled in an aluminum pan, and measured using a differential scanning calorimeter (Seiko Denshi Kogyo RDC220). First, the temperature is raised from room temperature to 280 ° C. at 10 ° C./min (first run) in a nitrogen atmosphere, held for 10 minutes, and then cooled to 30 ° C. at 10 ° C./min. After holding for 5 minutes, the melting peak observed when the temperature is raised again at 10 ° C./min (second run) is the melting peak of the β crystal at 145 ° C. to 157 ° C., 158 ° C. The melting at which the peak is observed is defined as the melting peak of the α crystal, and the melting heat amount of the α crystal is obtained from the baseline and the area of the region surrounded by the peak drawn from the flat portion on the high temperature side. Is the ΔHα, and the heat of fusion of the β crystal is ΔHβ, the value calculated by the following formula is the β crystal forming ability. The heat of fusion was calibrated using indium.
β晶形成能(%) = 〔ΔHβ / (ΔHα + ΔHβ)〕 × 100
(2)熱可塑性樹脂粒子の融点
熱可塑性樹脂粒子の融点は、粒子含有層用の塗剤に調整する前の粒子が分散した分散液を適量採取し、熱風オーブンにて70℃で乾燥させ、固形分のみを採取する。固形分5mgを試料としてアルミニウム製のパンに採取し、示差走査熱量計(セイコー電子工業製RDC220)を用いて測定した。窒素雰囲気下で室温から200℃まで20℃/分で昇温したときに観察される融解ピークについて、最も高温側のピーク温度を熱可塑性樹脂粒子の融点とした。
β crystal forming ability (%) = [ΔHβ / (ΔHα + ΔHβ)] × 100
(2) Melting point of thermoplastic resin particles The melting point of thermoplastic resin particles is obtained by collecting an appropriate amount of a dispersion liquid in which particles before adjusting to a coating material for a particle-containing layer are dispersed, and drying at 70 ° C. in a hot air oven. Collect solids only. A solid content of 5 mg was taken as a sample in an aluminum pan and measured using a differential scanning calorimeter (RDC220 manufactured by Seiko Denshi Kogyo). Regarding the melting peak observed when the temperature is increased from room temperature to 200 ° C. at 20 ° C./min under a nitrogen atmosphere, the peak temperature on the highest temperature side is defined as the melting point of the thermoplastic resin particles.
また、熱可塑性樹脂粒子が粒子含有層用の塗剤に調整された後や多孔フィルム上に塗布された後であっても、上記方法と同様にして、示差走査熱量計で測定を行い、熱可塑性樹脂粒子の融点を決定できる。なお、多孔フィルム上に塗布された後の場合、フィルム表面から粒子含有層のみを削り取ることで試料を採取し、同様の条件で測定することで熱可塑性樹脂粒子の融点を決定することができる。 Further, even after the thermoplastic resin particles are adjusted to the coating material for the particle-containing layer or after being applied on the porous film, the measurement is performed with a differential scanning calorimeter in the same manner as described above, The melting point of the plastic resin particles can be determined. In addition, after apply | coating on a porous film, the melting | fusing point of a thermoplastic resin particle can be determined by extract | collecting a sample by scraping only a particle-containing layer from the film surface, and measuring on the same conditions.
(3)透気抵抗、透気抵抗変化率
ポリオレフィン系多孔フィルムまたは多孔質フィルムから1辺の長さ100mmの正方形を切取り試料とし、JIS P 8117(2009)のB形のガーレー試験機を用いて、23℃、相対湿度65%にて、100mlの空気の透過時間の測定を3回行った。透過時間の平均値をポリオレフィン系多孔フィルムまたは多孔質フィルムの透気抵抗とした。
(3) Air permeability resistance, rate of change in air resistance resistance Using a B-shaped Gurley tester of JIS P 8117 (2009) using a 100 mm square cut from a polyolefin-based porous film or porous film as a sample. The permeation time of 100 ml of air was measured three times at 23 ° C. and 65% relative humidity. The average value of the permeation time was taken as the air permeation resistance of the polyolefin-based porous film or porous film.
また、下記に定義する透気抵抗変化率(Gd)を算出し、下記基準にて評価した。 Further, the air resistance change rate (Gd) defined below was calculated and evaluated according to the following criteria.
Gd={(Ga−Gb)/Gb}×100
ここで、Gdは透気抵抗変化率(%)、Gaは多孔質フィルムの透気抵抗(秒/100ml)、Gbはポリオレフィン系多孔フィルムの透気抵抗(秒/100ml)を意味する。
Gd = {(Ga−Gb) / Gb} × 100
Here, Gd means the air resistance change rate (%), Ga means the air resistance (second / 100 ml) of the porous film, and Gb means the air resistance (second / 100 ml) of the polyolefin-based porous film.
◎:Gdが2%以下
○:Gdが2%より大きく、5%以下
△:Gdが5%より大きく、10%以下
×:Gdが10%より大きい
(4)貫通孔の平均孔径
水銀圧入法によるポロシメーター(島津製作所社製9220型)にてポリオレフィン系多孔フィルムの平均孔径を測定した。試料は25mm角程度切り取り、標準セルに採り初期圧力約20kPaの条件で測定した。上記測定を任意の5箇所について実施し、平均孔径の平均値を当該サンプルにおける貫通孔の平均孔径とした。
◎: Gd is 2% or less ○: Gd is greater than 2% and 5% or less △: Gd is greater than 5% and less than 10% ×: Gd is greater than 10% (4) Average pore diameter of through holes Mercury intrusion method The average pore diameter of the polyolefin-based porous film was measured with a porosimeter (Shimadzu Corporation 9220 type). A sample was cut out about 25 mm square, taken in a standard cell, and measured under conditions of an initial pressure of about 20 kPa. The said measurement was implemented about arbitrary 5 places and made the average value of the average hole diameter the average hole diameter of the through-hole in the said sample.
