JP5704298B2 - Ground augmented satellite navigation system and satellite anomaly detection method used in the system - Google Patents

Ground augmented satellite navigation system and satellite anomaly detection method used in the system Download PDF

Info

Publication number
JP5704298B2
JP5704298B2 JP2010115623A JP2010115623A JP5704298B2 JP 5704298 B2 JP5704298 B2 JP 5704298B2 JP 2010115623 A JP2010115623 A JP 2010115623A JP 2010115623 A JP2010115623 A JP 2010115623A JP 5704298 B2 JP5704298 B2 JP 5704298B2
Authority
JP
Japan
Prior art keywords
satellite
positioning
correction value
pseudo distance
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010115623A
Other languages
Japanese (ja)
Other versions
JP2011242296A (en
Inventor
友行 小池
友行 小池
小野 剛
剛 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2010115623A priority Critical patent/JP5704298B2/en
Publication of JP2011242296A publication Critical patent/JP2011242296A/en
Application granted granted Critical
Publication of JP5704298B2 publication Critical patent/JP5704298B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Description

この発明は、地上補強型衛星航法システム、該システムに用いられる衛星異常検出方法及び衛星異常検出プログラムに係り、たとえば、空港周辺の所定距離内の空域で航空機の進入着陸誘導を行う際、衛星の異常を高精度で検出する場合に用いて好適な地上補強型衛星航法システム、該システムに用いられる衛星異常検出方法及び衛星異常検出プログラムに関する。   The present invention relates to a ground-reinforced satellite navigation system, a satellite anomaly detection method and a satellite anomaly detection program used in the system, and, for example, when guiding an approach and landing of an aircraft in an airspace within a predetermined distance around an airport, The present invention relates to a ground augmented satellite navigation system suitable for detecting anomalies with high accuracy, a satellite anomaly detection method and a satellite anomaly detection program used in the system.

航空機の運行に対しては、高い安全性と信頼性が要求され、これらの要求に対しては、精度、完全性、サービスの継続性及び利用可能性が必要であるが、GPS(Global Positioning System 、汎世界測位システム)衛星を使用した航法では、電離層の影響により、精度に不十分なものがあり、補強システムが必要となる。この補強システムとして、たとえば地上補強型衛星航法システム(Ground Based Augmentation System、GBAS)が構築されている。GBASは、地上システムと、機上システムとから構成されている。地上システムでは、空港内に設置された基準局により、測位衛星から放送される信号電波が受信されて収集及び解析され、同信号電波に含まれる誤差を推定することにより補正データが生成され、機上システムの移動局へ送信される。機上システムでは、移動局により、地上システムから送信された補正データに基づいて、同機上システムでの測位データを補正することにより、ディファレンシャル測位が行われ、規定飛行ルートに対する変位が算出されてパイロットなどに提供される。   Aircraft operations require high safety and reliability, and these requirements require accuracy, completeness, continuity of service, and availability. (Global positioning system) Some navigation systems using satellites have insufficient accuracy due to the influence of the ionosphere and require a reinforcement system. As this reinforcement system, for example, a ground-based augmentation system (GBAS) has been established. GBAS is composed of a ground system and an onboard system. In the ground system, signal radio waves broadcast from positioning satellites are received, collected and analyzed by a reference station installed in the airport, and correction data is generated by estimating errors contained in the signal radio waves. Sent to the system mobile station. In the onboard system, differential positioning is performed by correcting the positioning data in the onboard system based on the correction data transmitted from the ground system by the mobile station, and the displacement with respect to the specified flight route is calculated and the pilot is calculated. Provided to.

また、移動局の測位データを補正するGBASとしては、位置補正方式及び擬似距離補正方式がある。位置補正方式のGBASでは、位置が既知の基準局により、移動局と同じ衛星の信号電波を使用して同基準局の測位演算が行われ、この測位演算の結果と同基準局の既知の位置とから補正データが算出され、この補正データに基づいて移動局の測位データが補正される。また、擬似距離補正方式のGBASでは、たとえば図6に示すように、GPS衛星1,2から放送される各信号電波が地球上のGPS受信機3により受信される。図示しないデータ処理装置により、GPS受信機3により受信された各信号電波に含まれる、各GPS衛星1,2の軌道を示すエフェメリス情報に基づいて、各GPS衛星1,2毎にGPS受信機3との間の第1の擬似距離が計算される。そして、上記各信号電波に含まれる測位信号に基づいて、各GPS衛星1,2毎にGPS受信機3との間の第2の擬似距離が計算され、各第1の擬似距離と各第2の擬似距離との差分が各GPS衛星1,2毎に計算されて各差分に基づく各擬似距離補正値が生成される。   In addition, as the GBAS for correcting the positioning data of the mobile station, there are a position correction method and a pseudo distance correction method. In the position correction method GBAS, the positioning calculation of the reference station is performed by the reference station with the known position using the signal radio wave of the same satellite as the mobile station, and the result of the positioning calculation is corrected from the known position of the reference station. Data is calculated, and the positioning data of the mobile station is corrected based on the correction data. In the pseudo-range correction GBAS, for example, as shown in FIG. 6, each signal radio wave broadcast from the GPS satellites 1 and 2 is received by the GPS receiver 3 on the earth. Based on the ephemeris information indicating the orbits of the GPS satellites 1 and 2 included in the signal radio waves received by the GPS receiver 3 by a data processor (not shown), the GPS receiver 3 for each GPS satellite 1 and 2. A first pseudorange between is calculated. Then, based on the positioning signal included in each signal radio wave, a second pseudo distance between each GPS satellite 1 and 2 and the GPS receiver 3 is calculated, and each first pseudo distance and each second pseudo distance is calculated. Is calculated for each GPS satellite 1 and 2, and each pseudo-range correction value based on each difference is generated.

この種の擬似距離補正方式のGBASでは、擬似距離補正が必要となる要因の主要なものとして、測位信号の電離層の通過による遅延がある。測位信号の遅延量は、衛星の仰角が低くなるほど大きくなる。たとえば、図6では、GPS受信機3に対する衛星1の仰角(直角)よりも衛星2の仰角cが低いため、GPS衛星1の測位信号の電離層の通過距離aよりも、GPS衛星2の測位信号の電離層の通過距離bのほうが長くなっている。このため、GPS衛星1の測位信号よりもGPS衛星2の測位信号のほうが遅延量が大きい。この場合、擬似距離補正値を検定統計量として使用しても、遅延量の仰角依存性により、同擬似距離補正値のヒストグラムの分布が正規分布にならないので、衛星の異常を判定するための閾値の設定や、衛星の異常検出の失敗の確率の見積もりを高精度で行うことができない。このため、空港周辺の所定距離内の空域で航空機の進入着陸誘導を高精度で行うことができないという課題がある。   In this type of pseudorange correction GBAS, a major factor that requires pseudorange correction is a delay due to the passage of a positioning signal through the ionosphere. The amount of delay of the positioning signal increases as the elevation angle of the satellite decreases. For example, in FIG. 6, since the elevation angle c of the satellite 2 is lower than the elevation angle (right angle) of the satellite 1 with respect to the GPS receiver 3, the positioning signal of the GPS satellite 2 is larger than the ionospheric passage distance a of the positioning signal of the GPS satellite 1. The passage distance b of the ionosphere is longer. For this reason, the positioning signal of the GPS satellite 2 has a larger delay amount than the positioning signal of the GPS satellite 1. In this case, even if the pseudorange correction value is used as the test statistic, the distribution of the histogram of the pseudorange correction value is not a normal distribution due to the elevation angle dependency of the delay amount. And estimation of the probability of failure in satellite anomaly detection cannot be performed with high accuracy. For this reason, there is a problem that it is not possible to guide the landing and landing of the aircraft with high accuracy in the airspace within a predetermined distance around the airport.

上記の擬似距離補正方式のGBASの他、この種の関連技術としては、たとえば、特許文献1に記載された電離層遅延量算出方法がある。
この電離層遅延量算出方法では、所定の時間に同じ衛星を用いて算出した、GPSモデルによる電離層遅延量と2周波による電離層遅延量との差から、擬似距離の観測量に含まれる受信機固有の周波数間バイアス(IFB、Inter Frequency Bias)が算出される。そして、IFBを除去した擬似距離を使った2周波による電離層遅延量とGPSモデルによる電離層遅延量とから、これらの値のいずれかを選択、あるいは加重平均することにより、測位演算時に使用する電離層遅延量が算出される。
In addition to the above-mentioned pseudo-range correction GBAS, this type of related technology includes, for example, an ionosphere delay amount calculation method described in Patent Document 1.
In this ionospheric delay amount calculation method, the difference between the ionospheric delay amount based on the GPS model and the ionospheric delay amount due to two frequencies calculated using the same satellite at a predetermined time is used. An inter-frequency bias (IFB) is calculated. Then, the ionospheric delay used in the positioning calculation is selected by selecting one of these values or the weighted average from the ionospheric delay amount by the two frequencies using the pseudorange from which IFB is removed and the ionospheric delay amount by the GPS model. A quantity is calculated.

また、特許文献2に記載された航法データ更新通知システムでは、地上システムにより、測位衛星から受信したレンジング信号に含まれる誤差が推定され、その誤差を修正するための補正情報がフォーマッティングされて送信される。そして、機上システムにより、測位衛星から受信したレンジング信号及び上記フォーマッティングされた補正信号に基づいてディファレンシャルGPS測位演算され、規定ルートからの変位が表示される。上記地上システムでは、上記補正情報を生成する際に使用したSBAS(Satellite Based Augmentation System 、衛星回線による広域補強システム)航法データが更新された際に航法データの更新を上記補正情報に付加して通知する。上記機上システムでは、送信されるSBAS航法データの更新が検出され、更新されたSBAS航法データに切り替えてディファレンシャルGPS測位演算される。   In the navigation data update notification system described in Patent Document 2, an error included in a ranging signal received from a positioning satellite is estimated by a ground system, and correction information for correcting the error is formatted and transmitted. The Then, the differential GPS positioning calculation is performed by the onboard system based on the ranging signal received from the positioning satellite and the formatted correction signal, and the displacement from the prescribed route is displayed. In the above ground system, when the SBAS (Satellite Based Augmentation System) navigation data used for generating the correction information is updated, the update of the navigation data is notified to the correction information. To do. In the above-mentioned on-board system, the update of the transmitted SBAS navigation data is detected, and the differential GPS positioning calculation is performed by switching to the updated SBAS navigation data.

特開2007−187592号公報Japanese Patent Laid-Open No. 2007-187592 特開2009−250798号公報JP 2009-250798 A

坂井丈泰他、「広域ディファレンシャルGPSにおける電離層遅延補正情報のグリッド間隔による影響」、電子研報告、電子航法研究所、2008.1、No.119、P.4Takeyasu Sakai et al., “Effects of grid spacing on ionospheric delay correction information in wide-area differential GPS”, Electronic Research Report, Electronic Navigation Research Institute, 2008.1, No.119, P.4

しかしながら、上記関連技術では、次のような課題があった。
すなわち、特許文献1に記載された電離層遅延量算出方法では、GPSモデルによる電離層遅延量と、2周波による電離層遅延量とを混合して使用し、正確な電離層遅延量が算出されるが、この発明とは構成や処理方法が異なる。
However, the related technology has the following problems.
That is, in the ionosphere delay amount calculation method described in Patent Document 1, the ionosphere delay amount by the GPS model and the ionosphere delay amount by the two frequencies are mixed and used, and an accurate ionosphere delay amount is calculated. The configuration and processing method are different from the invention.

特許文献2に記載された航法データ更新通知システムでは、地上システムと機上システムとで使用する航法データを一致させて測位精度の悪化を回避することにより安全性を図るが、この発明とは構成や処理方法が異なる。   In the navigation data update notification system described in Patent Document 2, the navigation data used in the ground system and the onboard system are matched to avoid the deterioration of positioning accuracy. And processing methods are different.

この発明は、上述の事情に鑑みてなされたもので、衛星の異常を判定するための閾値の設定や、衛星の異常検出の失敗の確率の見積もりを高精度で行う地上補強型衛星航法システム、該システムに用いられる衛星異常検出方法及び衛星異常検出プログラムを提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and is a ground-reinforced satellite navigation system that performs high-precision estimation of a threshold value for determining satellite abnormality and estimation of the probability of failure in detecting satellite abnormality, An object of the present invention is to provide a satellite abnormality detection method and a satellite abnormality detection program used in the system.

上記課題を解決するために、この発明の第1の構成は、所定数の測位衛星から放送される各信号電波を受信する測位手段と、該測位手段により受信された前記各信号電波に含まれるエフェメリス情報に基づいて、前記各測位衛星毎に前記測位手段との間の第1の擬似距離を計算すると共に、前記各信号電波に含まれる前記各測位衛星の測位信号に基づいて、前記各測位衛星毎に前記測位手段との間の第2の擬似距離を計算し、前記各第1の擬似距離と前記各第2の擬似距離との差分を前記各測位衛星毎に計算して前記各差分に基づく各擬似距離補正値を生成する擬似距離補正値生成手段とを有する地上補強型衛星航法システムに係り、前記各信号電波の測位信号のうちで、傾斜した電離層を越えて伝搬する測位信号があるとき、該測位信号に対応した前記擬似距離補正値に対して、対応する前記測位衛星の前記測位手段に対する仰角の関数で表される電離層傾斜係数を用いて、前記擬似距離補正値の“0”を基準として略左右対称となる正規分布に近付くように補正して各検定統計量として生成する擬似距離補正値補正手段と、該擬似距離補正値補正手段で生成された前記各検定統計量を用いて前記各測位衛星の異常の有無を検出する衛星異常検出手段とを備えてなると共に、前記擬似距離補正値補正手段が、前記擬似距離補正値を前記電離層傾斜係数で除することで前記検定統計量を生成し、かつ、前記衛星異常検出手段が、前記各検定統計量に基づいて前記擬似距離補正値の正規分布の平均値及び標準偏差を求め、前記平均値及び標準偏差に基づいて、前記測位衛星の異常を判定するための閾値を設定することを特徴としている。 In order to solve the above-described problem, the first configuration of the present invention is included in positioning means for receiving each signal radio wave broadcast from a predetermined number of positioning satellites and each signal radio wave received by the positioning means. Based on the ephemeris information, for each of the positioning satellites, the first pseudo distance to the positioning means is calculated, and the positioning signals of the positioning satellites included in the signal radio waves are used to calculate the positioning positions. A second pseudo distance between the positioning means is calculated for each satellite, a difference between each first pseudo distance and each second pseudo distance is calculated for each positioning satellite, and each difference is calculated. In accordance with a ground augmented satellite navigation system having a pseudorange correction value generating means for generating each pseudorange correction value based on the positioning signal, a positioning signal propagating over an inclined ionosphere is detected among the positioning signals of each signal radio wave. When there is a positioning signal The pseudorange correction value is substantially symmetrical with respect to the pseudorange correction value “0” using an ionospheric slope coefficient expressed as a function of an elevation angle with respect to the positioning means of the corresponding positioning satellite. Pseudo-range correction value correcting means for correcting each so as to approximate a normal distribution and generating as each test statistic, and using each test statistic generated by the pseudo-range correction value correcting means for each positioning satellite Satellite abnormality detection means for detecting the presence or absence of abnormality, and the pseudo distance correction value correction means generates the test statistic by dividing the pseudo distance correction value by the ionosphere slope coefficient, and The satellite abnormality detection means obtains an average value and a standard deviation of a normal distribution of the pseudorange correction value based on each of the test statistics, and determines an abnormality of the positioning satellite based on the average value and the standard deviation. It is characterized by setting a threshold for.

この発明の第2の構成は、所定数の測位衛星から放送される各信号電波を受信する測位手段と、該測位手段により受信された前記各信号電波に含まれるエフェメリス情報に基づいて、前記各測位衛星毎に前記測位手段との間の第1の擬似距離を計算すると共に、前記各信号電波に含まれる前記各測位衛星の測位信号に基づいて、前記各測位衛星毎に前記測位手段との間の第2の擬似距離を計算し、前記各第1の擬似距離と前記各第2の擬似距離との差分を前記各測位衛星毎に計算して前記各差分に基づく各擬似距離補正値を生成する擬似距離補正値生成手段とを有する地上補強型衛星航法システムに用いられる衛星異常検出方法に係り、前記各信号電波の測位信号のうちで、傾斜した電離層を越えて伝搬する測位信号があるとき、擬似距離補正値補正手段が、該測位信号に対応した前記擬似距離補正値に対して、対応する前記測位衛星の前記測位手段に対する仰角の関数で表される電離層傾斜係数を用いて、前記擬似距離補正値の“0”を基準として略左右対称となる正規分布に近付くように補正して各検定統計量として生成する擬似距離補正値補正処理と、衛星異常検出手段が、前記擬似距離補正値補正手段で生成された前記各検定統計量を用いて前記各測位衛星の異常の有無を検出する衛星異常検出処理とを行うと共に、前記擬似距離補正値補正処理では、前記擬似距離補正値補正手段が、前記擬似距離補正値を前記電離層傾斜係数で除することで前記検定統計量を生成し、かつ、前記衛星異常検出処理では、前記衛星異常検出手段が、前記各検定統計量に基づいて前記擬似距離補正値の正規分布の平均値及び標準偏差を求め、前記平均値及び標準偏差に基づいて、前記測位衛星の異常を判定するための閾値を設定することを特徴としている。 The second configuration of the present invention is based on positioning means for receiving each signal radio wave broadcast from a predetermined number of positioning satellites, and on the basis of the ephemeris information included in each signal radio wave received by the positioning means. A first pseudo-range between each positioning satellite and the positioning means is calculated, and based on the positioning signals of the positioning satellites included in the signal radio waves, the positioning means is connected to the positioning means for each positioning satellite. A second pseudorange between the first pseudorange and each second pseudorange is calculated for each positioning satellite, and each pseudorange correction value based on each difference is calculated. The present invention relates to a satellite anomaly detection method used in a ground augmented satellite navigation system having a pseudorange correction value generating means for generating, and among the positioning signals of each signal radio wave, there is a positioning signal that propagates over an inclined ionosphere When pseudorange The value correction means uses the ionospheric inclination coefficient expressed as a function of the elevation angle of the corresponding positioning satellite with respect to the positioning means, with respect to the pseudo distance correction value corresponding to the positioning signal. A pseudo-range correction value correction process for generating each test statistic by correcting it so as to approach a normal distribution that is substantially symmetrical with respect to “0”, and a satellite anomaly detection means are generated by the pseudo-range correction value correction means And performing satellite anomaly detection processing for detecting the presence / absence of an abnormality of each positioning satellite using each of the test statistic values, and in the pseudorange correction value correction processing, the pseudorange correction value correction means includes the pseudorange correction value correction means. The test statistic is generated by dividing the distance correction value by the ionospheric slope coefficient, and in the satellite anomaly detection process, the satellite anomaly detection means is configured to generate the pseudo-range based on the test statistic. The average value and standard deviation of the normal distribution of the correction values, on the basis of the average value and standard deviation, is characterized by setting a threshold value for determining an abnormality of the positioning satellites.

この発明の構成によれば、各測位衛星の異常の有無を高精度で検出する地上補強型衛星航法システムを提供することができる。   According to the configuration of the present invention, it is possible to provide a ground augmented satellite navigation system that detects the presence or absence of abnormality of each positioning satellite with high accuracy.

この発明の一実施形態である地上補強型衛星航法システムの要部の電気的構成及び同システムが用いられる環境を模式的に示すブロック図である。It is a block diagram which shows typically the electric constitution of the principal part of the ground reinforcement type | mold satellite navigation system which is one Embodiment of this invention, and the environment where this system is used. 図1中の基準局20の動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the reference | standard station 20 in FIG. 擬似距離補正値が正規分布に近付くように補正された状態の例を示す図である。It is a figure which shows the example of the state correct | amended so that a pseudo distance correction value may approach normal distribution. 擬似距離補正値の補正前及び補正後の状態の例を示す図である。It is a figure which shows the example of the state before correction | amendment of the pseudo distance correction value, and after correction | amendment. 擬似距離補正値の補正前及び補正後の検定統計量のヒストグラムの例を示す図である。It is a figure which shows the example of the histogram of the test statistic before correction | amendment of a pseudo distance correction value, and after correction | amendment. 関連する地上補強型衛星航法システムの問題点を説明する図である。It is a figure explaining the problem of the related ground reinforcement type satellite navigation system.

上記擬似距離補正値補正手段(擬似距離補正値補正部)は、上記擬似距離補正値を上記電離層傾斜係数で除して上記検定統計量とする構成とされている地上補強型衛星航法システムを実現する。   The pseudorange correction value correction means (pseudorange correction value correction unit) realizes a ground augmented satellite navigation system configured to divide the pseudorange correction value by the ionospheric slope coefficient and use it as the test statistic. To do.

また、上記電離層傾斜係数は、
電離層傾斜係数Fpp(El)
=[1−{Re cosEl/(Re +hI )}2 -1/2
ただし、
El;衛星仰角
e ;地球赤道半径
I ;電離層高度
として定義される。
The ionospheric slope coefficient is
Ionospheric gradient coefficient F pp (El)
= [1- {R e cosEl / (R e + h I )} 2 ] −1/2
However,
El: Satellite elevation angle
R e ; Earth equator radius
h I ; defined as the ionospheric altitude.

また、上記衛星異常検出手段(インテグリティモニタ)は、上記各検定統計量に基づいて上記擬似距離補正値の正規分布の平均値及び標準偏差を求め、上記平均値及び標準偏差に基づいて、上記測位衛星の異常を判定するための閾値を設定する構成とされている。また、上記衛星異常検出手段(インテグリティモニタ)は、上記平均値及び標準偏差に基づいて、上記測位衛星の異常検出の失敗の確率を見積もる構成とされている。   The satellite anomaly detection means (integrity monitor) obtains an average value and a standard deviation of a normal distribution of the pseudorange correction value based on the test statistics, and determines the positioning based on the average value and the standard deviation. A threshold for determining a satellite abnormality is set. The satellite abnormality detection means (integrity monitor) is configured to estimate the probability of failure in detecting the abnormality of the positioning satellite based on the average value and the standard deviation.

実施形態Embodiment

図1は、この発明の一実施形態である地上補強型衛星航法システムの要部の電気的構成及び同システムが用いられる環境を模式的に示すブロック図である。
この形態の環境では、同図に示すように、GPS衛星10,10,…,10と基準局20とが無線接続されている。この基準局20により、地上補強型衛星航法システムが構成されている。基準局20は、空港などの所定の位置に設置され、GPSアンテナ21と、GPS受信機22と、データ処理装置23とを備えている。GPS受信機22は、GPS衛星10から放送される各信号電波をGPSアンテナ21を介して受信する。
FIG. 1 is a block diagram schematically showing an electrical configuration of a main part of a ground-reinforced satellite navigation system according to an embodiment of the present invention and an environment in which the system is used.
In this form of environment, as shown in the figure, the GPS satellites 10, 10,..., 10 and the reference station 20 are wirelessly connected. The reference station 20 constitutes a ground-reinforced satellite navigation system. The reference station 20 is installed at a predetermined position such as an airport, and includes a GPS antenna 21, a GPS receiver 22, and a data processing device 23. The GPS receiver 22 receives each signal radio wave broadcast from the GPS satellite 10 via the GPS antenna 21.

データ処理装置23は、GPS受信機22により受信された上記各信号電波に含まれる、GPS衛星10の軌道を示すエフェメリス情報に基づいて、各GPS衛星10毎にGPSアンテナ21との間の第1の擬似距離を計算すると共に、上記各信号電波に含まれるGPS衛星10の測位信号に基づいて、各GPS衛星10毎にGPS受信機22との間の第2の擬似距離を計算し、上記各第1の擬似距離と上記各第2の擬似距離との差分をGPS衛星10毎に計算して各差分に基づく各擬似距離補正値(Pseudo Range Correction 、PRC)を生成する。特に、この実施形態では、データ処理装置23は、擬似距離補正値補正部23aと、インテグリティモニタ23bとを有している。   Based on the ephemeris information indicating the orbit of the GPS satellite 10 included in each of the signal radio waves received by the GPS receiver 22, the data processing device 23 is connected to the first GPS antenna 21 for each GPS satellite 10. And calculating a second pseudo distance to the GPS receiver 22 for each GPS satellite 10 based on the positioning signal of the GPS satellite 10 included in each signal radio wave. The difference between the first pseudorange and each of the second pseudoranges is calculated for each GPS satellite 10, and each pseudorange correction value (Pseudo Range Correction, PRC) based on each difference is generated. In particular, in this embodiment, the data processing device 23 includes a pseudo distance correction value correction unit 23a and an integrity monitor 23b.

擬似距離補正値補正部23aは、上記各信号電波の測位信号のうちで、傾斜した電離層を越えて伝搬する測位信号があるとき、同測位信号に対応した擬似距離補正値(PRC)に対して、対応するGPS衛星10のGPSアンテナ21に対する仰角の関数で表される電離層傾斜係数を用いて正規分布に近付くように補正して各検定統計量として生成する。この場合、擬似距離補正値補正部23aは、擬似距離補正値(PRC)を上記電離層傾斜係数で除した値を上記検定統計量とする。上記電離層傾斜係数は、次式(1)で定義される。なお、この電離層傾斜係数は、非特許文献1に記載されている。
電離層傾斜係数Fpp(El)
=[1−{Re cosEl/(Re +hI )}2 -1/2 ・・・(1)
ただし、
El;衛星仰角
e ;地球赤道半径
I ;電離層高度
When there is a positioning signal that propagates over the inclined ionosphere among the positioning signals of the signal radio waves, the pseudo distance correction value correction unit 23a applies the pseudo distance correction value (PRC) corresponding to the positioning signal. Then, correction is made so as to approach the normal distribution by using an ionospheric slope coefficient expressed by a function of the elevation angle of the corresponding GPS satellite 10 with respect to the GPS antenna 21, and each test statistic is generated. In this case, the pseudo distance correction value correction unit 23a sets the value obtained by dividing the pseudo distance correction value (PRC) by the ionospheric slope coefficient as the test statistic. The ionospheric gradient coefficient is defined by the following equation (1). This ionospheric gradient coefficient is described in Non-Patent Document 1.
Ionospheric gradient coefficient F pp (El)
= [1- {R e cosEl / (R e + h I )} 2 ] −1/2 (1)
However,
El: Satellite elevation angle
R e ; Earth equator radius
h I ; ionospheric altitude

インテグリティモニタ23bは、擬似距離補正値補正部23aで生成された各検定統計量を用いてGPS衛星10の異常の有無を検出する。この場合、インテグリティモニタ23bは、上記各検定統計量に基づいて上記擬似距離補正値(PRC)の正規分布の平均値及び標準偏差を求め、同平均値及び標準偏差に基づいて、GPS衛星10の異常を判定するための閾値を設定する。この場合、閾値は、擬似距離補正値の正規分布のグラフに基づいて、上記平均値及び標準偏差が含まれる領域から外れる値に設定される。また、インテグリティモニタ23bは、上記平均値及び標準偏差に基づいて、GPS衛星10の異常検出の失敗の確率を見積もる。この場合、異常検出の失敗の確率は、擬似距離補正値のサンプル数の総数に対し、上記設定された閾値以上の擬似距離補正値のサンプル数の占める割合を求めることにより算出される。この地上補強型衛星航法システムは、衛星異常検出プログラムに基づいて動作するコンピュータで構成されている。   The integrity monitor 23b detects the presence / absence of an abnormality of the GPS satellite 10 using each test statistic generated by the pseudo distance correction value correction unit 23a. In this case, the integrity monitor 23b obtains an average value and a standard deviation of the normal distribution of the pseudorange correction value (PRC) based on each of the test statistics, and based on the average value and the standard deviation, A threshold value for determining abnormality is set. In this case, the threshold value is set to a value that deviates from the region including the average value and the standard deviation based on the normal distribution graph of the pseudo distance correction value. Further, the integrity monitor 23b estimates the probability of failure in detecting the abnormality of the GPS satellite 10 based on the average value and the standard deviation. In this case, the probability of failure in detecting the abnormality is calculated by obtaining a ratio of the number of samples of the pseudo distance correction value equal to or larger than the set threshold to the total number of samples of the pseudo distance correction value. This ground-reinforced satellite navigation system is composed of a computer that operates based on a satellite anomaly detection program.

図2は、図1中の基準局20の動作を説明するフローチャート、図3は、擬似距離補正値が正規分布に近付くように補正された状態の例を示す図、図4は、擬似距離補正値の補正前及び補正後の状態の例を示す図、及び図5が、擬似距離補正値の補正前及び補正後の検定統計量のヒストグラムの例を示す図である。
これらの図を参照して、この形態の地上補強型衛星航法システムに用いられる衛星異常検出方法の処理内容について説明する。
この地上補強型衛星航法システムでは、図2に示すように、測位衛星(GPS衛星10)から放送される各信号電波が測位手段(GPSアンテナ21、GPS受信機22)で受信される(ステップA1)。擬似距離補正値生成手段(データ処理装置23)により、測位手段(GPSアンテナ21、GPS受信機22)により受信された各信号電波に含まれるデータが収集及び解析され(ステップA2)、同各信号電波に含まれるエフェメリス情報に基づいて、各測位衛星(GPS衛星10)毎に測位手段(GPSアンテナ21、GPS受信機22)との間の第1の擬似距離が計算され(ステップA3)、また、上記各信号電波に含まれる各測位衛星(GPS衛星10)の測位信号に基づいて、各測位衛星(GPS衛星10)毎に測位手段(GPSアンテナ21、GPS受信機22)との間の第2の擬似距離が計算される(ステップA4)。そして、上記各第1の擬似距離と上記各第2の擬似距離との差分が各測位衛星(GPS衛星10)毎に計算されて各差分に基づく各擬似距離補正値が生成される(ステップA5)。
2 is a flowchart for explaining the operation of the reference station 20 in FIG. 1, FIG. 3 is a diagram showing an example of a state in which the pseudo distance correction value is corrected so as to approach the normal distribution, and FIG. 4 is a pseudo distance correction value. FIG. 5 is a diagram illustrating an example of a state before and after correction, and FIG. 5 is a diagram illustrating an example of a histogram of test statistics before and after correction of the pseudo distance correction value.
With reference to these drawings, processing contents of the satellite abnormality detection method used in the ground-reinforced satellite navigation system of this embodiment will be described.
In this ground augmented satellite navigation system, as shown in FIG. 2, each signal radio wave broadcast from the positioning satellite (GPS satellite 10) is received by the positioning means (GPS antenna 21, GPS receiver 22) (step A1). ). The pseudo-range correction value generation means (data processing device 23) collects and analyzes data included in each signal radio wave received by the positioning means (GPS antenna 21, GPS receiver 22) (step A2). Based on the ephemeris information included in the radio wave, a first pseudo distance between the positioning means (GPS antenna 21 and GPS receiver 22) is calculated for each positioning satellite (GPS satellite 10) (step A3), or Based on the positioning signals of the positioning satellites (GPS satellites 10) included in the signal radio waves, the positioning means (GPS antenna 21, GPS receiver 22) for each positioning satellite (GPS satellite 10) A pseudorange of 2 is calculated (step A4). Then, the difference between each first pseudorange and each second pseudorange is calculated for each positioning satellite (GPS satellite 10), and each pseudorange correction value based on each difference is generated (step A5). ).

さらに、各測位信号のうちで、傾斜した電離層を越えて伝搬する測位信号があるとき、擬似距離補正値補正手段(擬似距離補正値補正部23a)により、同測位信号に対応した上記擬似距離補正値に対して、対応する測位衛星(GPS衛星10)の測位手段(GPSアンテナ21、GPS受信機22)に対する仰角の関数で表される電離層傾斜係数を用いて正規分布に近付くように補正して各検定統計量として生成される(擬似距離補正値補正処理、ステップA6)。上記擬似距離補正値補正処理では、擬似距離補正値補正手段(擬似距離補正値補正部23a)により、擬似距離補正値を上記電離層傾斜係数で除して検定統計量とされる。電離層傾斜係数は、上記式(1)で定義される。   Further, among the positioning signals, when there is a positioning signal propagating beyond the inclined ionosphere, the pseudo distance correction corresponding to the positioning signal is performed by the pseudo distance correction value correcting means (pseudo distance correction value correcting unit 23a). The value is corrected so as to approach the normal distribution by using an ionospheric slope coefficient expressed as a function of the elevation angle with respect to the positioning means (GPS antenna 21 and GPS receiver 22) of the corresponding positioning satellite (GPS satellite 10). Each test statistic is generated (pseudo distance correction value correction process, step A6). In the pseudo distance correction value correction process, the pseudo distance correction value (pseudo distance correction value correction unit 23a) divides the pseudo distance correction value by the ionosphere slope coefficient to obtain a test statistic. The ionospheric slope coefficient is defined by the above formula (1).

そして、衛星異常検出手段(インテグリティモニタ23b)により、擬似距離補正値補正手段(擬似距離補正値補正部23a)で生成された各検定統計量を用いて各測位衛星(GPS衛星10)の異常の有無が検出される(衛星異常検出処理、ステップA7)。上記衛星異常検出処理では、衛星異常検出手段(インテグリティモニタ23b)により、上記各検定統計量に基づいて擬似距離補正値の正規分布の平均値及び標準偏差が求められ、同平均値及び標準偏差に基づいて、測位衛星(GPS衛星10)の異常を判定するための閾値が設定される。また、衛星異常検出処理では、衛星異常検出手段(インテグリティモニタ23b)により、上記平均値及び標準偏差に基づいて、測位衛星(GPS衛星10)の異常検出の失敗の確率が見積もられる。   Then, the satellite anomaly detection means (integrity monitor 23b) uses each test statistic generated by the pseudorange correction value correction means (pseudorange correction value correction unit 23a) to detect the abnormality of each positioning satellite (GPS satellite 10). Presence / absence is detected (satellite abnormality detection processing, step A7). In the satellite anomaly detection process, the satellite anomaly detection means (integrity monitor 23b) obtains the average value and standard deviation of the normal distribution of the pseudorange correction value based on each test statistic. Based on this, a threshold for determining an abnormality of the positioning satellite (GPS satellite 10) is set. In the satellite anomaly detection process, the satellite anomaly detection means (integrity monitor 23b) estimates the probability of failure in detecting the anomaly of the positioning satellite (GPS satellite 10) based on the average value and the standard deviation.

図3及び図4では、縦軸にサンプル数、及び横軸に擬似距離補正値がとられている。擬似距離補正値補正部23aでは、図3に示すように、擬似距離補正値が正規分布に近付くように補正され、GPS衛星10との距離の観測値が正しい可能性がある確率を求めるための閾値の設定が容易となり、インテグリティモニタ23bによるGPS衛星10の異常検出の精度が高められる。また、擬似距離補正値の補正前の状態でインテグリティモニタ23bによるGPS衛星10の異常検出を行う場合、図4に示すように、擬似距離補正値の補正前の正規分布のグラフ上で閾値を設定することにより、GPS衛星10の異常を検出する領域は、補正前の閾値の左側の部分となる。このとき、実際の擬似距離補正値の分布が補正後の正規分布のグラフとなる場合、領域B内にある擬似距離補正値は、補正後の閾値内にあるため、インテグリティモニタ23bにより正しい結果が得られるが、補正前のグラフでは閾値外となるため、インテグリティモニタ23bがGPS衛星10の異常と見なしてしまい、GPS衛星10の異常検出の失敗となる。このように、インテグリティモニタ23bでは、補正を行った正規分布のグラフを用いることにより、GPS衛星10の異常検出の失敗の確率を正しく見積もることが可能となる。   3 and 4, the vertical axis represents the number of samples and the horizontal axis represents the pseudo distance correction value. As shown in FIG. 3, the pseudo distance correction value correction unit 23a corrects the pseudo distance correction value so as to approach a normal distribution, and obtains a probability that the observed value of the distance to the GPS satellite 10 may be correct. Setting of the threshold value is facilitated, and the accuracy of the abnormality detection of the GPS satellite 10 by the integrity monitor 23b is increased. In addition, when abnormality detection of the GPS satellite 10 is performed by the integrity monitor 23b in the state before the correction of the pseudo distance correction value, as shown in FIG. 4, a threshold value is set on the graph of the normal distribution before the correction of the pseudo distance correction value. By doing so, the region where the abnormality of the GPS satellite 10 is detected becomes a portion on the left side of the threshold value before correction. At this time, if the distribution of the actual pseudo distance correction value becomes a graph of the normal distribution after correction, the pseudo distance correction value in the region B is within the corrected threshold value, and therefore the integrity monitor 23b gives a correct result. Although it is obtained, it is outside the threshold value in the graph before correction, and therefore the integrity monitor 23b regards the abnormality of the GPS satellite 10 and fails to detect the abnormality of the GPS satellite 10. As described above, the integrity monitor 23b can correctly estimate the probability of failure in detecting the abnormality of the GPS satellite 10 by using the corrected normal distribution graph.

図5(a),(b)では、縦軸にサンプル数、及び横軸に擬似距離補正値(単位;m)がとられている。縦軸のサンプル数の合計は、たとえば数千乃至一万である。擬似距離補正値の補正前の検定統計量のヒストグラムは、図5(a)に示すように、擬似距離補正値の“0”を基準として左右非対称となり、電離層における信号電波の遅延の影響が表れている。また、擬似距離補正値の補正後の検定統計量のヒストグラムは、図5(b)に示すように、擬似距離補正値の“0”を基準として略左右対称となり、電離層における信号電波の遅延の影響を受けていない。このように、インテグリティモニタ23bによるGPS衛星10の異常検出のための擬似距離補正値の閾値が容易に設定され、検出失敗の確率も正しく見積もることが可能になっていることがわかる。   5A and 5B, the vertical axis represents the number of samples, and the horizontal axis represents the pseudo distance correction value (unit: m). The total number of samples on the vertical axis is, for example, thousands to 10,000. As shown in FIG. 5A, the histogram of the test statistic before correction of the pseudorange correction value is asymmetrical with respect to the pseudorange correction value “0”, and the influence of the signal radio wave delay in the ionosphere appears. ing. Further, as shown in FIG. 5B, the histogram of the test statistic after the correction of the pseudo distance correction value is substantially symmetrical with respect to the pseudo distance correction value “0”, and the delay of the signal radio wave in the ionosphere. Not affected. Thus, it can be seen that the threshold of the pseudorange correction value for detecting the abnormality of the GPS satellite 10 by the integrity monitor 23b is easily set, and the probability of detection failure can be estimated correctly.

以上のように、この実施形態では、各GPS衛星10の測位信号のうちで、傾斜した電離層を越えて伝搬する測位信号があるとき、擬似距離補正値補正部23aにより、同測位信号に対応した擬似距離補正値に対して、対応するGPS衛星10の仰角の関数で表される電離層傾斜係数を用いて正規分布に近付くように補正して各検定統計量として生成され、インテグリティモニタ23bにより、各検定統計量に基づいて擬似距離補正値の正規分布の平均値及び標準偏差が求められ、同平均値及び標準偏差に基づいて、GPS衛星10の異常を判定するための閾値が設定されるので、この地上補強型衛星航法システムの継続性が向上する。また、インテグリティモニタ23bにより、上記平均値及び標準偏差に基づいて、GPS衛星10の異常検出の失敗の確率が見積もられるので、この地上補強型衛星航法システムの安全性が向上する。これにより、空港周辺の所定距離内の空域で航空機の進入着陸誘導を高精度で行うことができる。   As described above, in this embodiment, when there is a positioning signal propagating over the inclined ionosphere among the positioning signals of each GPS satellite 10, the pseudorange correction value correction unit 23a supports the positioning signal. The pseudorange correction value is generated as each test statistic by correcting the pseudorange correction value so as to approach the normal distribution by using the ionospheric slope coefficient expressed by the function of the elevation angle of the corresponding GPS satellite 10, and the integrity monitor 23b Since the average value and standard deviation of the normal distribution of the pseudorange correction value are obtained based on the test statistic, and a threshold value for determining an abnormality of the GPS satellite 10 is set based on the average value and the standard deviation. The continuity of this ground-reinforced satellite navigation system is improved. Further, since the probability of failure in detecting the abnormality of the GPS satellite 10 is estimated by the integrity monitor 23b based on the average value and the standard deviation, the safety of the ground-reinforced satellite navigation system is improved. As a result, aircraft landing and landing guidance can be performed with high accuracy in an airspace within a predetermined distance around the airport.

以上、この発明の実施形態を図面により詳述してきたが、具体的な構成は同実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更などがあっても、この発明に含まれる。
たとえば、測位衛星は、GPS衛星10,10,…,10に限定されず、たとえば、ヨーロッパで計画されている「Galileo」や、日本で計画されている「準天頂衛星」が実用化されたとき、これらを用いても良い。
The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to the embodiment, and even if there is a design change without departing from the gist of the present invention, Included in the invention.
For example, positioning satellites are not limited to GPS satellites 10, 10,..., 10; for example, when “Galileo” planned in Europe and “Quasi-Zenith Satellite” planned in Japan are put into practical use. These may be used.

上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限定されない。   A part or all of the above embodiment can be described as in the following supplementary notes, but is not limited to the following.

(付記1)所定数の測位衛星から放送される各信号電波を受信する測位手段と、該測位手段により受信された前記各信号電波に含まれるエフェメリス情報に基づいて、前記各測位衛星毎に前記測位手段との間の第1の擬似距離を計算すると共に、前記各信号電波に含まれる前記各測位衛星の測位信号に基づいて、前記各測位衛星毎に前記測位手段との間の第2の擬似距離を計算し、前記各第1の擬似距離と前記各第2の擬似距離との差分を前記各測位衛星毎に計算して前記各差分に基づく各擬似距離補正値を生成する擬似距離補正値生成手段とを有する地上補強型衛星航法システムであって、前記各信号電波の測位信号のうちで、傾斜した電離層を越えて伝搬する測位信号があるとき、該測位信号に対応した前記擬似距離補正値に対して、対応する前記測位衛星の前記測位手段に対する仰角の関数で表される電離層傾斜係数を用いて正規分布に近付くように補正して各検定統計量として生成する擬似距離補正値補正手段と、該擬似距離補正値補正手段で生成された前記各検定統計量を用いて前記各測位衛星の異常の有無を検出する衛星異常検出手段とを備えてなる地上補強型衛星航法システム。   (Appendix 1) Positioning means for receiving each signal radio wave broadcast from a predetermined number of positioning satellites, and the ephemeris information included in each signal radio wave received by the positioning means, for each positioning satellite Calculating a first pseudo distance to the positioning means and, based on a positioning signal of each positioning satellite included in each signal radio wave, a second pseudo-range between the positioning means for each positioning satellite; A pseudorange correction that calculates a pseudorange, calculates a difference between each first pseudorange and each second pseudorange for each positioning satellite, and generates each pseudorange correction value based on each difference A ground augmented satellite navigation system having a value generating means, and when there is a positioning signal propagating over an inclined ionosphere among the positioning signals of each signal radio wave, the pseudo distance corresponding to the positioning signal For the correction value, A pseudo-range correction value correcting unit that generates a test statistic by correcting the ionizing satellite to be close to a normal distribution by using an ionospheric inclination coefficient represented by a function of an elevation angle with respect to the positioning unit of the positioning satellite; and the pseudo-range correction A ground augmented satellite navigation system comprising satellite abnormality detection means for detecting presence / absence of abnormality of each positioning satellite using each test statistic generated by value correction means.

(付記2)前記擬似距離補正値補正手段は、前記擬似距離補正値を前記電離層傾斜係数で除して前記検定統計量とする構成とされている付記1記載の地上補強型衛星航法システム。   (Supplementary note 2) The ground augmented satellite navigation system according to supplementary note 1, wherein the pseudo-range correction value correction means is configured to divide the pseudo-range correction value by the ionospheric slope coefficient to obtain the test statistic.

(付記3)前記電離層傾斜係数は、
電離層傾斜係数Fpp(El)
=[1−{Re cosEl/(Re +hI )}2 -1/2
ただし、
El;衛星仰角
e ;地球赤道半径
I ;電離層高度
として定義される付記1又は2記載の地上補強型衛星航法システム。
(Appendix 3) The ionospheric slope coefficient is
Ionospheric gradient coefficient F pp (El)
= [1- {R e cosEl / (R e + h I )} 2 ] −1/2
However,
El: Satellite elevation angle
R e ; Earth equator radius
h I : The ground augmented satellite navigation system according to appendix 1 or 2 defined as the ionospheric altitude.

(付記4)前記衛星異常検出手段は、前記各検定統計量に基づいて前記擬似距離補正値の正規分布の平均値及び標準偏差を求め、前記平均値及び標準偏差に基づいて、前記測位衛星の異常を判定するための閾値を設定する構成とされている付記1、2又は3記載の地上補強型衛星航法システム。   (Supplementary Note 4) The satellite anomaly detection means obtains an average value and a standard deviation of a normal distribution of the pseudorange correction value based on each of the test statistics, and based on the average value and the standard deviation, The ground-reinforced satellite navigation system according to Supplementary Note 1, 2, or 3, wherein a threshold value for determining an abnormality is set.

(付記5)前記衛星異常検出手段は、前記平均値及び標準偏差に基づいて、前記測位衛星の異常検出の失敗の確率を見積もる構成とされている付記4記載の地上補強型衛星航法システム。   (Supplementary note 5) The ground augmented satellite navigation system according to supplementary note 4, wherein the satellite abnormality detection means is configured to estimate a probability of failure in detecting the abnormality of the positioning satellite based on the average value and the standard deviation.

(付記6)所定数の測位衛星から放送される各信号電波を受信する測位手段と、該測位手段により受信された前記各信号電波に含まれるエフェメリス情報に基づいて、前記各測位衛星毎に前記測位手段との間の第1の擬似距離を計算すると共に、前記各信号電波に含まれる前記各測位衛星の測位信号に基づいて、前記各測位衛星毎に前記測位手段との間の第2の擬似距離を計算し、前記各第1の擬似距離と前記各第2の擬似距離との差分を前記各測位衛星毎に計算して前記各差分に基づく各擬似距離補正値を生成する擬似距離補正値生成手段とを有する地上補強型衛星航法システムに用いられる衛星異常検出方法であって、前記各信号電波の測位信号のうちで、傾斜した電離層を越えて伝搬する測位信号があるとき、擬似距離補正値補正手段が、該測位信号に対応した前記擬似距離補正値に対して、対応する前記測位衛星の前記測位手段に対する仰角の関数で表される電離層傾斜係数を用いて正規分布に近付くように補正して各検定統計量として生成する擬似距離補正値補正処理と、衛星異常検出手段が、前記擬似距離補正値補正手段で生成された前記各検定統計量を用いて前記各測位衛星の異常の有無を検出する衛星異常検出処理とを行う衛星異常検出方法。   (Appendix 6) Positioning means for receiving each signal radio wave broadcast from a predetermined number of positioning satellites, and the ephemeris information included in each signal radio wave received by the positioning means for each positioning satellite Calculating a first pseudo distance to the positioning means and, based on a positioning signal of each positioning satellite included in each signal radio wave, a second pseudo-range between the positioning means for each positioning satellite; A pseudorange correction that calculates a pseudorange, calculates a difference between each first pseudorange and each second pseudorange for each positioning satellite, and generates each pseudorange correction value based on each difference A satellite anomaly detection method used in a ground augmented satellite navigation system having a value generation means, wherein among the positioning signals of each signal radio wave, there is a positioning signal that propagates over an inclined ionosphere, a pseudorange Correction value correction means Each of the tests is performed by correcting the pseudo distance correction value corresponding to the positioning signal so as to approach a normal distribution by using an ionospheric slope coefficient expressed as a function of an elevation angle with respect to the positioning means of the corresponding positioning satellite. A pseudo-range correction value correction process that is generated as a statistic, and a satellite anomaly detection unit that detects the presence or absence of an abnormality in each positioning satellite using the respective test statistics generated by the pseudo-range correction value correction unit A satellite anomaly detection method that performs anomaly detection processing.

(付記7)前記擬似距離補正値補正処理では、前記擬似距離補正値補正手段が、前記擬似距離補正値を前記電離層傾斜係数で除して前記検定統計量とする付記6記載の衛星異常検出方法。   (Supplementary note 7) In the pseudo-range correction value correction process, the pseudo-range correction value correction unit divides the pseudo-range correction value by the ionospheric slope coefficient to obtain the test statistic. .

(付記8)前記電離層傾斜係数を、
電離層傾斜係数Fpp(El)
=[1−{Re cosEl/(Re +hI )}2 -1/2
ただし、
El;衛星仰角
e ;地球赤道半径
I ;電離層高度
として定義する付記6又は7記載の衛星異常検出方法。
(Appendix 8) The ionospheric slope coefficient is
Ionospheric gradient coefficient F pp (El)
= [1- {R e cosEl / (R e + h I )} 2 ] −1/2
However,
El: Satellite elevation angle
R e ; Earth equator radius
h I : The satellite abnormality detection method according to appendix 6 or 7 defined as ionospheric altitude.

(付記9)前記衛星異常検出処理では、前記衛星異常検出手段が、前記各検定統計量に基づいて前記擬似距離補正値の正規分布の平均値及び標準偏差を求め、前記平均値及び標準偏差に基づいて、前記測位衛星の異常を判定するための閾値を設定する付記6、7又は8記載の衛星異常検出方法。   (Supplementary Note 9) In the satellite anomaly detection process, the satellite anomaly detection means obtains an average value and a standard deviation of a normal distribution of the pseudorange correction value based on each test statistic, and calculates the average value and the standard deviation. 9. The satellite abnormality detection method according to appendix 6, 7 or 8, wherein a threshold value for determining an abnormality of the positioning satellite is set based on the threshold value.

(付記10)前記衛星異常検出処理では、前記衛星異常検出手段が、前記平均値及び標準偏差に基づいて、前記測位衛星の異常検出の失敗の確率を見積もる付記9記載の衛星異常検出方法。   (Supplementary note 10) The satellite abnormality detection method according to supplementary note 9, wherein, in the satellite abnormality detection process, the satellite abnormality detection means estimates a probability of failure of abnormality detection of the positioning satellite based on the average value and standard deviation.

(付記11)コンピュータを、付記1乃至5のいずれか一に記載の地上補強型衛星航法システムとして機能させる衛星異常検出プログラム。   (Supplementary Note 11) A satellite abnormality detection program that causes a computer to function as the ground-reinforced satellite navigation system according to any one of Supplementary Notes 1 to 5.

この発明は、空港周辺の所定距離内の空域で航空機の進入着陸誘導を行う地上補強型衛星航法システム全般に適用でき、また、船舶等に対する誘導を行うシステムにも適用できる。   The present invention can be applied to all ground-reinforced satellite navigation systems that perform approach and landing guidance of aircraft in an airspace within a predetermined distance around an airport, and can also be applied to a system that guides a ship or the like.

10,10,…,10 GPS衛星(測位衛星)
20 基準局(地上補強型衛星航法システム)
21 GPSアンテナ(測位手段の一部)
22 GPS受信機(測位手段の一部)
23 データ処理装置(擬似距離補正値生成手段)
23a 擬似距離補正値補正部(擬似距離補正値補正手段)
23b インテグリティモニタ(衛星異常検出手段)
10, 10, ..., 10 GPS satellite (positioning satellite)
20 Reference station (ground-reinforced satellite navigation system)
21 GPS antenna (part of positioning means)
22 GPS receiver (part of positioning means)
23 Data processing device (pseudo distance correction value generation means)
23a Pseudo distance correction value correction unit (pseudo distance correction value correction means)
23b Integrity monitor (satellite abnormality detection means)

Claims (6)

所定数の測位衛星から放送される各信号電波を受信する測位手段と、
該測位手段により受信された前記各信号電波に含まれるエフェメリス情報に基づいて、前記各測位衛星毎に前記測位手段との間の第1の擬似距離を計算すると共に、前記各信号電波に含まれる前記各測位衛星の測位信号に基づいて、前記各測位衛星毎に前記測位手段との間の第2の擬似距離を計算し、前記各第1の擬似距離と前記各第2の擬似距離との差分を前記各測位衛星毎に計算して前記各差分に基づく各擬似距離補正値を生成する擬似距離補正値生成手段とを有する地上補強型衛星航法システムであって、
前記各信号電波の測位信号のうちで、傾斜した電離層を越えて伝搬する測位信号があるとき、該測位信号に対応した前記擬似距離補正値に対して、対応する前記測位衛星の前記測位手段に対する仰角の関数で表される電離層傾斜係数を用いて、前記擬似距離補正値の“0”を基準として略左右対称となる正規分布に近付くように補正して各検定統計量として生成する擬似距離補正値補正手段と、
該擬似距離補正値補正手段で生成された前記各検定統計量を用いて前記各測位衛星の異常の有無を検出する衛星異常検出手段とを備えてなると共に、
前記擬似距離補正値補正手段は、
前記擬似距離補正値を前記電離層傾斜係数で除することで前記検定統計量を生成し、かつ、
前記衛星異常検出手段は、
前記各検定統計量に基づいて前記擬似距離補正値の正規分布の平均値及び標準偏差を求め、前記平均値及び標準偏差に基づいて、前記測位衛星の異常を判定するための閾値を設定することを特徴とする地上補強型衛星航法システム。
Positioning means for receiving each signal radio wave broadcast from a predetermined number of positioning satellites;
Based on the ephemeris information included in each signal radio wave received by the positioning means, a first pseudo distance to the positioning means is calculated for each positioning satellite and included in the signal radio waves Based on the positioning signal of each positioning satellite, a second pseudo distance to the positioning means is calculated for each positioning satellite, and the first pseudo distance and the second pseudo distance are calculated. A ground augmented satellite navigation system having pseudo-range correction value generating means for calculating a difference for each positioning satellite and generating each pseudo-range correction value based on each difference,
Among the positioning signals of each signal radio wave, when there is a positioning signal propagating beyond the tilted ionosphere, for the pseudorange correction value corresponding to the positioning signal, the corresponding positioning satellite to the positioning means Using the ionospheric slope coefficient expressed by the function of the elevation angle, the pseudorange correction is generated as each test statistic by correcting to approach a normal distribution that is substantially symmetrical with respect to the pseudorange correction value “0” as a reference. Value correction means;
Satellite abnormality detection means for detecting the presence or absence of abnormality of each positioning satellite using each test statistic generated by the pseudorange correction value correction means ,
The pseudo distance correction value correction means includes:
Generating the test statistic by dividing the pseudorange correction value by the ionospheric slope coefficient; and
The satellite abnormality detection means includes
Obtaining a mean value and standard deviation of a normal distribution of the pseudorange correction value based on each test statistic, and setting a threshold value for determining an abnormality of the positioning satellite based on the mean value and standard deviation; A ground-reinforced satellite navigation system characterized by
前記電離層傾斜係数は、
電離層傾斜係数Fpp(El)
=[1−{Re cosEl/(Re +hI )}2 -1/2
ただし、
El;衛星仰角
e ;地球赤道半径
I ;電離層高度
として定義されることを特徴とする請求項記載の地上補強型衛星航法システム。
The ionospheric slope coefficient is
Ionospheric gradient coefficient F pp (El)
= [1- {R e cosEl / (R e + h I )} 2 ] −1/2
However,
El: Satellite elevation angle
R e ; Earth equator radius
h I; ground reinforced satellite navigation system of claim 1, wherein a is defined as the ionosphere altitude.
前記衛星異常検出手段は、
前記平均値及び標準偏差に基づいて、前記測位衛星の異常検出の失敗の確率を見積もる構成とされていることを特徴とする請求項記載の地上補強型衛星航法システム。
The satellite abnormality detection means includes
It said average value and based on the standard deviation, ground reinforced satellite navigation system according to claim 1, characterized by being configured to estimate the probability of failure of the abnormality detection of the positioning satellites.
所定数の測位衛星から放送される各信号電波を受信する測位手段と、
該測位手段により受信された前記各信号電波に含まれるエフェメリス情報に基づいて、前記各測位衛星毎に前記測位手段との間の第1の擬似距離を計算すると共に、前記各信号電波に含まれる前記各測位衛星の測位信号に基づいて、前記各測位衛星毎に前記測位手段との間の第2の擬似距離を計算し、前記各第1の擬似距離と前記各第2の擬似距離との差分を前記各測位衛星毎に計算して前記各差分に基づく各擬似距離補正値を生成する擬似距離補正値生成手段とを有する地上補強型衛星航法システムに用いられる衛星異常検出方法であって、
前記各信号電波の測位信号のうちで、傾斜した電離層を越えて伝搬する測位信号があるとき、擬似距離補正値補正手段が、該測位信号に対応した前記擬似距離補正値に対して、対応する前記測位衛星の前記測位手段に対する仰角の関数で表される電離層傾斜係数を用いて、前記擬似距離補正値の“0”を基準として略左右対称となる正規分布に近付くように補正して各検定統計量として生成する擬似距離補正値補正処理と、
衛星異常検出手段が、前記擬似距離補正値補正手段で生成された前記各検定統計量を用いて前記各測位衛星の異常の有無を検出する衛星異常検出処理とを行うと共に、
前記擬似距離補正値補正処理では、
前記擬似距離補正値補正手段が、前記擬似距離補正値を前記電離層傾斜係数で除することで前記検定統計量を生成し、かつ、
前記衛星異常検出処理では、
前記衛星異常検出手段が、前記各検定統計量に基づいて前記擬似距離補正値の正規分布の平均値及び標準偏差を求め、前記平均値及び標準偏差に基づいて、前記測位衛星の異常を判定するための閾値を設定することを特徴とする衛星異常検出方法。
Positioning means for receiving each signal radio wave broadcast from a predetermined number of positioning satellites;
Based on the ephemeris information included in each signal radio wave received by the positioning means, a first pseudo distance to the positioning means is calculated for each positioning satellite and included in the signal radio waves Based on the positioning signal of each positioning satellite, a second pseudo distance to the positioning means is calculated for each positioning satellite, and the first pseudo distance and the second pseudo distance are calculated. A satellite anomaly detection method used in a ground augmented satellite navigation system having pseudorange correction value generation means for calculating a difference for each positioning satellite and generating each pseudorange correction value based on each difference,
Among the positioning signals of each signal radio wave, when there is a positioning signal propagating beyond the inclined ionosphere, the pseudo distance correction value correcting means corresponds to the pseudo distance correction value corresponding to the positioning signal. Using the ionospheric slope coefficient expressed as a function of the elevation angle of the positioning satellite with respect to the positioning means, each test is corrected by approaching a normal distribution that is substantially symmetrical with respect to the pseudorange correction value “0”. Pseudo distance correction value correction processing generated as a statistic,
The satellite abnormality detection means performs a satellite abnormality detection process for detecting the presence or absence of an abnormality of each positioning satellite using each test statistic generated by the pseudorange correction value correction means ,
In the pseudo distance correction value correction process,
The pseudo distance correction value correction means generates the test statistic by dividing the pseudo distance correction value by the ionosphere slope coefficient, and
In the satellite abnormality detection process,
The satellite abnormality detection means obtains an average value and a standard deviation of a normal distribution of the pseudorange correction value based on the respective test statistics, and determines an abnormality of the positioning satellite based on the average value and the standard deviation. A satellite anomaly detection method characterized by setting a threshold value .
前記電離層傾斜係数を、
電離層傾斜係数Fpp(El)
=[1−{Re cosEl/(Re +hI )}2 -1/2
ただし、
El;衛星仰角
e ;地球赤道半径
I ;電離層高度
として定義することを特徴とする請求項記載の衛星異常検出方法。
The ionospheric slope coefficient is
Ionospheric gradient coefficient F pp (El)
= [1- {R e cosEl / (R e + h I )} 2 ] −1/2
However,
El: Satellite elevation angle
R e ; Earth equator radius
The satellite anomaly detection method according to claim 4, wherein h I is defined as an ionospheric altitude.
前記衛星異常検出処理では、
前記衛星異常検出手段が、前記平均値及び標準偏差に基づいて、前記測位衛星の異常検出の失敗の確率を見積もることを特徴とする請求項記載の衛星異常検出方法。
In the satellite abnormality detection process,
5. The satellite anomaly detection method according to claim 4, wherein the satellite anomaly detection means estimates a probability of failure in detecting the anomaly of the positioning satellite based on the average value and the standard deviation.
JP2010115623A 2010-05-19 2010-05-19 Ground augmented satellite navigation system and satellite anomaly detection method used in the system Expired - Fee Related JP5704298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010115623A JP5704298B2 (en) 2010-05-19 2010-05-19 Ground augmented satellite navigation system and satellite anomaly detection method used in the system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010115623A JP5704298B2 (en) 2010-05-19 2010-05-19 Ground augmented satellite navigation system and satellite anomaly detection method used in the system

Publications (2)

Publication Number Publication Date
JP2011242296A JP2011242296A (en) 2011-12-01
JP5704298B2 true JP5704298B2 (en) 2015-04-22

Family

ID=45409098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010115623A Expired - Fee Related JP5704298B2 (en) 2010-05-19 2010-05-19 Ground augmented satellite navigation system and satellite anomaly detection method used in the system

Country Status (1)

Country Link
JP (1) JP5704298B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111064002A (en) * 2018-10-16 2020-04-24 成都空间矩阵科技有限公司 Servo control method for low-profile satellite communication antenna

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101428517B1 (en) 2012-08-23 2014-08-11 한국과학기술원 Method and system for providing flag data by analyzing gps data
KR101486329B1 (en) * 2013-12-16 2015-01-26 한국항공우주연구원 Apparatus for evaluate ground based augmentation system and method thereof
TW201543058A (en) * 2014-02-27 2015-11-16 Nec Corp Satellite positioning-use radio wave interference detection mechanism and method, and augmentary information transmission system provided with satellite positioning-use radio wave interference detection mechanism
KR101744420B1 (en) * 2015-11-25 2017-06-09 한국항공우주연구원 Monitoring appratus and method for ground based augmentation system
KR101811760B1 (en) * 2015-12-30 2017-12-22 순천향대학교 산학협력단 Apparatus and method for ionospheric anomaly monitoring using kullback-leibler divergence metric based on gbas ground system
WO2018078795A1 (en) 2016-10-28 2018-05-03 三菱電機株式会社 Positioning augmentation device, positioning augmentation method, and positioning augmentation program
CN109100958B (en) * 2018-08-28 2021-04-13 国网湖南省电力有限公司 Polar orbit satellite-ground linkage monitoring method and system for mountain fire of power transmission line
CN110764123B (en) * 2019-11-22 2023-03-31 中国科学院上海天文台 Pseudo-range positioning improvement method based on GLONASS broadcast ephemeris
WO2021245888A1 (en) * 2020-06-04 2021-12-09 日本電気株式会社 Information processing device, information provision system, information processing method, and storage medium having information processing program stored thereon
WO2021245889A1 (en) * 2020-06-04 2021-12-09 日本電気株式会社 Information processing device, information provision system, information processing method, and storage medium having information processing program stored thereon

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2693903B2 (en) * 1993-08-26 1997-12-24 日本無線株式会社 GPS receiver
JP3537504B2 (en) * 1994-09-30 2004-06-14 古野電気株式会社 Positioning system
JPH08201504A (en) * 1995-01-25 1996-08-09 Matsushita Electric Ind Co Ltd Gps receiver
JP2002318271A (en) * 2001-04-23 2002-10-31 Japan Radio Co Ltd Method for estimating ionospheric delay
JP5094344B2 (en) * 2007-11-20 2012-12-12 古野電気株式会社 Abnormal satellite detection device and positioning device
CA2645656C (en) * 2007-12-07 2016-07-19 Honeywell International Inc. Navigation system with apparatus for detecting accuracy failures
CA2645697C (en) * 2007-12-07 2017-05-09 Honeywell International Inc. Navigation system with apparatus for detecting accuracy failures

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111064002A (en) * 2018-10-16 2020-04-24 成都空间矩阵科技有限公司 Servo control method for low-profile satellite communication antenna
CN111064002B (en) * 2018-10-16 2021-04-23 正成集团科技有限公司 Servo control method for low-profile satellite communication antenna

Also Published As

Publication number Publication date
JP2011242296A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP5704298B2 (en) Ground augmented satellite navigation system and satellite anomaly detection method used in the system
US10761215B2 (en) Positioning device and positioning method
EP2746811B1 (en) Methods for generating accuracy information on an ionosphere model for satellite navigation applications
US8818582B2 (en) Method and system for determining the position of an aircraft during its approach to a landing runway
JP5305416B2 (en) A method and apparatus for detecting ionospheric anomalies in a satellite navigation system.
US8909471B1 (en) Voting system and method using doppler aided navigation
US20130027246A1 (en) Method and apparatus for receiving positioning signals based on pseudorange corrections
CN105758401A (en) Integrated navigation method and equipment based on multisource information fusion
US20090251365A1 (en) Sbas navigation data update notifying system and method used in gbas
Felux et al. GBAS landing system–precision approach guidance after ILS
WO2015129243A1 (en) Satellite positioning-use radio wave interference detection mechanism, satellite positioning-use radio wave interference detection method, and augmentary information transmission system provided with satellite positioning-use radio wave interference detection mechanism
CN101395443A (en) Hybrid positioning method and device
US20130030775A1 (en) Method for Determining the Position of a Mobile Body at a Given Instant and for Monitoring the Integrity of the Position of Said Mobile Body
JP4723932B2 (en) Positioning system
JP6833536B2 (en) Use of wide-area reference receiver network data to mitigate local area error sources
CN114235007B (en) Positioning and integrity monitoring method and system for APNT service
KR20130037838A (en) Apparatus and method for monitoring gps satellite fault
Gunning Safety critical bounds for precise positioning for aviation and autonomy
KR101104452B1 (en) Ionosphere storm detection system and method using reference station oriented space-time differential based on gnss
RU2389042C2 (en) Method of determining protective limit around position of moving body calculated from satellite signals
Xu et al. An improved weight optimization AAIM method aided by barometric altimeter
Flament et al. RAIM in dual frequency/multi constellation APV/LPV operations in aeronautics
KR20190019753A (en) Method and apparatus for determining factors of fault in satelite
Merino et al. Integrity for advanced precise positioning applications
US20240134065A1 (en) System and method for distributed integrity monitoring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150210

R150 Certificate of patent or registration of utility model

Ref document number: 5704298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees