JP5707916B2 - Semiconductor cooling device and manufacturing method thereof - Google Patents

Semiconductor cooling device and manufacturing method thereof Download PDF

Info

Publication number
JP5707916B2
JP5707916B2 JP2010277860A JP2010277860A JP5707916B2 JP 5707916 B2 JP5707916 B2 JP 5707916B2 JP 2010277860 A JP2010277860 A JP 2010277860A JP 2010277860 A JP2010277860 A JP 2010277860A JP 5707916 B2 JP5707916 B2 JP 5707916B2
Authority
JP
Japan
Prior art keywords
cooling water
water flow
cooling
semiconductor element
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010277860A
Other languages
Japanese (ja)
Other versions
JP2012129280A (en
Inventor
忠史 吉田
忠史 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010277860A priority Critical patent/JP5707916B2/en
Publication of JP2012129280A publication Critical patent/JP2012129280A/en
Application granted granted Critical
Publication of JP5707916B2 publication Critical patent/JP5707916B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、半導体冷却装置の構造及びその製造方法に関する。   The present invention relates to a structure of a semiconductor cooling device and a manufacturing method thereof.

ハイブリッド車両や電気自動車では、バッテリの直流電力をモータ駆動用の三相交流電力に変換するためのインバータやバッテリの電圧をモータ駆動用の電圧に変換する昇圧コンバータなどの電力変換器が多く用いられている。この用な電力変換器はIGBT等のスイッチング素子のスイッチング動作によって電力変換、電圧変換を行うものである。近年、電気自動車やハイブリッド車両が大型化するに当たって、スイッチング素子も大電流をオンオフするようになってきている。一方、スイッチング素子は動作中に大きな発熱をするため、このような電力変換器にはスイッチング素子の冷却をおこなう水冷式の冷却装置が設けられている。   In hybrid vehicles and electric vehicles, power converters such as an inverter for converting DC power of a battery into three-phase AC power for driving a motor and a boost converter for converting battery voltage into a voltage for driving a motor are often used. ing. This power converter performs power conversion and voltage conversion by switching operation of a switching element such as an IGBT. In recent years, as electric vehicles and hybrid vehicles have become larger, switching elements have also turned on and off large currents. On the other hand, since the switching element generates a large amount of heat during operation, such a power converter is provided with a water-cooling type cooling device that cools the switching element.

水冷式の冷却装置には、半導体素子であるスイッチング素子を取り付ける平板の裏側に冷却用のフィンを取り付けたヒートシンクの冷却フィンの部分を覆うケーシングを取り付け、このケーシングの中に冷却水を流してヒートシンクを冷却し半導体素子を冷却するものがある(例えば、特許文献1参照)。   In a water-cooled cooling device, a casing that covers a cooling fin portion of a heat sink in which a cooling fin is attached is attached to the back side of a flat plate on which a switching element, which is a semiconductor element, is attached. Is used to cool the semiconductor element (see, for example, Patent Document 1).

特開2007−110025JP2007-1110025

ところが、冷却水がヒートシンクの周囲を流れる際にヒートシンクの先端とケーシングの内面との間の隙間に冷却水が流れてしまい、冷却水のショートパスが発生し、冷却効率が低下してしまう場合があった。そこで、特許文献1では、ヒートシンクの先端とケーシングの内面との間にクッション材を挟み込んでこのショートパスを防止し、冷却効率を向上させることが提案されている。   However, when the cooling water flows around the heat sink, the cooling water flows in the gap between the tip of the heat sink and the inner surface of the casing, which may cause a short path of the cooling water and reduce the cooling efficiency. there were. Therefore, Patent Document 1 proposes that a cushion material is sandwiched between the tip of the heat sink and the inner surface of the casing to prevent this short path and improve the cooling efficiency.

しかし、特許文献1で提案されている方法は、冷却水の流れるケーシングの中に別途クッション材を取り付ける必要があるため構造が複雑になってしまうという問題があった。   However, the method proposed in Patent Document 1 has a problem that the structure becomes complicated because it is necessary to separately attach a cushion material in the casing through which the cooling water flows.

そこで、本発明は、簡便な構成で半導体冷却装置の冷却効率を向上させることを目的とする。   Therefore, an object of the present invention is to improve the cooling efficiency of a semiconductor cooling device with a simple configuration.

本発明の半導体冷却装置は、冷却水によって半導体素子を冷却する半導体冷却装置であって、一方の面に前記半導体素子が取り付けられ、他方の面に冷却用の突起が設けられている半導体素子冷却板と、前記半導体素子冷却板の両側端から前記突起の突出方向に沿った方向に突出する各冷却水流路側壁と、前記半導体素子冷却板の前記突起に接し、前記半導体素子冷却板との間の第1の隙間を区画するベース板と、前記ベース板から前記半導体素子冷却板と反対方向に突出し、冷却水の流れ方向に伸びて冷却水流路を仕切る仕切り板とを含み、前記ベース板の側端面が前記各冷却水流路側壁の内面との間に第2の隙間を開けて配置される冷却水流路仕切り部材と、を備え、前記冷却水流路仕切り部材は、前記半導体素子冷却板の前記突起の先端が前記ベース板の表面に食い込んだ状態で一体に樹脂成形されることを特徴とする。 The semiconductor cooling device of the present invention is a semiconductor cooling device that cools a semiconductor element with cooling water, wherein the semiconductor element is attached to one surface and a cooling projection is provided on the other surface. A plate, a side wall of each cooling water channel protruding in a direction along the protruding direction of the protrusion from both side ends of the semiconductor element cooling plate, and the semiconductor element cooling plate between the semiconductor element cooling plate and the protrusion of the semiconductor element cooling plate of the base plate defining the first gap, projecting in the direction opposite to the semiconductor element cooling plate from said base plate, it extends in the flow direction of the cooling water and a partition plate for partitioning the cooling water flow path, of the base plate A cooling water channel partition member disposed with a second gap between the side end surface and the inner surface of each of the cooling water channel side walls, and the cooling water channel partition member is arranged on the semiconductor element cooling plate. Tip of protrusion There characterized Rukoto are molded integrally in a state of biting into the surface of the base plate.

本発明の半導体冷却装置の製造方法は、冷却用の突起が設けられている半導体素子冷却板がセットされる第1の上型と、前記第1の上型に合わせられて前記半導体素子冷却板の側端に第1の空間を形成する第1の下型と、を準備する工程と、前記半導体素子冷却板の前記突起に接し、前記半導体素子冷却板との間の第1の隙間を区画するベース板を備える冷却水流路仕切り部材を成形するための第3の凹部を有する第2の下型と、前記第2の下型に合わせられて前記冷却水流路仕切り部材を成形する第2の空間を形成する第2の上型と、を準備する工程と、前記第1の上型と前記第1の下型とを合わせて、前記第1の空間に樹脂を注入して半導体素子冷却板をインサート成形する工程と、前記第2の上型と前記第2の下型とを合わせ、前記第2の空間に樹脂を注入して前記冷却水流路仕切り部材を成形する工程と、前記第1の上型、前記第1の下型、及び前記第2の上型、前記第2の下型がそれぞれ所定の温度以上の状態で、前記第1の上型にインサート成形された前記半導体素子冷却板が残る状態で前記第1の上型と前記第1の下型を分離するとともに、前記第2の下型に成形した前記冷却水流路仕切り部材が残る状態で、前記第2の上型と前記第2の下型とを分離する工程と、前記第1の上型に残っている前記半導体素子冷却板の前記突起の先端が、前記第2の下型に残っている前記冷却水流路仕切り部材の表面に食い込むように前記第2の下型の上に前記第1の上型を合わせる工程と、を含むことを特徴とする。   The method for manufacturing a semiconductor cooling device of the present invention includes a first upper mold on which a semiconductor element cooling plate provided with a cooling projection is set, and the semiconductor element cooling plate that is aligned with the first upper mold. And a first lower mold for forming a first space at a side end of the semiconductor element, and a first gap between the semiconductor element cooling plate and the semiconductor element cooling plate that is in contact with the protrusion of the semiconductor element cooling plate A second lower mold having a third recess for forming a cooling water flow path partition member having a base plate to be formed, and a second lower mold for forming the cooling water flow path partition member in alignment with the second lower mold. A step of preparing a second upper mold for forming a space; and a combination of the first upper mold and the first lower mold, and injecting resin into the first space to cool the semiconductor element cooling plate Insert molding, combining the second upper mold and the second lower mold, A step of injecting resin into the space to form the cooling water flow path partition member, and the first upper mold, the first lower mold, the second upper mold, and the second lower mold, respectively The first upper mold and the first lower mold are separated while the semiconductor element cooling plate insert-molded in the first upper mold remains in a state of a predetermined temperature or more, and the second The step of separating the second upper mold and the second lower mold in a state where the cooling water flow path partition member formed in the lower mold remains, and the cooling of the semiconductor element remaining in the first upper mold Aligning the first upper mold on the second lower mold so that the tip of the projection of the plate bites into the surface of the cooling water flow path partition member remaining on the second lower mold; It is characterized by including.

本発明の半導体冷却装置の製造方法において、前記半導体素子冷却板の前記突起の先端は、第1の上型にセットされた際に前記第1の上型と前記第1の下型との合わせ面と同一面または前記合わせ面よりも突出しており、前記第2の上型は、前記第3の凹部に合わせられて前記冷却水流路仕切り部材を成形する第2の空間を形成する第4の凹部を有すること、としても好適である。   In the method for manufacturing a semiconductor cooling device of the present invention, the tip of the protrusion of the semiconductor element cooling plate is aligned with the first upper mold and the first lower mold when set to the first upper mold. The second upper mold is aligned with the third recess to form a second space for forming the cooling water flow path partition member. It is also suitable as having a recessed part.

本発明の半導体冷却装置の製造方法において、前記第2の下型の上に前記第1の上型を合わせる工程は、前記第2の下型または前記第1の上型をスライドさせることによって前記第2の下型と前記第1の上型とを合わせること、としても好適である。   In the method for manufacturing a semiconductor cooling device of the present invention, the step of aligning the first upper mold on the second lower mold includes sliding the second lower mold or the first upper mold. It is also preferable that the second lower mold and the first upper mold are combined.

本発明の半導体冷却装置の製造方法において、前記第1の上型の第1の空間は、前記半導体素子冷却板の両側端から前記突起の突出方向に沿った方向に突出する各上部冷却水流路側壁を形成するものであり、前記第2の下型は、前記各上部冷却水流路側壁に対応した位置に配置される各下部冷却水流路側壁を形成するための各第2の凹部を含み、前記インサート成形する工程は、前記第1の空間に樹脂を注入して前記各上部冷却水流路側壁を同時に成形し、前記冷却水流路仕切り部材を成形する工程は、前記各第2の凹部に樹脂を注入して前記各下部冷却水流路側壁を同時に成形し、前記第1の上型は成形した前記各上部冷却水流路側壁が残る状態で前記第1の下型と分離され、前記第2の下型は、成形した前記各下部冷却水流路側壁が残る状態で前記第2の上型と分離され、前記第1の上型に残る前記各上部冷却水流路側壁と前記第2の下型に残る前記各下部冷却水流路側壁との間に樹脂を注入して前記各上部冷却水流路側壁と前記各下部冷却水流路側壁とを接合する工程と、を含むこととしても好適である。   In the method for manufacturing a semiconductor cooling device of the present invention, the first space of the first upper mold is each upper cooling water flow path protruding in a direction along the protruding direction of the protrusion from both side ends of the semiconductor element cooling plate. Forming a side wall, and the second lower mold includes each second recess for forming each lower cooling water flow channel side wall disposed at a position corresponding to each upper cooling water flow channel side wall, The step of insert molding injects resin into the first space to simultaneously mold the upper cooling water flow channel side walls, and the step of molding the cooling water flow channel partition member includes resin in the second recesses. The first upper mold is separated from the first lower mold in a state where the molded upper cooling water channel side walls remain, and the second upper cooling water channel side walls are formed simultaneously. The lower mold retains the side walls of the lower cooling water passages that have been molded. In this state, resin is injected between each of the upper cooling water flow channel side walls separated from the second upper mold and remaining in the first upper mold and each lower cooling water flow channel side wall remaining in the second lower mold. It is also preferable to include a step of joining each of the upper cooling water flow channel side walls and each of the lower cooling water flow channel side walls.

本発明は、簡便な構成で半導体冷却装置の冷却効率を向上させることができるという効果を奏する。   The present invention has an effect that the cooling efficiency of the semiconductor cooling device can be improved with a simple configuration.

本発明の実施形態における半導体冷却装置の断面を示す説明図である。It is explanatory drawing which shows the cross section of the semiconductor cooling device in embodiment of this invention. 本発明の実施形態における半導体冷却装置の構成を示す斜視図である。It is a perspective view which shows the structure of the semiconductor cooling device in embodiment of this invention. 本発明の実施形態における半導体冷却装置の製造方法において、半導体素子冷却板を上部水路側壁にインサート成形する工程を示す説明図である。In the manufacturing method of the semiconductor cooling device in the embodiment of the present invention, it is explanatory drawing which shows the process of insert-molding a semiconductor element cooling plate on the upper channel side wall. 本発明の実施形態における半導体冷却装置の製造方法において、冷却水流路仕切り板と各下部水路側壁とを成形する工程を示す説明図である。It is explanatory drawing which shows the process of shape | molding a cooling water flow path partition plate and each lower water channel side wall in the manufacturing method of the semiconductor cooling device in embodiment of this invention. 本発明の実施形態における半導体冷却装置の製造方法において、第2の下型の上に第1の上型を合わせ、各上部水路側壁と各下部水路側壁とを接合する工程を示す説明図である。In the manufacturing method of the semiconductor cooling device in an embodiment of the present invention, it is explanatory drawing which shows the process of putting together the 1st upper model on the 2nd lower model, and joining each upper channel side wall and each lower channel side wall. .

以下、図面を参照しながら本発明の実施形態について説明する。図1に示すように、本実施形態の半導体冷却装置100は、一方の面である上面21に半導体素子10が取り付けられている金属製の半導体素子冷却板20と、半導体素子冷却板20の両側に設けられた各冷却水流路側壁40aと、各冷却水流路側壁40aの下端に取り付けられた蓋50と、半導体素子冷却板20と各冷却水流路側壁40aと蓋50とによって囲まれた冷却水流路60の中に設けられ、冷却水流路60を仕切る冷却水流路仕切り部材30とを備えている。各冷却水流路側壁40aは、上部冷却水流路側壁41aと下部冷却水流路側壁43aを接続部側壁42aで接続したものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the semiconductor cooling device 100 of the present embodiment includes a metal semiconductor element cooling plate 20 in which the semiconductor element 10 is attached to an upper surface 21 that is one surface, and both sides of the semiconductor element cooling plate 20. The cooling water flow surrounded by each cooling water flow channel side wall 40a provided on the lid, the lid 50 attached to the lower end of each cooling water flow channel side wall 40a, the semiconductor element cooling plate 20, each cooling water flow channel side wall 40a and the lid 50 A cooling water flow path partition member 30 provided in the path 60 and partitioning the cooling water flow path 60 is provided. Each cooling water flow path side wall 40a is formed by connecting an upper cooling water flow path side wall 41a and a lower cooling water flow path side wall 43a with a connecting portion side wall 42a.

冷却水流路仕切り部材30は、半導体素子冷却板20との間の隙間64を区画するベース板32と、ベース板32から下方向に延びて冷却水供給流路61と、冷却水排出流路62を仕切る仕切り板31と含んでいる。そして、ベース板32の側端面と各冷却水流路側壁40aの内面との間には、冷却水供給流路61側の隙間63と冷却水排出流路62側の隙間65が設けられている。図1に示すように、半導体素子冷却板20の下面22には冷却用の突起23が設けられている。突起23は円錐状で先端が尖った形状となっており、その先端は冷却水流路仕切り部材30のベース板32の表面33に食い込んでいる。   The cooling water channel partition member 30 includes a base plate 32 that defines a gap 64 between the semiconductor element cooling plate 20, a cooling water supply channel 61 that extends downward from the base plate 32, and a cooling water discharge channel 62. And a partition plate 31 for partitioning. A gap 63 on the cooling water supply channel 61 side and a gap 65 on the cooling water discharge channel 62 side are provided between the side end surface of the base plate 32 and the inner surface of each cooling water channel side wall 40a. As shown in FIG. 1, a cooling protrusion 23 is provided on the lower surface 22 of the semiconductor element cooling plate 20. The projection 23 has a conical shape with a pointed tip, and the tip bites into the surface 33 of the base plate 32 of the cooling water flow path partition member 30.

図1において矢印は冷却水の流れの方向を示し、冷却水供給流路61の丸印の中に×を記したマークは冷却水が紙面の手前から奥に向かって流れることを示し、冷却水排出流路62の丸印の中に点を記したマークは冷却水が紙面の奥から手前に向かって流れることを示している。冷却水供給流路61に流入した冷却水は、冷却水供給流路61側の隙間63を通ってベース板32の表面33と半導体素子冷却板20の下面22との間の隙間64に流れ込む。突起23の先端はベース板32の表面33に食い込んでいるので、隙間64に流れ込んだ冷却水は突起23の周囲を流れて半導体素子冷却板20の下面22を冷却する。そして、隙間64を流れた冷却水は隙間65から冷却水排出流路62に流れこむ。   In FIG. 1, the arrow indicates the direction of the cooling water flow, and the mark marked with “X” in the circle of the cooling water supply channel 61 indicates that the cooling water flows from the front of the paper to the back. A mark with a dot in the circle of the discharge channel 62 indicates that the cooling water flows from the back of the paper toward the front. The cooling water that has flowed into the cooling water supply channel 61 flows into the gap 64 between the surface 33 of the base plate 32 and the lower surface 22 of the semiconductor element cooling plate 20 through the gap 63 on the cooling water supply channel 61 side. Since the tip of the protrusion 23 bites into the surface 33 of the base plate 32, the cooling water flowing into the gap 64 flows around the protrusion 23 to cool the lower surface 22 of the semiconductor element cooling plate 20. Then, the cooling water flowing through the gap 64 flows into the cooling water discharge channel 62 from the gap 65.

図2に示すように、半導体冷却装置100は、上部冷却水流路側壁41aを含む板状の上部ケーシング41と、下部冷却水流路側壁43aを含む箱状の下部ケーシング40と、蓋50とを上下方向に重ね合わせて構成されている。上部ケーシング41は、金属製の半導体素子冷却板20をインサートするように樹脂成形された上部冷却水流路側壁41aと上部冷却水流路側壁41aと一体に樹脂成型され、上部冷却水流路側壁41aの間を接続する上板41bとを含んでいる。下部ケーシング40は、下部冷却水流路側壁43aと冷却水入口66と冷却水出口67とが設けられた端板40bとを一体に樹脂成形したもので、両側の下部冷却水流路側壁43aの上端40cは板状の接続部40dによって接続されている。冷却水流路仕切り部材30のベース板32の表面33は接続部40dの下面に密着しており、接続部40dの間は開口となっている。そして、この開口の両側に隙間63、65が形成されている。また、T字形断面の冷却水流路仕切り部材30の冷却水流れ方向の端面は下部ケーシング40の端板40bの内面と接続されるように下部冷却水流路側壁43a、端板40bと一体に樹脂成形されたものである。冷却水流路仕切り部材30の仕切り板31の下端31fと下部冷却水流路側壁43aの下端40fとは同一面となっており、各下端31f,40fに接するように蓋50が下側から取り付けられている。   As shown in FIG. 2, the semiconductor cooling device 100 moves the plate-shaped upper casing 41 including the upper cooling water flow channel side wall 41 a, the box-shaped lower casing 40 including the lower cooling water flow channel side wall 43 a, and the lid 50 up and down. It is configured to overlap in the direction. The upper casing 41 is resin-molded integrally with the upper cooling water flow channel side wall 41a and the upper cooling water flow channel side wall 41a, which are resin-molded so as to insert the metal semiconductor element cooling plate 20, and between the upper cooling water flow channel side wall 41a. And an upper plate 41b for connecting the two. The lower casing 40 is formed by integrally molding a lower cooling water flow channel side wall 43a, an end plate 40b provided with a cooling water inlet 66 and a cooling water outlet 67, and has upper ends 40c of the lower cooling water flow channel side walls 43a on both sides. Are connected by a plate-like connecting portion 40d. The surface 33 of the base plate 32 of the cooling water flow path partition member 30 is in close contact with the lower surface of the connection portion 40d, and an opening is formed between the connection portions 40d. And the clearance gaps 63 and 65 are formed in the both sides of this opening. Further, the end surface in the cooling water flow direction of the cooling water flow path partition member 30 having a T-shaped cross section is integrally molded with the lower cooling water flow path side wall 43a and the end plate 40b so as to be connected to the inner surface of the end plate 40b of the lower casing 40. It has been done. The lower end 31f of the partition plate 31 of the cooling water flow path partition member 30 and the lower end 40f of the lower cooling water flow path side wall 43a are flush with each other, and a lid 50 is attached from below so as to be in contact with the lower ends 31f and 40f. Yes.

本実施形態の半導体冷却装置100では、上部ケーシング41が下部ケーシング40に接続されると、図1に示すように、半導体素子冷却板20の下面22に設けられた突起23の先端がベース板32の表面33に食い込むように構成されているので、突起23の先端とベース板32の表面33との間を冷却水がショートパスすることがなく、冷却水が確実に突起23の周囲を流れるので効果的に半導体素子10を冷却することができる。   In the semiconductor cooling device 100 of this embodiment, when the upper casing 41 is connected to the lower casing 40, the tip of the protrusion 23 provided on the lower surface 22 of the semiconductor element cooling plate 20 is the base plate 32, as shown in FIG. Since the cooling water does not short pass between the tip of the protrusion 23 and the surface 33 of the base plate 32, the cooling water surely flows around the protrusion 23. The semiconductor element 10 can be cooled effectively.

次に、本実施形態の半導体冷却装置の製造方法について説明する。まず、図3を参照しながら上部ケーシング41の製造工程について説明する。先に説明したように、上部ケーシング41は、金属製の半導体素子冷却板20を上部冷却水流路側壁41aに樹脂でインサート成形したものである。成形には第1の上型71と第1の下型75とを用いる。   Next, the manufacturing method of the semiconductor cooling device of this embodiment is demonstrated. First, the manufacturing process of the upper casing 41 will be described with reference to FIG. As described above, the upper casing 41 is obtained by insert-molding the metal semiconductor element cooling plate 20 on the upper cooling water flow passage side wall 41a with resin. The first upper mold 71 and the first lower mold 75 are used for molding.

図3に示すように、第1の上型71は、その中央部分に金属製の半導体素子冷却板20の上面21が密着するようにセットされる平板状の中央部72と中央部72の両側面から突出する側部73とを備えている。中央部72の内面と側部73の内面とは溝型の凹部74となっており、側部73の先端は平面で第1の下型75との合わせ面80となっている。また、第1の下型75は、第1の上型71の側部73の先端と合わせられる合わせ面80と同一面となっている側部78と、第1の上型71の側部73の内面よりもその外面が上部冷却水流路側壁41aの厚さだけ内部に位置しているリブ77が設けられている。リブ77の間の内面は凹部79となっている。   As shown in FIG. 3, the first upper mold 71 has a flat plate-like central portion 72 set so that the upper surface 21 of the metal semiconductor element cooling plate 20 is in close contact with the central portion thereof, and both sides of the central portion 72. And a side portion 73 protruding from the surface. The inner surface of the central portion 72 and the inner surface of the side portion 73 form a groove-shaped recess 74, and the tip of the side portion 73 is a flat surface that forms a mating surface 80 with the first lower die 75. The first lower mold 75 includes a side part 78 that is flush with the mating surface 80 that is aligned with the tip of the side part 73 of the first upper mold 71, and the side part 73 of the first upper mold 71. A rib 77 is provided such that the outer surface thereof is located inside the inner surface of the upper cooling water passage side wall 41a rather than the inner surface thereof. The inner surface between the ribs 77 is a recess 79.

図3に示すように、第1の上型71の中央部72の内面に金属製の半導体素子冷却板20の上面21が密着するようにセットし、第1の下型75の側部78の上面に第1の上型71の側部73の下面を合わせる。この面が第1の上型71と第1の下型75との合わせ面80となる。第1の上型71と第1の下型75とを合わせると第1の下型75のリブ77の上端面は、半導体素子冷却板20の下面22の突起23の設けられていない周辺部に密着し、第1の上型の凹部74と組み合わされて半導体素子冷却板20の両側端の位置に樹脂を注入する密閉された第1の空間91を形成する。また、第1の上型71にセットされた半導体素子冷却板20の下面22の突起23の先端は第1の上型71と第1の下型75との合わせ面80と同一面或いは同一面よりも若干第1の下型75側に突出している。   As shown in FIG. 3, the first upper die 71 is set so that the upper surface 21 of the metal semiconductor element cooling plate 20 is in close contact with the inner surface of the central portion 72 of the first upper die 71. The lower surface of the side portion 73 of the first upper mold 71 is aligned with the upper surface. This surface is a mating surface 80 between the first upper mold 71 and the first lower mold 75. When the first upper mold 71 and the first lower mold 75 are combined, the upper end surface of the rib 77 of the first lower mold 75 is located on the peripheral portion of the lower surface 22 of the semiconductor element cooling plate 20 where the protrusions 23 are not provided. In close contact with each other, the first upper mold recess 74 is combined to form a sealed first space 91 into which resin is injected at the positions of both side ends of the semiconductor element cooling plate 20. Further, the tip of the protrusion 23 on the lower surface 22 of the semiconductor element cooling plate 20 set on the first upper mold 71 is the same surface or the same surface as the mating surface 80 of the first upper mold 71 and the first lower mold 75. It protrudes slightly to the first lower mold 75 side.

上記のように第1の上型71と第1の下型75とを合わせた後、第1の上型71と第1の下型75とを樹脂成形ができる温度まで加熱した後、図3の矢印Aに示すように、空間91に樹脂を注入する。この注入された樹脂は左右の上部冷却水流路側壁41aとなるとともに、半導体素子冷却板20と密着して半導体素子冷却板20を上部冷却水流路側壁41aに固定する。このように、半導体素子冷却板20は上部冷却水流路側壁41aにインサート成形される。   After the first upper mold 71 and the first lower mold 75 are combined as described above, the first upper mold 71 and the first lower mold 75 are heated to a temperature at which resin molding can be performed, and then FIG. As shown by the arrow A, resin is injected into the space 91. The injected resin becomes the left and right upper cooling water flow channel side walls 41a and is in close contact with the semiconductor element cooling plate 20 to fix the semiconductor element cooling plate 20 to the upper cooling water flow channel side wall 41a. Thus, the semiconductor element cooling plate 20 is insert-molded on the upper cooling water flow passage side wall 41a.

次に、図4を参照しながら下部ケーシング40の製造工程について説明する。先に説明したように、下部ケーシング40は、下部冷却水流路側壁43aと冷却水流路仕切り部材30とを一体に樹脂成形したものである。成形には第2の上型81と第2の下型85とを用いる。   Next, the manufacturing process of the lower casing 40 will be described with reference to FIG. As described above, the lower casing 40 is obtained by integrally molding the lower cooling water flow path side wall 43a and the cooling water flow path partition member 30 with resin. The second upper mold 81 and the second lower mold 85 are used for molding.

図4に示すように、第2の下型85は、四角断面の直方体の両側に下部冷却水流路側壁43aのための樹脂を注入する空間である2つの第2の凹部92と、中央部88に設けられて冷却水流路仕切り部材30のための樹脂を注入するためのT字型の第3の凹部93とが形成されたものである。第2の凹部92の周囲を画定する下型85の側部87の上端面は第2の上型71と合わせられる合わせ面90となっている。また、第2の上型81は、中央部82に設けられた下部冷却水流路側壁43aの表面33の厚さdの部分を成形するための深さdの第4の凹部84と、第2の下型の第2の凹部92に嵌まり込むような高さeの突部84aが設けられている。そして、第4の凹部84の両側の側部83の下端面は、第4の凹部84の面より厚さdだけ第2の下型75の側に向かって突出しており、突部84aは第4の凹部84の両側の下端面よりも高さeだけ突出している。   As shown in FIG. 4, the second lower mold 85 includes two second recesses 92 that are spaces for injecting resin for the lower cooling water flow passage side wall 43 a on both sides of a rectangular parallelepiped rectangular section, and a central portion 88. And a T-shaped third recess 93 for injecting resin for the cooling water flow path partition member 30 is formed. The upper end surface of the side portion 87 of the lower mold 85 that defines the periphery of the second recess 92 is a mating surface 90 that is matched with the second upper mold 71. The second upper mold 81 includes a fourth recess 84 having a depth d for forming a portion having a thickness d of the surface 33 of the lower cooling water flow passage side wall 43a provided in the central portion 82, and a second recess 84. A protrusion 84 a having a height e is provided so as to fit into the second recess 92 of the lower mold. And the lower end surface of the side part 83 of the both sides of the 4th recessed part 84 protrudes toward the 2nd lower mold | type 75 side by thickness d from the surface of the 4th recessed part 84, and the protrusion 84a is the 1st. 4 protrudes from the lower end surfaces on both sides of the concave portion 84 by a height e.

図4に示すように、第2の上型81と第2の下型85とを合わせると、第2の上型の側部83の下面は第2の上型の合わせ面90の上に密着し、突部84aは第2の下型85の第2の凹部92の中に入り込み、第2の凹部92を密閉された空間とする。また、第2の上型81の第4の凹部84は第2の下型85に設けられた第3の凹部93に合わせられ、T字型の冷却水流路仕切り部材30のための樹脂を注入する密閉された第2の空間95を成形する。そして、第2の上型81と第2の下型85とを合わせた後、第2の上型81と第2の下型85とを樹脂成形ができる温度まで加熱した後、図4の矢印Bに示すように、第2の凹部92と第2の空間95に樹脂を注入する。この注入された樹脂は左右の下部冷却水流路側壁43a、となるとともに、T字型の冷却水流路仕切り部材30を形成する。第2の上型の深さdの第4の凹部84にも樹脂が注入されて冷却水流路仕切り部材30の表面33を含む上端面を形成するので、樹脂成形された冷却水流路仕切り部材30の表面33は、第2の上型81と第2の下型85との合わせ面90よりも高さdだけ突出している。一方、下部冷却水流路側壁43aの上面は第2の上型81と第2の下型85との合わせ面90よりも高さeだけ低くなっている。   As shown in FIG. 4, when the second upper mold 81 and the second lower mold 85 are combined, the lower surface of the second upper mold side portion 83 is in close contact with the mating surface 90 of the second upper mold. Then, the protrusion 84a enters the second recess 92 of the second lower mold 85, and the second recess 92 is a sealed space. The fourth recess 84 of the second upper mold 81 is aligned with the third recess 93 provided in the second lower mold 85 and injects resin for the T-shaped cooling water flow path partition member 30. A sealed second space 95 is formed. Then, after the second upper mold 81 and the second lower mold 85 are combined, the second upper mold 81 and the second lower mold 85 are heated to a temperature at which resin molding is possible, and then the arrows in FIG. As shown in B, resin is injected into the second recess 92 and the second space 95. The injected resin forms the left and right lower cooling water flow channel side walls 43a and forms a T-shaped cooling water flow channel partition member 30. The resin is also injected into the fourth concave portion 84 having the depth d of the second upper mold to form the upper end surface including the surface 33 of the cooling water flow path partition member 30, so that the cooling water flow path partition member 30 molded with resin is formed. The surface 33 protrudes from the mating surface 90 of the second upper mold 81 and the second lower mold 85 by a height d. On the other hand, the upper surface of the lower cooling water flow passage side wall 43a is lower than the mating surface 90 of the second upper mold 81 and the second lower mold 85 by a height e.

図3に示した第1の上型71と第1の下型75とを合わせ、加熱し、樹脂を注入した後、そのままの状態で冷却すると、第1の空間91に注入した樹脂が固まってくる。そして、第1の上型71と第1の下型75の温度が空間91に注入した樹脂がある程度固まっているが完全に固化していない程度の温度となったら、あるいは所定の温度以上の状態で、図3に示した第1の上型71と第1の下型75とを上下方向に分離する。分離は、第1の上型71を固定して第1の下型を下方向に抜くことによって行う。第1の上型71と第1の下型75とを分離すると、第1の上型71には、ある程度まで固まった上部冷却水流路側壁41aと、上部冷却水流路側壁41aにインサート成形された半導体素子冷却板20が残った状態となっている。また、図4に示した第2の上型81を第2の下型85から分離すると、第2の下型85にはある程度固まった下部冷却水流路側壁43aと、T字型の冷却水流路仕切り部材30とが残った状態となっている。T字型の冷却水流路仕切り部材30の上端部は第2の上型81には深さdの第4の凹部84により形成されているので、その表面33は第2の下型85の合わせ面90よりも高さdだけ突出している。一方、下部冷却水流路側壁43aの上面は第2の上型の突部84aによってその上端高さが決まるので、第2の下型85の合わせ面90よりも高さeだけ窪んだ状態となっている。   When the first upper mold 71 and the first lower mold 75 shown in FIG. 3 are combined, heated, injected with resin, and then cooled as it is, the injected resin in the first space 91 is solidified. come. When the temperature of the first upper mold 71 and the first lower mold 75 is such that the resin injected into the space 91 has solidified to some extent but has not completely solidified, or is in a state of a predetermined temperature or higher. Thus, the first upper mold 71 and the first lower mold 75 shown in FIG. 3 are separated in the vertical direction. Separation is performed by fixing the first upper mold 71 and pulling the first lower mold downward. When the first upper mold 71 and the first lower mold 75 are separated, the first upper mold 71 is insert-molded into the upper cooling water flow channel side wall 41a solidified to some extent and the upper cooling water flow channel side wall 41a. The semiconductor element cooling plate 20 remains. Further, when the second upper mold 81 shown in FIG. 4 is separated from the second lower mold 85, the second lower mold 85 has a lower cooling water flow channel side wall 43a solidified to some extent and a T-shaped cooling water flow channel. The partition member 30 remains. Since the upper end portion of the T-shaped cooling water flow path partition member 30 is formed in the second upper die 81 by a fourth recess 84 having a depth d, the surface 33 is aligned with the second lower die 85. It protrudes by a height d from the surface 90. On the other hand, since the upper end height of the upper surface of the lower cooling water flow passage side wall 43a is determined by the second upper mold protrusion 84a, it is depressed by the height e from the mating surface 90 of the second lower mold 85. ing.

そして、図5に示すように、第1の上型71を上部冷却水流路側壁41aと半導体素子冷却板20と共にスライドさせて第2の下型の上に合わせ、第1の上型71の合わせ面80と第2の下型85の合わせ面90とを密着させる。T字型の冷却水流路仕切り部材30の表面33は第2の下型85の合わせ面90よりも高さdだけ突出しており、第1の上型71にセットされた半導体素子冷却板20の下面22の突起23の先端は第1の上型71と第1の下型75との合わせ面80と同一面或いは同一面よりも若干第1の下型75側に突出している。このため、第1の上型71の合わせ面80を第2の下型85の合わせ面90に密着させると、図5に示すように、半導体素子冷却板20の下面22の突起23の先端はまだ完全に固まっておらず軟らかい冷却水流路仕切り部材30の表面33に食い込んでいく。第1の上型71にセットされた半導体素子冷却板20の下面22の突起23の先端は第1の上型71と第1の下型75との合わせ面80と同一面である場合には、この食い込み深さはT字型の冷却水流路仕切り部材30の表面33の突出高さdとなる。一方、上部冷却水流路側壁41aの下端面は第1の上型71の側部73の下端面の合わせ面80と同一面であり、下部冷却水流路側壁43aの上端面は第2の下型85の合わせ面90よりも高さeだけ窪んだ状態となっているので、上部冷却水流路側壁41aの下端面と下部冷却水流路側壁43aの上端面との間には空間94が形成される。そして、図5の矢印Cに示すように、この空間94に接続樹脂を注入すると、上部冷却水流路側壁41aと下部冷却水流路側壁43aとを接続する接続部側壁42aが形成され、上部ケーシング41と下部ケーシング40とが一体となる。   Then, as shown in FIG. 5, the first upper mold 71 is slid together with the upper cooling water passage side wall 41 a and the semiconductor element cooling plate 20 to be aligned with the second lower mold, and the first upper mold 71 is aligned. The surface 80 and the mating surface 90 of the second lower mold 85 are brought into close contact with each other. The surface 33 of the T-shaped cooling water flow path partition member 30 protrudes by a height d from the mating surface 90 of the second lower mold 85, and the semiconductor element cooling plate 20 set on the first upper mold 71. The tip of the projection 23 on the lower surface 22 protrudes to the same side as the mating surface 80 of the first upper mold 71 and the first lower mold 75 or slightly to the first lower mold 75 side. Therefore, when the mating surface 80 of the first upper mold 71 is brought into close contact with the mating surface 90 of the second lower mold 85, the tip of the projection 23 on the lower surface 22 of the semiconductor element cooling plate 20 is as shown in FIG. It has not yet completely solidified and bites into the surface 33 of the soft cooling water flow path partition member 30. When the tip of the protrusion 23 on the lower surface 22 of the semiconductor element cooling plate 20 set on the first upper mold 71 is flush with the mating surface 80 of the first upper mold 71 and the first lower mold 75 The biting depth is the protruding height d of the surface 33 of the T-shaped cooling water flow path partition member 30. On the other hand, the lower end surface of the upper cooling water flow channel side wall 41a is flush with the mating surface 80 of the lower end surface of the side portion 73 of the first upper mold 71, and the upper end surface of the lower cooling water flow channel side wall 43a is the second lower mold. Since the height e is lower than the 85 mating surface 90, a space 94 is formed between the lower end surface of the upper cooling water flow channel side wall 41a and the upper end surface of the lower cooling water flow channel side wall 43a. . Then, as shown by an arrow C in FIG. 5, when connection resin is injected into the space 94, a connection portion side wall 42 a that connects the upper cooling water flow channel side wall 41 a and the lower cooling water flow channel side wall 43 a is formed. And the lower casing 40 are integrated.

この後、第1の上型71と第2の下型85とを冷却して注入された樹脂を完全に固まらせた後、第1の上型71と2の下型85とを分離すると、上部ケーシング41と下部ケーシング40とが一体となったものが取り出される。そして、図2に示すように下部ケーシング40の下端面に蓋50を下側から取り付けると、半導体冷却装置100が完成する。
Thereafter, the first upper mold 71 and the second lower mold 85 are cooled to completely solidify the injected resin, and then the first upper mold 71 and the second lower mold 85 are separated. Then, the upper casing 41 and the lower casing 40 integrated with each other are taken out. Then, as shown in FIG. 2, when the lid 50 is attached to the lower end surface of the lower casing 40 from below, the semiconductor cooling device 100 is completed.

以上説明した半導体冷却装置100の製造方法は、半導体素子冷却板20を含む上部ケーシング41を第1の上型71と第1の下型75とを用いて樹脂成形し、T字型の冷却水流路仕切り部材30を含む下部ケーシング40を第2の上型81と第2の下型85とで樹脂成形し、樹脂が完全に固まらないうちに半導体素子冷却板20の残っている第1の上型71を冷却水流路仕切り部材30の残っている第2の下型85に合わせ、半導体素子冷却板20に設けられた突起23の先端を冷却水流路仕切り部材30のベース板32の表面33に食い込むようにするという簡便な製造方法によって半導体素子冷却板20の突起23との先端と冷却水流路仕切り部材30のベース板32の表面33との間に隙間ができることを抑制することができ、冷却効率のよい半導体冷却装置100を製造することができる。   In the manufacturing method of the semiconductor cooling device 100 described above, the upper casing 41 including the semiconductor element cooling plate 20 is resin-molded using the first upper mold 71 and the first lower mold 75, and the T-shaped cooling water flow The lower casing 40 including the road partition member 30 is resin-molded with the second upper die 81 and the second lower die 85, and the first upper portion on which the semiconductor element cooling plate 20 remains before the resin is completely hardened. The mold 71 is aligned with the second lower mold 85 where the cooling water flow path partition member 30 remains, and the tip of the protrusion 23 provided on the semiconductor element cooling plate 20 is placed on the surface 33 of the base plate 32 of the cooling water flow path partition member 30. It is possible to suppress the formation of a gap between the tip of the protrusion 23 of the semiconductor element cooling plate 20 and the surface 33 of the base plate 32 of the cooling water flow path partition member 30 by a simple manufacturing method of biting in, and cooling. It is possible to produce the rate of good semiconductor cooling device 100.

以上説明した本実施形態では、半導体素子冷却板20の下面22の突起23の先端が第1の上型71と第1の下型75との合わせ面80と同一面で、T字型の冷却水流路仕切り部材30の表面33は第2の下型85の合わせ面90よりも高さdだけ突出していることとして説明したが、半導体素子冷却板20の下面22の突起23の先端が第1の上型71と第1の下型75との合わせ面80とよりも第1の下型75側に例えば、高さdだけ突出していれば、第2の上型81は、中央部82に第4の凹部84が設けられていない平坦な形状としてもよい。   In the present embodiment described above, the tip of the protrusion 23 on the lower surface 22 of the semiconductor element cooling plate 20 is flush with the mating surface 80 of the first upper mold 71 and the first lower mold 75, and the T-shaped cooling is performed. Although it has been described that the surface 33 of the water flow path partition member 30 protrudes from the mating surface 90 of the second lower mold 85 by a height d, the tip of the protrusion 23 on the lower surface 22 of the semiconductor element cooling plate 20 is the first. If, for example, a height d projects from the mating surface 80 of the upper mold 71 and the first lower mold 75 to the first lower mold 75 side, the second upper mold 81 is located at the central portion 82. It is good also as a flat shape in which the 4th recessed part 84 is not provided.

10 半導体素子、20 半導体素子冷却板、21 上面、22 下面、23 突起、30 冷却水流路仕切り部材、31 仕切り板、31f,40f 下端、32 ベース板、33 表面、40 下部ケーシング、40a 冷却水流路側壁、40b 端板、40c 上端、40d 接続部、40f 下端、41 上部ケーシング、41a 上部冷却水流路側壁、41b 上板、42a 接続部側壁、43a 下部冷却水流路側壁、50 蓋、60 冷却水流路、61 冷却水供給流路、62 冷却水排出流路、63,64,65 隙間、66 冷却水入口、67 冷却水出口、71,81 上型、72,82,88 中央部、73,78,79,83,87 側部、74,79 凹部、74a 突部、75,85 下型、77 リブ、80,90 合わせ面、84 第4の凹部、84a 突部、91,94,95 空間、92 第2の凹部、93 第3の凹部、100 半導体冷却装置。   DESCRIPTION OF SYMBOLS 10 Semiconductor element, 20 Semiconductor element cooling plate, 21 Upper surface, 22 Lower surface, 23 Protrusion, 30 Cooling water flow path partition member, 31 Partition plate, 31f, 40f Lower end, 32 Base plate, 33 Surface, 40 Lower casing, 40a Cooling water flow path Side wall, 40b End plate, 40c Upper end, 40d Connection part, 40f Lower end, 41 Upper casing, 41a Upper cooling water channel side wall, 41b Upper plate, 42a Connection part side wall, 43a Lower cooling water channel side wall, 50 Lid, 60 Cooling water channel 61 cooling water supply flow path, 62 cooling water discharge flow path, 63, 64, 65 gap, 66 cooling water inlet, 67 cooling water outlet, 71, 81 upper mold, 72, 82, 88 central part, 73, 78, 79,83,87 side, 74,79 recess, 74a protrusion, 75,85 lower mold, 77 rib, 80,90 mating surface, 84 4 of the recess 84a projections, 91,94,95 space, 92 second recess, 93 third recess, 100 semiconductor cooling device.

Claims (5)

冷却水によって半導体素子を冷却する半導体冷却装置であって、
一方の面に前記半導体素子が取り付けられ、他方の面に冷却用の突起が設けられている半導体素子冷却板と、
前記半導体素子冷却板の両側端から前記突起の突出方向に沿った方向に突出する各冷却水流路側壁と、
前記半導体素子冷却板の前記突起に接し、前記半導体素子冷却板との間の第1の隙間を区画するベース板と、前記ベース板から前記半導体素子冷却板と反対方向に突出し、冷却水の流れ方向に伸びて冷却水流路を仕切る仕切り板とを含み、前記ベース板の側端面が前記各冷却水流路側壁の内面との間に第2の隙間を開けて配置される冷却水流路仕切り部材と、を備え
前記冷却水流路仕切り部材は、前記半導体素子冷却板の前記突起の先端が前記ベース板の表面に食い込んだ状態で一体に樹脂成形されることを特徴とする半導体冷却装置。
A semiconductor cooling device for cooling a semiconductor element with cooling water,
A semiconductor element cooling plate having the semiconductor element mounted on one surface and a cooling protrusion provided on the other surface;
Each cooling water flow path side wall protruding in the direction along the protruding direction of the protrusion from both side ends of the semiconductor element cooling plate,
A base plate that is in contact with the protrusions of the semiconductor element cooling plate and defines a first gap between the semiconductor element cooling plate, and protrudes from the base plate in a direction opposite to the semiconductor element cooling plate; A partition plate extending in the direction and partitioning the cooling water flow path , wherein the side end surface of the base plate is disposed with a second gap between the inner surface of each cooling water flow channel side wall; and , equipped with a,
The cooling water flow path dividing member is a semiconductor cooling device distal end of the protrusion of the semiconductor element cooling plate and said Rukoto are molded integrally in a state of biting into the surface of the base plate.
半導体冷却装置の製造方法であって、
冷却用の突起が設けられている半導体素子冷却板がセットされる第1の上型と、前記第1の上型に合わせられて前記半導体素子冷却板の側端に第1の空間を形成する第1の下型と、を準備する工程と、
前記半導体素子冷却板の前記突起に接し、前記半導体素子冷却板との間の第1の隙間を区画するベース板を備える冷却水流路仕切り部材を成形するための第3の凹部を有する第2の下型と、前記第2の下型に合わせられて前記冷却水流路仕切り部材を成形する第2の空間を形成する第2の上型と、を準備する工程と、
前記第1の上型と前記第1の下型とを合わせて、前記第1の空間に樹脂を注入して半導体素子冷却板をインサート成形する工程と、
前記第2の上型と前記第2の下型とを合わせ、前記第2の空間に樹脂を注入して前記冷却水流路仕切り部材を成形する工程と、
前記第1の上型、前記第1の下型、及び前記第2の上型、前記第2の下型が、前記各樹脂が完全に固化していない程度の温度以上の状態で、前記第1の上型にインサート成形された前記半導体素子冷却板が残る状態で前記第1の上型と前記第1の下型を分離するとともに、前記第2の下型に成形した前記冷却水流路仕切り部材が残る状態で、前記第2の上型と前記第2の下型とを分離する工程と、
前記第1の上型に残っている前記半導体素子冷却板の前記突起の先端が、前記第2の下型に残っている前記冷却水流路仕切り部材の表面に食い込むように前記第2の下型の上に前記第1の上型を合わせる工程と、
を含むことを特徴とする半導体冷却装置の製造方法。
A method for manufacturing a semiconductor cooling device, comprising:
A first upper mold on which a semiconductor element cooling plate provided with a cooling protrusion is set, and a first space are formed at the side edge of the semiconductor element cooling plate in alignment with the first upper mold. Preparing a first lower mold;
A second recess having a third recess for forming a cooling water flow path partition member provided with a base plate in contact with the protrusion of the semiconductor element cooling plate and defining a first gap between the semiconductor element cooling plate and the semiconductor element cooling plate; A step of preparing a lower mold and a second upper mold that forms a second space for forming the cooling water flow path partition member in accordance with the second lower mold;
Combining the first upper mold and the first lower mold, injecting resin into the first space, and insert-molding a semiconductor element cooling plate;
Combining the second upper mold and the second lower mold, injecting resin into the second space, and molding the cooling water flow path partition member;
The first upper mold, the first lower mold, the second upper mold, and the second lower mold are in a state in which the respective resins are at a temperature or higher such that the respective resins are not completely solidified . The first upper mold and the first lower mold are separated in a state where the semiconductor element cooling plate insert-molded in one upper mold remains, and the cooling water flow path partition molded into the second lower mold Separating the second upper mold and the second lower mold with the member remaining;
The second lower mold so that the tip of the protrusion of the semiconductor element cooling plate remaining in the first upper mold bites into the surface of the cooling water flow path partition member remaining in the second lower mold. Aligning the first upper mold on the substrate,
The manufacturing method of the semiconductor cooling device characterized by including this.
請求項に記載の半導体冷却装置の製造方法であって、
前記半導体素子冷却板の前記突起の先端は、第1の上型にセットされた際に前記第1の上型と前記第1の下型との合わせ面と同一面または前記合わせ面よりも突出しており、
前記第2の上型は、前記第3の凹部に合わせられて前記冷却水流路仕切り部材を成形する第2の空間を形成する第4の凹部を有すること、
を特徴とする半導体装置の冷却方法。
It is a manufacturing method of the semiconductor cooling device according to claim 2 ,
The tip of the protrusion of the semiconductor element cooling plate protrudes from the same surface as the mating surface of the first upper die and the first lower die or more than the mating surface when set on the first upper die. And
The second upper mold has a fourth recess that is aligned with the third recess and forms a second space for molding the cooling water flow path partition member;
A method for cooling a semiconductor device.
請求項またはに記載の半導体冷却装置の製造方法であって、
前記第2の下型の上に前記第1の上型を合わせる工程は、
前記第2の下型または前記第1の上型をスライドさせることによって前記第2の下型と前記第1の上型とを合わせること、
を特徴とする半導体冷却装置の製造方法。
It is a manufacturing method of the semiconductor cooling device according to claim 2 or 3 ,
The step of aligning the first upper mold on the second lower mold comprises:
Combining the second lower mold and the first upper mold by sliding the second lower mold or the first upper mold;
A method for manufacturing a semiconductor cooling device.
請求項からのいずれか1項に記載の半導体冷却装置の製造方法であって、
前記第1の上型の第1の空間は、前記半導体素子冷却板の両側端から前記突起の突出方向に沿った方向に突出する各上部冷却水流路側壁を形成するものであり、
前記第2の下型は、前記各上部冷却水流路側壁に対応した位置に配置される各下部冷却水流路側壁を形成するための各第2の凹部を含み、
前記インサート成形する工程は、前記第1の空間に樹脂を注入して前記各上部冷却水流路側壁を同時に成形し、
前記冷却水流路仕切り部材を成形する工程は、前記各第2の凹部に樹脂を注入して前記各下部冷却水流路側壁を同時に成形し、
前記第1の上型は成形した前記各上部冷却水流路側壁が残る状態で前記第1の下型と分離され、前記第2の下型は、成形した前記各下部冷却水流路側壁が残る状態で前記第2の上型と分離され、
前記第1の上型に残る前記各上部冷却水流路側壁と前記第2の下型に残る前記各下部冷却水流路側壁との間に樹脂を注入して前記各上部冷却水流路側壁と前記各下部冷却水流路側壁とを接合する工程と、
を含むことを特徴とする半導体冷却装置の製造方法。
It is a manufacturing method of the semiconductor cooling device according to any one of claims 2 to 4 ,
The first upper mold first space forms each upper cooling water flow path side wall protruding in a direction along the protruding direction of the protrusion from both side ends of the semiconductor element cooling plate,
The second lower mold includes second recesses for forming the lower cooling water flow channel side walls disposed at positions corresponding to the upper cooling water flow channel side walls,
The insert molding step injects resin into the first space to simultaneously mold the upper cooling water flow path side walls,
The step of forming the cooling water flow path partition member is formed by injecting resin into each of the second recesses and simultaneously forming the lower cooling water flow path side walls,
The first upper mold is separated from the first lower mold in a state where the molded upper cooling water flow channel side walls remain, and the second lower mold is a state in which the molded lower cooling water flow channel side walls remain. Separated from the second upper mold,
Resin is injected between each of the upper cooling water flow channel side walls remaining on the first upper mold and each of the lower cooling water flow channel side walls remaining on the second lower mold, to thereby form each of the upper cooling water flow channel side walls and each of the above. Joining the lower cooling water flow path side wall;
The manufacturing method of the semiconductor cooling device characterized by the above-mentioned.
JP2010277860A 2010-12-14 2010-12-14 Semiconductor cooling device and manufacturing method thereof Active JP5707916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010277860A JP5707916B2 (en) 2010-12-14 2010-12-14 Semiconductor cooling device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010277860A JP5707916B2 (en) 2010-12-14 2010-12-14 Semiconductor cooling device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012129280A JP2012129280A (en) 2012-07-05
JP5707916B2 true JP5707916B2 (en) 2015-04-30

Family

ID=46646031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010277860A Active JP5707916B2 (en) 2010-12-14 2010-12-14 Semiconductor cooling device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5707916B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6124742B2 (en) * 2013-09-05 2017-05-10 三菱電機株式会社 Semiconductor device
DE112015006041B4 (en) * 2015-01-22 2021-03-11 Mitsubishi Electric Corporation Semiconductor device
JP6729076B2 (en) * 2016-06-30 2020-07-22 日産自動車株式会社 Inverter tray and manufacturing method thereof
DE112018007544T5 (en) 2018-05-01 2021-01-07 Mitsubishi Electric Corporation Semiconductor device
DE112021005849T5 (en) * 2021-01-12 2023-08-17 Hitachi Astemo, Ltd. HEAT EXCHANGE DEVICE AND POWER CONVERSION DEVICE
CN117878078B (en) * 2024-01-19 2024-10-01 派德芯能半导体(上海)有限公司 Liquid cooling radiator
CN117878079A (en) * 2024-01-19 2024-04-12 派德芯能半导体(上海)有限公司 Circulation cooling system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3203475B2 (en) * 1996-06-28 2001-08-27 株式会社日立製作所 Semiconductor device
JP2002026207A (en) * 2000-07-06 2002-01-25 Tousui Ltd Heat exchanger
JP4403867B2 (en) * 2004-04-08 2010-01-27 三菱電機株式会社 Heat sink for electronic equipment
US20070017660A1 (en) * 2005-07-12 2007-01-25 Stefan Kienitz Heatsink with adapted backplate
JP4982194B2 (en) * 2007-01-26 2012-07-25 アイシン・エィ・ダブリュ株式会社 Heating element cooling structure, driving device, and method of manufacturing heating element cooling structure
JP5120604B2 (en) * 2007-05-22 2013-01-16 アイシン・エィ・ダブリュ株式会社 Semiconductor module and inverter device
JP5099417B2 (en) * 2007-05-22 2012-12-19 アイシン・エィ・ダブリュ株式会社 Semiconductor module and inverter device
JP5120605B2 (en) * 2007-05-22 2013-01-16 アイシン・エィ・ダブリュ株式会社 Semiconductor module and inverter device
JP2009260058A (en) * 2008-04-17 2009-11-05 Mitsubishi Electric Corp Refrigerant cooling type electric power semiconductor device
JP5013213B2 (en) * 2008-10-29 2012-08-29 アイシン・エィ・ダブリュ株式会社 Heating element cooling device

Also Published As

Publication number Publication date
JP2012129280A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
JP5707916B2 (en) Semiconductor cooling device and manufacturing method thereof
JP5423998B2 (en) Electronic component cooling unit and power conversion device
KR102291151B1 (en) Cooling flow channel module for power changing device and power changing device having the same
JP4989574B2 (en) Heat sink for semiconductor element cooling
WO2015173862A1 (en) Power semiconductor device and method for manufacturing same
JP5314933B2 (en) Power converter
JP2010027735A (en) Sealing part structure of power module
JP5155590B2 (en) Cooling system
JP2013094023A (en) Electric power conversion apparatus
CN109428132B (en) Electronic module and method for producing an electronic module
JP2014023387A (en) Motor and manufacturing method of the same
KR101372141B1 (en) Injection mold temperature control device using thermo electric module and injection mold comprising of the same
JP6135439B2 (en) Power converter
JP6209644B1 (en) Semiconductor device cooling system
CN103208906B (en) Bus and electronic equipment
JP2010129584A (en) Working device for heat sink and working method
CN211843069U (en) Injection mold is used in cable joint production
KR20230068135A (en) Water-cooled heat dissipation module assembly
JP2015079837A (en) Capacitor
CN106505057A (en) SPM and its manufacture method
JP2015082590A (en) Cooling unit manufacturing method
JP2021086869A (en) Electronic component, electronic apparatus and manufacturing method for electronic component
JP2016074015A (en) Semiconductor cooler structure
US20240029930A1 (en) Reactor, converter and power conversion device
KR101557286B1 (en) Cooling apparatus used in Electric powered vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150216

R151 Written notification of patent or utility model registration

Ref document number: 5707916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151