(5)塗液粘度
B型粘度計(東京計器社製)を用いて、JISK7117(1999)に準拠し、スピンドルNo.4を用い、25℃にて回転数60rpmで測定をおこない粘度を求めた。
(5) Coating liquid viscosity Using a B-type viscometer (manufactured by Tokyo Keiki Co., Ltd.), in accordance with JIS K7117 (1999), spindle no. 4 was measured at 25 ° C. at a rotation speed of 60 rpm, and the viscosity was determined.
(6)粒子含有層の積層厚み
粒子含有層を塗布する前のフィルムの幅方向の中央部について、長手方向には少なくとも5cm感覚で任意の場所の合計10箇所をダイアルゲージ式厚み計(PEACOCK製UPRIGHT DIAL GAUGE(No.25))にて測定し、その平均値をオレフィン系多孔フィルムの厚み(la)とする。
(6) Lamination thickness of particle-containing layer About the central portion in the width direction of the film before applying the particle-containing layer, a dial gauge thickness meter (manufactured by PEACOCK) at a total of 10 locations in the longitudinal direction with a sense of at least 5 cm. Measured with UPRIGHT DIAL GAUGE (No. 25)), and the average value is defined as the thickness (la) of the olefinic porous film.
次に粒子含有層を塗布した後に乾燥したフィルムの粒子含有層側を上面にして、フィルムの幅方向の中央部について、長手方向には任意の場所の合計10箇所をダイアルゲージ式厚み計にて厚みを測定し、その平均値を多孔質フィルムの厚み(lb)とした。 Next, with the particle-containing layer side of the film dried after coating the particle-containing layer as the upper surface, the central part in the width direction of the film, a total of 10 arbitrary places in the longitudinal direction with a dial gauge thickness gauge The thickness was measured, and the average value was taken as the thickness (lb) of the porous film.
粒子含有層の積層厚みは、laとlbとから、以下の式より算出した。 The lamination thickness of the particle-containing layer was calculated from the following formula from la and lb.
粒子含有層の積層厚み=lb−la
粒子含有層の各層の積層厚みは、各層を積層するごとに上記の方法を用いて測定した。
Lamination thickness of particle-containing layer = lb-la
The lamination thickness of each layer of the particle-containing layer was measured using the above method every time each layer was laminated.
使用定子:10mmφの平型標準測定子(No101117)
荷重:50g
(7)塗布抜け
巻出機と巻取機を備えた欠点検出器で、得られた多孔質フィルムの幅方向の中央部について幅50mm分の透過光量を測定した。光源には、長さ750mm、直径φ10mmの円柱状のロッドレンズを用い、ロッドレンズの端面から250Wのメタルハライド光源の光を入射した。フィルムの一方の面から光源を250mm離して設置し、照射した光の光量をもう一方の面から検出した。検出器とフィルムの距離は15mmとした。検出器としてはエレクトロセンサリデバイス(株)社製CCDラインセンサカメラE7450Dとニコン社製カメラレンズAiMicro−Nikkor55mmF2.8Sを用い、以下の条件で検査した。多孔質フィルムを6m/分で走行させ、フィルムの透過光量を長さ40m×幅50mmを測定した。表には平均透過光量に比べ、透過光量が2.5倍以上となる部分の個数を計測した。ここで、平均透過光量はフィルムの巻き芯部分と巻き外部分についてそれぞれ長さ1m分の透過光量を測定し、その平均値を用いた。
Use qualifier: 10 mmφ flat standard probe (No101117)
Load: 50g
(7) Omission of coating With a defect detector equipped with an unwinder and a winder, the amount of transmitted light for a width of 50 mm was measured at the center in the width direction of the obtained porous film. A cylindrical rod lens having a length of 750 mm and a diameter of 10 mm was used as the light source, and light from a 250 W metal halide light source was incident from the end surface of the rod lens. A light source was placed 250 mm away from one side of the film, and the amount of irradiated light was detected from the other side. The distance between the detector and the film was 15 mm. As a detector, a CCD line sensor camera E7450D manufactured by Electrosensory Devices Co., Ltd. and a camera lens AiMicro-Nikkor 55mmF2.8S manufactured by Nikon Corporation were used, and the inspection was performed under the following conditions. The porous film was run at 6 m / min, and the amount of light transmitted through the film was measured as 40 m long × 50 mm wide. In the table, the number of portions where the transmitted light amount is 2.5 times or more compared to the average transmitted light amount was measured. Here, for the average transmitted light amount, the transmitted light amount for a length of 1 m was measured for each of the core portion and the unwinding portion of the film, and the average value was used.
幅方向分解能 :20μm/pixel
長さ方向分解能:20μm/pixel
視野幅 :中央部200mm幅
スキャンレート:9,500
絞り :8F
○:塗布抜けなし。
Width direction resolution: 20 μm / pixel
Longitudinal resolution: 20 μm / pixel
Field of view width: 200 mm width at the center Scan rate: 9,500
Aperture: 8F
○: No coating omission.
×:塗布抜け1個以上あり。 ×: One or more missing coatings.
(8)耐熱性試験
多孔質フィルムを3×3cmの正方形に切り取り、テスター産業(株)製ヒートシールテスターを用いて、加熱温度200℃、加熱時間10秒間、荷重0.1MPaの条件で1×3cmの面積を加熱した。
(8) Heat resistance test The porous film was cut into a 3 × 3 cm square and 1 × under conditions of a heating temperature of 200 ° C., a heating time of 10 seconds, and a load of 0.1 MPa using a heat seal tester manufactured by Tester Sangyo Co., Ltd. A 3 cm area was heated.
上記処理を行った多孔質フィルムを以下の基準で評価した。 The porous film which performed the said process was evaluated on the following references | standards.
○:多孔質フィルムの形状を保っている。目視にて孔の形成なし。 ○: The shape of the porous film is maintained. No hole formation by visual inspection.
×:多孔質フィルムの平面性が悪い。溶融による孔の形成あり。 X: The flatness of the porous film is poor. There is a hole formation by melting.
(実施例1)
ポリオレフィン系多孔フィルムの原料樹脂として、住友化学(株)製ホモポリプロピレンFLX80E4(以下、PP−1と表記)を94質量部、高溶融張力ポリプロピレン樹脂であるBasell製ポリプロピレンPF−814(以下、HMS−PP−1と表記)を1質量部、エチレン−オクテン−1共重合体であるダウ・ケミカル製 Engage8411(メルトインデックス:18g/10分、以下、単にPE−1と表記)を5質量部に加えて、β晶核剤であるN,N’−ジシクロヘキシル−2,6−ナフタレンジカルボキシアミド(新日本理化(株)製、Nu−100、以下、単にβ晶核剤と表記)を0.2質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製IRGANOX1010、IRGAFOS168を各々0.15、0.1質量部(以下、単に酸防剤と表記し、特に記載のない限り3:2の質量比で使用)を、この比率で混合されるように計量ホッパーから二軸押出機に原料供給し、300℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてチップ原料とした。
Example 1
As a raw material resin for polyolefin-based porous film, 94 parts by mass of homopolypropylene FLX80E4 (hereinafter referred to as PP-1) manufactured by Sumitomo Chemical Co., Ltd., Basel polypropylene PF-814 (hereinafter referred to as HMS-) which is a high melt tension polypropylene resin. 1 part by mass of PP-1) and Engage 8411 (melt index: 18 g / 10 min, hereinafter simply referred to as PE-1) made by Dow Chemical, which is an ethylene-octene-1 copolymer, is added to 5 parts by mass. N, N′-dicyclohexyl-2,6-naphthalene dicarboxyamide (Nippon Rika Co., Ltd., Nu-100, hereinafter simply referred to as β crystal nucleating agent), which is a β crystal nucleating agent, is 0.2. Part by mass, and IRGANOX1010 and IRGAFOS168 made by Ciba Specialty Chemicals, which are antioxidants, respectively .15, 0.1 parts by mass (hereinafter simply referred to as an antioxidant, and used at a mass ratio of 3: 2 unless otherwise specified) from the weighing hopper to the twin screw extruder so as to be mixed at this ratio The raw material was supplied to the substrate, melted and kneaded at 300 ° C., discharged from the die in a strand shape, cooled and solidified in a water bath at 25 ° C., and cut into a chip shape to obtain a chip raw material.
このチップを単軸押出機に供給して220℃で溶融押出を行い、25μmカットの焼結フィルターで異物を除去後、Tダイから120℃に表面温度を制御したキャストドラムに吐出し、ドラムに15秒間接するようにキャストして未延伸シートを得た。ついで、120℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に4.5倍延伸を行った。一旦冷却後、次にテンター式延伸機に端部をクリップで把持させて導入し、145℃で6倍に延伸した。そのまま、幅方向に8%のリラックスを掛けながら155℃で6秒間の熱処理を行い、厚み23μmのポリオレフィン系多孔フィルムを得た。 This chip is supplied to a single screw extruder and melt extruded at 220 ° C. After removing foreign matter with a 25 μm cut sintered filter, it is discharged from a T-die onto a cast drum whose surface temperature is controlled at 120 ° C. An unstretched sheet was obtained by casting for 15 seconds. Next, preheating was performed using a ceramic roll heated to 120 ° C., and the film was stretched 4.5 times in the longitudinal direction of the film. After cooling, the end portion was introduced into a tenter type stretching machine by holding it with a clip, and stretched 6 times at 145 ° C. As it was, heat treatment was performed at 155 ° C. for 6 seconds while relaxing 8% in the width direction to obtain a polyolefin-based porous film having a thickness of 23 μm.
上記多孔フィルムの片面(溶融押出時にドラムに接触した面、以下D面と表記)に、ダイコーターを用いて乾燥後の積層厚みが2μmになるようにA層の塗液を塗布し、100℃で1分間乾燥させた。次いでA層を積層させた面に、ダイコーターを用いて乾燥後の積層厚みが4μmになるようにB層の塗液を塗布し、100℃で1分間乾燥させ、A/Bの2層構成の粒子含有層を形成して多孔質フィルムを作製した。 On one side of the porous film (the surface that contacted the drum during melt extrusion, hereinafter referred to as the D surface), a layer A coating solution was applied using a die coater so that the laminated thickness after drying was 2 μm. For 1 minute. Next, the layer B coating solution is applied to the surface on which the layer A is laminated using a die coater so that the layer thickness after drying is 4 μm, and dried at 100 ° C. for 1 minute to form a two-layer structure of A / B A porous film was prepared by forming a particle-containing layer.
〈粒子含有層の塗液の組成〉
(1)A層用塗液(塗液粘度 35Pa・s)
シリカ粒子(電気化学工業(株)製“SFP20”) 15質量部
ポリエチレン粒子(三井化学(株)製ケミパール“W100”) 10質量部
オキシラン環含有化合物(ナガセ化成工業(株)製デナコール“EX−861”)2.0質量部
カルボキシメチルセルロース(ダイセル化学工業(株)製“CMCダイセル2240”
2.0質量部
イオン交換水 71質量部
(2)B層用塗液(塗液粘度 10Pa・s)
シリカ粒子(電気化学工業(株)製“SFP20”) 15質量部
ポリエチレン粒子(三井化学(株)製ケミパール“W100”) 10質量部
オキシラン環含有化合物(ナガセ化成工業(株)製デナコール“EX−861”)2.0質量部
カルボキシメチルセルロース(ダイセル化学工業(株)製“CMCダイセル2240”
1.0質量部
イオン交換水 71質量部
(実施例2)
実施例1において、粒子含有層のA層用として、塗液粘度が45Pa・sになるように以下の組成の塗液を調合し、実施例1と同様の手法で多孔質フィルムを作製した。
<Composition of coating liquid for particle-containing layer>
(1) Layer A coating liquid (coating liquid viscosity: 35 Pa · s)
Silica particles (“SFP20” manufactured by Denki Kagaku Kogyo Co., Ltd.) 15 parts by mass Polyethylene particles (Chemical “W100” manufactured by Mitsui Chemicals, Inc.) 10 parts by mass 861 ") 2.0 parts by mass Carboxymethylcellulose (" CMC Daicel 2240 "manufactured by Daicel Chemical Industries, Ltd.)
2.0 parts by mass Ion-exchanged water 71 parts by mass (2) B layer coating liquid (coating liquid viscosity 10 Pa · s)
Silica particles (“SFP20” manufactured by Denki Kagaku Kogyo Co., Ltd.) 15 parts by mass Polyethylene particles (Chemical “W100” manufactured by Mitsui Chemicals, Inc.) 10 parts by mass 861 ") 2.0 parts by mass Carboxymethylcellulose (" CMC Daicel 2240 "manufactured by Daicel Chemical Industries, Ltd.)
1.0 part by mass 71 parts by mass of ion-exchanged water (Example 2)
In Example 1, for the layer A of the particle-containing layer, a coating liquid having the following composition was prepared so that the coating liquid viscosity was 45 Pa · s, and a porous film was produced in the same manner as in Example 1.
〈粒子含有層の塗液の組成〉
・A層用塗液(塗液粘度 45Pa・s)
シリカ粒子(電気化学工業(株)製“SFP20”) 15質量部
ポリエチレン粒子(三井化学(株)製ケミパール“W100”) 10質量部
オキシラン環含有化合物(ナガセ化成工業(株)製デナコール“EX−861”)2.0質量部
カルボキシメチルセルロース(ダイセル化学工業(株)製“CMCダイセル2240”
2.5質量部
イオン交換水 71質量部
(実施例3)
実施例1において、粒子含有層のA層用として、塗液粘度が25Pa・sになるように以下の組成の塗液を調合し、実施例1と同様の手法で多孔質フィルムを作製した。
<Composition of coating liquid for particle-containing layer>
・ A layer coating solution (viscosity viscosity 45Pa ・ s)
Silica particles (“SFP20” manufactured by Denki Kagaku Kogyo Co., Ltd.) 15 parts by mass Polyethylene particles (Chemical “W100” manufactured by Mitsui Chemicals, Inc.) 10 parts by mass Oxirane ring-containing compound (Denacol “EX- manufactured by Nagase Chemical Industries, Ltd.”) 861 ") 2.0 parts by mass Carboxymethylcellulose (" CMC Daicel 2240 "manufactured by Daicel Chemical Industries, Ltd.)
2.5 parts by mass 71 parts by mass of ion-exchanged water (Example 3)
In Example 1, a coating film having the following composition was prepared for the layer A of the particle-containing layer so that the coating liquid viscosity was 25 Pa · s, and a porous film was produced in the same manner as in Example 1.
〈粒子含有層の塗液の組成〉
・A層用塗液(塗液粘度 25Pa・s)
シリカ粒子(電気化学工業(株)製“SFP20”) 15質量部
ポリエチレン粒子(三井化学(株)製ケミパール“W100”) 10質量部
オキシラン環含有化合物(ナガセ化成工業(株)製デナコール“EX−861”)2.0質量部
カルボキシメチルセルロース(ダイセル化学工業(株)製“CMCダイセル2240”
1.5質量部
イオン交換水 71質量部
(実施例4)
実施例1において、粒子含有層のB層用として、塗液粘度が17Pa・sになるように以下の組成の塗液を調合し、実施例1と同様の手法で多孔質フィルムを作製した。
<Composition of coating liquid for particle-containing layer>
・ A layer coating solution (viscosity viscosity 25Pa ・ s)
Silica particles (“SFP20” manufactured by Denki Kagaku Kogyo Co., Ltd.) 15 parts by mass Polyethylene particles (Chemical “W100” manufactured by Mitsui Chemicals, Inc.) 10 parts by mass Oxirane ring-containing compound (Denacol “EX- manufactured by Nagase Chemical Industries, Ltd.”) 861 ") 2.0 parts by mass Carboxymethylcellulose (" CMC Daicel 2240 "manufactured by Daicel Chemical Industries, Ltd.)
1.5 parts by mass Ion-exchanged water 71 parts by mass (Example 4)
In Example 1, for the B layer of the particle-containing layer, a coating liquid having the following composition was prepared so that the coating liquid viscosity was 17 Pa · s, and a porous film was produced in the same manner as in Example 1.
〈粒子含有層の塗液の組成〉
・B層用塗液(塗液粘度 17Pa・s)
シリカ粒子(電気化学工業(株)製“SFP20”) 15質量部
ポリエチレン粒子(三井化学(株)製ケミパール“W100”) 10質量部
オキシラン環含有化合物(ナガセ化成工業(株)製デナコール“EX−861”)2.0質量部
カルボキシメチルセルロース(ダイセル化学工業(株)製“CMCダイセル2240”
1.3質量部
イオン交換水 71質量部
(実施例5)
実施例1において、粒子含有層のA層用として、塗液粘度が36Pa・sになるように以下の組成の塗液を調合し、実施例1と同様の手法で多孔質フィルムを作製した。
<Composition of coating liquid for particle-containing layer>
・ B layer coating solution (viscosity viscosity 17Pa ・ s)
Silica particles (“SFP20” manufactured by Denki Kagaku Kogyo Co., Ltd.) 15 parts by mass Polyethylene particles (Chemical “W100” manufactured by Mitsui Chemicals, Inc.) 10 parts by mass 861 ") 2.0 parts by mass Carboxymethylcellulose (" CMC Daicel 2240 "manufactured by Daicel Chemical Industries, Ltd.)
1.3 parts by mass 71 parts by mass of ion-exchanged water (Example 5)
In Example 1, for the layer A of the particle-containing layer, a coating solution having the following composition was prepared so that the coating solution viscosity was 36 Pa · s, and a porous film was produced in the same manner as in Example 1.
〈粒子含有層の塗液の組成〉
・A層用塗液(塗液粘度 36Pa・s)
シリカ粒子(電気化学工業(株)製“SFP20”) 15質量部
ポリエチレン粒子(三井化学(株)製ケミパール“W100”) 10質量部
オキシラン環含有化合物(ナガセ化成工業(株)製デナコール“EX−861”)2.0質量部
カルボキシメチルセルロース(ダイセル化学工業(株)製“CMCダイセル2240”
1.5質量部
PVDF/アクリル水分散体(アルケマ社製“カイナーアクアテック” 固形分濃度40%)2.5質量部
イオン交換水 69質量部
(実施例6)
実施例1において、粒子含有層のA層用として、塗液粘度が36Pa・s、B層用として塗液粘度が12Pa・sになるように以下の組成の塗液を調合し、実施例1と同様の手法で多孔質フィルムを作製した。
<Composition of coating liquid for particle-containing layer>
・ A layer coating liquid (coating liquid viscosity: 36 Pa · s)
Silica particles (“SFP20” manufactured by Denki Kagaku Kogyo Co., Ltd.) 15 parts by mass Polyethylene particles (Chemical “W100” manufactured by Mitsui Chemicals, Inc.) 10 parts by mass Oxirane ring-containing compound (Denacol “EX- manufactured by Nagase Chemical Industries, Ltd.”) 861 ") 2.0 parts by mass Carboxymethylcellulose (" CMC Daicel 2240 "manufactured by Daicel Chemical Industries, Ltd.)
1.5 parts by mass PVDF / acrylic water dispersion (“Kyner Aquatech” manufactured by Arkema Co., Ltd., solid content concentration 40%) 2.5 parts by mass Ion-exchanged water 69 parts by mass (Example 6)
In Example 1, a coating solution having the following composition was prepared so that the coating solution viscosity was 36 Pa · s for the particle-containing layer A and the coating solution viscosity was 12 Pa · s for the B layer. A porous film was prepared in the same manner as described above.
〈粒子含有層の塗液の組成〉
・A層用塗液(塗液粘度 36Pa・s)
シリカ粒子(電気化学工業(株)製“SFP20”) 15質量部
ポリエチレン粒子(三井化学(株)製ケミパール“W100”) 10質量部
オキシラン環含有化合物(ナガセ化成工業(株)製デナコール“EX−861”)2.0質量部
カルボキシメチルセルロース(ダイセル化学工業(株)製“CMCダイセル2240”
1.5質量部
PVDF/アクリル水分散体(アルケマ社 “カイナーアクアテック” 固形分濃度40%)2.5質量部
イオン交換水 69質量部
・B層用塗液(塗液粘度 12Pa・s)
シリカ粒子(電気化学工業(株)製“SFP20”) 15質量部
ポリエチレン粒子(三井化学(株)製ケミパール“W100”) 10質量部
オキシラン環含有化合物(ナガセ化成工業(株)製デナコール“EX−861”)2.0質量部
カルボキシメチルセルロース(ダイセル化学工業(株)製“CMCダイセル2240”
0.5質量部
PVDF/アクリル水分散体(アルケマ社製“カイナーアクアテック” 固形分濃度40%)1.25質量部
イオン交換水 71.25質量部
(比較例1)
実施例1において、粒子含有層のA層用として、塗液粘度が10Pa・sになるように以下の組成の塗液を調合し、実施例1と同様の手法で多孔質フィルムを作製した。
<Composition of coating liquid for particle-containing layer>
・ A layer coating liquid (coating liquid viscosity: 36 Pa · s)
Silica particles (“SFP20” manufactured by Denki Kagaku Kogyo Co., Ltd.) 15 parts by mass Polyethylene particles (Chemical “W100” manufactured by Mitsui Chemicals, Inc.) 10 parts by mass Oxirane ring-containing compound (Denacol “EX- manufactured by Nagase Chemical Industries, Ltd.”) 861 ") 2.0 parts by mass Carboxymethylcellulose (" CMC Daicel 2240 "manufactured by Daicel Chemical Industries, Ltd.)
1.5 parts by mass PVDF / acrylic water dispersion (Arkema “Kyner Aquatech” solid content concentration 40%) 2.5 parts by mass Ion-exchanged water 69 parts by mass ・ B layer coating liquid (coating liquid viscosity 12 Pa · s)
Silica particles (“SFP20” manufactured by Denki Kagaku Kogyo Co., Ltd.) 15 parts by mass Polyethylene particles (Chemical “W100” manufactured by Mitsui Chemicals, Inc.) 10 parts by mass Oxirane ring-containing compound (Denacol “EX- manufactured by Nagase Chemical Industries, Ltd.”) 861 ") 2.0 parts by mass Carboxymethylcellulose (" CMC Daicel 2240 "manufactured by Daicel Chemical Industries, Ltd.)
0.5 parts by mass PVDF / acrylic water dispersion (“Kayner Aquatech” manufactured by Arkema Co., Ltd., solid content concentration 40%) 1.25 parts by mass Ion-exchanged water 71.25 parts by mass (Comparative Example 1)
In Example 1, for the layer A of the particle-containing layer, a coating liquid having the following composition was prepared so that the coating liquid viscosity was 10 Pa · s, and a porous film was produced in the same manner as in Example 1.
〈粒子含有層の塗液の組成〉
・A層用塗液(塗液粘度 10Pa・s)
シリカ粒子(電気化学工業(株)製“SFP20”) 15質量部
ポリエチレン粒子(三井化学(株)製ケミパール“W100”) 10質量部
オキシラン環含有化合物(ナガセ化成工業(株)製デナコール“EX−861”)2.0質量部
カルボキシメチルセルロース(ダイセル化学工業(株)製“CMCダイセル2240”
1.0質量部
イオン交換水 71質量部
(比較例2)
実施例1において、粒子含有層のA層用として、塗液粘度が10Pa・sとなるように、またB層用として、塗液粘度が35Pa・sとなるようにそれぞれ以下の組成の塗液を調合し、実施例1と同様の手法で多孔質フィルムを作製した。
<Composition of coating liquid for particle-containing layer>
・ A layer coating liquid (coating liquid viscosity: 10 Pa · s)
Silica particles (“SFP20” manufactured by Denki Kagaku Kogyo Co., Ltd.) 15 parts by mass Polyethylene particles (Chemical “W100” manufactured by Mitsui Chemicals, Inc.) 10 parts by mass Oxirane ring-containing compound (Denacol “EX- manufactured by Nagase Chemical Industries, Ltd.”) 861 ") 2.0 parts by mass Carboxymethylcellulose (" CMC Daicel 2240 "manufactured by Daicel Chemical Industries, Ltd.)
1.0 part by mass Ion-exchanged water 71 part by mass (Comparative Example 2)
In Example 1, the coating liquid having the following composition was used for the layer A of the particle-containing layer so that the coating liquid viscosity was 10 Pa · s, and for the B layer, the coating liquid viscosity was 35 Pa · s. And a porous film was produced in the same manner as in Example 1.
〈粒子含有層の塗液の組成〉
(1)A層用塗液(塗液粘度 10Pa・s)
シリカ粒子(電気化学工業(株)製“SFP20”) 15質量部
ポリエチレン粒子(三井化学(株)製ケミパール“W100”) 10質量部
オキシラン環含有化合物(ナガセ化成工業(株)製デナコール“EX−861”)2.0質量部
カルボキシメチルセルロース(ダイセル化学工業(株)製“CMCダイセル2240”
1.0質量部
イオン交換水 71質量部
(2)B層用塗液(塗液粘度 35Pa・s)
シリカ粒子(電気化学工業(株)製“SFP20”) 15質量部
ポリエチレン粒子(三井化学(株)製ケミパール“W100”) 10質量部
オキシラン環含有化合物(ナガセ化成工業(株)製デナコール“EX−861”)2.0質量部
カルボキシメチルセルロース(ダイセル化学工業(株)製“CMCダイセル2240”
2.0質量部
イオン交換水 71質量部
(比較例3)
実施例1の多孔フィルムの片面(溶融押出時にドラムに接触した面、以下D面と表記)に、ダイコーターを用いて乾燥後の積層厚みが6μmになるように以下の組成の塗液を塗布し、100℃で1分間乾燥させ、単層構成の粒子含有層を形成し、多孔質フィルムを作製した。
<Composition of coating liquid for particle-containing layer>
(1) Coating liquid for layer A (coating liquid viscosity 10 Pa · s)
Silica particles (“SFP20” manufactured by Denki Kagaku Kogyo Co., Ltd.) 15 parts by mass Polyethylene particles (Chemical “W100” manufactured by Mitsui Chemicals, Inc.) 10 parts by mass 861 ") 2.0 parts by mass Carboxymethylcellulose (" CMC Daicel 2240 "manufactured by Daicel Chemical Industries, Ltd.)
1.0 part by mass Ion-exchanged water 71 parts by mass (2) B layer coating liquid (coating liquid viscosity: 35 Pa · s)
Silica particles (“SFP20” manufactured by Denki Kagaku Kogyo Co., Ltd.) 15 parts by mass Polyethylene particles (Chemical “W100” manufactured by Mitsui Chemicals, Inc.) 10 parts by mass 861 ") 2.0 parts by mass Carboxymethylcellulose (" CMC Daicel 2240 "manufactured by Daicel Chemical Industries, Ltd.)
2.0 parts by mass Ion-exchanged water 71 parts by mass (Comparative Example 3)
On one side of the porous film of Example 1 (the surface in contact with the drum during melt extrusion, hereinafter referred to as D surface), a coating liquid having the following composition was applied using a die coater so that the laminated thickness after drying was 6 μm. Then, it was dried at 100 ° C. for 1 minute to form a particle-containing layer having a single layer structure, and a porous film was produced.
・粒子含有層用塗液(塗液粘度 35Pa・s)
シリカ粒子(電気化学工業(株)製“SFP20”) 15質量部
ポリエチレン粒子(三井化学(株)製ケミパール“W100”) 10質量部
オキシラン環含有化合物(ナガセ化成工業(株)製デナコール“EX−861”)2.0質量部
カルボキシメチルセルロース(ダイセル化学工業(株)製“CMCダイセル2240”
2.0質量部
イオン交換水 71質量部
(比較例4)
実施例1の多孔フィルムの片面(溶融押出時にドラムに接触した面、以下D面と表記)に、ダイコーターを用いて乾燥後の積層厚みが6μmになるように以下の組成の塗液を塗布し、100℃で1分間乾燥させ、単層構成の粒子含有層を形成し、多孔質フィルムを作製した。
・ Particle-containing layer coating liquid (coating liquid viscosity: 35 Pa · s)
Silica particles (“SFP20” manufactured by Denki Kagaku Kogyo Co., Ltd.) 15 parts by mass Polyethylene particles (Chemical “W100” manufactured by Mitsui Chemicals, Inc.) 10 parts by mass Oxirane ring-containing compound (Denacol “EX- manufactured by Nagase Chemical Industries, Ltd.”) 861 ") 2.0 parts by mass Carboxymethylcellulose (" CMC Daicel 2240 "manufactured by Daicel Chemical Industries, Ltd.)
2.0 parts by mass Ion-exchanged water 71 parts by mass (Comparative Example 4)
On one side of the porous film of Example 1 (the surface in contact with the drum during melt extrusion, hereinafter referred to as D surface), a coating liquid having the following composition was applied using a die coater so that the laminated thickness after drying was 6 μm. Then, it was dried at 100 ° C. for 1 minute to form a particle-containing layer having a single layer structure, and a porous film was produced.
・粒子含有層用塗液(塗液粘度 10Pa・s)
シリカ粒子(電気化学工業(株)製“SFP20”) 15質量部
ポリエチレン粒子(三井化学(株)製ケミパール“W100”) 10質量部
オキシラン環含有化合物(ナガセ化成工業(株)製デナコール“EX−861”)2.0質量部
カルボキシメチルセルロース(ダイセル化学工業(株)製“CMCダイセル2240”
1.0質量部
イオン交換水 71質量部
(比較例5)
実施例1の粒子含有層を塗布する前の多孔フィルムをそのまま評価した。
・ Particle-containing layer coating liquid (viscosity viscosity: 10 Pa · s)
Silica particles (“SFP20” manufactured by Denki Kagaku Kogyo Co., Ltd.) 15 parts by mass Polyethylene particles (Chemical “W100” manufactured by Mitsui Chemicals, Inc.) 10 parts by mass Oxirane ring-containing compound (Denacol “EX- manufactured by Nagase Chemical Industries, Ltd.”) 861 ") 2.0 parts by mass Carboxymethylcellulose (" CMC Daicel 2240 "manufactured by Daicel Chemical Industries, Ltd.)
1.0 part by mass Ion-exchanged water 71 parts by mass (Comparative Example 5)
The porous film before applying the particle-containing layer of Example 1 was evaluated as it was.
本発明の多孔質フィルムは耐熱性と、ポリオレフィン系多孔フィルムに粒子含有層を設けることによる透気抵抗の悪化を抑制し、優れた電池性能と安全性を高いレベルで両立していることから、蓄電デバイス、特に非水電解質二次電池であるリチウムイオン電池のセパレータとして好適に用いることができる。 Since the porous film of the present invention suppresses the deterioration of air resistance due to heat resistance and the provision of a particle-containing layer in a polyolefin-based porous film, and has both excellent battery performance and safety at a high level, It can be suitably used as a separator for an electricity storage device, particularly a lithium ion battery that is a non-aqueous electrolyte secondary battery.
Claims (10)
Gd={(Ga−Gb)/Gb}×100
Gd:透気抵抗変化率(%)
Ga:多孔質フィルムの透気抵抗(秒/100ml)
Gb:ポリオレフィン系多孔フィルムの透気抵抗(秒/100ml) A particle-containing layer containing inorganic particles is formed on at least one surface of the polyolefin-based porous film, and the particle-containing layer has a laminate structure of at least two layers, and the air resistance change rate (Gd) defined below. Is a porous film having an air permeability resistance (Ga) of 50 to 500 seconds / 100 ml.
Gd = {(Ga−Gb) / Gb} × 100
Gd: Permeability change rate (%)
Ga: Air permeability resistance of the porous film (second / 100 ml)
Gb: Air permeation resistance of polyolefin-based porous film (sec / 100 ml)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011009765A JP5707961B2 (en) | 2010-01-21 | 2011-01-20 | Storage device separator |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010010708 | 2010-01-21 | ||
JP2010010708 | 2010-01-21 | ||
JP2011009765A JP5707961B2 (en) | 2010-01-21 | 2011-01-20 | Storage device separator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011171290A JP2011171290A (en) | 2011-09-01 |
JP5707961B2 true JP5707961B2 (en) | 2015-04-30 |
Family
ID=44685153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011009765A Active JP5707961B2 (en) | 2010-01-21 | 2011-01-20 | Storage device separator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5707961B2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140023908A1 (en) * | 2011-03-28 | 2014-01-23 | Tomoyoshi Ueki | Lithium-ion secondary battery |
JP2013100487A (en) * | 2011-10-14 | 2013-05-23 | Toray Ind Inc | Porous film and electricity storage device |
DE102011120474A1 (en) * | 2011-12-08 | 2013-06-13 | Treofan Germany Gmbh & Co. Kg | Highly porous separator film with coating |
KR20140128421A (en) * | 2012-02-16 | 2014-11-05 | 솔베이 스페셜티 폴리머스 이태리 에스.피.에이. | Method for the manufacture of composite separators |
CN109119575A (en) * | 2012-02-21 | 2019-01-01 | 阿科玛股份有限公司 | aqueous polyvinylidene fluoride composition |
DE102012004161A1 (en) * | 2012-03-05 | 2013-09-05 | Treofan Germany Gmbh & Co. Kg | Highly porous separator film with partial coating |
US9887406B2 (en) | 2012-03-09 | 2018-02-06 | Teijin Limited | Separator for non-aqueous secondary battery, method for manufacturing the same, and non-aqueous secondary battery |
JP6179125B2 (en) * | 2012-04-09 | 2017-08-16 | 株式会社Gsユアサ | Electricity storage element |
CN104395382B (en) * | 2012-07-04 | 2016-11-23 | 东丽株式会社 | Porous polypropylene film, power storage device separator and electrical storage device |
KR102206132B1 (en) * | 2012-11-02 | 2021-01-22 | 알케마 인코포레이티드 | Integrated electrode separator assemblies for lithium ion batteries |
KR102137129B1 (en) | 2012-11-30 | 2020-07-24 | 데이진 가부시키가이샤 | Separator for nonaqueous secondary batteries, and nonaqueous secondary battery |
JP2014149935A (en) * | 2013-01-31 | 2014-08-21 | Nippon Zeon Co Ltd | Secondary battery separator, method for manufacturing secondary battery separator, and secondary battery |
PL3227940T3 (en) * | 2014-12-05 | 2021-10-18 | Celgard, Llc | Improved coated separators for lithium batteries and related methods |
JP6932534B2 (en) | 2017-04-19 | 2021-09-08 | ニッポン高度紙工業株式会社 | Separator for electrochemical element and electrochemical element |
JP7498571B2 (en) * | 2019-02-18 | 2024-06-12 | 旭化成株式会社 | Microporous membrane for power storage devices |
CN114902483A (en) | 2020-01-31 | 2022-08-12 | 株式会社Lg新能源 | Method of manufacturing separator composite electrode comprising multi-layered structure inorganic layer and separator composite electrode manufactured thereby |
EP4138199A4 (en) * | 2020-10-19 | 2024-08-07 | Lg Energy Solution Ltd | Separator for lithium secondary battery and lithium secondary battery having same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4958484B2 (en) * | 2006-03-17 | 2012-06-20 | 三洋電機株式会社 | Non-aqueous electrolyte battery and manufacturing method thereof |
CN104393219B (en) * | 2007-06-19 | 2017-08-29 | 帝人株式会社 | Diaphragm for non-water system secondary battery, its manufacture method and non-aqueous secondary battery |
JP5228388B2 (en) * | 2007-07-12 | 2013-07-03 | 東レ株式会社 | Porous film and power storage device |
WO2009044741A1 (en) * | 2007-10-03 | 2009-04-09 | Hitachi Maxell, Ltd. | Battery separator and nonaqueous electrolyte battery |
JP5267032B2 (en) * | 2007-10-15 | 2013-08-21 | 東レ株式会社 | Porous film |
JP5778378B2 (en) * | 2008-02-28 | 2015-09-16 | 帝人株式会社 | Nonaqueous electrolyte battery separator and nonaqueous electrolyte secondary battery |
JP5937776B2 (en) * | 2008-05-22 | 2016-06-22 | 日立マクセル株式会社 | Battery separator and battery |
JP5354735B2 (en) * | 2009-06-23 | 2013-11-27 | 旭化成イーマテリアルズ株式会社 | Multilayer porous membrane |
-
2011
- 2011-01-20 JP JP2011009765A patent/JP5707961B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011171290A (en) | 2011-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5707961B2 (en) | Storage device separator | |
KR101587514B1 (en) | Battery separator and process for manufacturing same | |
JP5712629B2 (en) | Porous film and power storage device | |
JP6233301B2 (en) | Laminated porous film, separator for electricity storage device, and method for producing laminated porous film | |
JP5835211B2 (en) | Porous laminated film, separator for electricity storage device, and electricity storage device | |
JP5676577B2 (en) | Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
JP5690832B2 (en) | Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
JP5419817B2 (en) | Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
WO2013080700A1 (en) | Laminate porous film manufacturing method | |
JP6082699B2 (en) | Porous film, separator for electricity storage device, and electricity storage device | |
WO2013080701A1 (en) | Laminate porous film roll and manufacturing method thereof | |
JP5092072B2 (en) | Polyolefin resin porous film and non-aqueous electrolyte battery separator using the same | |
WO2014002701A1 (en) | Laminated porous film, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery | |
JP5439772B2 (en) | Porous film and power storage device | |
JP2011110704A (en) | Laminated porous film, separator for battery, and battery | |
JP5554445B1 (en) | Battery separator and battery separator manufacturing method | |
JP6027401B2 (en) | Coating liquid, laminated porous film, non-aqueous electrolyte secondary battery separator, and non-aqueous electrolyte secondary battery | |
JP5251193B2 (en) | Porous polyolefin film | |
JP6318919B2 (en) | Laminated porous film, method for producing laminated porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
JP5915145B2 (en) | Porous film and power storage device | |
JP5976305B2 (en) | Method for producing laminated porous film | |
JP2012229406A (en) | Porous film and electricity storage device | |
JP2015201389A (en) | Laminate porous film, separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery | |
JP7357161B2 (en) | Separator for energy storage devices | |
JP2013116442A (en) | Method for manufacturing laminated porous film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131226 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140827 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140916 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150216 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5707961 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |