JP2002274357A - Road surface condition discriminating device and method and discriminating program for road surface condition - Google Patents

Road surface condition discriminating device and method and discriminating program for road surface condition

Info

Publication number
JP2002274357A
JP2002274357A JP2001289256A JP2001289256A JP2002274357A JP 2002274357 A JP2002274357 A JP 2002274357A JP 2001289256 A JP2001289256 A JP 2001289256A JP 2001289256 A JP2001289256 A JP 2001289256A JP 2002274357 A JP2002274357 A JP 2002274357A
Authority
JP
Japan
Prior art keywords
vehicle
calculating
road surface
acceleration
deceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001289256A
Other languages
Japanese (ja)
Other versions
JP4138283B2 (en
Inventor
Hiroaki Kawasaki
裕章 川崎
Yukio Nakao
幸夫 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2001289256A priority Critical patent/JP4138283B2/en
Priority to DE60144364T priority patent/DE60144364D1/en
Priority to EP01129141A priority patent/EP1215096B1/en
Priority to US10/006,616 priority patent/US6604040B2/en
Publication of JP2002274357A publication Critical patent/JP2002274357A/en
Application granted granted Critical
Publication of JP4138283B2 publication Critical patent/JP4138283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a road surface condition discriminating device identifying presently attached tires and capable of accurately setting a threshold for discriminating slipperiness. SOLUTION: The road surface condition discriminating device is provided with a rotational speed detecting means periodically detecting rotational speeds of the tires of four wheels of a vehicle, a first calculating means calculating a vehicle speed from a measurement value by the rotational speed detecting means, a second calculating means calculating acceleration/deceleration of the vehicle, a third calculating means calculating a slip ratio from the rotational speeds of the four wheels, a fourth calculating means subjecting the acceleration/ deceleration and the slip ratio of the vehicle to a moving average, a fifth calculating means determining a primary regression coefficient and a correlation between the acceleration/deceleration and the slip ratio of the vehicle subjected to the moving average, and a threshold setting means setting a threshold for road surface condition discrimination on the basis of the primary regression coefficient when the correlation is a predetermined value or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は路面状態判別装置お
よび方法、ならびに路面状態の判別プログラムに関す
る。さらに詳しくは、タイヤを交換した場合などに、現
在装着されているタイヤを識別して、滑りやすさを判断
するしきい値を設定することができる路面状態判別装置
および方法、ならびに路面状態の判別プログラムに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a road condition determining apparatus and method, and a road condition determining program. More specifically, a road surface condition determination apparatus and method capable of identifying a currently mounted tire and setting a threshold value for determining slipperiness, for example, when a tire is replaced, and a determination of a road surface condition About the program.

【0002】[0002]

【従来の技術】車両は、滑りやすい路面で急加速や急制
動を行なうと、タイヤがスリップを起こしスピンなどす
る危険性がある。また急な操舵を行なうと車両が横すべ
りやスピンを起こす惧れがある。
2. Description of the Related Art When a vehicle is suddenly accelerated or braked on a slippery road surface, there is a risk that tires may slip and spin. Also, sudden steering may cause the vehicle to skid or spin.

【0003】そこで、従来より、タイヤと路面とのあい
だの制動力が最大値をこえてタイヤがロック状態になる
前に、車輪に作用するブレーキトルクを低下させて車輪
のロック状態を防止し、最大制動力が得られる車輪の回
転数を制御するアンチロックブレーキ装置などが提案さ
れている(特開昭60−99757号公報、特開平1−
249559号公報など参照)。
Accordingly, conventionally, before the braking force between the tire and the road surface exceeds the maximum value and the tire is locked, the brake torque acting on the wheel is reduced to prevent the locked state of the wheel, An anti-lock brake device that controls the number of rotations of a wheel at which a maximum braking force is obtained has been proposed (Japanese Patent Application Laid-Open No. 60-99757, Japanese Patent Application Laid-Open No.
249559, etc.).

【0004】たとえば、アンチロックブレーキ装置の制
御では、車両の判定速度および検出した車輪速度(回転
速度)からスリップ率を演算したのち、該演算したスリ
ップ率があらかじめ設定してある基準スリップ率に一致
するようにブレーキ力を制御することにより、最大制動
力に追従するように構成されている。
For example, in the control of an anti-lock brake device, a slip ratio is calculated from a determined speed of a vehicle and a detected wheel speed (rotation speed), and the calculated slip ratio matches a predetermined reference slip ratio. The braking force is controlled so as to follow the maximum braking force.

【0005】このようなABS装置などの制御では、路
面の摩擦係数μが利用されている。すなわち路面摩擦係
数μ(路面μ)に応じて、たとえば高μの場合と低μの
場合とで制御内容を変更して最適な制御を行なうように
している。
In the control of such an ABS device or the like, the friction coefficient μ of the road surface is used. That is, according to the road friction coefficient μ (road surface μ), for example, the control content is changed between high μ and low μ to perform the optimal control.

【0006】前記特開昭60−99759号公報に記載
される装置では、スリップ発生時の従動輪から車両加速
度を求め、この加速度を用いて路面μを判定している
が、この路面μは、単に従動輪の回転速度を微分して求
めた従動輪の加速度を車両加速度に置き換え、この車両
加速度を算出した時点での路面μであり、実際の路面と
タイヤとのあいだの路面μであるかどうかわからない。
In the device described in Japanese Patent Application Laid-Open No. 60-99759, the vehicle acceleration is obtained from the driven wheels at the time of occurrence of slip, and the road surface μ is determined using this acceleration. The acceleration of the driven wheel obtained by simply differentiating the rotation speed of the driven wheel is replaced with the vehicle acceleration, and is the road surface μ at the time when the vehicle acceleration is calculated, and is the road surface μ between the actual road surface and the tire? I don't know.

【0007】これに対し、走行中のタイヤの回転速度の
情報からタイヤと路面とのあいだの滑りやすさ(摩擦係
数)を推定する方法がある。
On the other hand, there is a method of estimating the slipperiness (coefficient of friction) between a tire and a road surface from information on the rotational speed of the running tire.

【0008】この方法は、路面摩擦係数μによってタイ
ヤと路面とのμ−s曲線の立ち上がり勾配が異なること
を利用したもので、ABSセンサなどの車輪回転速度を
定期的に検出し、前後輪のスリップ比および従動輪の加
速度を演算して判定値となる勾配を求めている。そし
て、求められた判定値とあらかじめ設定しておいたしき
い値を比較して、滑りやすさ(路面)μを推定してい
る。しかしながら、このしきい値はタイヤのスティフネ
スやタイヤにかかる荷重によって変える必要がある。
This method utilizes the fact that the rising slope of the μ-s curve between the tire and the road surface differs depending on the road surface friction coefficient μ. The slope that becomes the determination value is obtained by calculating the slip ratio and the acceleration of the driven wheel. Then, by comparing the obtained determination value with a preset threshold value, the slipperiness (road surface) μ is estimated. However, this threshold value needs to be changed depending on the stiffness of the tire and the load applied to the tire.

