JP5705051B2 - Road surface state estimation method and road surface state estimation device - Google Patents

Road surface state estimation method and road surface state estimation device Download PDF

Info

Publication number
JP5705051B2
JP5705051B2 JP2011162676A JP2011162676A JP5705051B2 JP 5705051 B2 JP5705051 B2 JP 5705051B2 JP 2011162676 A JP2011162676 A JP 2011162676A JP 2011162676 A JP2011162676 A JP 2011162676A JP 5705051 B2 JP5705051 B2 JP 5705051B2
Authority
JP
Japan
Prior art keywords
road surface
wheel speed
fluctuation range
longitudinal acceleration
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011162676A
Other languages
Japanese (ja)
Other versions
JP2013023164A (en
Inventor
泰通 若尾
泰通 若尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2011162676A priority Critical patent/JP5705051B2/en
Priority to PCT/JP2012/068154 priority patent/WO2013011992A1/en
Priority to CN201280035965.3A priority patent/CN103717469B/en
Priority to US14/233,223 priority patent/US8942861B2/en
Priority to EP12814951.5A priority patent/EP2735487B1/en
Publication of JP2013023164A publication Critical patent/JP2013023164A/en
Application granted granted Critical
Publication of JP5705051B2 publication Critical patent/JP5705051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Description

本発明は、走行中の路面状態を推定する方法とその装置に関するものである。   The present invention relates to a method and apparatus for estimating a road surface condition during traveling.

自動車の走行安定性を高めるため、路面状態もしくはタイヤの接地状態を精度良く推定し、車両制御へフィードバックすることが求められている。予め路面状態やタイヤの接地状態を推定することができれば、制駆動や操舵といった危険回避の操作を起こす前に、例えば、ABSブレーキのより高度な制御等が可能になり、安全性が一段と高まることが予想される。   In order to improve the running stability of the automobile, it is required to accurately estimate the road surface condition or the ground contact state of the tire and feed it back to the vehicle control. If the road surface condition and tire ground contact condition can be estimated in advance, more advanced control of the ABS brake, for example, can be performed before the risk avoidance operation such as braking / driving and steering, etc., and safety will be further enhanced. Is expected.

路面状態を推定する方法としては、タイヤのショルダー部にタイヤ周方向に延長するサイプを含む易変形構造領域が特定の周期Pで形成された路面状態推定用タイヤを用い、加速度センサーにより、走行中のタイヤトレッドの振動を検出して振動スペクトルを求めるとともに、車輪速センサーにより測定した車輪速と前記周期Pとから算出される検出周波数における易変形構造領域に起因する振動レベルの大きさから路面状態を推定する方法が提案されている(例えば、特許文献1参照)。
また、左右の車輪の車両バネ下部に加速度センサーを取付けて車両が路面突起を乗り越えたときの車両バネ下部の振動を検出するとともに、バネ下振動の最大値と最小値との差Ap-pを算出し、この最大値と最小値との差Ap-pと予め求めておいた路面突起高さX1及び路面突起幅X2と最大値と最小値との差Ap-pとの関係を示す重回帰式とを用いて路面突起高さX1と路面突起幅X2とを推定する路面形状検出装置が開示されている(例えば、特許文献2参照)。なお、重回帰式は車輪速毎に求められる。
As a method for estimating the road surface condition, a road surface state estimation tire in which an easily deformable structure region including a sipe extending in the tire circumferential direction is formed at a specific period P on the shoulder portion of the tire is used, and the vehicle is traveling by an acceleration sensor. The road surface condition is determined from the magnitude of the vibration level caused by the easily deformable structure region at the detection frequency calculated from the wheel speed measured by the wheel speed sensor and the period P. Has been proposed (see, for example, Patent Document 1).
In addition, an acceleration sensor is attached to the lower part of the left and right vehicle springs to detect the vibration of the lower part of the vehicle spring when the vehicle gets over the road surface protrusion, and the difference A pp between the maximum and minimum values of the unsprung vibration is calculated. The multiple regression equation showing the relationship between the difference A pp between the maximum value and the minimum value and the road protrusion height X 1 and the road protrusion width X 2 previously determined and the difference A pp between the maximum value and the minimum value. Is used to estimate the road surface projection height X 1 and the road surface projection width X 2 (see, for example, Patent Document 2). The multiple regression equation is obtained for each wheel speed.

特開2010−274906号公報JP 2010-274906 A 特許第3186474号公報Japanese Patent No. 3186474

しかしながら、前記路面状態推定用タイヤを用いた方法では、トレッドパターンが限定されるため、パターン作成の自由度が低いといった問題点があった。
また、車両バネ下部の振動を検出する方法では、車両が路面突起を乗り越えたときに発生する11〜12Hz前後のバネ下共振を利用しているため、一過性の路面突起の形状については推定できるものの、路面の滑り易さに関係する路面性状を推定することは困難である。
However, the method using the road surface condition estimation tire has a problem in that the tread pattern is limited and the degree of freedom in pattern creation is low.
Further, in the method of detecting the vibration under the vehicle spring, since the unsprung resonance of about 11 to 12 Hz generated when the vehicle gets over the road surface protrusion is used, the shape of the temporary road surface protrusion is estimated. Although possible, it is difficult to estimate the road surface properties related to the slipperiness of the road surface.

本発明は、従来の問題点に鑑みてなされたもので、凹凸のある路面において、路面の滑り易さに関係する路面性状を精度よく推定することのできる方法とその装置を提供することを目的とする。   The present invention has been made in view of the conventional problems, and an object of the present invention is to provide a method and apparatus capable of accurately estimating road surface properties related to the slipperiness of road surfaces on uneven road surfaces. And

本発明者は、鋭意検討を重ねた結果、車輪速Vwの変化量ΔVwの変動幅σ(ΔVw)とバネ下前後加速度Gxの変動幅σ(Gx)との関係は路面状態、特に、路面の凹凸による振動gの変動幅σ(g)に依存することから、VwとGxとを検出してσ(ΔVw)の大きさとσ(Gx)の大きさとの関係を求めれば、走行中の路面が凹凸のある路面か平滑な路面かを精度よく推定できるとともに、凹凸のある路面では、路面からの入力によりタイヤに励起される振動のピーク周波数fpの位置が路面の滑り易さに依存することから、車輪速Vwから求められるピーク周波数fpの位置と実際に測定したピーク周波数fpの位置との関係を求めれば、凹凸のある路面が滑り易いか否かを精度よく推定できることができることを見出し本発明に到ったものである。
すなわち、本願発明は、走行中の路面状態を推定する方法であって、車両のバネ下に取付けられた加速度センサーによりバネ下前後加速度を検出するステップと、車輪速を検出するステップと、前記検出された車輪速の変化量を算出するステップと、前記算出された車輪速の変化量の変動幅と前記検出されたバネ下前後加速度の変動幅とをそれぞれ算出するステップと、前記車輪速の変化量の変動幅と前記バネ下前後加速度の変動幅との関係から走行中の路面が凹凸のある路面であるか否かを推定するステップと、前記推定された路面が凹凸のある路面である場合に、前記検出されたバネ下前後加速度を周波数分析して求められる周波数スペクトルの200Hz〜230Hz帯域内におけるピーク位置の周波数であるピーク周波数を算出し、前記ピーク周波数と車輪速とから前記凹凸のある路面が滑り易い路面か否かを推定するステップとを備え、前記走行中の路面が凹凸のある路面であるか否かを推定するステップでは、前記算出されたバネ下前後加速度の変動幅が、前記車輪速の変化量の変動幅を予め求めておいたバネ下前後加速度の変動幅と車輪速の変化量の変動幅との関係を示す変動幅判定式に代入して得られたバネ下前後加速度の変動幅の計算値を超えた場合に、走行中の路面が凹凸のある路面であると推定し、前記凹凸のある路面が滑り易い路面か否かを推定するステップでは、予め求めておいたピーク周波数と車輪速との関係を示す周波数判定式に前記検出された車輪速を代入して得られたピーク周波数の計算値よりも前記検出されたピーク周波数が小さい場合に、前記凹凸のある路面が、路面摩擦係数μが0.3よりも小さい滑り易い路面であると推定することを特徴とする。
As a result of intensive studies, the present inventor has found that the relationship between the fluctuation width σ (ΔV w ) of the change amount ΔV w of the wheel speed V w and the fluctuation width σ (G x ) of the unsprung longitudinal acceleration G x is the road surface condition. In particular, since it depends on the fluctuation width σ (g) of the vibration g due to road surface unevenness, the relationship between the magnitude of σ (ΔV w ) and the magnitude of σ (G x ) is detected by detecting V w and G x. Thus, it is possible to accurately estimate whether the running road surface is an uneven surface or a smooth road surface. On the uneven surface, the position of the peak frequency f p of vibration excited in the tire by the input from the road surface is determined. since that depends on the slipperiness of the road surface, by obtaining the relationship between the position of the peak frequency f p which actually measured position of the peak frequency f p obtained from the wheel speed V w, or slippery road surface with irregularities The present invention has been found that it can be accurately estimated whether or not The
That is, the present invention is a method for estimating a road surface condition during traveling, the step of detecting unsprung longitudinal acceleration by an acceleration sensor attached under the spring of the vehicle, the step of detecting wheel speed, and the detection Calculating a variation amount of the calculated wheel speed, calculating a variation width of the calculated variation amount of the wheel speed and a variation width of the detected unsprung longitudinal acceleration, and a variation of the wheel speed. A step of estimating whether or not the running road surface is an uneven road surface from the relationship between the fluctuation range of the amount and the fluctuation range of the unsprung longitudinal acceleration, and the estimated road surface is an uneven road surface In addition, a peak frequency that is a frequency of a peak position in a 200 Hz to 230 Hz band of a frequency spectrum obtained by frequency analysis of the detected unsprung longitudinal acceleration is calculated, Estimating whether the uneven road surface is a slippery road surface from the peak frequency and the wheel speed, and estimating whether the traveling road surface is an uneven road surface, The fluctuation range of the calculated unsprung longitudinal acceleration indicates the relationship between the fluctuation range of the unsprung longitudinal acceleration and the fluctuation range of the wheel speed variation obtained in advance. When the calculated value of fluctuation range of unsprung longitudinal acceleration obtained by substituting into the judgment formula is exceeded, it is estimated that the running road surface is an uneven road surface, and the uneven road surface is a slippery road surface. In the step of estimating whether or not, the detection is made based on a calculated value of the peak frequency obtained by substituting the detected wheel speed into a frequency judgment formula indicating a relationship between the peak frequency and the wheel speed obtained in advance. If the peak frequency is small, Road surface with a serial uneven, the road surface friction coefficient μ is characterized in that estimated to be less slippery road surface than 0.3.

路面の凹凸が大きいと、σ(Gx)がσ(ΔVw)から予想されるσ(Gx)よりも大きくなるので、走行中の路面が排水舗装路などの凹凸のある路面であるか、乾燥舗装路などの凹凸の少ない平滑路であるかを容易に推定することができる。
更に、路面が凹凸のある路面である場合には、バネ下前後加速度を周波数分析して求められる周波数スペクトルの200Hz〜230Hz帯域内におけるピーク位置の周波数であるピーク周波数と車輪速とから凹凸のある路面が滑り易い路面か否かを推定するようにしたので、凹凸のある路面が排水性舗装路などの滑りにくい路面なのか雪路などの滑り易い路面なのかを精度よく推定することができる。
なお、変動幅判定式としては、例えば、下記の式に示すような、様々な路面で車両を走行させて求めた、車輪速の変化量の変動幅とバネ下前後加速度の変動幅との関係を示す一次式を挙げることができる。
σ(Gx)=K・σ(ΔVw)+σ(g)
また、周波数判定式としては、例えば、下記の式に示すような、排水舗装路と雪路とで車両を走行させて求めた、ピーク周波数fpと車輪速Vwとの関係を示す一次式を挙げることができる。
p=a・Vw+b
また、車輪速の変化量の変動幅σ(ΔVw)やバネ下前後加速度Gxの変動幅σ(Gx)としては、所定時間(例えば、0.5秒)分のΔVwのデータ、及びGxのデータがガウス分布しているとしたときの標準偏差σや半値幅のような、データのバラつきを表す量を用いることができる。
If road surface unevenness is large, σ (G x ) will be larger than σ (G x ) expected from σ (ΔV w ), so whether the road surface being traveled is an uneven road surface such as a drainage pavement. It is possible to easily estimate whether the road is a smooth road with little unevenness, such as a dry pavement.
Furthermore, when the road surface is an uneven road surface, there is an unevenness from the peak frequency that is the frequency of the peak position in the 200 Hz to 230 Hz band of the frequency spectrum obtained by frequency analysis of the unsprung longitudinal acceleration and the wheel speed. Since it is estimated whether or not the road surface is slippery, it is possible to accurately estimate whether the uneven road surface is a slippery road surface such as a drainage paved road or a snowy road surface.
As the variation range judgment formula, for example, the relationship between the variation range of the wheel speed variation and the variation range of the unsprung longitudinal acceleration obtained by running the vehicle on various road surfaces as shown in the following formula: The primary formula which shows can be mentioned.
σ (G x ) = K · σ (ΔV w ) + σ (g)
As the frequency determination formula, for example, as shown in the following formula, drainage pavement and obtained by driving the vehicle in a snow-covered road, a primary expression showing the relationship between the peak frequency f p and the wheel speed V w Can be mentioned.
f p = a · V w + b
Further, as the fluctuation width σ (ΔV w ) of the variation amount of the wheel speed and the fluctuation width σ (G x ) of the unsprung longitudinal acceleration G x , ΔV w data for a predetermined time (for example, 0.5 seconds), In addition, it is possible to use an amount representing a variation in data, such as a standard deviation σ or a half width when the G x data is Gaussian distributed.

また、本願発明は、前記路面状態を推定するステップにおいて、前記算出された車輪速の変化量の変動幅が予め設定された最大車輪速変化量変動幅を超えた場合、または、前記バネ下前後加速度の変動幅が予め設定された最大加速度変動幅を超えた場合には、走行中の路面が不整路であると推定することを特徴とする。
ここで、「不整路」は、未舗装路やひび割れが生じている路面、あるいは、シャーベット路などのように、路面の凹凸が大きくかつ不規則な路面であって、通常の接地性が得られない路面を指す。走行中の路面が不整路である場合には、車輪速の変化量の変動幅及びバネ下前後加速度の変動幅のいずれか一方もしくは両方が大きくなる。
そこで、σ(ΔVw)>σAMまたはσ(Gx)>σGMである場合には、路面が不整路と推定して、排水舗装路や雪路などの凹凸のある路面と区別する。
Further, in the step of estimating the road surface state, the present invention relates to a case where the calculated fluctuation range of the change amount of the wheel speed exceeds a preset maximum fluctuation amount of the wheel speed change amount, or before and after the unsprung state. When the fluctuation range of acceleration exceeds a preset maximum fluctuation range of acceleration, it is estimated that the running road surface is an irregular road.
Here, an “irregular road” is an irregular road surface with large irregularities on the road surface, such as an unpaved road, a cracked road surface, or a sherbet road, and a normal grounding property is obtained. Point to no road surface. When the traveling road surface is an irregular road, one or both of the fluctuation range of the change amount of the wheel speed and the fluctuation range of the unsprung longitudinal acceleration become large.
Therefore, when σ (ΔV w )> σ AM or σ (G x )> σ GM , the road surface is estimated as an irregular road, and is distinguished from uneven road surfaces such as drainage paved roads and snow roads.

また、本願発明は、請求項1に記載の路面状態推定方法を実現するための路面状態推定装置であって、車両のバネ下に取付けられてバネ下前後加速度を検出する前後加速度検出手段と、車輪速を検出する車輪速検出手段と、前記検出された車輪速の変化量を算出する車輪速変化量算出手段と、前記車輪速の変化量の変動幅と前記バネ下前後加速度の変動幅とを算出する変動幅算出手段と、予め設定された車輪速の最大動変動幅、バネ下前後加速度の最大変動幅、及び、バネ下前後加速度の変動幅との関係を示す変動幅判定式を記憶する記憶手段と、前記検出されたバネ下前後加速度を周波数分析する周波数分析手段と、前記周波数分析により得られた周波数スペクトルの200Hz〜230Hz帯域内におけるピーク位置の周波数であるピーク周波数を算出するピーク周波数算出手段と、前記車輪速の変化量の変動幅と前記バネ下前後加速度の変動幅とを用いて走行中の路面が凹凸のある路面であるか否かを判別する路面状態判別手段と、前記判別された路面が凹凸のある路面である場合に、前記凹凸のある路面が滑り易い路面であるか否かを推定する路面状態推定手段とを備え、前記路面状態判別手段が、前記算出されたバネ下前後加速度の変動幅が、前記車輪速の変化量の変動幅を前記変動幅判定式に代入して得られたバネ下前後加速度の変動幅の計算値より大きく、かつ、前記車輪速の変化量の変動幅と前記バネ下前後加速度の変動幅とがそれぞれ前記車輪速の変化量の最大動変動幅及び前記バネ下前後加速度の最大変動幅以下であるときに、前記路面が凹凸のある路面であると判定し、前記路面状態推定手段が、予め求めておいたピーク周波数と車輪速との関係を示す周波数判定式に前記検出された車輪速を代入して得られたピーク周波数の計算値よりも前記検出されたピーク周波数が小さい場合に、前記凹凸のある路面が、路面摩擦係数μが0.3よりも小さい滑り易い路面であると推定することを特徴とする。
このような構成を採ることにより、走行中の路面が凹凸のある路面か否かを精度よく推定できるとともに、路面が凹凸のある路面である場合には、路面が滑り易い路面であるか否かを容易に推定することのできる路面状態推定装置を得ることができる。
Further, the present invention is a road surface state estimation device for realizing the road surface state estimation method according to claim 1, and is a longitudinal acceleration detection unit that is attached under the spring of the vehicle and detects unsprung longitudinal acceleration, A wheel speed detecting means for detecting a wheel speed, a wheel speed change calculating means for calculating a change in the detected wheel speed, a fluctuation width of the wheel speed change quantity, and a fluctuation width of the unsprung longitudinal acceleration; The variation range calculation means for calculating the variation range and the variation range determination formula indicating the relationship between the preset maximum dynamic variation range of the wheel speed, the maximum variation range of the unsprung longitudinal acceleration, and the variation range of the unsprung longitudinal acceleration are stored. Storage means, frequency analysis means for frequency analysis of the detected unsprung longitudinal acceleration, and a peak position frequency in the 200 Hz to 230 Hz band of the frequency spectrum obtained by the frequency analysis. A road surface that determines whether or not the running road surface is an uneven road surface by using a peak frequency calculation means for calculating a frequency, and a fluctuation range of the change amount of the wheel speed and a fluctuation range of the unsprung longitudinal acceleration. The road surface state determining means, comprising: a state determining means; and a road surface state estimating means for estimating whether or not the uneven road surface is a slippery road surface when the determined road surface is an uneven road surface. However, the calculated fluctuation range of the unsprung longitudinal acceleration is larger than the calculated value of the fluctuation range of the unsprung longitudinal acceleration obtained by substituting the fluctuation range of the change amount of the wheel speed into the fluctuation range judgment formula, And, when the fluctuation width of the change amount of the wheel speed and the fluctuation width of the unsprung longitudinal acceleration are equal to or less than the maximum dynamic fluctuation width of the change amount of the wheel speed and the maximum fluctuation width of the unsprung longitudinal acceleration, respectively. The road surface is an uneven road surface Than the calculated value of the peak frequency obtained by substituting the detected wheel speed into the frequency judgment formula indicating the relationship between the peak frequency and the wheel speed, which is determined in advance, by the road surface state estimating means. When the detected peak frequency is small, it is estimated that the uneven road surface is a slippery road surface having a road surface friction coefficient μ of less than 0.3.
By adopting such a configuration, it can be accurately estimated whether or not the running road surface is an uneven road surface, and if the road surface is an uneven road surface, whether or not the road surface is a slippery road surface. It is possible to obtain a road surface state estimation device that can easily estimate

なお、前記発明の概要は、本発明の必要な全ての特徴を列挙したものではなく、これらの特徴群のサブコンビネーションもまた、発明となり得る。   The summary of the invention does not list all necessary features of the present invention, and sub-combinations of these feature groups can also be the invention.

本発明の実施の形態に係る路面状態推定装置の構成を示す図である。It is a figure which shows the structure of the road surface state estimation apparatus which concerns on embodiment of this invention. 車輪速の変化量の変動幅とバネ下前後加速度の変動幅との関係を示す図である。It is a figure which shows the relationship between the fluctuation range of the variation | change_quantity of wheel speed, and the fluctuation range of unsprung front-back acceleration. 図3の拡大図である。FIG. 4 is an enlarged view of FIG. 3. バネ下前後加速度の周波数スペクトルの一例を示す図である。It is a figure which shows an example of the frequency spectrum of unsprung longitudinal acceleration. 車輪速とピーク周波数との関係を示す図である。It is a figure which shows the relationship between a wheel speed and a peak frequency.

以下、実施の形態を通じて本発明を詳説するが、以下の実施の形態は特許請求の範囲に係る発明を限定するものでなく、また、実施の形態の中で説明される特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。   Hereinafter, the present invention will be described in detail through embodiments, but the following embodiments do not limit the invention according to the claims, and all combinations of features described in the embodiments are included. It is not necessarily essential for the solution of the invention.

図1は、本実施の形態に係る路面状態推定装置10の機能ブロック図である。
路面状態推定装置10は、バネ下前後加速度検出手段としての加速度センサー11と、車輪速検出手段としての車輪速センサー12と、車輪速変化量算出手段13と、変動幅算出手段14と、記憶手段15と、路面状態判別手段16と、周波数分析手段17と、ピーク周波数抽出手段18と、路面状態推定手段19とを備える。車輪速変化量算出手段13、変動幅算出手段14、及び、路面状態判別手段16〜路面状態推定手段19の各手段は、例えば、コンピュータのソフトウェアにより構成される。
加速度センサー11は、図1に示すように、ナックル21に取り付けられてバネ下前後加速度Gxを検出する。ナックル21は、タイヤTを装着するホイール22とともに回転するホイールハブ23と軸受けを介して連結された車輪部20の非回転側部品(車両バネ下部品)で、図示しない車体にショックアブゾーバー24等のサスペンション部材により懸架される。
車輪速センサー12は車輪の回転速度(以下、車輪速という)Vwを検出するもので、本例では、外周部に歯車が形成され車輪とともに回転するローターと、このローターと磁気回路を構成するヨークと、磁気回路の磁束変化を検出するコイルとを備え、車輪の回転角度を検出する周知の電磁誘導型の車輪速センサーを用いている。ヨークとコイルとはナックル21に装着される。
本例では、後述するように、変動幅σ(ΔVw),σ(Gx)を算出する関係上、バネ下前後加速度Gxのデータと車輪速Vwのデータとを、それぞれ、加速度センサー11及び車輪速センサー12の出力をサンプリングしてA/D変換した値を用いている。
なお、車両の走行状態を制御する車両制御手段にCAN(コントローラ・エリア・ネットワーク)などのネットワークが形成されている車両では、車輪速Vwのデータをネットワークから取得することが好ましい。
FIG. 1 is a functional block diagram of a road surface state estimation apparatus 10 according to the present embodiment.
The road surface state estimation device 10 includes an acceleration sensor 11 as an unsprung longitudinal acceleration detection means, a wheel speed sensor 12 as a wheel speed detection means, a wheel speed change amount calculation means 13, a fluctuation range calculation means 14, and a storage means. 15, a road surface state determination unit 16, a frequency analysis unit 17, a peak frequency extraction unit 18, and a road surface state estimation unit 19. Each means of the wheel speed change amount calculating means 13, the fluctuation range calculating means 14, and the road surface state determining means 16 to the road surface state estimating means 19 is constituted by software of a computer, for example.
As shown in FIG. 1, the acceleration sensor 11 is attached to the knuckle 21 and detects the unsprung longitudinal acceleration G x . The knuckle 21 is a non-rotating side part (vehicle unsprung part) of the wheel unit 20 connected via a bearing to a wheel hub 23 that rotates together with a wheel 22 on which the tire T is mounted. Suspended by a suspension member.
The wheel speed sensor 12 detects a rotational speed (hereinafter referred to as wheel speed) V w of the wheel. In this example, a rotor is formed with a gear on the outer peripheral portion and rotates together with the wheel, and this rotor constitutes a magnetic circuit. A known electromagnetic induction type wheel speed sensor that includes a yoke and a coil that detects a change in magnetic flux of a magnetic circuit and detects a rotation angle of the wheel is used. The yoke and the coil are attached to the knuckle 21.
In this example, as will be described later, in order to calculate the fluctuation ranges σ (ΔV w ) and σ (G x ), the unsprung longitudinal acceleration G x data and the wheel speed V w data are respectively converted into acceleration sensors. 11 and the output of the wheel speed sensor 12 are sampled and A / D converted.
Note that, in a vehicle in which a network such as a CAN (controller area network) is formed in the vehicle control means for controlling the running state of the vehicle, it is preferable to acquire the wheel speed Vw data from the network.

車輪速変化量算出手段13は、車輪速センサー12で検出された車輪速Vwの変化量である車輪速の変化量ΔVwを算出する。車輪速の変化量ΔVwとしては、サンプリング点間の差分を用いることができる。
変動幅算出手段14は、加速度センサー11で検出したバネ下前後加速度Gxの変動幅σ(Gx)と、車輪速変化量算出手段13で算出した車輪速ΔVwの変化量の変動幅σ(ΔVw)とをそれぞれ算出する。所定時間T(例えば、T=0.5秒)分のバネ下前後加速度Gxのデータと車輪速の変化量ΔVwのデータとはガウス分布で近似できるので、本例では、変動幅σ(Gx)をそれぞれのガウス分布の標準偏差σとした。
なお、変動幅σとしては所定時間内のデータバラつきを表す量であればよいので、半値幅や2σなどを用いてもよい。
記憶手段15は、予め設定されたバネ下前後加速度の変動幅の最大値σGMと車輪速の変化量の変動幅の最大値σAMと、下記の式(1)に示す、予め求めておいた車輪速の変化量の変動幅σ(ΔVw)とバネ下前後加速度の変動幅σ(Gx)との関係を示す一次式から成る変動幅判定式とを記憶する。
σ(Gx)=K・σ(ΔVw)+σ(g) ……(1)
ここで、Kは比例係数、σ(g)は一次式の切片である。
変動幅判定式(1)は、様々な路面で車両を走行させて求めたバネ下前後加速度の変動幅σ(Gx)と車輪速の変化量の変動幅σ(ΔVw)のデータから得られた式で、バネ下前後加速度の変動幅の最大値σGMと車輪速の変化量の変動幅の最大値σAMも上記データから設定することができる。
路面状態判別手段16は、変動幅算出手段14で算出された車輪速の変化量の変動幅σ(ΔVw)とバネ下前後加速度の変動幅σ(Gx)と、記憶手段15から取り出したバネ下前後加速度の変動幅の最大値σGM、車輪速の変化量の変動幅の最大値σAM、及び、前記変動幅判定式とを用いて、走行中の路面が不整路か、凹凸の比較的大きな路面(以下、凹凸のある路面という)か、平滑路かのいずれかであるかを判定する。
The wheel speed change amount calculation means 13 calculates a wheel speed change amount ΔV w that is a change amount of the wheel speed V w detected by the wheel speed sensor 12. As the change amount ΔV w of the wheel speed, a difference between sampling points can be used.
The fluctuation range calculation unit 14 includes the fluctuation range σ (G x ) of the unsprung longitudinal acceleration G x detected by the acceleration sensor 11 and the fluctuation range σ of the change amount of the wheel speed ΔV w calculated by the wheel speed change amount calculation unit 13. (ΔV w ) is calculated. Since the data of unsprung longitudinal acceleration G x for a predetermined time T (for example, T = 0.5 seconds) and the data of wheel speed change ΔV w can be approximated by a Gaussian distribution, in this example, the fluctuation width σ ( G x ) is the standard deviation σ of each Gaussian distribution.
Note that the fluctuation width σ may be an amount that represents a data variation within a predetermined time, so a half width, 2σ, or the like may be used.
The storage means 15 calculates in advance the maximum value σ GM of the fluctuation range of the unsprung longitudinal acceleration and the maximum value σ AM of the fluctuation range of the wheel speed, which are set in advance, as shown in the following equation (1). The variation range judgment formula consisting of a linear expression indicating the relationship between the variation range σ (ΔV w ) of the variation amount of the wheel speed and the variation range σ (G x ) of the unsprung longitudinal acceleration is stored.
σ (G x ) = K · σ (ΔV w ) + σ (g) (1)
Here, K is a proportional coefficient, and σ (g) is an intercept of a linear expression.
The fluctuation range judgment formula (1) is obtained from data of the fluctuation range σ (G x ) of unsprung longitudinal acceleration and the fluctuation range σ (ΔV w ) of the change amount of wheel speed obtained by running the vehicle on various road surfaces. From the above data, the maximum value σ GM of the fluctuation range of unsprung longitudinal acceleration and the maximum value σ AM of the fluctuation range of the change amount of the wheel speed can also be set.
The road surface state determination means 16 takes out from the storage means 15 the fluctuation width σ (ΔV w ) of the variation amount of the wheel speed calculated by the fluctuation width calculation means 14 and the fluctuation width σ (G x ) of the unsprung longitudinal acceleration. Using the maximum fluctuation value σ GM of the unsprung longitudinal acceleration, the maximum fluctuation value σ AM of the fluctuation amount of the wheel speed, and the fluctuation range judgment formula, the road surface during running is an irregular road or an uneven road. It is determined whether the road is a relatively large road surface (hereinafter referred to as an uneven road surface) or a smooth road.

ここで、走行中の路面が不整路か、凹凸のある路面か、平滑路かのいずれかであるかを判定する方法について具体的に説明する。
図2は、ナックルに加速度センサーを装着した車両を、平滑路(平滑な舗装路と凍結路)、凹凸のある路面(排水性舗装路)、及び、不整路において一定速度(30km/h〜80km/h)で走行させて算出した車輪速の変化量の変動幅σ(ΔVw)とバネ下前後加速度の変動幅σ(Gx)との関係を示す図で、図3はその原点付近の拡大図である。なお、使用したタイヤはサイズが225/55R17のスタッドレスタイヤで、変動幅のデータは6.5m走行毎に算出した。
また、左輪の車輪速情報は車両の情報システム(CANのライン)から取得した。
図2及び図3の横軸はσ(ΔVw)で縦軸はσ(Gx)である。また、各図において、色のうすい丸印が平滑な舗装路のデータ、色の濃い丸印が凍結路のデータ、小さい方の四角が排水性舗装路のデータ、大きな四角が不整路のデータで、図3の太い一点鎖線で示す直線がσ(ΔVw)とσ(Gx)との関係を示す変動幅判定式である。
図3に示すように、平滑路のデータは変動幅判定式のほぼ下側に分布し、凹凸のある路面のデータは変動幅判定式のほぼ上側に分布している。
したがって、車輪速の変化量の変動幅σ(ΔVw)と前後加速度の変動幅σ(Gx)との関係を調べれば、走行中の路面状態が平滑路であるか凹凸のある路面であるかを判定できることが分かる。
Here, a method for determining whether the traveling road surface is an irregular road, an uneven road surface, or a smooth road will be specifically described.
Figure 2 shows a vehicle with an accelerometer mounted on a knuckle, with a constant speed (30km / h to 80km) on smooth roads (smooth paved roads and frozen roads), uneven road surfaces (drainage paved roads), and irregular roads. / h) is a diagram showing the relationship between the fluctuation range σ (ΔV w ) of the change amount of the wheel speed calculated by traveling at a speed of γ (G x ) and FIG. It is an enlarged view. The tires used were studless tires of size 225 / 55R17, and the fluctuation range data was calculated every 6.5 m.
The wheel speed information of the left wheel was obtained from the vehicle information system (CAN line).
2 and 3, the horizontal axis is σ (ΔV w ) and the vertical axis is σ (G x ). Also, in each figure, the pale circle data is smooth pavement data, the dark circle is frozen road data, the smaller square is drainage pavement data, and the large square is irregular road data. A straight line indicated by a thick alternate long and short dash line in FIG. 3 is a variation width judgment expression indicating a relationship between σ (ΔV w ) and σ (G x ).
As shown in FIG. 3, smooth road data is distributed almost on the lower side of the fluctuation range judgment formula, and uneven road surface data is distributed on the upper side of the fluctuation range judgment formula.
Therefore, when the relationship between the fluctuation range σ (ΔV w ) of the change amount of the wheel speed and the fluctuation range σ (G x ) of the longitudinal acceleration is examined, the road surface state during traveling is a smooth road or an uneven road surface. It can be seen that it can be determined.

具体的には、σ(Gx)≦K・σ(ΔVw)+σ(g)σ(Gx)、すなわち、算出されたバネ下前後加速度の変動幅σ(Gx)が、前記式(2)で示す変動幅判定式に算出された車輪速の変化量の変動幅σ(ΔVw)を代入して計算されるバネ下前後加速度の変動幅の計算値σcal(Gx)以下である場合には路面が乾燥舗装路などの凹凸の少ない平滑路であると推定し、算出値σ(Gx)が計算値σcal(Gx)を超えたときには走行中の路面が排水舗装路などの凹凸のある路面であると判定する。
更に、バネ下前後加速度の変動幅σ(Gx)がバネ下前後加速度の変動幅の最大値σGMを超えているか、もしくは、車輪速の変化量の変動幅σ(ΔVw)が車輪速の変化量の変動幅の最大値σAMを超えている場合には、路面が、未舗装路やひび割れが生じている路面、あるいは、シャーベット路などのように、路面の凹凸が大きくかつ不規則な通常の接地性が得られない路面である不整路であると判定し、排水舗装路や雪路などの凹凸のある路面と区別する。
Specifically, σ (G x ) ≦ K · σ (ΔV w ) + σ (g) σ (G x ), that is, the calculated fluctuation range σ (G x ) of unsprung longitudinal acceleration is expressed by the above formula ( Below the calculated value σ cal (G x ) of the fluctuation range of the unsprung longitudinal acceleration calculated by substituting the fluctuation width σ (ΔV w ) of the variation amount of the wheel speed calculated in the fluctuation range judgment formula shown in 2) In some cases, it is estimated that the road surface is a smooth road with little unevenness, such as a dry paved road, and when the calculated value σ (G x ) exceeds the calculated value σ cal (G x ), the road surface that is running is a drained paved road. It is determined that the road surface is uneven.
Further, the fluctuation range σ (G x ) of the unsprung longitudinal acceleration exceeds the maximum fluctuation value σ GM of the unsprung longitudinal acceleration, or the variation width σ (ΔV w ) of the variation in wheel speed is the wheel speed. If the maximum fluctuation range σ AM is exceeded, the road surface is uneven and irregular, such as an unpaved road, a cracked road surface, or a sherbet road. Therefore, it is determined that the road surface is irregular, which is a road surface on which normal ground contact cannot be obtained, and is distinguished from uneven road surfaces such as drainage pavement and snow roads.

周波数分析手段17は、加速度センサー11で検出したバネ下前後加速度の時系列波形を周波数分析してバネ下前後加速度の周波数スペクトルを求める。
図4はバネ下前後加速度の周波数スペクトルの一例を示す図で、横軸は周波数、縦軸はバネ下前後加速度Gxである。同図の太い実線が排水性舗装路を走行したときの周波数スペクトルで、細い実線が雪路を走行したときの周波数スペクトルである。
ピーク周波数抽出手段18は、バネ下前後加速度の周波数スペクトルの200Hz〜230Hz帯域内におけるピーク位置の周波数であるピーク周波数fpを抽出する。
走行中、タイヤには路面からの衝撃で固有の振動が励起されるが、例えば、排水性舗装路や雪路のような、凹凸のある路面では、乾燥アスファルト路のような平滑舗装路に比べてタイヤの振動が大きくなる。この振動のピークの位置、すなわち、ピーク周波数fpは路面の滑り易さに依存する傾向がある。具体的には、図4に示すように、雪路のような路面摩擦係数μが0.3よりも小さな滑り易い路面では、同図の矢印で示すピーク周波数fpの位置は低周波側に移動する。その理由としては、路面とタイヤトレッドとの力学的な結合(バネ定数)が滑り易い路面では弱くなったためと考えられる。
なお、乾燥アスファルト路のような平滑舗装路でもピークは観測されるが、排水性舗装路や雪路を走行した場合と比較して振動レベルが低いので、ピーク周波数抽出手段18では、ピーク周波数fpにおける振動レベルGx(fp)が予め設定した閾値Kより小さい場合には、ピーク周波数fpの抽出は行わずに、路面が平滑路であるという信号を路面状態推定手段19に送る。
路面状態推定手段19は、ピーク周波数fpと車輪速Vwとから、下記の式(2)で示す周波数判定式を用いて走行中の路面状態を推定する。
p=a・Vw+b ……(2)
The frequency analysis means 17 analyzes the time series waveform of the unsprung longitudinal acceleration detected by the acceleration sensor 11 to obtain a frequency spectrum of the unsprung longitudinal acceleration.
Figure 4 is a diagram showing an example of a frequency spectrum of the longitudinal unsprung acceleration, the horizontal axis represents the frequency and the vertical axis represents the acceleration G x longitudinal unsprung. The thick solid line in the figure is a frequency spectrum when traveling on a drainage pavement, and the thin solid line is a frequency spectrum when traveling on a snowy road.
Peak frequency extraction means 18 extracts the peak frequency f p is the frequency of the peak position in the 200Hz~230Hz band of the frequency spectrum of the unsprung longitudinal acceleration.
While driving, the tires are excited by inherent vibrations due to the impact from the road surface.For example, on uneven road surfaces such as drainage paved roads and snowy roads, compared to smooth paved roads such as dry asphalt roads. This increases tire vibration. Position of the peak of the vibration, i.e., the peak frequency f p tends to depend on the slipperiness of the road surface. Specifically, as shown in FIG. 4, the road surface friction coefficient μ is small slippery road surface than 0.3, such as snowy, the position of the peak frequency f p indicated by the arrows in the figure to a lower frequency Moving. The reason is considered that the dynamic coupling (spring constant) between the road surface and the tire tread is weakened on a slippery road surface.
Although a peak is observed even on a smooth pavement such as a dry asphalt road, since the vibration level is lower than when running on a drainage pavement or a snowy road, the peak frequency extraction means 18 uses a peak frequency f. If the vibration level G x (f p ) at p is smaller than the preset threshold value K, the signal indicating that the road surface is a smooth road is sent to the road surface state estimating means 19 without extracting the peak frequency f p .
Road surface condition estimating means 19, and a peak frequency f p and the wheel speed V w, estimates the road surface condition during travel with the frequency determination expression represented by the following formula (2).
f p = a · V w + b (2)

次に、路面状態推定装置10を用いた路面状態を推定する方法について説明する。
まず、加速度センサー11によりナックル21に作用する前後方向の加速度であるバネ下前後加速度Gxを検出して変動幅算出手段14に送るとともに、車輪速センサー12により車輪速Vwを検出して車輪速変化量算出手段13に送る。
車輪速変化量算出手段13では、車輪速Vwの変化量である車輪速の変化量ΔVwを算出して変動幅算出手段14に送る。
変動幅算出手段14では、バネ下前後加速度Gxの変動幅σ(Gx)と、車輪速変化量算出手段13で算出した車輪速ΔVwの変化量の変動幅σ(ΔVw)とをそれぞれ算出して路面状態判別手段16に送る。
路面状態判別手段16は、バネ下前後加速度の変動幅σ(Gx)と車輪速の変化量の変動幅σ(ΔVw)と、バネ下前後加速度の変動幅の最大値σGM、車輪速の変化量の変動幅の最大値σVM、及び、車輪速の変化量の変動幅σ(ΔVw)とバネ下前後加速度の変動幅σ(Gx)との関係を示す判定式とを用いて、走行中の路面状態が平滑路か、凹凸のある路面か、不整路かのいずれかであるかを推定する。具体的には、
A;σ(ΔVw)>σAMまたはσ(Gx)>σGM :不整路
B;σ(Gx)>K・σ(ΔVw)+σ(g)σ(Gx):凹凸のある路面
C;σ(Gx)≦K・σ(ΔVw)+σ(g)σ(Gx):平滑路
と推定する。
Next, a method for estimating the road surface state using the road surface state estimation device 10 will be described.
First, the detected acceleration a is unsprung longitudinal acceleration G x in the longitudinal direction acting on the knuckle 21 and sends the fluctuation width-calculating means 14 by the acceleration sensor 11 detects the wheel speed V w by the wheel speed sensors 12 wheels This is sent to the speed change amount calculation means 13.
In the wheel speed change amount calculation unit 13, and sends the fluctuation width-calculating means 14 calculates the change amount [Delta] V w of the wheel speed is the change amount of the wheel speed V w.
The fluctuation range calculation means 14 calculates the fluctuation width σ (G x ) of the unsprung longitudinal acceleration G x and the fluctuation width σ (ΔV w ) of the change amount of the wheel speed ΔV w calculated by the wheel speed change amount calculation means 13. Each is calculated and sent to the road surface condition determination means 16.
The road surface state discriminating means 16 includes a fluctuation range σ (G x ) of unsprung longitudinal acceleration and a variation width σ (ΔV w ) of a variation amount of wheel speed, a maximum value σ GM of a variation range of unsprung longitudinal acceleration, a wheel speed. Using the maximum variation value σ VM of the variation amount of the wheel and a determination formula showing the relationship between the variation width σ (ΔV w ) of the variation amount of the wheel speed and the variation width σ (G x ) of the unsprung longitudinal acceleration. Thus, it is estimated whether the running road surface state is a smooth road, an uneven road surface, or an irregular road. In particular,
A: σ (ΔV w )> σ AM or σ (G x )> σ GM : irregular path B; σ (G x )> K · σ (ΔV w ) + σ (g) σ (G x ): uneven Road surface C; σ (G x ) ≦ K · σ (ΔV w ) + σ (g) σ (G x ): Estimated as a smooth road.

路面状態判別手段16により、走行中の路面が凹凸のある路面であると判定された場合には、この凹凸のある路面が滑り易い路面か否かを推定する。
具体的には、周波数分析手段17により、検出されたバネ下前後加速度Gxの時系列波形を周波数分析し、図4に示すような、バネ下前後加速度の周波数スペクトルを求め、この周波数スペクトルの200Hz〜230Hz帯域内におけるピーク位置の周波数であるピーク周波数fpを抽出する。
そして、抽出されたピーク周波数fpと、車輪速センサー12により検出された車輪速Vwと、周波数判定式(2)とを用いて走行中の路面状態を推定する。
p=a・Vw+b ……(2)
具体的には、fp>a・Vw+bであれば走行中の路面が排水性舗装路面などの路面摩擦係数の高い(μ>0.7)路面であると推定し、fp≦a・Vw+bであれば走行中の路面が雪路などの路面摩擦係数の低い(μ<0.3)滑り易い路面であると推定する。
When the road surface state determining means 16 determines that the traveling road surface is an uneven road surface, it is estimated whether or not the uneven road surface is a slippery road surface.
More specifically, the frequency analysis unit 17, the time-series waveform of the detected unsprung longitudinal acceleration G x frequency analysis, as shown in FIG. 4, determine the frequency spectrum of the unsprung longitudinal acceleration, the frequency spectrum extracting the peak frequency f p is the frequency of the peak position in 200Hz~230Hz the band.
Then, the road surface state during traveling is estimated using the extracted peak frequency f p , the wheel speed V w detected by the wheel speed sensor 12, and the frequency determination formula (2).
f p = a · V w + b (2)
Specifically, if f p > a · V w + b, it is estimated that the running road surface is a road surface with a high road surface friction coefficient (μ> 0.7) such as a drainage pavement surface, and f p ≦ a If V w + b, it is estimated that the running road surface is a slippery road surface having a low coefficient of friction (μ <0.3) such as a snowy road.

左前輪のナックルに加速度センサーを装着した車両を、排水性舗装路、及び、雪道において一定速度(40km/h,50km/h及び60km/h)で走行させ、6.5m走行毎に周波数スペクトルを算出し、過去5回の周波数スペクトルの平均を求め、この周波数スペクトルの200Hz〜230Hz帯域でのピーク周波数fpを抽出し、車輪速Vwとピーク周波数fpとの関係を調べた。その結果を図5に示す。なお、使用したタイヤはサイズが225/55R17のスタッドレスタイヤである。
また、左輪の車輪速情報は車両の情報システム(CANのライン)から取得した。
図5の横軸は車輪速で縦軸は周波数である。また、十字印が排水性舗装路でのデータで、X印が雪路のデータである。
同図から明らかなように、路面摩擦係数が小さく滑り易い路面である雪路のデータは、同図の直線で示す周波数判別式のほぼ下側に分布し、路面摩擦係数の大きな排水性舗装路のデータは周波数判別式ほぼ上側に分布している。したがって、車輪速Vwとピーク周波数fpとの関係を調べれば、走行中の路面が滑り易い状態か否かを確実に推定することができることが確認された。
A vehicle with an acceleration sensor attached to the knuckle on the left front wheel is driven at a constant speed (40km / h, 50km / h, and 60km / h) on drainage pavements and snowy roads, and a frequency spectrum is obtained every 6.5m. calculated, an average of the frequency spectrum of the last five times, extracts a peak frequency f p at 200Hz~230Hz band of the frequency spectrum, it was examined a relationship between the wheel speed V w and the peak frequency f p. The result is shown in FIG. The tires used are studless tires of size 225 / 55R17.
The wheel speed information of the left wheel was obtained from the vehicle information system (CAN line).
The horizontal axis in FIG. 5 is the wheel speed and the vertical axis is the frequency. Further, the cross mark is data on a drainage pavement, and the X mark is data on a snow road.
As is clear from the figure, the data for snowy roads, which are slippery roads with a small road friction coefficient, are distributed almost below the frequency discriminant shown by the straight line in the figure, and are drainage pavement with a large road friction coefficient. Is distributed almost above the frequency discriminant. Therefore, it was confirmed that by examining the relationship between the wheel speed V w and the peak frequency f p , it can be reliably estimated whether or not the road surface being traveled is slippery.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は前記実施の形態に記載の範囲には限定されない。前記実施の形態に、多様な変更または改良を加えることが可能であることが当業者にも明らかである。そのような変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲から明らかである。   As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the embodiment. It is apparent from the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.

10 路面状態推定装置、11 加速度センサー、12 車輪速センサー、
13 車輪速変化量算出手段、14 変動幅算出手段、15 記憶手段、
16 路面状態判別手段、17 周波数分析手段、18 ピーク周波数抽出手段、
19 路面状態推定手段、
20 車輪部、21 ナックル、22 ホイール、23 ホイールハブ、
24 ショックアブゾーバー、T タイヤ。
10 road surface state estimation device, 11 acceleration sensor, 12 wheel speed sensor,
13 wheel speed change amount calculating means, 14 fluctuation range calculating means, 15 storage means,
16 road surface condition determining means, 17 frequency analyzing means, 18 peak frequency extracting means,
19 Road surface state estimation means,
20 wheel part, 21 knuckle, 22 wheel, 23 wheel hub,
24 Shock absorber, T tire.

Claims (3)

車両のバネ下に取付けられた加速度センサーによりバネ下前後加速度を検出するステップと、
車輪速を検出するステップと、
前記検出された車輪速の変化量を算出するステップと、
前記算出された車輪速の変化量の変動幅と前記検出されたバネ下前後加速度の変動幅とをそれぞれ算出するステップと、
前記車輪速の変化量の変動幅と前記バネ下前後加速度の変動幅との関係から走行中の路面が凹凸のある路面であるか否かを推定するステップと、
前記推定された路面が凹凸のある路面である場合に、前記検出されたバネ下前後加速度を周波数分析して求められる周波数スペクトルの200Hz〜230Hz帯域内におけるピーク位置の周波数であるピーク周波数を算出し、前記ピーク周波数と車輪速とから前記凹凸のある路面が滑り易い路面か否かを推定するステップとを備え、
前記走行中の路面が凹凸のある路面であるか否かを推定するステップでは、
前記算出されたバネ下前後加速度の変動幅が、前記車輪速の変化量の変動幅を予め求めておいたバネ下前後加速度の変動幅と車輪速の変化量の変動幅との関係を示す変動幅判定式に代入して得られたバネ下前後加速度の変動幅の計算値を超えた場合に、走行中の路面が凹凸のある路面であると推定し、
前記凹凸のある路面が滑り易い路面か否かを推定するステップでは、
予め求めておいたピーク周波数と車輪速との関係を示す周波数判定式に前記検出された車輪速を代入して得られたピーク周波数の計算値よりも前記検出されたピーク周波数が小さい場合に、前記凹凸のある路面が、路面摩擦係数μが0.3よりも小さい滑り易い路面であると推定する路面状態推定方法。
Detecting an unsprung longitudinal acceleration with an acceleration sensor attached to the unsprung part of the vehicle;
Detecting the wheel speed;
Calculating a change in the detected wheel speed;
Calculating a fluctuation range of the calculated change amount of the wheel speed and a fluctuation range of the detected unsprung longitudinal acceleration, respectively.
Estimating whether the running road surface is an uneven road surface from the relationship between the fluctuation range of the change amount of the wheel speed and the fluctuation range of the unsprung longitudinal acceleration;
When the estimated road surface is an uneven road surface, a peak frequency that is a frequency of a peak position in a 200 Hz to 230 Hz band of a frequency spectrum obtained by frequency analysis of the detected unsprung longitudinal acceleration is calculated. Estimating whether the uneven road surface is a slippery road surface from the peak frequency and wheel speed,
In the step of estimating whether the running road surface is an uneven road surface,
The fluctuation width of the calculated unsprung longitudinal acceleration is a fluctuation indicating the relationship between the fluctuation width of the unsprung longitudinal acceleration and the fluctuation width of the wheel speed variation obtained in advance. When the calculated value of fluctuation range of unsprung longitudinal acceleration obtained by substituting into the width judgment formula is exceeded, it is estimated that the running road surface is an uneven road surface,
In the step of estimating whether the uneven road surface is a slippery road surface,
When the detected peak frequency is smaller than the calculated value of the peak frequency obtained by substituting the detected wheel speed into the frequency judgment formula indicating the relationship between the peak frequency and the wheel speed obtained in advance, A road surface state estimation method for estimating that the uneven road surface is a slippery road surface having a road surface friction coefficient μ smaller than 0.3.
前記走行中の路面が凹凸のある路面であるか否かを推定するステップにおいて、
前記算出された車輪速の変化量の変動幅が予め設定された最大車輪速変化量変動幅を超えた場合、または、前記バネ下前後加速度の変動幅が予め設定された最大加速度変動幅を超えた場合には、走行中の路面が不整路であると推定する請求項1に記載の路面状態推定方法。
In the step of estimating whether the running road surface is an uneven road surface,
When the calculated fluctuation range of the wheel speed change exceeds the preset maximum wheel speed change quantity fluctuation range, or the fluctuation range of the unsprung longitudinal acceleration exceeds the preset maximum acceleration fluctuation range. The road surface state estimating method according to claim 1, wherein the road surface during traveling is estimated to be an irregular road.
車両のバネ下に取付けられてバネ下前後加速度を検出する前後加速度検出手段と、
車輪速を検出する車輪速検出手段と、
前記検出された車輪速の変化量を算出する車輪速変化量算出手段と、
前記車輪速の変化量の変動幅と前記バネ下前後加速度の変動幅とを算出する変動幅算出手段と、
予め設定された車輪速の最大動変動幅、バネ下前後加速度の最大変動幅、及び、バネ下前後加速度の変動幅との関係を示す変動幅判定式を記憶する記憶手段と、
前記検出されたバネ下前後加速度を周波数分析する周波数分析手段と、
前記周波数分析により得られた周波数スペクトルの200Hz〜230Hz帯域内におけるピーク位置の周波数であるピーク周波数を算出するピーク周波数算出手段と、
前記車輪速の変化量の変動幅と前記バネ下前後加速度の変動幅とを用いて走行中の路面が凹凸のある路面であるか否かを判別する路面状態判別手段と、
前記判別された路面が凹凸のある路面である場合に、前記凹凸のある路面が滑り易い路面であるか否かを推定する路面状態推定手段とを備え、
前記路面状態判別手段は、
前記算出されたバネ下前後加速度の変動幅が、前記車輪速の変化量の変動幅を前記変動幅判定式に代入して得られたバネ下前後加速度の変動幅の計算値より大きく、かつ、前記車輪速の変化量の変動幅と前記バネ下前後加速度の変動幅とがそれぞれ前記車輪速の変化量の最大動変動幅及び前記バネ下前後加速度の最大変動幅以下であるときに、前記路面が凹凸のある路面であると判定し、
前記路面状態推定手段は、
予め求めておいたピーク周波数と車輪速との関係を示す周波数判定式に前記検出された車輪速を代入して得られたピーク周波数の計算値よりも前記検出されたピーク周波数が小さい場合に、前記凹凸のある路面が、路面摩擦係数μが0.3よりも小さい滑り易い路面であると推定する路面状態推定装置。
Longitudinal acceleration detection means for detecting unsprung longitudinal acceleration mounted under the spring of the vehicle;
Wheel speed detecting means for detecting the wheel speed;
Wheel speed change amount calculating means for calculating the detected wheel speed change amount;
A fluctuation range calculating means for calculating a fluctuation range of the change amount of the wheel speed and a fluctuation range of the unsprung longitudinal acceleration;
Storage means for storing a fluctuation range determination formula indicating a relationship between a preset maximum dynamic fluctuation range of wheel speed, a maximum fluctuation range of unsprung longitudinal acceleration, and a fluctuation range of unsprung longitudinal acceleration;
Frequency analysis means for frequency analysis of the detected unsprung longitudinal acceleration;
Peak frequency calculation means for calculating a peak frequency that is a frequency at a peak position in a 200 Hz to 230 Hz band of the frequency spectrum obtained by the frequency analysis;
Road surface state determining means for determining whether or not the traveling road surface is an uneven road surface using the fluctuation range of the change amount of the wheel speed and the fluctuation range of the unsprung longitudinal acceleration;
Road surface state estimating means for estimating whether the uneven road surface is a slippery road surface when the determined road surface is an uneven road surface,
The road surface state determining means is
The calculated fluctuation range of the unsprung longitudinal acceleration is larger than a calculated value of the fluctuation range of the unsprung longitudinal acceleration obtained by substituting the fluctuation range of the change amount of the wheel speed into the fluctuation range determination formula, and When the fluctuation width of the change amount of the wheel speed and the fluctuation width of the unsprung longitudinal acceleration are equal to or less than the maximum dynamic fluctuation width of the variation amount of the wheel speed and the maximum fluctuation width of the unsprung longitudinal acceleration, respectively. Is determined to be an uneven road surface,
The road surface state estimating means is
When the detected peak frequency is smaller than the calculated value of the peak frequency obtained by substituting the detected wheel speed into the frequency judgment formula indicating the relationship between the peak frequency and the wheel speed obtained in advance, A road surface state estimating device that estimates that the uneven road surface is a slippery road surface having a road surface friction coefficient μ smaller than 0.3.
JP2011162676A 2011-07-20 2011-07-26 Road surface state estimation method and road surface state estimation device Active JP5705051B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011162676A JP5705051B2 (en) 2011-07-26 2011-07-26 Road surface state estimation method and road surface state estimation device
PCT/JP2012/068154 WO2013011992A1 (en) 2011-07-20 2012-07-18 Road surface condition estimation method, and road surface condition estimation device
CN201280035965.3A CN103717469B (en) 2011-07-20 2012-07-18 Pavement state method of estimation and pavement state estimate equipment
US14/233,223 US8942861B2 (en) 2011-07-20 2012-07-18 Road surface condition estimation method, and road surface condition estimation apparatus
EP12814951.5A EP2735487B1 (en) 2011-07-20 2012-07-18 Road surface condition estimation method, and road surface condition estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011162676A JP5705051B2 (en) 2011-07-26 2011-07-26 Road surface state estimation method and road surface state estimation device

Publications (2)

Publication Number Publication Date
JP2013023164A JP2013023164A (en) 2013-02-04
JP5705051B2 true JP5705051B2 (en) 2015-04-22

Family

ID=47781958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011162676A Active JP5705051B2 (en) 2011-07-20 2011-07-26 Road surface state estimation method and road surface state estimation device

Country Status (1)

Country Link
JP (1) JP5705051B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6299167B2 (en) * 2013-11-12 2018-03-28 富士通株式会社 Concavity and convexity analysis program, concavity and convexity analysis method, and concavity and convexity analysis apparatus
CN114326710B (en) * 2021-12-04 2024-05-24 深圳市普渡科技有限公司 Robot, robot travel strategy determination method, apparatus and storage medium

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2928890B2 (en) * 1990-08-30 1999-08-03 富士通テン株式会社 Acceleration sensor abnormality detection device of anti-skid control device with acceleration sensor
JP3669721B2 (en) * 1994-03-09 2005-07-13 三菱自動車工業株式会社 Anti-skid brake control method
JP4414547B2 (en) * 2000-03-03 2010-02-10 住友ゴム工業株式会社 Road surface friction coefficient judging apparatus and method
JP4496598B2 (en) * 2000-04-06 2010-07-07 株式会社デンソー Road surface condition identification device
JP4554176B2 (en) * 2003-08-19 2010-09-29 株式会社ブリヂストン Road surface condition estimation method
JP2006126164A (en) * 2004-09-30 2006-05-18 Hitachi Ltd Tire grip sensor and control device using sensor concerned
JP2006131136A (en) * 2004-11-08 2006-05-25 Denso Corp Vehicular signal processing unit
JP5284868B2 (en) * 2009-05-15 2013-09-11 株式会社ブリヂストン Road surface state estimation method and apparatus, and vehicle control method
JP5180934B2 (en) * 2009-09-16 2013-04-10 日立オートモティブシステムズ株式会社 Vehicle braking device

Also Published As

Publication number Publication date
JP2013023164A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
WO2013011992A1 (en) Road surface condition estimation method, and road surface condition estimation device
JP6244027B2 (en) Tire classification
JP5620268B2 (en) Tire wear estimation method and tire wear estimation apparatus
JP4817753B2 (en) Road surface state estimation method, road surface state estimation device, and vehicle control device
JP5557569B2 (en) Road surface condition estimation method
JP5993804B2 (en) Tire contact state estimation method
JP3150893B2 (en) Tire identification method and device
JP5121452B2 (en) Road surface state estimation method, road surface state estimation tire, road surface state estimation device, and vehicle control device
JP4629756B2 (en) Road surface state estimation method and road surface state estimation device
JP2009012762A (en) Method of estimating available grip margin of tire when rolling
JP4554176B2 (en) Road surface condition estimation method
JP2010274906A (en) Road surface state estimation method, vehicle control method, and road surface state estimation device
JP2022100865A (en) Tyre wear state estimation device
JP2008179349A (en) Method of estimating risk of lack of contact with ground for automobile
Cheli Cyber tyre: A novel sensor to improve vehicle's safety
JP5705051B2 (en) Road surface state estimation method and road surface state estimation device
JP5749106B2 (en) Road surface state estimation method and road surface state estimation device
JP5284868B2 (en) Road surface state estimation method and apparatus, and vehicle control method
JP2002274357A (en) Road surface condition discriminating device and method and discriminating program for road surface condition
JP5116516B2 (en) Road surface state estimation method and road surface state estimation device
JP2002221527A (en) Wear state detection method and device for tire, and wear determination program for tire
JP2008247243A (en) Threshold setting method in method for judging lowering of internal pressure of tire
JP2008143312A (en) Estimation method of road surface state, estimation device of road surface state, tire and vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150224

R150 Certificate of patent or registration of utility model

Ref document number: 5705051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250