【0009】そこで、車両に夏タイヤモード、冬タイヤ
モードなどの切り替えスイッチを設け、大きくスティフ
ネスの異なる夏タイヤと冬タイヤであらかじめ異なるし
きい値を設定しておく方法がある。
Therefore, there is a method in which a switch is provided for a vehicle in a summer tire mode, a winter tire mode, or the like, and different threshold values are set in advance for summer tires and winter tires having greatly different stiffness.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、前述の
ような2種類のモード切り替えの場合、夏タイヤ(冬タ
イヤ)でもメーカやパターンが異なると立ち上がり勾配
に差があったり、タイヤの摩耗状態でも立ち上がり勾配
に差があるため、路面状態を判別する精度が劣るという
問題がある。
However, in the case of the two types of mode switching as described above, even in summer tires (winter tires), there is a difference in the rising gradient when the maker or pattern is different, or even when the tires are worn, the rising slopes are different. There is a problem that the accuracy of discriminating the road surface state is inferior due to the difference in the gradient.

【0011】本発明は、叙上の事情に鑑み、現在装着さ
れているをタイヤを識別して、精度よく、滑りやすさを
判断するしきい値を設定することができる路面状態判別
装置および方法、ならびに路面状態の判別プログラムを
提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention identifies a tire currently mounted and identifies a road condition determining apparatus and method capable of accurately setting a threshold value for determining slipperiness. , And a road surface state determination program.

【0012】[0012]

【課題を解決するための手段】本発明の路面状態判別装
置は、車両の4輪のタイヤの回転速度を定期的に検出す
る回転速度検出手段と、前記回転速度検出手段による測
定値から車両速度を演算する第1の演算手段と、前記車
両の加減速度を演算する第2の演算手段と、4輪の回転
速度からスリップ比を演算する第3の演算手段と、前記
車両の加減速度とスリップ比をそれぞれ移動平均化する
第4の演算手段と、該移動平均化された車両の加減速度
とスリップ比との1次の回帰係数と相関係数を求める第
5の演算手段と、該相関係数が所定の値以上の場合の1
次の回帰係数に基づいて路面状態判別のしきい値を設定
するしきい値設定手段とを備えてなることを特徴とす
る。
SUMMARY OF THE INVENTION A road surface condition determining apparatus according to the present invention comprises a rotational speed detecting means for periodically detecting rotational speeds of four tires of a vehicle, and a vehicle speed based on a measured value by the rotational speed detecting means. , Second calculating means for calculating the acceleration / deceleration of the vehicle, third calculating means for calculating the slip ratio from the rotational speeds of the four wheels, acceleration / deceleration and slip of the vehicle. Fourth calculating means for moving and averaging the respective ratios, fifth calculating means for obtaining a first-order regression coefficient and a correlation coefficient between the acceleration / deceleration and the slip ratio of the moving-averaged vehicle, 1 if the number is greater than or equal to a predetermined value
Threshold value setting means for setting a threshold value for road surface state determination based on the following regression coefficient.

【0013】また本発明の路面状態判別方法は、車両の
4輪のタイヤの回転速度を定期的に検出する工程と、該
測定された回転速度から車両速度を演算する工程と、前
記車両の加減速度を演算する工程と、4輪の回転速度か
らスリップ比を演算する工程と、前記車両の加減速度と
スリップ比をそれぞれ移動平均化する工程と、該移動平
均化された車両の加減速度とスリップ比との1次の回帰
係数と相関係数を求める工程と、該相関係数が所定の値
以上の場合の1次の回帰係数に基づいて、路面状態判別
のしきい値を設定する工程とを備えていることを特徴と
する。
[0013] The method of determining a road surface condition according to the present invention includes the steps of periodically detecting the rotational speeds of the four tires of the vehicle, calculating the vehicle speed from the measured rotational speeds, and adjusting the vehicle speed. Calculating the speed, calculating the slip ratio from the rotational speeds of the four wheels, moving and averaging the acceleration / deceleration and the slip ratio of the vehicle, respectively; and calculating the acceleration / deceleration and slip of the moving averaged vehicle. Determining a primary regression coefficient and a correlation coefficient with the ratio; and setting a threshold value for road surface state determination based on the primary regression coefficient when the correlation coefficient is equal to or greater than a predetermined value. It is characterized by having.

【0014】さらに本発明の路面状態の判別プログラム
は、路面状態を判別するためにコンピュータを、回転速
度検出手段による測定値から車両速度を演算する第1の
演算手段、車両の加減速度を演算する第2の演算手段、
4輪の回転速度からスリップ比を演算する第3の演算手
段、前記車両の加減速度とスリップ比をそれぞれ移動平
均化する第4の演算手段、該移動平均化された車両の加
減速度とスリップ比との1次の回帰係数と相関係数を求
める第5の演算手段、該相関係数が所定の値以上の場合
の1次の回帰係数に基づいて路面状態判別のしきい値を
設定するしきい値設定手段として機能させる。
Further, the road surface condition determination program according to the present invention comprises a first computing means for computing a vehicle speed from a measured value by a rotational speed detecting means, and a vehicle acceleration / deceleration to determine a road surface condition. Second calculating means,
Third calculating means for calculating the slip ratio from the rotational speeds of the four wheels, fourth calculating means for moving and averaging the acceleration / deceleration and the slip ratio of the vehicle, and acceleration / deceleration and the slip ratio of the moving averaged vehicle A fifth calculating means for calculating a first-order regression coefficient and a correlation coefficient with the above, and setting a threshold value for road surface state determination based on the first-order regression coefficient when the correlation coefficient is equal to or more than a predetermined value. Function as threshold setting means.

【0015】[0015]

【発明の実施の形態】以下、添付図面に基づいて、本発
明の路面状態判別装置および方法、ならびに路面状態の
判別プログラムを説明する。図1は本発明の路面状態判
別装置および方法の一実施の形態を示すブロック図、図
2は図1における路面状態判別装置および方法の電気的
構成を示すブロック図、図3はしきい値の経時変化を示
す図、図4は乾燥アスファルト路を走行中の1次の回帰
係数がしきい値よりも大きくなる割合を示す図、図5は
圧雪路を走行中の1次の回帰係数がしきい値よりも大き
くなる割合を示す図、図6はアイスバーン路を走行中の
1次の回帰係数がしきい値よりも大きくなる割合を示す
図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A description will be given below of a road condition determining apparatus and method and a road condition determining program according to the present invention with reference to the accompanying drawings. FIG. 1 is a block diagram showing an embodiment of a road condition determining apparatus and method according to the present invention, FIG. 2 is a block diagram showing an electrical configuration of the road condition determining apparatus and method in FIG. 1, and FIG. FIG. 4 is a graph showing a change with time, FIG. 4 is a graph showing a rate at which a first-order regression coefficient becomes larger than a threshold value while traveling on a dry asphalt road, and FIG. FIG. 6 is a diagram showing a ratio at which the first-order regression coefficient becomes larger than a threshold value while traveling on an ice burn road.

【0016】図1に示すように、本発明の一実施の形態
にかかわる路面状態判別装置は、4輪車両のタイヤF
L、FR、RLおよびRRにそれぞれ設けられた車輪タ
イヤの回転速度を定期的に検出する回転速度検出手段を
備えており、この回転速度検出手段Sの出力は、ABS
などのコンピュータである制御ユニット2に伝達され
る。なお、3は運転者によって、操作される初期化スイ
ッチであり、4は低μ路警報表示器である。
As shown in FIG. 1, a road surface condition determining apparatus according to one embodiment of the present invention includes a tire F of a four-wheeled vehicle.
L, FR, RL, and RR are provided with rotation speed detection means for periodically detecting the rotation speed of the wheel tires. The output of the rotation speed detection means S is ABS
And transmitted to the control unit 2 which is a computer. Reference numeral 3 denotes an initialization switch operated by the driver, and reference numeral 4 denotes a low-μ road alarm display.

【0017】前記回転速度検出手段としては、電磁ピッ
クアップなどを用いて回転パルスを発生させてパルスの
数から回転速度を測定する車輪速センサ1またはダイナ
モのように回転を利用して発電を行ない、この電圧から
回転速度を測定するものを含む角速度センサなどを用い
ることができる。
As the rotation speed detecting means, a wheel speed sensor 1 for generating a rotation pulse using an electromagnetic pick-up or the like and measuring the rotation speed from the number of pulses or power generation using rotation like a dynamo is used. An angular velocity sensor including one that measures the rotation speed from this voltage can be used.

【0018】前記制御ユニット2は、図2に示されるよ
うに、外部装置との信号の受け渡しに必要なI/Oイン
ターフェイス2aと、演算処理の中枢として機能するC
PU2bと、該CPU2bの制御動作プログラムが格納
されたROM2cと、前記CPU2bが制御動作を行な
う際にデータなどが一時的に書き込まれたり、その書き
込まれたデータなどが読み出されるRAM2dとから構
成されている。
As shown in FIG. 2, the control unit 2 has an I / O interface 2a required for transmitting and receiving signals to and from an external device, and a C functioning as a center of arithmetic processing.
A PU 2b, a ROM 2c in which a control operation program of the CPU 2b is stored, and a RAM 2d into which data or the like is temporarily written when the CPU 2b performs a control operation, and from which the written data is read. I have.

【0019】本実施の形態では、前記制御ユニット2
に、前記車輪速センサ1による測定値から、車両速度を
演算する第1の演算手段と、走行距離を演算する第2の
演算手段と、前記車両の加減速度を演算する第3の演算
手段と、4輪の回転速度からスリップ比(前輪タイヤの
車輪速度と後輪タイヤとの車輪速度の比)を演算する第
4の演算手段と、前記車両の加減速度とスリップ比をそ
れぞれ移動平均化する第5の演算手段と、該演算した走
行距離が所定の距離に達するまでの移動平均化した車両
の加減速度とスリップ比のデータを蓄積および演算し、
互いの1次の回帰係数と相関係数を求める第6の演算手
段と、該相関係数が所定の値以上の場合の1次の回帰係
数に基づいて路面状態判別のしきい値を設定するしきい
値設定手段とを備えている。なお、本実施の形態では、
車両の加減速度を演算する第3の演算手段により、演算
した走行距離が所定の距離に達するまでの移動平均化し
た車両の加減速度とスリップ比のデータを蓄積および演
算し、互いの1次の回帰係数と相関係数を求めることに
ついて説明するが、本発明においては、これに限定され
るものではなく、前記走行距離に代えて、蓄積時間また
は蓄積データ数などを用いて、移動平均化された車両の
加減速度とスリップ比との1次の回帰係数と相関係数を
求めることもできる。この場合、前記第2の演算手段に
代えて蓄積時間または蓄積データ数などを演算する演算
手段を備えるとともに、前記第6の演算手段に代えて蓄
積時間または蓄積データ数などを用いて、移動平均化さ
れた車両の加減速度とスリップ比との1次の回帰係数と
相関係数を求める演算手段を備える。
In the present embodiment, the control unit 2
First calculating means for calculating the vehicle speed from the value measured by the wheel speed sensor 1, second calculating means for calculating the traveling distance, and third calculating means for calculating the acceleration / deceleration of the vehicle. A fourth calculating means for calculating a slip ratio (a ratio between the wheel speed of the front wheel tires and the wheel speed of the rear wheel tires) from the rotational speeds of the four wheels, and a moving average of the acceleration / deceleration and the slip ratio of the vehicle. Fifth calculating means, accumulating and calculating data of acceleration / deceleration and slip ratio of the moving averaged vehicle until the calculated travel distance reaches a predetermined distance,
Sixth calculating means for obtaining a mutual primary regression coefficient and a correlation coefficient, and a threshold value for road surface state determination based on the primary regression coefficient when the correlation coefficient is equal to or more than a predetermined value. Threshold setting means. In the present embodiment,
The third arithmetic means for calculating the acceleration / deceleration of the vehicle accumulates and calculates the data of the acceleration / deceleration and the slip ratio of the moving averaged vehicle until the calculated traveling distance reaches a predetermined distance, and calculates the primary and secondary data of each other. A description will be given of obtaining a regression coefficient and a correlation coefficient.However, in the present invention, the present invention is not limited to this, and instead of the travel distance, moving average is performed using an accumulation time or the number of accumulated data. It is also possible to obtain a first-order regression coefficient and a correlation coefficient between the acceleration / deceleration of the vehicle and the slip ratio. In this case, a moving average is provided by using an accumulation time or the number of accumulated data instead of the sixth computing means, and an arithmetic means for computing the accumulation time or the number of accumulated data is provided instead of the second arithmetic means. Calculating means for calculating a first-order regression coefficient and a correlation coefficient between the acceleration / deceleration of the vehicle and the slip ratio.

【0020】そして、本実施の形態の路面状態の判別プ
ログラムは、制御ユニット2を、回転速度検出手段によ
る測定値から車両速度を演算する第1の演算手段、車両
の加減速度を演算する第2の演算手段、4輪の回転速度
からスリップ比を演算する第3の演算手段、前記車両の
加減速度とスリップ比をそれぞれ移動平均化する第4の
演算手段、該移動平均化された車両の加減速度とスリッ
プ比との1次の回帰係数と相関係数を求める第5の演算
手段、該相関係数が所定の値以上の場合の1次の回帰係
数に基づいて路面状態判別のしきい値を設定するしきい
値設定手段として機能させる。
The program for determining the road surface condition according to the present embodiment includes a control unit 2 for calculating a vehicle speed based on a value measured by a rotational speed detecting unit, and a second calculating unit for calculating a vehicle acceleration / deceleration. Calculating means for calculating the slip ratio from the rotational speeds of the four wheels, fourth calculating means for moving and averaging the acceleration / deceleration and the slip ratio of the vehicle, and adjusting the speed of the moving averaged vehicle. Fifth calculating means for calculating a primary regression coefficient and a correlation coefficient between the speed and the slip ratio, and a threshold value for road surface state determination based on the primary regression coefficient when the correlation coefficient is equal to or more than a predetermined value Function as threshold value setting means for setting.

【0021】また、制御ユニット2を、前記1次の回帰
係数と相関係数が、車両の走行距離が所定の距離に達す
るまでの移動平均化された車両の加減速度とスリップ比
のデータから求められる場合、前記車両の走行距離を演
算する演算手段としてさらに機能させる。
Further, the control unit 2 calculates the first-order regression coefficient and the correlation coefficient from the data of the acceleration / deceleration and the slip ratio of the moving averaged vehicle until the traveling distance of the vehicle reaches a predetermined distance. If so, it is made to further function as a calculating means for calculating the traveling distance of the vehicle.

【0022】一般に冬タイヤとは、雪路走行が可能なよ
うに、トレッドパターンや材料を変えたタイヤで、サイ
ドウォール部に、たとえば“SNOW”、“M+S”、
“STUDLESS”、“ALL WEATHER”、
“ALL SEASON”などの表示があるタイヤであ
り、夏タイヤとは、冬タイヤとは違い、サイドウォール
部に前記のような表示がないタイヤのことであるが、本
明細書においては夏タイヤと冬タイヤの違いは、かかる
表示の有無に限らずトレッドのパターン剛性の大きさが
違うことも含まれる。すなわち車両制御やタイヤの内圧
検知精度に影響を及ぼすパターン剛性の大きいタイヤが
夏タイヤであり、パターン剛性の小さいタイヤが冬タイ
ヤである。
Generally, winter tires are tires with different tread patterns and materials so that they can run on snowy roads. For example, "SNOW", "M + S",
“STUDESS”, “ALL WEATHER”,
A tire having an indication such as "ALL SEASON", and a summer tire is a tire having no such indication on a sidewall portion unlike a winter tire, but is referred to as a summer tire in this specification. Differences in winter tires include not only the presence or absence of such display but also differences in the tread pattern rigidity. That is, a tire having a large pattern stiffness that affects vehicle control and the accuracy of detecting the internal pressure of the tire is a summer tire, and a tire having a small pattern stiffness is a winter tire.

【0023】本実施の形態では、前記4輪のタイヤの回
転速度を0.1秒以下、好ましくは0.05秒以下で検
出する。前記車両速度および走行距離は、4輪の回転速
度とタイヤの動荷重半径から演算する。前記車両の加減
速度はGセンサで測定することもできるが、前記車両の
速度を微分して演算するのがコスト面から好ましい。
In this embodiment, the rotation speed of the four tires is detected in 0.1 seconds or less, preferably in 0.05 seconds or less. The vehicle speed and travel distance are calculated from the rotational speeds of the four wheels and the dynamic load radius of the tire. Although the acceleration / deceleration of the vehicle can be measured by a G sensor, it is preferable to calculate by differentiating the speed of the vehicle from the viewpoint of cost.

【0024】ついで前記スリップ比および車両の加減速
度を一定時間分のデータ、たとえば少なくとも0.1秒
分以上のデータの平均値として、サンプリング時間ごと
に移動平均化して求める。
Next, the slip ratio and the acceleration / deceleration of the vehicle are obtained by moving and averaging the data for a certain period of time, for example, data of at least 0.1 second or more for each sampling time.

【0025】さらに、前記走行距離が所定の距離に達す
るまで前記移動平均された車両の加減速度およびスリッ
プ比のデータを蓄積し、この蓄積したデータを用いて、
スリップ比と車両の加減速度との互いの1次の回帰係数
と相関係数を求める。ここで、移動平均して求められた
車両の加減速度がある一定値以下の場合(たとえば−
0.03G以下の場合)またはブレーキング中は、回帰
係数の演算には使用しないようにすることが望ましい。
これは、減速中、とくにブレーキング中は、4輪にブレ
ーキ力が働いてしまい、正確なスリップ比が得られない
ためである。
Further, the data of the acceleration / deceleration and the slip ratio of the moving averaged vehicle are accumulated until the traveling distance reaches a predetermined distance, and the accumulated data is used to store the data.
First-order regression coefficients and correlation coefficients of the slip ratio and the acceleration / deceleration of the vehicle are obtained. Here, when the acceleration / deceleration of the vehicle obtained by the moving average is below a certain value (for example,-
It is desirable not to use it for the calculation of the regression coefficient during braking (in the case of 0.03 G or less) or during braking.
This is because a braking force is applied to the four wheels during deceleration, particularly during braking, and an accurate slip ratio cannot be obtained.

【0026】以下、本実施の形態の路面状態判別装置の
動作を手順〜に沿って説明する。
Hereinafter, the operation of the road surface condition discriminating apparatus according to the present embodiment will be described in accordance with the following procedures.

【0027】車両の4輪タイヤFL、FR、RLおよ
びRRのそれぞれの回転速度から車輪速度(V1n、V
n、V3n、V4n)を算出する。
From the rotational speeds of the four-wheel tires FL, FR, RL, and RR, the wheel speeds (V1 n , V1
2 n , V 3 n , V 4 n ).

【0028】たとえば、ABSセンサなどのセンサから
得られた車両の各車輪タイヤFL、FR、RL、RRの
ある時点の車輪速データを車輪速度V1n、V2n、V3
n、V4nとする。
For example, the wheel speed data at a certain point in time of each wheel tire FL, FR, RL, RR of the vehicle obtained from a sensor such as an ABS sensor is converted into wheel speeds V1 n , V2 n , V3.
n , V4 n .

【0029】ついで従動輪および駆動輪の平均車輪速
度(Vfn、Vdn)を演算する。
Next, the average wheel speed (Vf n , Vd n ) of the driven wheel and the drive wheel is calculated.

【0030】前輪駆動の場合、ある時点の従動輪および
駆動輪の平均車輪速度Vfn、Vdnをつぎの式(1)、
(2)により求める。 Vfn=(V3n+V4n)/2 ・・・(1) Vdn=(V1n+V2n)/2 ・・・(2)
In the case of front-wheel drive, the average wheel speed Vf n of the following wheels and the driving wheels at a certain time, the Vd n of the following formula (1),
Determined by (2). Vf n = (V3 n + V4 n) / 2 ··· (1) Vd n = (V1 n + V2 n) / 2 ··· (2)

【0031】ついで車両の単位時間の走行距離をつぎ
の式(3)により演算する。 DIST=Vfn × Δt ・・・(3)
Next, the traveling distance per unit time of the vehicle is calculated by the following equation (3). DIST = Vf n × Δt (3)

【0032】ここで、Δtは車輪速データから算出され
る従動輪の平均車輪速度VfnとVfn-1の時間間隔(サ
ンプリング時間)である。
Here, Δt is a time interval (sampling time) between the average wheel speeds Vf n and Vf n−1 of the driven wheels calculated from the wheel speed data.

【0033】ついで前記従動輪の平均車輪加減速度
(すなわち車両の加減 速度)Afnを演算する。
Next, the average wheel acceleration / deceleration of the driven wheels (ie, the acceleration / deceleration of the vehicle) Af n is calculated.

【0034】前記従動輪の平均車輪速度Vfnより1つ
前の車輪速データから、平均車輪速度Vfn-1とする
と、従動輪の平均車輪加減速度Afnはそれぞれつぎの
式(4)で求められる。 Afn=(Vfn−Vfn-1)/Δt/g ・・・(4)
[0034] from the average wheel speed Vf n 1 preceding wheel speed data from the driven wheel, when the average wheel speed Vf n-1, the average wheel acceleration Af n each of the following formula driven wheel (4) Desired. Af n = (Vf n -Vf n-1 ) / Δt / g (4)

【0035】ここで、Δtは車輪速データから算出され
る車輪速度VfnとVfn-1の時間間隔(サンプリング時
間)であり、gは重力加速度である。前記サンプルング
時間としては、データのばらつきを小さくし、かつ短時
間で判別するためには、0.1秒以下である必要があ
る。より好ましくは、0.05秒以下である。
Here, Δt is a time interval (sampling time) between the wheel speeds Vf n and Vf n−1 calculated from the wheel speed data, and g is a gravitational acceleration. The sampling time needs to be 0.1 second or less in order to reduce the variation in data and make a determination in a short time. More preferably, the time is 0.05 seconds or less.

【0036】ついで前記車両の加減速度Afnの値に
応じて、スリップ比を演算する。
[0036] followed in response to said value of the acceleration and deceleration Af n of the vehicle, it calculates the slip ratio.

【0037】まず、加速状態で、駆動輪がロック状態で
車両が滑っているとき(Vdn=0、Vfn≠0)や、減
速状態で、車両が停止状態で駆動輪がホイールスピンを
起こしているとき(Vfn=0、Vdn≠0)は、起こり
得ないものとして、スリップ比Snをつぎの式(5)、
(6)から演算する。 Afn≧0およびVdn≠0である場合、Sn=(Vfn−Vdn)/Vdn ・・・(5) Afn<0およびVfn≠0である場合、Sn=(Vfn−Vdn)/Vfn ・・・(6) 前記以外の場合は、Sn=1とする。
[0037] First, in the acceleration state, when the drive wheels are the vehicle slips in the locked state and (Vd n = 0, Vf n ≠ 0), in a deceleration state, the vehicle drive wheels causes a wheel spin is stopped and when that (Vf n = 0, Vd n ≠ 0) include, but are not occur, the slip ratio S n the following formula (5),
Calculate from (6). If it is af n ≧ 0 and Vd n ≠ 0, S n = (Vf n -Vd n) / Vd n ··· (5) if it is af n <0 and Vf n ≠ 0, S n = (Vf n− Vd n ) / Vf n (6) In other cases, S n = 1.

【0038】ついでスリップ比および車両の加減速度
のデータをサンプリング時間ごとに移動平均化処理す
る。
Then, the data of the slip ratio and the acceleration / deceleration of the vehicle are subjected to a moving average process for each sampling time.

【0039】スリップ比については、 MSn=(S1+S2+・・・+Sn)/N ・・・(7) MSn+1=(S2+S3+・・・+Sn+1)/N ・・・(8) MSn+2=(S3+S4+・・・+Sn+2)/N ・・・(9)Regarding the slip ratio, MS n = (S 1 + S 2 +... + S n ) / N (7) MS n + 1 = (S 2 + S 3 +... + S n + 1 ) / N (8) MS n + 2 = (S 3 + S 4 +... + S n + 2 ) / N (9)

【0040】車両の加減速度については、 MAfn=(Af1+Af2+・・・+Afn)/N ・・・(10) MAfn+1=(Af2+Af3+・・・+Afn+1)/N ・・・(11) MAfn+2=(Af3+Af4+・・・+Afn+2)/N ・・・(12) 移動平均されたスリップ比と車両の加減速度を走行距離
が所定の距離ごとに蓄積する。路面状態を推定する場
合、走行中の路面状態は刻々と変化するため、短時間、
たとえば数秒以下で推定する必要があるが、路面状態を
判定するしきい値を設定する場合は、それほど早くなく
てもよい。そこで、比較的距離の長い所定の距離分のデ
ータを蓄積して、1次の回帰係数と相関係数を求める。
Regarding the acceleration / deceleration of the vehicle, MAf n = (Af 1 + Af 2 +... + Af n ) / N (10) MAf n + 1 = (Af 2 + Af 3 +... + Af n + 1 ) / N (11) MAf n + 2 = (Af 3 + Af 4 +... + Af n + 2 ) / N (12) The vehicle travels at the moving average slip ratio and the vehicle acceleration / deceleration. The distance is accumulated for each predetermined distance. When estimating the road surface condition, since the road surface condition during traveling changes every moment,
For example, it is necessary to estimate within a few seconds or less, but when setting a threshold value for determining the road surface condition, it may not be so early. Therefore, data for a predetermined distance that is relatively long is accumulated, and a first-order regression coefficient and a correlation coefficient are obtained.

【0041】[0041]

【数1】 (Equation 1)

【0042】[0042]

【表1】 [Table 1]

【0043】また相関係数RSは、 RS=KS1×KS2 ・・・(15) となる。The correlation coefficient RS is as follows: RS = KS1 × KS2 (15)

【0044】前記手順により相関係数RSが所定の
値、たとえば0.9以上の場合の1次の回帰係数KS1
からしきい値Lを演算する。
According to the above procedure, the first-order regression coefficient KS1 when the correlation coefficient RS is a predetermined value, for example, 0.9 or more.
Calculates the threshold value L from

【0045】この相関係数RSが0.9以上のときとい
うのは、高μ路であることを意味している。なぜなら、
アスファルトのような高μ路は、路面状態が安定してい
るために、比較的長い距離のデータを蓄積してもデータ
がばらつかず相関係数が高い。しかし、圧雪路やアイス
バーン路などの低μ路は、路面状態が安定しておらず、
比較的長い距離のデータを蓄積するとデータがばらつき
相関係数が低くなるからである。このように、高μ路で
あると認識した場合の1次の回帰係数KS1を基準値と
することにより、現在装着されているタイヤ固有のしき
い値を設定することができる。 L=6KS12+0.4KS1+0.04 ・・・(16)
When the correlation coefficient RS is 0.9 or more, it means a high μ road. Because
On a high μ road such as asphalt, since the road surface condition is stable, even if data for a relatively long distance is accumulated, the data does not vary and the correlation coefficient is high. However, on low μ roads such as snow-covered roads and ice-burn roads, the road surface conditions are not stable,
This is because when data of a relatively long distance is accumulated, the data varies and the correlation coefficient decreases. As described above, by using the first-order regression coefficient KS1 when the road is recognized as a high μ road as the reference value, it is possible to set a threshold value specific to the currently mounted tire. L = 6KS1 2 + 0.4KS1 + 0.04 (16)

【0046】この式(16)は、実験により算出した。
式(16)により求められたしきい値Lを、今までのL
で平均化して更新する。
This equation (16) was calculated by an experiment.
The threshold value L obtained by equation (16) is
Average and update with.

【0047】たとえば、最初に得られたしきい値が0.
122で、つぎに新たなしきい値0.118が得られる
と、しきい値は(0.122+0.118)/2=0.
120となる。さらに新たなしきい値0.126が得ら
れると、しきい値は、(0.122+0.118+0.
126)/3=0.122となる。
For example, if the initially obtained threshold value is 0.
At 122, the next time a new threshold value of 0.118 is obtained, the threshold value is (0.122 + 0.118) / 2 = 0.
120. When a new threshold value 0.126 is obtained, the threshold value becomes (0.122 + 0.118 + 0.
126) /3=0.122.

【0048】このことにより、タイヤの経時変化などに
も対応可能である。すなわち、冬タイヤでも摩耗した
り、経年変化でトレッドゴムの硬度が大きくなった場合
にそれに応じたしきい値を設定することができる。しき
い値の設定に際し、平均化しているので、かりに不適切
な1次の回帰係数が1、2度得られたとしても、その影
響は非常に小さく、もっとも頻度の高い値近傍に収束す
るようになる。
Thus, it is possible to cope with the aging of the tire and the like. That is, when the winter tire is worn or when the hardness of the tread rubber increases due to aging, the threshold value can be set accordingly. Since the averaging is performed at the time of setting the threshold value, even if an inappropriate first-order regression coefficient is obtained once or twice, the effect is very small and converges to the vicinity of the most frequent value. become.

【0049】一方、路面状態の判定は、短時間で行なわ
れなければならないので、移動平均したスリップ比と車
両の加減速度について、所定の時間、たとえば2秒間蓄
積し、1次の回帰係数KS1Aと相関係数RSAを求め
る。そして、相関係数RSAが所定値、たとえば0.7
以上であれば、1次の回帰係数KS1Aと前記しきい値
Lを比較して、しきい値Lよりも1次の回帰係数KS1
Aの方が大きければ、滑りやすい状態であると判断して
ドライバーに警告を発する。
On the other hand, since the determination of the road surface condition must be performed in a short time, the moving average slip ratio and the acceleration / deceleration of the vehicle are accumulated for a predetermined time, for example, 2 seconds, and the first-order regression coefficient KS1A is obtained. Find the correlation coefficient RSA. Then, the correlation coefficient RSA is a predetermined value, for example, 0.7
If this is the case, the primary regression coefficient KS1A is compared with the threshold L, and the primary regression coefficient KS1
If A is larger, it is determined that the vehicle is slippery and a warning is issued to the driver.

【0050】[0050]

【実施例】つぎに本発明を実施例に基づいて説明する
が、本発明はかかる実施例のみに限定されるものではな
い。
Next, the present invention will be described based on examples, but the present invention is not limited to only these examples.

【0051】まず前輪駆動車の4輪タイヤとして、車両
に装着させる2種類の冬タイヤは住友ゴム工業(株)製
グラスピックDS−1(実施例1)とドイツダンロッ
プ製winter sport(ウインタースポーツ)
M2(実施例2)である。またこの冬タイヤのゴム硬
度は、前者が約50度であり、後者が約60度である。
First, as a four-wheel tire of a front wheel drive vehicle, two kinds of winter tires to be mounted on a vehicle are a glass pick DS-1 (Example 1) manufactured by Sumitomo Rubber Industries, Ltd. and a winter sport (Winter sports) manufactured by Dunlop of Germany.
M2 (Example 2). The rubber hardness of the winter tire is about 50 degrees for the former and about 60 degrees for the latter.

【0052】走行条件として、車輪の車輪速度のサンプ
リング時間に関し、データ数を多く、かつばらつきや測
定誤差を排除するために、たとえば1秒ではサンプリン
グ時間が長すぎるため、40msとした。
As the running conditions, the sampling time of the wheel speed of the wheels was set to 40 ms because, for example, one second is too long in sampling time in order to increase the number of data and to eliminate variations and measurement errors.

【0053】そして前記手順〜にしたがって、車輪
速パルスに基づいて、車輪速度を取り込み、40msご
との車両の加減速度および前後輪のスリップ比を計算
し、移動平均処理を行なった。ついでしきい値の設定に
は、走行距離が1000mごとのスリップ比に対する車
両の加減速度の1次の回帰係数KS1および相関係数R
Sを求めた。そして、相関係数RSが0.9以上の場合
の1次の回帰係数KS1から前記式(16)を用いてし
きい値Lを演算した。今までのしきい値Lと平均化して
新たなしきい値として更新した。
Then, according to the above-mentioned procedures (1) and (2), the wheel speed was taken in based on the wheel speed pulse, the acceleration / deceleration of the vehicle and the slip ratio of the front and rear wheels were calculated every 40 ms, and the moving average processing was performed. Then, the threshold value is set by setting a first-order regression coefficient KS1 and a correlation coefficient R of the acceleration / deceleration of the vehicle with respect to the slip ratio at every traveling distance of 1000 m.
S was determined. Then, the threshold value L was calculated from the first-order regression coefficient KS1 when the correlation coefficient RS was 0.9 or more, using the above equation (16). The new threshold value is updated by averaging with the threshold value L so far.

【0054】一方、路面状態の判定は、前記移動平均し
たスリップ比と車両の加減速度の2秒間のデータで1次
の回帰係数KS1Aと相関係数RSAを求め、相関係数
RSAが0.7以上のときの1次の相関係数KS1Aの
値をしきい値Lと比較した。
On the other hand, the road surface condition is determined by determining the first-order regression coefficient KS1A and the correlation coefficient RSA from the moving averaged slip ratio and the acceleration / deceleration data of the vehicle for two seconds. The value of the primary correlation coefficient KS1A at the time described above was compared with a threshold value L.

【0055】図3に、2種類のタイヤ(実施例1、実施
例2)で、乾燥アスファルト路、圧雪路およびアイスバ
ーン路などを約2時間走行した場合のしきい値の経時変
化を示す。図3からも明らかなように、実施例1の場
合、しきい値は絶えず0.117〜0.123の範囲に
入っているのに対し、実施例2のしきい値は0.061
〜0.065の範囲で推移しており、両タイヤの差が明
確であることがわかる。また、しきい値は安定してほぼ
同じ値で推移しており、精度よく求められていることも
わかる。
FIG. 3 shows the change over time of the threshold value when the two types of tires (Examples 1 and 2) run on a dry asphalt road, a snow-covered road, an ice-burn road or the like for about 2 hours. As is clear from FIG. 3, in the case of the first embodiment, the threshold value is constantly in the range of 0.117 to 0.123, whereas the threshold value of the second embodiment is 0.061.
650.065, which indicates that the difference between the two tires is clear. Further, it can be seen that the threshold value stably changes at almost the same value, and that the threshold value is determined with high accuracy.

【0056】つぎに前記更新したしきい値を用いて、乾
燥アスファルト路、圧雪路、アイスバーン路をそれぞれ
約30分間走行した場合に、スリップ比に対する車両の
加減速度の1次の回帰係数KS1Aがしきい値よりも大
きくなる割合(スリップ警報となる割合)を図4〜6に
示す。図4〜6において、SLをしきい値未満の割合と
し、SUをしきい値以上の割合とする。
Next, using the updated threshold value, the primary regression coefficient KS1A of the acceleration / deceleration of the vehicle with respect to the slip ratio when the vehicle travels on a dry asphalt road, a snow-covered road, and an ice-burn road for about 30 minutes, respectively. FIGS. 4 to 6 show the ratio at which the ratio becomes larger than the threshold value (the ratio at which a slip alarm occurs). 4 to 6, SL is a ratio below the threshold and SU is a ratio above the threshold.

【0057】図4(a)、図4(b)に示されるよう
に、実施例1、実施例2とも乾燥アスファルト路では、
ほとんどしきい値よりも1次の回帰係数K1が大きくな
らなかった。すなわち警報が出なかった。これに対し
て、図5(a)、図5(b)に示されるように、圧雪路
では実施例1が約51%、実施例2が約61%の割合で
しきい値よりも1次の回帰係数KS1Aが大きくなっ
て、警報が発せられた。また図6(a)、図6(b)に
示されるように、アイスバーン路についても実施例1が
約66%、実施例2が約81%の割合でしきい値よりも
1次の回帰係数KS1Aが大きくなって、警報が発せら
れた。これにより、しきい値の値が適切で路面の滑りや
すさの違いがよく識別できていることがわかる。
As shown in FIGS. 4 (a) and 4 (b), both the first and second embodiments use the dry asphalt road.
The first-order regression coefficient K1 hardly became larger than the threshold value. That is, no alarm was issued. On the other hand, as shown in FIGS. 5 (a) and 5 (b), on the snowy road, the ratio of the first embodiment is about 51% and that of the second embodiment is about 61%. The regression coefficient KS1A became large, and an alarm was issued. As shown in FIGS. 6 (a) and 6 (b), the first-order regression is about 66% in the first embodiment and about 81% in the second embodiment on the ice-burn road. The coefficient KS1A has increased and an alarm has been issued. This indicates that the threshold value is appropriate and the difference in the slipperiness of the road surface is well identified.

【0058】[0058]

【発明の効果】以上説明したとおり、本発明によれば、
現在装着されているタイヤに応じて、自動的にしきい値
が設定可能となり、精度よく路面状態を判別することが
できる。
As described above, according to the present invention,
The threshold value can be automatically set according to the currently mounted tire, and the road surface condition can be determined with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の路面状態判別装置の一実施の形態を示
すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a road surface condition determination device of the present invention.

【図2】図1における路面状態判別装置の電気的構成を
示すブロック図である。
FIG. 2 is a block diagram showing an electrical configuration of the road surface condition determination device in FIG.

【図3】しきい値の経時変化を示す図である。FIG. 3 is a diagram showing a change with time of a threshold value.

【図4】図4(a)、(b)はそれぞれ実施例1、2の
乾燥アスファルト路を走行中の1次の回帰係数がしきい
値よりも大きくなる割合を示す図である。
FIGS. 4 (a) and 4 (b) are diagrams each showing a rate at which a first-order regression coefficient becomes larger than a threshold value while traveling on dry asphalt roads of Examples 1 and 2. FIG.

【図5】図5(a)、(b)はそれぞれ実施例1、2の
圧雪路を走行中の1次の回帰係数がしきい値よりも大き
くなる割合を示す図である。
FIGS. 5 (a) and 5 (b) are diagrams each showing a rate at which a first-order regression coefficient becomes larger than a threshold value while traveling on a snow-covered road in Examples 1 and 2.

【図6】図6(a)、(b)はそれぞれ実施例1、2の
アイスバーン路を走行中の1次の回帰係数がしきい値よ
りも大きくなる割合を示す図である。
FIGS. 6 (a) and 6 (b) are diagrams each showing a rate at which a first-order regression coefficient becomes larger than a threshold value while traveling on an ice burn road in Examples 1 and 2. FIG.

【符号の説明】[Explanation of symbols]

1 車輪速センサ(回転速度検出手段) 2 制御ユニット 3 初期化スイッチ 4 低μ路警報表示器 FL、FR、RL、RR タイヤ DESCRIPTION OF SYMBOLS 1 Wheel speed sensor (rotation speed detecting means) 2 Control unit 3 Initialization switch 4 Low μ road warning indicator FL, FR, RL, RR Tire

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 車両の4輪のタイヤの回転速度を定期的
に検出する回転速度検出手段と、前記回転速度検出手段
による測定値から車両速度を演算する第1の演算手段
と、前記車両の加減速度を演算する第2の演算手段と、
4輪の回転速度からスリップ比を演算する第3の演算手
段と、前記車両の加減速度とスリップ比をそれぞれ移動
平均化する第4の演算手段と、該移動平均化された車両
の加減速度とスリップ比との1次の回帰係数と相関係数
を求める第5の演算手段と、該相関係数が所定の値以上
の場合の1次の回帰係数に基づいて路面状態判別のしき
い値を設定するしきい値設定手段とを備えてなる路面状
態判別装置。
1. A rotation speed detection means for periodically detecting rotation speeds of four tires of a vehicle, a first calculation means for calculating a vehicle speed from a value measured by the rotation speed detection means, Second calculating means for calculating acceleration / deceleration;
Third calculating means for calculating the slip ratio from the rotation speeds of the four wheels, fourth calculating means for moving and averaging the acceleration / deceleration and the slip ratio of the vehicle, and acceleration / deceleration of the moving averaged vehicle. A fifth calculating means for calculating a primary regression coefficient and a correlation coefficient with the slip ratio, and a threshold value for road surface state determination based on the primary regression coefficient when the correlation coefficient is equal to or more than a predetermined value. A road surface condition determination device comprising: a threshold value setting means for setting.
【請求項2】 前記1次の回帰係数と相関係数が、車両
の走行距離が所定の距離に達するまでの移動平均化され
た車両の加減速度とスリップ比のデータから求められる
場合、前記車両の走行距離を演算する演算手段を備えて
なる請求項1記載の路面状態判別装置。
2. The method according to claim 1, wherein the first-order regression coefficient and the correlation coefficient are obtained from data of acceleration / deceleration and a slip ratio of the moving average of the vehicle until the traveling distance of the vehicle reaches a predetermined distance. The road surface state determination device according to claim 1, further comprising a calculation means for calculating a travel distance of the road surface.
【請求項3】 車両の4輪のタイヤの回転速度を定期的
に検出する工程と、該測定された回転速度から車両速度
を演算する工程と、前記車両の加減速度を演算する工程
と、4輪の回転速度からスリップ比を演算する工程と、
前記車両の加減速度とスリップ比をそれぞれ移動平均化
する工程と、該移動平均化された車両の加減速度とスリ
ップ比との1次の回帰係数と相関係数を求める工程と、
該相関係数が所定の値以上の場合の1次の回帰係数に基
づいて、路面状態判別のしきい値を設定する工程とを備
えている路面状態判別方法。
A step of periodically detecting rotation speeds of four tires of the vehicle; a step of calculating a vehicle speed from the measured rotation speed; a step of calculating acceleration / deceleration of the vehicle; Calculating a slip ratio from the rotational speed of the wheel;
A step of moving and averaging the acceleration / deceleration and the slip ratio of the vehicle, and a step of obtaining a first-order regression coefficient and a correlation coefficient between the acceleration / deceleration and the slip ratio of the moving-averaged vehicle,
Setting a threshold value for road surface state determination based on a first-order regression coefficient when the correlation coefficient is equal to or greater than a predetermined value.
【請求項4】 前記1次の回帰係数と相関係数が、車両
の走行距離が所定の距離に達するまでの移動平均化され
た車両の加減速度とスリップ比のデータから求められる
場合、前記車両の走行距離を演算する工程を備えている
請求項3記載の路面状態判別方法。
4. The method according to claim 1, wherein the first-order regression coefficient and the correlation coefficient are obtained from acceleration / deceleration and slip ratio data of the moving average of the vehicle until the travel distance of the vehicle reaches a predetermined distance. 4. The road surface state determination method according to claim 3, further comprising a step of calculating a travel distance of the road surface.
【請求項5】 路面状態を判別するためにコンピュータ
を、回転速度検出手段による測定値から車両速度を演算
する第1の演算手段、車両の加減速度を演算する第2の
演算手段、4輪の回転速度からスリップ比を演算する第
3の演算手段、前記車両の加減速度とスリップ比をそれ
ぞれ移動平均化する第4の演算手段、該移動平均化され
た車両の加減速度とスリップ比との1次の回帰係数と相
関係数を求める第5の演算手段、該相関係数が所定の値
以上の場合の1次の回帰係数に基づいて路面状態判別の
しきい値を設定するしきい値設定手段として機能させる
ための路面状態の判別プログラム。
5. A computer for judging a road surface condition, comprising: first computing means for computing a vehicle speed from a value measured by a rotational speed detecting means; second computing means for computing acceleration / deceleration of the vehicle; Third calculating means for calculating the slip ratio from the rotation speed, fourth calculating means for moving and averaging the acceleration / deceleration and the slip ratio of the vehicle, and one of the acceleration / deceleration and the slip ratio of the moving averaged vehicle. Fifth calculating means for calculating a next regression coefficient and a correlation coefficient, a threshold value setting for setting a threshold value for road surface state determination based on a first regression coefficient when the correlation coefficient is equal to or more than a predetermined value A road surface condition determination program for functioning as a means.
【請求項6】 前記1次の回帰係数と相関係数が、車両
の走行距離が所定の距離に達するまでの移動平均化され
た車両の加減速度とスリップ比のデータから求められる
場合、前記車両の走行距離を演算する演算手段として機
能させる請求項5記載の路面状態の判別プログラム。
6. The method according to claim 1, wherein the first-order regression coefficient and the correlation coefficient are obtained from data of acceleration / deceleration and slip ratio of the moving average of the vehicle until the traveling distance of the vehicle reaches a predetermined distance. 6. The road surface state determination program according to claim 5, wherein said program is used as a calculating means for calculating a traveling distance of the vehicle.
JP2001289256A 2000-12-14 2001-09-21 Road surface state determination device and method, and road surface state determination program Expired - Fee Related JP4138283B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001289256A JP4138283B2 (en) 2001-01-09 2001-09-21 Road surface state determination device and method, and road surface state determination program
DE60144364T DE60144364D1 (en) 2000-12-14 2001-12-07 Device and method for tire identification and device and method for road condition evaluation
EP01129141A EP1215096B1 (en) 2000-12-14 2001-12-07 Apparatus and method for identifying tires and apparatus and method for evaluating road surface conditions
US10/006,616 US6604040B2 (en) 2000-12-14 2001-12-10 Apparatus and method for identifying tires and apparatus and method for evaluating road surface conditions

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001001399 2001-01-09
JP2001-1399 2001-01-09
JP2001289256A JP4138283B2 (en) 2001-01-09 2001-09-21 Road surface state determination device and method, and road surface state determination program

Publications (2)

Publication Number Publication Date
JP2002274357A true JP2002274357A (en) 2002-09-25
JP4138283B2 JP4138283B2 (en) 2008-08-27

Family

ID=26607398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001289256A Expired - Fee Related JP4138283B2 (en) 2000-12-14 2001-09-21 Road surface state determination device and method, and road surface state determination program

Country Status (1)

Country Link
JP (1) JP4138283B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284403A (en) * 2003-03-19 2004-10-14 Sumitomo Rubber Ind Ltd Road surface state determination device and method and road surface state determination program
JP2006130941A (en) * 2004-11-02 2006-05-25 Sumitomo Rubber Ind Ltd Tire discrimination device and method
US7512473B2 (en) 2003-11-06 2009-03-31 Sumitomo Rubber Industries, Ltd. Method for judging road surface condition and device thereof, and program for judging road surface condition
JP2009248633A (en) * 2008-04-02 2009-10-29 Sumitomo Rubber Ind Ltd Road surface state determination device and method and determination program of road surface state
JP2010020430A (en) * 2008-07-09 2010-01-28 Fuji Heavy Ind Ltd Road surface slipperiness determination system
US7856870B2 (en) 2005-10-21 2010-12-28 Sumitomo Rubber Industries, Ltd. Method for alarming inner pressure lowering of tires using GPS information and device thereof, and program for alarming inner pressure lowering of tires
EP3848259A1 (en) 2020-01-10 2021-07-14 Sumitomo Rubber Industries, Ltd. Apparatus for determining state of road surface
JP7396054B2 (en) 2020-01-10 2023-12-12 住友ゴム工業株式会社 Tire slip ratio determination device, determination method, and determination program
JP7396053B2 (en) 2020-01-10 2023-12-12 住友ゴム工業株式会社 Tire slip ratio determination device, determination method, and determination program; road surface condition determination device, determination method, and determination program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05229417A (en) * 1992-02-19 1993-09-07 Mazda Motor Corp Slip controller for vehicle
JPH0717346A (en) * 1993-06-30 1995-01-20 Toyota Motor Corp Collision preventing device for vehicle and road surface friction coefficient calculating device
JPH08276842A (en) * 1995-04-03 1996-10-22 Toyota Motor Corp Anti-lock brake device
JPH10509513A (en) * 1994-11-04 1998-09-14 ノースメーター アクシセルスカプ Method and apparatus for measuring or adjusting friction
JPH1178442A (en) * 1997-07-10 1999-03-23 Sumitomo Rubber Ind Ltd Device and method for detecting worn state of tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05229417A (en) * 1992-02-19 1993-09-07 Mazda Motor Corp Slip controller for vehicle
JPH0717346A (en) * 1993-06-30 1995-01-20 Toyota Motor Corp Collision preventing device for vehicle and road surface friction coefficient calculating device
JPH10509513A (en) * 1994-11-04 1998-09-14 ノースメーター アクシセルスカプ Method and apparatus for measuring or adjusting friction
JPH08276842A (en) * 1995-04-03 1996-10-22 Toyota Motor Corp Anti-lock brake device
JPH1178442A (en) * 1997-07-10 1999-03-23 Sumitomo Rubber Ind Ltd Device and method for detecting worn state of tire

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284403A (en) * 2003-03-19 2004-10-14 Sumitomo Rubber Ind Ltd Road surface state determination device and method and road surface state determination program
US7512473B2 (en) 2003-11-06 2009-03-31 Sumitomo Rubber Industries, Ltd. Method for judging road surface condition and device thereof, and program for judging road surface condition
JP2006130941A (en) * 2004-11-02 2006-05-25 Sumitomo Rubber Ind Ltd Tire discrimination device and method
JP4672333B2 (en) * 2004-11-02 2011-04-20 住友ゴム工業株式会社 Tire identification apparatus and method
US7856870B2 (en) 2005-10-21 2010-12-28 Sumitomo Rubber Industries, Ltd. Method for alarming inner pressure lowering of tires using GPS information and device thereof, and program for alarming inner pressure lowering of tires
JP2009248633A (en) * 2008-04-02 2009-10-29 Sumitomo Rubber Ind Ltd Road surface state determination device and method and determination program of road surface state
JP2010020430A (en) * 2008-07-09 2010-01-28 Fuji Heavy Ind Ltd Road surface slipperiness determination system
EP3848259A1 (en) 2020-01-10 2021-07-14 Sumitomo Rubber Industries, Ltd. Apparatus for determining state of road surface
JP7396054B2 (en) 2020-01-10 2023-12-12 住友ゴム工業株式会社 Tire slip ratio determination device, determination method, and determination program
JP7396053B2 (en) 2020-01-10 2023-12-12 住友ゴム工業株式会社 Tire slip ratio determination device, determination method, and determination program; road surface condition determination device, determination method, and determination program

Also Published As

Publication number Publication date
JP4138283B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
US6604040B2 (en) Apparatus and method for identifying tires and apparatus and method for evaluating road surface conditions
JP3150893B2 (en) Tire identification method and device
US6002327A (en) Low tire warning system with axle torque signal
US6577941B2 (en) Apparatus and method for determining condition of road surface
WO2013011992A1 (en) Road surface condition estimation method, and road surface condition estimation device
JP4153688B2 (en) Road surface condition determination method and apparatus, and road surface condition determination threshold setting program
JPH1178442A (en) Device and method for detecting worn state of tire
EP1529703A1 (en) A method for judging road surface condition and device thereof, and program for judging road surface condition
JP3515040B2 (en) Road surface friction coefficient determination method
JP4138283B2 (en) Road surface state determination device and method, and road surface state determination program
JP2003211925A (en) Tire pressure drop warning method and device and program for determining tire decompression
JP3535076B2 (en) Road surface friction coefficient determining apparatus and method
JP4414547B2 (en) Road surface friction coefficient judging apparatus and method
JP4316776B2 (en) Tire identification apparatus and method
JP4582920B2 (en) Tire wear state detecting device and method, and tire wear judging program
JP4171174B2 (en) Tire identification apparatus and method
US6917864B2 (en) Method and apparatus for detecting decrease in tire air-pressure, and program for judging decompression of tire
JP2000079812A (en) Tire distinguishing device and method
JP2002362345A (en) Road surface condition determining device and method and determining program of road surface condition
JP4668571B2 (en) Road surface state determination method and apparatus, and road surface state determination program
JP4451550B2 (en) Initializing device and method of road surface friction coefficient judging device
JP4672333B2 (en) Tire identification apparatus and method
JP2001163202A (en) Road surface friction coefficient decision device and method therefor
JP5705051B2 (en) Road surface state estimation method and road surface state estimation device
JP4425478B2 (en) Road surface state estimation method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4138283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees