WO2015129243A1 - Satellite positioning-use radio wave interference detection mechanism, satellite positioning-use radio wave interference detection method, and augmentary information transmission system provided with satellite positioning-use radio wave interference detection mechanism - Google Patents

Satellite positioning-use radio wave interference detection mechanism, satellite positioning-use radio wave interference detection method, and augmentary information transmission system provided with satellite positioning-use radio wave interference detection mechanism Download PDF

Info

Publication number
WO2015129243A1
WO2015129243A1 PCT/JP2015/000875 JP2015000875W WO2015129243A1 WO 2015129243 A1 WO2015129243 A1 WO 2015129243A1 JP 2015000875 W JP2015000875 W JP 2015000875W WO 2015129243 A1 WO2015129243 A1 WO 2015129243A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio wave
wave interference
reinforcement information
gps signal
signal
Prior art date
Application number
PCT/JP2015/000875
Other languages
French (fr)
Japanese (ja)
Inventor
岩崎 隆一郎
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2016505058A priority Critical patent/JPWO2015129243A1/en
Publication of WO2015129243A1 publication Critical patent/WO2015129243A1/en
Priority to PH12016501589A priority patent/PH12016501589A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/21Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service

Definitions

  • the present invention relates to a system and method for determining the presence or absence of radio wave interference in a global positioning system (GPS) signal.
  • GPS global positioning system
  • GBAS ground-based augmentation system
  • GBAS creates reinforcement information on the ground system, and sends correction information by DGPS (Differential GPS), integrity information, FAS (Final Approach Segment) and TAP (Terminal Area Path) route information, etc. to the aircraft via VHF signals. To do. By using the reinforcement information received by the devices on the aircraft, navigation safety and accuracy that cannot be obtained by GPS alone are guaranteed.
  • DGPS Downlink GPS
  • FAS Forward Approach Segment
  • TAP Terminal Area Path
  • a GPS signal transmitted from a GPS satellite with an output power of 50W is affected by the medium that passes through while propagating to the positioning reference station, and when the positioning reference station receives it, the received power is about 10-16W .
  • the signal is weak. Therefore, when a positioning reference station that receives this radio wave interferes with radio waves from other radio wave sources, the waveform of the positioning signal is distorted, and normal reception processing is hindered, so that positioning calculation cannot be performed. In this case, GBAS cannot create highly accurate and highly reliable reinforcement information.
  • GBAS detects the presence or absence of radio wave interference, and determines whether the reinforcement information created in the state of radio wave interference affects the safe navigation of the aircraft. If there is a possibility that reinforcement information that hinders safe navigation due to radio wave interference is generated, transmission of the reinforcement information to the aircraft is stopped.
  • a predetermined threshold value is set from the average value and standard deviation regarding the correction result, and this threshold value is used for GPS satellites.
  • a technique for determining the presence or absence of a failure is disclosed.
  • JP 2012-58185 discloses a carrier threshold value calculated using carrier power to noise power ratio, detection failure probability, false alarm probability and lower limit probability in the frequency distribution table of carrier power to noise power ratio, A technique for determining the reliability of a GPS signal based on the above is disclosed.
  • the amount of calculation required for setting and determining the threshold is large, and the load on the computer is a problem.
  • the pseudo-range error is not necessarily generated only by radio wave interference, but may be caused by various causes such as the state of the radio wave propagation process (ionosphere, troposphere) and the state of the receiver or GPS satellite (failure, etc.).
  • the threshold depending on the type of interference wave to be detected, but the technology described in Patent Document 2 does not describe such content at all .
  • the present invention provides a radio interference detection mechanism for satellite positioning, a radio interference detection method for satellite positioning, and a radio interference detection mechanism for satellite positioning capable of accurately determining the presence or absence of radio wave interference to a GPS signal without increasing the processing load.
  • An object of the present invention is to provide a supplementary information transmission system.
  • a radio interference detection mechanism for satellite positioning includes a signal-to-noise ratio acquisition unit that acquires a signal-to-noise ratio of a received GPS signal, and the acquired signal-to-noise ratio.
  • a rate-of-change calculating unit that calculates a rate of change in time within a predetermined time; and a determining unit that determines whether or not there is radio wave interference with the received GPS signal based on the calculated rate of change of time.
  • a reinforcement information transmission system includes a reinforcement information generation means for generating reinforcement information using the received GPS signal, a radio interference detection mechanism for satellite positioning, and no radio interference.
  • Control means for transmitting the generated reinforcement information to the moving body when it is determined that the generated reinforcement information is transmitted, and not transmitting the generated reinforcement information when it is determined that there is radio wave interference.
  • a radio interference detection method for satellite positioning acquires a signal-to-noise ratio of a received GPS signal, and a rate of time change of the acquired signal-to-noise ratio within a predetermined time.
  • the calculated time change rate is included in the predetermined range, it is determined that there is no radio wave interference with the GPS signal, and the calculated time change rate is not included in the predetermined range. Determines that there is radio wave interference to the GPS signal.
  • the presence or absence of radio wave interference with a GPS signal can be determined with high accuracy without increasing the processing load.
  • FIG. 3 is a block configuration diagram of a radio wave interference detector 3 according to the first embodiment.
  • FIG. It is an example of the data memorize
  • a detection probability distribution f ( ⁇ ) stored in the f ( ⁇ ) storage unit 3g according to the first embodiment It is an operation
  • 1 is a system configuration diagram of a reinforcement information transmission system 10 according to an embodiment of the present invention.
  • 2 is a block configuration diagram of a satellite positioning radio wave interference detection mechanism 30 according to an embodiment of the present invention.
  • a system configuration diagram of the reinforcement information transmission system is shown in FIG. 12, and a block configuration diagram of the satellite positioning radio wave interference detection mechanism is shown in FIG.
  • the reinforcement information transmission system 10 includes reinforcement information generation means 20, satellite positioning radio wave interference detection mechanism 30, and control means 40.
  • the reinforcement information generation means 20 receives a positioning GPS signal transmitted from a GPS satellite, and generates reinforcement information using the received GPS signal.
  • the reinforcement information is information necessary to compensate for erroneous information included in the GPS signal and to calculate an accurate position of the moving body.
  • the satellite positioning radio wave interference detection mechanism 30 determines the presence or absence of radio wave interference with the received GPS signal.
  • the satellite positioning radio wave interference detection mechanism 30 includes a signal-to-noise ratio acquisition unit 31, a change rate calculation unit 32, and a determination unit 33.
  • the signal-to-noise ratio acquisition unit 31 acquires the signal-to-noise ratio of the received GPS signal and outputs it to the change rate calculation unit 32.
  • the rate-of-change calculating means 32 calculates a time rate of change of the acquired signal-to-noise ratio within a predetermined time and outputs it to the determining means 33.
  • the determining means 33 determines the presence or absence of radio wave interference with the GPS signal based on the time rate of change of the input signal-to-noise ratio. For example, when the time change rate of the signal-to-noise ratio is not included in a predetermined range, the determination unit 33 according to the present embodiment determines that there is radio wave interference with the GPS signal. On the other hand, the determination means 33 determines that there is no radio wave interference to the GPS signal when the time change rate of the signal-to-noise ratio is within a predetermined range.
  • the control unit 40 transmits the reinforcement information generated by the reinforcement information generation unit 20 to the mobile body. On the other hand, when it is determined that there is radio wave interference, the control means 40 does not transmit the generated reinforcement information.
  • the satellite positioning radio wave interference detection mechanism 30 determines the presence or absence of radio wave interference of the GPS signal based on the time change rate of the signal-to-noise ratio of the received GPS signal. Thereby, the presence or absence of the radio wave interference to the GPS signal can be detected with high accuracy without increasing the processing load.
  • the control means 40 does not transmit the reinforcement information when the satellite positioning radio wave interference detection mechanism 30 determines that there is radio wave interference. Thereby, it can suppress that the reinforcement information with low reliability is transmitted to a moving body.
  • the pseudorange is defined as the GPS signal propagation time between the GPS satellite 1 and the positioning reference station 2 multiplied by the speed of light.
  • the GPS signal is affected by the ionosphere and troposphere in the propagation process, so it differs from the distance measured when there is no influence from the ionosphere and troposphere. Further, the pseudo distance also changes depending on the elevation angle ⁇ [deg.] When the GPS satellite 1 is viewed from the positioning reference station 2.
  • pseudo distance error The difference between the distance measured when there is no influence from the ionosphere or troposphere and the actually measured pseudo distance is called pseudo distance error.
  • the pseudorange error can be calculated using actually observed data, here, for simplicity, a theoretical calculation formula of the pseudorange error ⁇ and the signal-to-noise ratio C / No is used. That is, when white noise is assumed, C / No and ⁇ satisfy Equation 1. 1 set
  • c, T c , d, and T are the speed of light [m / s], the chip width [s], the chip length [s], and the averaging time [s], respectively.
  • C / No and the above-mentioned ⁇ each satisfy a predetermined condition. If the predetermined condition is satisfied, it is determined that there is no radio wave interference.
  • determination regarding C / No is referred to as C / No determination
  • determination regarding ⁇ is referred to as ⁇ determination.
  • the reinforcement information transmission system will be described.
  • the system configuration diagram of this system is shown in FIG.
  • This system includes a plurality of GPS satellites 1 constituting a GPS satellite group, a plurality of positioning reference stations 2 constituting a positioning reference station group, a radio wave interference detector 3, and a reinforcement information creator 4.
  • GPS signals used for GBAS are transmitted from multiple GPS satellites 1, respectively.
  • the GPS satellite 1 transmits a GPS signal for positioning toward the ground while orbiting the earth.
  • four GPS satellites 1 (PRN # 1-PRN # 4) are provided.
  • the GPS signal is a carrier wave composed of an RF sine wave signal, a ranging code including a PRN code, a C / A code and a P (Y) code, navigation data including a satellite health status, an ephemeris, an almanac, and a clock bias parameter, Consists of
  • the positioning reference station group includes a plurality of positioning reference stations 2 that receive GPS signals transmitted from each GPS satellite 1.
  • each positioning reference station 2 receives GPS signals at a ⁇ T [s] period.
  • ⁇ T 1 to 0.1 seconds.
  • at least 3-4 positioning reference stations 2 are arranged.
  • four positioning reference stations 2 (2-1 to 2-4) are provided.
  • Each positioning reference station 2 transmits a carrier wave, a distance measurement code, and navigation data included in the received GPS signal to the reinforcement information creator 4.
  • Each positioning reference station 2 calculates C / No from the signal power and noise power, and calculates ⁇ from the calculated C / No using one equation. Assume that each positioning reference station 2 receives a GPS signal at time t, and C / No and ⁇ at that time are C / No t and ⁇ t , respectively.
  • Each positioning reference station 2 transmits the calculated C / No t and ⁇ t to the radio wave interference detector 3.
  • FIG. 3 shows a block diagram of the radio wave interference detector 3.
  • the radio wave interference detector 3 includes a received signal input unit 3a, a C / No storage unit 3b, a ⁇ storage unit 3c, a Detect t calculation unit 3d, a Thres. Input unit 3e, a C / No determination unit 3f, and an f ( ⁇ ) storage unit. 3g, ⁇ determination unit 3h, and radio wave interference determination unit 3i.
  • Receiving signal input unit 3a receives the transmitted C / No t and sigma t from the positioning reference station 2. Since the four positioning reference stations 2-1 to 2-4 receive GPS signals from the four GPS satellites PRN # 1 to PRN # 4, the received signal input unit 3a sets C / No t and ⁇ t to 16 Receive one by one.
  • C / No storage section 3b stores every reception time to 16 C / No t received signal input unit 3a has received. As shown in FIG. 4A, the C / No storage section 3b C / No t of the GPS satellite PRN # 1-PRN # 4 at each measuring reference stations 2-1 to 2-4 are sequentially stored.
  • the ⁇ storage unit 3c stores the 16 ⁇ t received by the reception signal input unit 3a for each reception time. As shown in FIG. 4B, ⁇ t of GPS satellites PRN # 1-PRN # 4 in each of the measurement reference stations 2-1 to 2-4 is sequentially stored in the ⁇ storage unit 3c.
  • Detect t calculating section 3d calculates the time rate of change Detect t of C / No t in C / No storage section 3b on the stored C / No t and C / No t- ⁇ T from the time t. Detect t is calculated based on the backward difference formula (2 formulas) shown below. Detect t used when detecting a pulsed interference wave is particularly denoted as PW_Detect t . 2 sets
  • the Thres. Input unit 3e accepts an input of a threshold value Thres. Used for C / No determination.
  • the threshold Thres. Is set according to the GBAS usage environment. For example, measure the C / No without radio wave interference for about one year, and calculate the difference calculated for the obtained C / No at the dt interval in Equation 2 at the satellite position (for example, elevation and azimuth at every 5 ° cell). The frequency distribution is determined by taking statistics for each observation satellite). Then, a false alarm probability value obtained from the GBAS availability requirement defined by the International Civil Aviation Organization (ICAO) is applied to this frequency distribution, and the obtained value is set as a threshold Thres.
  • IAO International Civil Aviation Organization
  • the C / No determination unit 3f performs C / No determination for each C / No t using the PW_Detect t calculated by the Detect t calculation unit 3d and the threshold Thres. Received by the Thres. Input unit 3e. Thus, a pulsed interference wave is detected.
  • the ⁇ determination unit 3h according to the present embodiment detects a pulsed interference wave having a pulse width longer than ⁇ T.
  • the change in C / No and Detect accompanying the change in t is shown by a broken line in FIG.
  • 0.10 rad / s.
  • C / No and Detect change monotonously as t changes.
  • the threshold value Thres 0.5 dBHz / sec. Determination is performed for each C / No t, to each signal on the basis of the determination result is set to 0 or 1 value as a flag. 0 if PW_Detect t is included in the permission region, set the If not included 1, then calculates the logical sum for all C / No t.
  • the f ( ⁇ ) storage unit 3g stores the detection probability distribution f ( ⁇ ) of the pseudorange error ⁇ used for ⁇ determination.
  • C / No is measured for a certain period in a state where there is no radio wave interference, or in which the influence of radio wave interference included in the GPS signal is removed by some method, and f ( ⁇ ) is stored.
  • FIG. 6 shows f ( ⁇ ). Note that f ( ⁇ ) is normalized so as to satisfy Equation 3. 3 sets
  • the ⁇ determination will be described.
  • a pseudorange error detection failure criterion defined by ICAO is used.
  • the ⁇ determination unit 3h calculates the pseudorange error threshold ⁇ 1 from the detection probability distribution f ( ⁇ ) and a predetermined reference value.
  • the ⁇ determination unit 3h calculates a pseudo-range error threshold ⁇ 1 that satisfies Formula 4 with a predetermined reference value of 1 ⁇ 10 ⁇ 5 . That is, ⁇ is ⁇ 1 so that the total area of hatched portions in FIG. 6 is 1 ⁇ 10 ⁇ 5 . 4 sets
  • the ⁇ determination unit 3h determines the reliability of each
  • the ⁇ determination unit 3h determines that there is reliability when
  • the radio wave interference determination unit 3i determines whether the received GPS signal is reliable based on the determination result from the C / No determination unit 3f or the ⁇ determination unit 3h, and transmits the determination result to the reinforcement information creator 4 .
  • the radio wave interference determination unit 3i creates reinforcement information when the logical sum in the C / No determination is 0, or when the logical sum in the C / No determination is 1, but satisfies
  • the radio wave interference determination unit 3i transmits the reinforcement information to the aircraft 5 to the reinforcement information creator 4 Instruct not to.
  • the reinforcement information creator 4 transmits a reinforcement information signal to the aircraft 5 when receiving an instruction to transmit the reinforcement information from the radio wave interference determination unit 3i.
  • the aircraft 5 receives the reinforcement information from the reinforcement information creator 4 and the GPS signal from each GPS satellite 1, and calculates its precise position and altitude information.
  • the GPS satellite group PRN # 1 to PRN # 4 transmits a GPS signal composed of a carrier wave, a distance code, and navigation data to the positioning reference station group 2-1 to 2-4 with a period of ⁇ T seconds (S1).
  • Each positioning reference station 2 receives GPS signals from the GPS satellite groups PRN # 1 to PRN # 4 at time t (S2), and transmits a carrier wave, a distance code, and navigation data to the reinforcement information creator 4. Also, with each positioning reference station 2 calculates the ratio C / No t of noise during reception and the received signal power power, calculates a pseudo-range error sigma t based on Equation 1 (S3), the calculated C / No t and ⁇ t are transmitted to the radio wave interference detector 3.
  • the reinforcement information creator 4 receives the carrier wave, distance code, and navigation data transmitted from each positioning reference station (S4), and creates reinforcement information (S5).
  • the radio wave interference detector 3 receives the C / No t and ⁇ t transmitted from each positioning reference station 2 by the reception signal input unit 3a (S6), and stores them in the C / No storage unit 3b and the ⁇ storage unit 3c, respectively ( S7).
  • the C / No storage unit 3b and the ⁇ storage unit 3c store data as shown in FIGS. 4A and 4B, respectively.
  • the interference detector 3 acquires the C / No t and C / No t- ⁇ T from C / No storage section 3b (S8), the time of C / No based on the two equations in Detect t calculating section 3d A change rate PW_Detect t is calculated (S9).
  • the difference interval dt small. By setting the difference interval dt to be small, it is possible to grasp the detailed time change of C / No. Therefore, even when an interference wave is generated in a pulse shape, the time change of C / No can be captured.
  • dt ⁇ T.
  • a threshold Thres. (> 0) used by the Thres. Input unit 3e for C / No determination is acquired (S10). Even when there is no radio wave interference, C / No fluctuates by about ⁇ 2.5 dBHz from the average value C / No ⁇ t, so the threshold Thres. Is preferably about 0.5 dBHz / s.
  • the threshold value Thres. Is preferably input in advance before the detection of radio wave interference.
  • C / No determination unit 3f performs C / No determined using a C / No t and PW_Detect t (S11).
  • Fig. 9 shows the operation procedure for C / No judgment. First, as shown in Equation 5, Hisuru and C / No, the C / No ⁇ t -Thres. And C / No ⁇ t + Thres. , The magnitude of (S 111). 5 sets
  • ⁇ 1 satisfying the four expressions is calculated from the detection probability distribution f ( ⁇ ) stored in the f ( ⁇ ) storage unit 3g and a predetermined reference value (S14).
  • the calculated ⁇ 1 is transmitted to the ⁇ determination unit 3h.
  • ⁇ t is acquired from the ⁇ storage unit 3c (S15).
  • the obtained ⁇ t and ⁇ 1 are compared in size (S16) . If all
  • the reinforcement information creator 4 When the reinforcement information creator 4 receives the reinforcement information transmission instruction after the C / No determination (S17), or when the reinforcement information transmission instruction is received after the ⁇ determination (S18), the reinforcement information creator 4 transmits the reinforcement information to the aircraft 5 (S19). .
  • C / No determination is performed before the created reinforcement information is transmitted to the aircraft 5, and the reliability of the data used for creating the reinforcement information is evaluated. As a result, transmission of reinforcement information created based on the GPS signal subjected to radio wave interference to the aircraft 5 is suppressed, and the aircraft 5 can achieve safer operation.
  • the pseudorange error detection failure probability criterion by ICAO.
  • the threshold value Thres. Is a constant value, but as shown in FIG. 10, the threshold value Thres. (Permitted area) may be set to change over time. As a result, even if the level of safety required for GPS signals changes from moment to moment, it is possible to flexibly respond.
  • the threshold Thres. Is increased during times when the level of safety required for GPS signals, such as when the aircraft 5 performs cruise flight, and the threshold Thres. Is decreased during times when high safety is required, such as during takeoff and landing. It is desirable to do.
  • the example in which the radio wave interference detector 3 is installed on the ground is shown, but it may be on the aircraft 5.
  • Detect was calculated by referring to C / No one cycle before in order to detect a pulse-like change in C / No.
  • Detect is calculated from C / No several cycles before in order to detect a steady change in C / No.
  • the present embodiment calculates the Detect t based on a different processing from the first embodiment in Detect t calculating section 3d. Since the configuration other than the Detect t calculation unit 3d is the same as that of the first embodiment, the description thereof is omitted.
  • Detect t calculating section 3d calculates the Detect t based on the equation (6 type) of backward difference below.
  • dt 5 ⁇ T is used to refer to C / No five cycles before.
  • Detect t used for detecting stationary interference waves is particularly denoted as CW_Detect t . 6 formulas
  • the radio wave interference detector 3 receives the C / No t and ⁇ t transmitted from each positioning reference station 2 by the reception signal input unit 3a (S6), and stores them in the C / No storage unit 3b and the ⁇ storage unit 3c, respectively ( S7). Data as shown in FIGS. 4A and 4B is stored in the C / No storage unit 3b and the ⁇ storage unit 3c, respectively.
  • Detect t calculating section 3d calculates the CW_Detect t based on the equation (6) (S9).
  • the threshold Thres. (> 0) used by the Thres. Input unit 3e for C / No determination is acquired (S10), C / No determination is performed by the C / No determination unit 3f, and each signal is set to 0 or 1 The flag is set (S11). After flagging, it calculates a logical sum of the flags in the subject of each C / No t (S12). If the logical sum is 0, the reinforcement information creator 4 is instructed to transmit the reinforcement information to the aircraft 5. When the logical sum is 1, ⁇ determination is performed by the ⁇ determination unit 3h (S15).
  • the reinforcement information creator 4 When the reinforcement information creator 4 receives the reinforcement information transmission instruction after the C / No determination (S17), or when the reinforcement information transmission instruction is received after the ⁇ determination (S18), the reinforcement information creator 4 transmits the reinforcement information to the aircraft 5 (S19). .
  • Detect t is calculated for the purpose of detecting a single interference wave, and the threshold value Thres. Is set.
  • Thres the threshold value
  • the steady time is a maximum of n ⁇ T seconds.
  • Detect t calculating section 3d is first to calculate the Detect t based on a different processing from the second embodiment. Since the configuration other than the Detect t calculation unit 3d is the same as that of the first and second embodiments, the description thereof is omitted.
  • the Thres. Input unit 3e receives an input of the threshold value Thres.
  • a threshold value Thres._i is set as the threshold value Thres. For each i.
  • C / No determination unit 3f performs C / No decision for each C / No t using CW (i) _Detect t and the threshold Thres._I. In this embodiment, C / No determination is performed on 16 ⁇ i GPS signals.
  • the radio wave interference detector 3 receives the C / No t and ⁇ t transmitted from each positioning reference station 2 by the reception signal input unit 3a (S6), and stores them in the C / No storage unit 3b and the ⁇ storage unit 3c, respectively ( S7).
  • the data of FIGS. 4A and 4B are stored in the C / No storage unit 3b and the ⁇ storage unit 3c, respectively.
  • Detect t calculating section 3d calculates the CW (i) _Detect t from Equation 7 (S9).
  • the threshold Thres._i (> 0) used by the Thres. Input unit 3e for C / No determination is acquired (S10), and the C / No determination unit 3f performs C / No determination.
  • a flag of 1 is set (S11). After flagging, it calculates a logical sum of the flags in the subject of each C / No t (S12). If the logical sum is 0, the reinforcement information creator 4 is instructed to transmit the reinforcement information to the aircraft 5.
  • ⁇ determination is performed by the ⁇ determination unit 3h (S15). If all
  • the reinforcement information creator 4 When the reinforcement information creator 4 receives the reinforcement information transmission instruction after the C / No determination (S17), or when the reinforcement information transmission instruction is received after the ⁇ determination (S18), the reinforcement information creator 4 transmits the reinforcement information to the aircraft 5 (S19). .
  • the frequency of interference radio wave appearance for each steady time is acquired, and the threshold Thres._i is set according to the frequency. It is desirable to set. For example, if the frequency of interference radio waves with a steady time of i seconds is high, but the frequency of interference radio waves with a stationary time of m ( ⁇ n) seconds is low and does not affect the safe operation of GBAS, the threshold Thres Interference waves that affect GBAS operation can be detected with high probability by setting the threshold Thres._i smaller than ._m. As a result, it is possible to suppress transmission of reinforcement information created based on a GPS signal with low reliability to the aircraft 5.
  • Threshold value Thres._i is not a constant value and may change over time.
  • the threshold Thres._i is set in accordance with the dominant interference wave at each time.
  • the cruise and takeoff / landing states of the aircraft correspond to parking and high-speed driving, respectively.
  • a serious accident may occur due to a deviation included in the position calculated based on the GPS signal.
  • the vehicle travels at a low speed when traveling in the city, even if some deviation is included in the position calculated based on the GPS signal, it is unlikely to lead to a serious accident. Therefore, by changing the threshold value Thres. According to the moving speed of the moving body and determining the reliability of the GPS signal, it is possible to suppress transmission of reinforcement information with low reliability to the moving body. As a result, a safer automatic traveling of the moving body can be performed.
  • a radio wave interference detection system for satellite positioning characterized by comprising:
  • [Appendix 2] Means for performing a first determination for determining whether the time change rate is included in a predetermined range; The means according to claim 1, wherein when the rate of time change is not included in the predetermined range, the means capable of creating the reinforcement information and transmitting it to the mobile body does not transmit the reinforcement information to the mobile body.
  • Appendix 3 Means for receiving a GPS signal at a predetermined period, calculating a pseudorange error of the received GPS signal, means for storing a frequency distribution of the pseudorange error of the GPS signal; Means for calculating a pseudo-range error threshold from the frequency distribution and a predetermined reference value; A second determination means for comparing the magnitude of the pseudorange error and the pseudorange error threshold; Means for performing a process of determining that the received GPS signal is subjected to radio wave interference when the pseudo distance error is equal to or greater than the pseudo distance error threshold;
  • Appendix 4 5. The satellite positioning radio interference detection system according to appendix 4, wherein the second determination is performed when it is determined in the first determination that the GPS signal is subjected to radio interference.
  • Appendix 5 3. The satellite positioning radio wave interference detection system according to appendix 1 or 2, wherein the predetermined range is a range in which an influence of pulse radio wave interference can be ignored.
  • the moving body is an aircraft; 6.
  • the apparatus further includes means for calculating the rate of time change based on the signal-to-noise ratio of the received GPS signal and the signal-to-noise ratio of each GPS signal received up to a plurality of periods ago, respectively.
  • Radio interference detection system for satellite positioning as described.
  • [Appendix 10] Calculating a signal-to-noise ratio of a GPS signal received at a predetermined period; Calculating a time change rate of a signal-to-noise ratio of the received GPS signal using a signal-to-noise ratio of the received GPS signal; Performing a first determination to determine whether the time change rate is included in a predetermined range;
  • a radio wave interference detection method for satellite positioning comprising: instructing to stop transmission of reinforcement information of the received GPS signal when the time change rate is not included in the predetermined range.
  • the present invention can be widely applied to GBAS, an automatic traveling system for moving objects, and the like that calculate position information using GPS signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

Provided is a satellite positioning-use radio wave interference detection mechanism that can determine with a high degree of accuracy whether there is radio wave interference with a GPS signal, without increasing processing load. The satellite positioning-use radio wave interference detection mechanism comprises: a signal-to-noise ratio acquisition means that acquires a signal-to-noise ratio for a received GPS signal; a rate of change calculation means that calculates a time rate of change within a prescribed period of time with respect to the signal-to-noise ratio; and a determination means that determines whether there is radio wave interference with the received GPS signal, on the basis of the calculated time rate of change.

Description

衛星測位用電波干渉検知機構、衛星測位用電波干渉検知方法および該衛星測位用電波干渉検知機構を備えた補強情報送信システムRadio interference detection mechanism for satellite positioning, radio interference detection method for satellite positioning, and reinforcement information transmission system provided with radio interference detection mechanism for satellite positioning
 本発明は全地球測位システム(GPS:Global Positioning System)信号の電波干渉の有無を判定するシステム及び方法に関する。 The present invention relates to a system and method for determining the presence or absence of radio wave interference in a global positioning system (GPS) signal.
 現代の航空機の航行は、地上の無線施設や衛星を使った航法援助システムによって支えられている。近年、衛星を使った航法援助システムは、地上の地形や形態(陸/海)を問わず高精度、高信頼度の航法を全地球的規模で実現できることから、先進国で技術開発やシステムの導入が盛んに行われている。さらに、航空機の航行上最も安全性能が求められる空港への精密進入及び着陸の支援には、地上型衛星補強システム(GBAS:Ground-Based Augmentation System)が導入されている。GBASは、GPS、GLONASS(GLObal NAvigation Satellite System)などの測位衛星を用いて、衛星航法する航空機に対し、測位補強情報を提供するシステムである。 The navigation of modern aircraft is supported by navigation assistance systems using ground radio facilities and satellites. In recent years, navigation assistance systems using satellites can realize high-precision, high-reliability navigation on a global scale regardless of the landform or form (land / sea) on the ground. Introduction has been actively done. In addition, a ground-based augmentation system (GBAS) has been introduced to support precision approach and landing at airports where the highest safety performance is required for aircraft navigation. GBAS is a system that provides positioning augmentation information to satellite-navigating aircraft using positioning satellites such as GPS and GLONASS (GLObal NAvigation Satellite System).
 GBASは地上システムで補強情報を作成し、VHF信号にて、DGPS(Differential GPS)による補正情報、インテグリティ情報、FAS(Final Approach Segment)やTAP(Terminal Area Path)の経路情報、などを航空機に送信する。航空機上の装置が受信した補強情報を用いることによって、GPS単独では得られない航法の安全性や精度が保証される。 GBAS creates reinforcement information on the ground system, and sends correction information by DGPS (Differential GPS), integrity information, FAS (Final Approach Segment) and TAP (Terminal Area Path) route information, etc. to the aircraft via VHF signals. To do. By using the reinforcement information received by the devices on the aircraft, navigation safety and accuracy that cannot be obtained by GPS alone are guaranteed.
 しかし、GPS衛星から出力電力50Wで発信されるGPS信号は、測位基準局まで伝搬してくる間に通過する媒質による影響を受け、測位基準局で受信されるころには受信電力10-16W程度の微弱電波となっている。そのため、この電波を受信する測位基準局が他の電波発信源からの電波と干渉した場合、測位信号の波形がひずみ、正常な受信処理が阻害されて測位計算できない状態となる。この場合、GBASにおいて、高精度、高信頼度の補強情報を作成できなくなる。 However, a GPS signal transmitted from a GPS satellite with an output power of 50W is affected by the medium that passes through while propagating to the positioning reference station, and when the positioning reference station receives it, the received power is about 10-16W . The signal is weak. Therefore, when a positioning reference station that receives this radio wave interferes with radio waves from other radio wave sources, the waveform of the positioning signal is distorted, and normal reception processing is hindered, so that positioning calculation cannot be performed. In this case, GBAS cannot create highly accurate and highly reliable reinforcement information.
 そのため、GBASでは、電波干渉の有無を検出し、電波干渉を受けた状態で作成された補強情報が航空機の安全航行に影響を与えるか判定する。電波干渉によって安全な航行を阻害する補強情報が作成される可能性がある場合、航空機への補強情報の送信を停止する。 Therefore, GBAS detects the presence or absence of radio wave interference, and determines whether the reinforcement information created in the state of radio wave interference affects the safe navigation of the aircraft. If there is a possibility that reinforcement information that hinders safe navigation due to radio wave interference is generated, transmission of the reinforcement information to the aircraft is stopped.
 電波干渉の有無、ひいてはGPS信号の信頼性の有無を判定する方法としては、大きく2種類の手法が提案されている。1つは擬似距離誤差を用いる方法、もう1つは搬送波電力対雑音電力比を用いる方法である。 There are two main methods for determining the presence or absence of radio wave interference and thus the reliability of GPS signals. One is a method using a pseudorange error, and the other is a method using a carrier power to noise power ratio.
 特開2011-242296号公報には、算出された擬似距離に対して電離層の影響を補正した後に、補正結果に関する平均値及び標準偏差から所定の閾値を設定し、この閾値を用いてGPS衛星の故障の有無を判定する技術が開示されている。 In Japanese Patent Laid-Open No. 2011-242296, after correcting the influence of the ionosphere for the calculated pseudorange, a predetermined threshold value is set from the average value and standard deviation regarding the correction result, and this threshold value is used for GPS satellites. A technique for determining the presence or absence of a failure is disclosed.
 また、特開2012-58185号公報には、搬送波電力対雑音電力比と、搬送波電力対雑音電力比の度数分布表における検出失敗確率、誤警報確率及び下限確率を用いて算出したモニタ閾値と、に基づいてGPS信号の信頼性を判断する技術が開示されている。 JP 2012-58185 discloses a carrier threshold value calculated using carrier power to noise power ratio, detection failure probability, false alarm probability and lower limit probability in the frequency distribution table of carrier power to noise power ratio, A technique for determining the reliability of a GPS signal based on the above is disclosed.
特開2011-242296号公報JP 2011-242296 A 特開2012-058185号公報JP 2012-058185 A
 GPS受信機等が出力する擬似距離を基にその誤差で電波干渉の有無を判定する場合、閾値の設定や判定に要する計算量が多く計算機への負荷が問題となっている。また、疑似距離の誤差は必ずしも電波干渉のみで発生するわけではなく、電波伝搬過程(電離層、対流圏)の状態や受信機またはGPS衛星の状態(故障等)等、様々な原因が考えられる。搬送波電力対雑音電力比を用いて電波干渉の有無を判定する場合、検知したい干渉波の種類によって閾値を変える必要があるが、特許文献2記載の技術ではそのような内容は全く記載されていない。 When determining the presence or absence of radio wave interference with the error based on the pseudo distance output by a GPS receiver, etc., the amount of calculation required for setting and determining the threshold is large, and the load on the computer is a problem. In addition, the pseudo-range error is not necessarily generated only by radio wave interference, but may be caused by various causes such as the state of the radio wave propagation process (ionosphere, troposphere) and the state of the receiver or GPS satellite (failure, etc.). When determining the presence or absence of radio wave interference using the carrier power to noise power ratio, it is necessary to change the threshold depending on the type of interference wave to be detected, but the technology described in Patent Document 2 does not describe such content at all .
 本発明は、処理負荷を増大させることなくGPS信号への電波干渉の有無を高精度に判定できる衛星測位用電波干渉検知機構、衛星測位用電波干渉検知方法および該衛星測位用電波干渉検知機構を備えた補強情報送信システムを提供することを目的とする。 The present invention provides a radio interference detection mechanism for satellite positioning, a radio interference detection method for satellite positioning, and a radio interference detection mechanism for satellite positioning capable of accurately determining the presence or absence of radio wave interference to a GPS signal without increasing the processing load. An object of the present invention is to provide a supplementary information transmission system.
 上記目的を達成するために本発明に係る衛星測位用電波干渉検知機構は、受信されたGPS信号の信号対雑音比を取得する信号対雑音比取得手段と、前記取得された信号対雑音比の所定時間内における時間変化率を算出する変化率算出手段と、前記算出された時間変化率に基づいて受信したGPS信号への電波干渉の有無を判定する判定手段と、を備える。 In order to achieve the above object, a radio interference detection mechanism for satellite positioning according to the present invention includes a signal-to-noise ratio acquisition unit that acquires a signal-to-noise ratio of a received GPS signal, and the acquired signal-to-noise ratio. A rate-of-change calculating unit that calculates a rate of change in time within a predetermined time; and a determining unit that determines whether or not there is radio wave interference with the received GPS signal based on the calculated rate of change of time.
 上記目的を達成するために本発明に係る補強情報送信システムは、前記受信されたGPS信号を用いて補強情報を生成する補強情報生成手段と、衛星測位用電波干渉検知機構と、電波干渉が無いと判定された場合は前記生成された補強情報を移動体へ送信し、電波干渉が有ると判定された場合は前記生成された補強情報を送信しない制御手段と、を備える。 In order to achieve the above object, a reinforcement information transmission system according to the present invention includes a reinforcement information generation means for generating reinforcement information using the received GPS signal, a radio interference detection mechanism for satellite positioning, and no radio interference. Control means for transmitting the generated reinforcement information to the moving body when it is determined that the generated reinforcement information is transmitted, and not transmitting the generated reinforcement information when it is determined that there is radio wave interference.
 上記目的を達成するために本発明に係る衛星測位用電波干渉検知方法は、受信されたGPS信号の信号対雑音比を取得し、前記取得された信号対雑音比の所定時間内における時間変化率を算出し、前記算出された時間変化率が所定の範囲内に含まれる場合はGPS信号への電波干渉が無いと判定し、前記算出された時間変化率が所定の範囲内に含まれない場合はGPS信号への電波干渉が有ると判定する。 In order to achieve the above object, a radio interference detection method for satellite positioning according to the present invention acquires a signal-to-noise ratio of a received GPS signal, and a rate of time change of the acquired signal-to-noise ratio within a predetermined time. When the calculated time change rate is included in the predetermined range, it is determined that there is no radio wave interference with the GPS signal, and the calculated time change rate is not included in the predetermined range. Determines that there is radio wave interference to the GPS signal.
 上述した本発明の態様によれば、処理負荷を増加させることなくGPS信号への電波干渉の有無を高精度に判定できる。 According to the above-described aspect of the present invention, the presence or absence of radio wave interference with a GPS signal can be determined with high accuracy without increasing the processing load.
第一の実施形態に係る補強情報送信システムにおいて使用する各種パラメータの概念を説明するための図である。It is a figure for demonstrating the concept of the various parameters used in the reinforcement information transmission system which concerns on 1st embodiment. 第一の実施形態に係る補強情報送信システムのシステム構成図である。It is a system configuration figure of the reinforcement information transmitting system concerning a first embodiment. 第一の実施形態に係る電波干渉検出器3のブロック構成図である。3 is a block configuration diagram of a radio wave interference detector 3 according to the first embodiment. FIG. 第一の実施形態に係るC/No記憶部3bに記憶されているデータの一例である。It is an example of the data memorize | stored in C / No memory | storage part 3b which concerns on 1st embodiment. 第一の実施形態に係るσ記憶部3cに記憶されているデータの一例である。It is an example of the data memorize | stored in (sigma) memory | storage part 3c which concerns on 1st embodiment. パルス波による電波干渉の有無によるC/No及びDetectの変化の違いを説明するための図である。It is a figure for demonstrating the difference of the change of C / No and Detect by the presence or absence of the radio wave interference by a pulse wave. 第一の実施形態に係るf(σ)記憶部3gに記憶されている検出確率分布f(σ)の一例である。It is an example of a detection probability distribution f (σ) stored in the f (σ) storage unit 3g according to the first embodiment. 第一の実施形態に係る補強情報送信システムの動作フロー図である。It is an operation | movement flowchart of the reinforcement information transmission system which concerns on 1st embodiment. 第一の実施形態に係る補強情報送信システムの動作フロー図である。It is an operation | movement flowchart of the reinforcement information transmission system which concerns on 1st embodiment. 第一の実施形態に係る補強情報送信システムのC/No判定時の動作フロー図である。It is an operation | movement flowchart at the time of C / No determination of the reinforcement information transmission system which concerns on 1st embodiment. Thres.が時間変化する場合の許可領域の一例を示した図である。It is the figure which showed an example of the permission area | region when Thres. Changes with time. 定状波による電波干渉の有無によるC/No及びDetectの変化の違いを説明するための図である。It is a figure for demonstrating the difference of the change of C / No and Detect by the presence or absence of the radio wave interference by a fixed wave. 本発明の実施の形態に係る補強情報送信システム10のシステム構成図である。1 is a system configuration diagram of a reinforcement information transmission system 10 according to an embodiment of the present invention. 本発明の実施の形態に係る衛星測位用電波干渉検知機構30のブロック構成図である。2 is a block configuration diagram of a satellite positioning radio wave interference detection mechanism 30 according to an embodiment of the present invention. FIG.
 本発明の実施の形態について説明する。補強情報送信システムのシステム構成図を図12に、衛星測位用電波干渉検知機構のブロック構成図を図13に示す。図12において、補強情報送信システム10は、補強情報生成手段20、衛星測位用電波干渉検知機構30および制御手段40から成る。 Embodiments of the present invention will be described. A system configuration diagram of the reinforcement information transmission system is shown in FIG. 12, and a block configuration diagram of the satellite positioning radio wave interference detection mechanism is shown in FIG. In FIG. 12, the reinforcement information transmission system 10 includes reinforcement information generation means 20, satellite positioning radio wave interference detection mechanism 30, and control means 40.
 補強情報生成手段20は、GPS衛星から発信された測位用のGPS信号を受信し、受信したGPS信号を用いて補強情報を生成する。ここで補強情報とは、GPS信号に含まれる誤情報を補い、移動体の精確な位置を算出するために必要な情報である。 The reinforcement information generation means 20 receives a positioning GPS signal transmitted from a GPS satellite, and generates reinforcement information using the received GPS signal. Here, the reinforcement information is information necessary to compensate for erroneous information included in the GPS signal and to calculate an accurate position of the moving body.
 衛星測位用電波干渉検知機構30は、受信されたGPS信号への電波干渉の有無を判定する。図13において、衛星測位用電波干渉検知機構30は、信号対雑音比取得手段31、変化率算出手段32および判定手段33を備える。 The satellite positioning radio wave interference detection mechanism 30 determines the presence or absence of radio wave interference with the received GPS signal. In FIG. 13, the satellite positioning radio wave interference detection mechanism 30 includes a signal-to-noise ratio acquisition unit 31, a change rate calculation unit 32, and a determination unit 33.
 信号対雑音比取得手段31は、受信されたGPS信号の信号対雑音比を取得して変化率算出手段32へ出力する。 The signal-to-noise ratio acquisition unit 31 acquires the signal-to-noise ratio of the received GPS signal and outputs it to the change rate calculation unit 32.
 変化率算出手段32は、取得された信号対雑音比の所定時間内における時間変化率を算出して判定手段33へ出力する。 The rate-of-change calculating means 32 calculates a time rate of change of the acquired signal-to-noise ratio within a predetermined time and outputs it to the determining means 33.
 判定手段33は、入力された信号対雑音比の時間変化率に基づいてGPS信号への電波干渉の有無を判定する。本実施形態に係る判定手段33は、例えば、信号対雑音比の時間変化率が所定の範囲内に含まれない場合、GPS信号への電波干渉が有ると判定する。一方、判定手段33は、信号対雑音比の時間変化率が所定の範囲内に含まる場合、GPS信号への電波干渉が無いと判定する。 The determining means 33 determines the presence or absence of radio wave interference with the GPS signal based on the time rate of change of the input signal-to-noise ratio. For example, when the time change rate of the signal-to-noise ratio is not included in a predetermined range, the determination unit 33 according to the present embodiment determines that there is radio wave interference with the GPS signal. On the other hand, the determination means 33 determines that there is no radio wave interference to the GPS signal when the time change rate of the signal-to-noise ratio is within a predetermined range.
 制御手段40は、衛星測位用電波干渉検知機構30において電波干渉が無いと判定された場合、補強情報生成手段20において生成された補強情報を移動体へ送信する。一方、制御手段40は、電波干渉が有ると判定された場合、生成された補強情報を送信しない。 When the satellite positioning radio wave interference detection mechanism 30 determines that there is no radio wave interference, the control unit 40 transmits the reinforcement information generated by the reinforcement information generation unit 20 to the mobile body. On the other hand, when it is determined that there is radio wave interference, the control means 40 does not transmit the generated reinforcement information.
 以上のように、補強情報送信システム10において、衛星測位用電波干渉検知機構30は、受信されたGPS信号の信号対雑音比の時間変化率に基づいてGPS信号の電波干渉の有無を判定する。これにより、処理負荷が増加することなくGPS信号への電波干渉の有無を高精度に検出できる。 As described above, in the augmented information transmission system 10, the satellite positioning radio wave interference detection mechanism 30 determines the presence or absence of radio wave interference of the GPS signal based on the time change rate of the signal-to-noise ratio of the received GPS signal. Thereby, the presence or absence of the radio wave interference to the GPS signal can be detected with high accuracy without increasing the processing load.
 さらに、補強情報送信システム10において、制御手段40は、衛星測位用電波干渉検知機構30において電波干渉が有ると判定された場合は、補強情報を送信しない。これにより、信頼性の低い補強情報が移動体に送信されることを抑制することができる。 Further, in the reinforcement information transmission system 10, the control means 40 does not transmit the reinforcement information when the satellite positioning radio wave interference detection mechanism 30 determines that there is radio wave interference. Thereby, it can suppress that the reinforcement information with low reliability is transmitted to a moving body.
 [第一の実施形態]
 [構成の説明]
 図1を用いて第一の実施形態に係るシステムにおいて使用する各種パラメータの概念について説明する。本システムでは、図示しない妨害電波元からの電波干渉の有無を判定するため、測位基準局2において受信したGPS信号の信号電力C[W]と測定雑音電力No[W]との比C/No[dBHz]、及び擬似距離誤差σ[m]を用いる。
[First embodiment]
[Description of configuration]
The concept of various parameters used in the system according to the first embodiment will be described with reference to FIG. In this system, the ratio C / No [of the signal power C [W] of the GPS signal received at the positioning reference station 2 to the measurement noise power No [W] is determined in order to determine the presence or absence of radio wave interference from a source of radio interference (not shown). dBHz] and pseudorange error σ [m] are used.
 擬似距離とは、GPS衛星1と測位基準局2との間でのGPS信号伝搬時間に、光速を掛けたものとして定義される。ただしGPS信号はその伝搬過程において電離層や対流圏などの影響を受けるため、電離層や対流圏などの影響がなかった場合に測定される距離とは異なる。また、擬似距離は、測位基準局2からGPS衛星1を見る仰角θ[deg.]によっても変化する。 The pseudorange is defined as the GPS signal propagation time between the GPS satellite 1 and the positioning reference station 2 multiplied by the speed of light. However, the GPS signal is affected by the ionosphere and troposphere in the propagation process, so it differs from the distance measured when there is no influence from the ionosphere and troposphere. Further, the pseudo distance also changes depending on the elevation angle θ [deg.] When the GPS satellite 1 is viewed from the positioning reference station 2.
 電離層や対流圏などの影響がなかった場合に測定される距離と、実際に測定した擬似距離との差を擬似距離誤差という。擬似距離誤差は、実際に観測したデータを用いて計算できるが、ここでは単純にするため擬似距離誤差σと、上記の信号対雑音比C/Noとの理論計算式を用いる。すなわち、ホワイトノイズを仮定した場合、C/Noとσは1式を満たす。
1式
Figure JPOXMLDOC01-appb-I000001
The difference between the distance measured when there is no influence from the ionosphere or troposphere and the actually measured pseudo distance is called pseudo distance error. Although the pseudorange error can be calculated using actually observed data, here, for simplicity, a theoretical calculation formula of the pseudorange error σ and the signal-to-noise ratio C / No is used. That is, when white noise is assumed, C / No and σ satisfy Equation 1.
1 set
Figure JPOXMLDOC01-appb-I000001
 ここで、c、Tc、d、Tはそれぞれ光速[m/s]、チップ幅[s]、チップ長さ[s]、平均化時間[s]である。本システムではC/No及び上述のσがそれぞれ所定の条件を満たすか否か判定を行い、所定の条件を満たす場合、電波干渉無しと判定する。以下、C/Noに関する判定をC/No判定、σに関する判定をσ判定と呼ぶ。 Here, c, T c , d, and T are the speed of light [m / s], the chip width [s], the chip length [s], and the averaging time [s], respectively. In this system, it is determined whether or not C / No and the above-mentioned σ each satisfy a predetermined condition. If the predetermined condition is satisfied, it is determined that there is no radio wave interference. Hereinafter, determination regarding C / No is referred to as C / No determination, and determination regarding σ is referred to as σ determination.
 本実施形態に係る補強情報送信システムについて説明する。本システムのシステム構成図を図2に示す。本システムは、GPS衛星群を構成する複数のGPS衛星1、測位基準局群を構成する複数の測位基準局2、電波干渉検出器3、補強情報作成器4を備える。 The reinforcement information transmission system according to this embodiment will be described. The system configuration diagram of this system is shown in FIG. This system includes a plurality of GPS satellites 1 constituting a GPS satellite group, a plurality of positioning reference stations 2 constituting a positioning reference station group, a radio wave interference detector 3, and a reinforcement information creator 4.
 GBASに用いるGPS信号は、複数のGPS衛星1からそれぞれ発信される。GPS衛星1は地球を周回しながら測位用のGPS信号を地上に向けて発信する。本実施形態では4機のGPS衛星1(PRN#1-PRN#4)を備える。GPS信号は、RF正弦波信号からなる搬送波、PRNコードとC/AコードとP(Y)コードとを含む測距コード、衛星の健康状態とエフェリメスとアルマナックと時計バイアスパラメータとを含む航法データ、から構成される。 GPS signals used for GBAS are transmitted from multiple GPS satellites 1, respectively. The GPS satellite 1 transmits a GPS signal for positioning toward the ground while orbiting the earth. In this embodiment, four GPS satellites 1 (PRN # 1-PRN # 4) are provided. The GPS signal is a carrier wave composed of an RF sine wave signal, a ranging code including a PRN code, a C / A code and a P (Y) code, navigation data including a satellite health status, an ephemeris, an almanac, and a clock bias parameter, Consists of
 測位基準局群は、各GPS衛星1から発信されたGPS信号を受信する複数の測位基準局2からなる。本実施形態において、各測位基準局2はΔT[s]周期でGPS信号を受信する。一般的にΔT=1~0.1秒である。GBASの場合、マルチパスなどを非共通誤差として検出する必要があることから、測位基準局2は少なくとも3-4機配置される。本実施形態では4機の測位基準局2(2-1~2-4)を備える。 The positioning reference station group includes a plurality of positioning reference stations 2 that receive GPS signals transmitted from each GPS satellite 1. In the present embodiment, each positioning reference station 2 receives GPS signals at a ΔT [s] period. In general, ΔT = 1 to 0.1 seconds. In the case of GBAS, since it is necessary to detect multipath as a non-common error, at least 3-4 positioning reference stations 2 are arranged. In this embodiment, four positioning reference stations 2 (2-1 to 2-4) are provided.
 各測位基準局2は、受信されたGPS信号に含まれる搬送波、測距コード、航法データを補強情報作成器4へ送信する。また、各測位基準局2は、信号電力と雑音電力からC/Noを算出し、算出したC/Noから1式を用いてσを算出する。各測位基準局2は時刻tにGPS信号を受信するとし、その際のC/NoとσをそれぞれC/Not、σtとする。各測位基準局2は、算出したC/Not及びσtを電波干渉検出器3へ送信する。 Each positioning reference station 2 transmits a carrier wave, a distance measurement code, and navigation data included in the received GPS signal to the reinforcement information creator 4. Each positioning reference station 2 calculates C / No from the signal power and noise power, and calculates σ from the calculated C / No using one equation. Assume that each positioning reference station 2 receives a GPS signal at time t, and C / No and σ at that time are C / No t and σ t , respectively. Each positioning reference station 2 transmits the calculated C / No t and σ t to the radio wave interference detector 3.
 図3に電波干渉検出器3のブロック構成図を示す。電波干渉検出器3は、受信信号入力部3a、C/No記憶部3b、σ記憶部3c、Detectt算出部3d、Thres.入力部3e、C/No判定部3f、f(σ)記憶部3g、σ判定部3hおよび電波干渉判定部3iとから構成される。 FIG. 3 shows a block diagram of the radio wave interference detector 3. The radio wave interference detector 3 includes a received signal input unit 3a, a C / No storage unit 3b, a σ storage unit 3c, a Detect t calculation unit 3d, a Thres. Input unit 3e, a C / No determination unit 3f, and an f (σ) storage unit. 3g, σ determination unit 3h, and radio wave interference determination unit 3i.
 受信信号入力部3aは、各測位基準局2から送信されたC/Not及びσtを受信する。4機の測位基準局2-1~2-4が4機のGPS衛星PRN#1~PRN#4からのGPS信号をそれぞれ受信するので、受信信号入力部3aはC/Not及びσtを16個ずつ受信する。 Receiving signal input unit 3a receives the transmitted C / No t and sigma t from the positioning reference station 2. Since the four positioning reference stations 2-1 to 2-4 receive GPS signals from the four GPS satellites PRN # 1 to PRN # 4, the received signal input unit 3a sets C / No t and σ t to 16 Receive one by one.
 C/No記憶部3bは、受信信号入力部3aが受信した16個のC/Notを受信時間ごとに記憶する。図4Aに示すように、C/No記憶部3bには各測定基準局2-1~2-4におけるGPS衛星PRN#1-PRN#4のC/Notが順次記憶される。 C / No storage section 3b stores every reception time to 16 C / No t received signal input unit 3a has received. As shown in FIG. 4A, the C / No storage section 3b C / No t of the GPS satellite PRN # 1-PRN # 4 at each measuring reference stations 2-1 to 2-4 are sequentially stored.
 σ記憶部3cは、受信信号入力部3aが受信した16個のσtを受信時間ごとに記憶する。図4Bに示すように、σ記憶部3cには各測定基準局2-1~2-4におけるGPS衛星PRN#1-PRN#4のσtが順次記憶される。 The σ storage unit 3c stores the 16 σ t received by the reception signal input unit 3a for each reception time. As shown in FIG. 4B, σ t of GPS satellites PRN # 1-PRN # 4 in each of the measurement reference stations 2-1 to 2-4 is sequentially stored in the σ storage unit 3c.
 Detectt算出部3dは、C/No記憶部3bに記憶されたC/NotとC/Not-ΔTから時刻tにおけるC/Notの時間変化率Detecttを算出する。Detecttの算出は下記に示す後退差分の式(2式)に基づいて行う。パルス状の干渉波を検知する際に用いるDetecttを特にPW_Detecttと示す。
2式
Figure JPOXMLDOC01-appb-I000002
Detect t calculating section 3d calculates the time rate of change Detect t of C / No t in C / No storage section 3b on the stored C / No t and C / No t-ΔT from the time t. Detect t is calculated based on the backward difference formula (2 formulas) shown below. Detect t used when detecting a pulsed interference wave is particularly denoted as PW_Detect t .
2 sets
Figure JPOXMLDOC01-appb-I000002
 Thres.入力部3eはC/No判定に用いられる閾値Thres.の入力を受け付ける。閾値Thres.はGBASの使用環境に応じて設定される。例えば、電波干渉のない状態でのC/Noを1年程度計測し、得られたC/Noについて式2のdt間隔で計算した差分を衛星位置(たとえば仰角、方位角5°毎のセルで観測衛星毎に)で統計をとることで、度数分布を決定する。そして、この度数分布に対し、国際民間航空機関(ICAO:International Civil Aviation Organization)で規定したGBASのアベイラビリティ要件から求まる誤警報確率値を適用し、取得した値を閾値Thres.とする。GBASによって航空機5の離着陸支援を行う場合、閾値Thres.は巡航時と比較して小さめに設定されることが望ましい。 The Thres. Input unit 3e accepts an input of a threshold value Thres. Used for C / No determination. The threshold Thres. Is set according to the GBAS usage environment. For example, measure the C / No without radio wave interference for about one year, and calculate the difference calculated for the obtained C / No at the dt interval in Equation 2 at the satellite position (for example, elevation and azimuth at every 5 ° cell). The frequency distribution is determined by taking statistics for each observation satellite). Then, a false alarm probability value obtained from the GBAS availability requirement defined by the International Civil Aviation Organization (ICAO) is applied to this frequency distribution, and the obtained value is set as a threshold Thres. When performing take-off and landing support of the aircraft 5 by GBAS, it is desirable to set the threshold value Thres. To be smaller than that at the time of cruise.
 C/No判定部3fはDetectt算出部3dにおいて算出されたPW_Detecttと、Thres.入力部3eが受け付けた閾値Thres.と、を用いて各C/Notに対してC/No判定を行うことで、パルス状の干渉波を検出する。本実施形態に係るσ判定部3hは、パルス幅がΔTより長いパルス状の干渉波を検出する。 The C / No determination unit 3f performs C / No determination for each C / No t using the PW_Detect t calculated by the Detect t calculation unit 3d and the threshold Thres. Received by the Thres. Input unit 3e. Thus, a pulsed interference wave is detected. The σ determination unit 3h according to the present embodiment detects a pulsed interference wave having a pulse width longer than ΔT.
 C/No判定について説明する。前述したように、GPS信号のC/Noは測位基準局2からGPS衛星1を見た際の仰角θによって変化する。θと時刻tはθ=ωtの関係を満たすため、C/Noは時刻tによって変化する。即ち、電波干渉の有無によらず、tの変化に伴いC/Noはある範囲内で変化する。電波干渉がない場合、あるいは何らかの方法でGPS信号に含まれる電波干渉の影響を除去した場合の、tの変化に伴うC/No及びDetectの変化を図5に破線で示す。ここではω=0.10rad/sとした。電波干渉が無い場合、tの変化に伴いC/No、Detectは単調に変化する。 Describe C / No judgment. As described above, the C / No of the GPS signal varies depending on the elevation angle θ when the GPS satellite 1 is viewed from the positioning reference station 2. Since θ and time t satisfy the relationship θ = ωt, C / No changes with time t. That is, C / No changes within a certain range as t changes regardless of the presence or absence of radio wave interference. When there is no radio wave interference or when the influence of radio wave interference included in the GPS signal is removed by some method, the change in C / No and Detect accompanying the change in t is shown by a broken line in FIG. Here, ω = 0.10 rad / s. When there is no radio wave interference, C / No and Detect change monotonously as t changes.
 次に、電波干渉が有る場合を考える。本実施形態ではt=440s付近でGPS信号と電波発信源から送出されたパルス状の電波とが干渉した場合を想定する。tの変化に伴うC/No及びDetectの変化を図5に実線で示す。パルス状の電波との干渉が有る場合、C/No及びDetectは大きく変動する。 Next, consider the case where there is radio wave interference. In the present embodiment, it is assumed that the GPS signal interferes with a pulsed radio wave transmitted from a radio wave transmission source at around t = 440 s. The change in C / No and Detect accompanying the change in t is shown by a solid line in FIG. When there is interference with pulsed radio waves, C / No and Detect vary greatly.
 C/No判定では、図5に黒丸で示した測定点ごとのPW_Detecttが閾値Thres.で規定される許可領域内に含まれるか否かを判定する。ここでは閾値Thres.=0.5dBHz/secとした。判定は各C/Notに対して行われ、判定結果に基づいて各信号に0または1の値をフラグとして設定する。PW_Detecttが許可領域内に含まれる場合は0を、含まれない場合は1を設定し、その後すべてのC/Notを対象に論理和を算出する。 In the C / No determination, it is determined whether or not PW_Detect t for each measurement point indicated by a black circle in FIG. 5 is included in the permitted area defined by the threshold value Thres. Here, the threshold value Thres. = 0.5 dBHz / sec. Determination is performed for each C / No t, to each signal on the basis of the determination result is set to 0 or 1 value as a flag. 0 if PW_Detect t is included in the permission region, set the If not included 1, then calculates the logical sum for all C / No t.
 f(σ)記憶部3gはσ判定に用いられる擬似距離誤差σの検出確率分布f(σ)を記憶する。本実施形態では電波干渉がない状態、あるいは何らかの方法でGPS信号に含まれる電波干渉の影響を除去した状態において一定期間C/Noを測定し、C/Noの測定結果を基に作成したf(σ)を記憶する。f(σ)を図6に示す。なおf(σ)は3式を満たすよう正規化されている。
3式
Figure JPOXMLDOC01-appb-I000003
The f (σ) storage unit 3g stores the detection probability distribution f (σ) of the pseudorange error σ used for σ determination. In this embodiment, C / No is measured for a certain period in a state where there is no radio wave interference, or in which the influence of radio wave interference included in the GPS signal is removed by some method, and f ( σ) is stored. FIG. 6 shows f (σ). Note that f (σ) is normalized so as to satisfy Equation 3.
3 sets
Figure JPOXMLDOC01-appb-I000003
 σ判定部3hは、C/No判定部3fにおけるC/No判定において論理和=1となった場合、各σtに対してσ判定を行う。 The σ determination unit 3h performs σ determination for each σ t when the logical sum = 1 in the C / No determination in the C / No determination unit 3f.
 σ判定について説明する。σ判定では、ICAOの規定する擬似距離誤差検出失敗確率基準を用いる。σ判定部3hは先ず、検出確率分布f(σ)と所定の基準値から擬似距離誤差閾値σ1を算出する。本実施形態のσ判定部3hは、所定の基準値を1×10-5とし、4式を満たす擬似距離誤差閾値σ1を算出する。即ち、図6のハッチング部分の面積の合計が1×10-5となるようなσがσ1である。
4式
Figure JPOXMLDOC01-appb-I000004
The σ determination will be described. In the σ determination, a pseudorange error detection failure criterion defined by ICAO is used. First, the σ determination unit 3h calculates the pseudorange error threshold σ 1 from the detection probability distribution f (σ) and a predetermined reference value. The σ determination unit 3h according to the present embodiment calculates a pseudo-range error threshold σ 1 that satisfies Formula 4 with a predetermined reference value of 1 × 10 −5 . That is, σ is σ 1 so that the total area of hatched portions in FIG. 6 is 1 × 10 −5 .
4 sets
Figure JPOXMLDOC01-appb-I000004
 σ判定部3hは続いて、各|σt|をσ1と比較することで、各|σt|の信頼性の有無を判定する。σ判定部3hは、|σt|<σ1の場合に信頼性有り、|σt|≧σ1の場合に信頼性無しと判定する。 Subsequently, the σ determination unit 3h determines the reliability of each | σ t | by comparing each | σ t | with σ 1 . The σ determination unit 3h determines that there is reliability when | σ t | <σ 1 and that there is no reliability when | σ t | ≧ σ 1 .
 電波干渉判定部3iは、C/No判定部3fもしくはσ判定部3hからの判定結果に基づいて、受信したGPS信号の信頼性の有無を判定し、補強情報作成器4へ判定結果を送信する。電波干渉判定部3iは、C/No判定における論理和が0の場合、もしくはC/No判定における論理和は1であるが、σ判定において|σt|<σ1を満たす場合、補強情報作成器4に航空機5へ補強情報を送信するよう指示する。一方、電波干渉判定部3iは、C/No判定において論理和が1であり、且つ、σ判定において|σt|≧σ1を満たす場合、補強情報作成器4に航空機5へ補強情報を送信しないよう指示する。 The radio wave interference determination unit 3i determines whether the received GPS signal is reliable based on the determination result from the C / No determination unit 3f or the σ determination unit 3h, and transmits the determination result to the reinforcement information creator 4 . The radio wave interference determination unit 3i creates reinforcement information when the logical sum in the C / No determination is 0, or when the logical sum in the C / No determination is 1, but satisfies | σ t | <σ 1 in the σ determination. Instruct vessel 4 to send reinforcement information to aircraft 5. On the other hand, if the logical sum is 1 in the C / No determination and satisfies | σ t | ≧ σ 1 in the σ determination, the radio wave interference determination unit 3i transmits the reinforcement information to the aircraft 5 to the reinforcement information creator 4 Instruct not to.
 図2において、補強情報作成器4は、電波干渉判定部3iから補強情報を送信する指示を受信したとき、航空機5へ補強情報信号を送信する。 In FIG. 2, the reinforcement information creator 4 transmits a reinforcement information signal to the aircraft 5 when receiving an instruction to transmit the reinforcement information from the radio wave interference determination unit 3i.
 航空機5は、補強情報作成器4からの補強情報と各GPS衛星1からのGPS信号とを受信し、自身の精確な位置および高度情報を算出する。 The aircraft 5 receives the reinforcement information from the reinforcement information creator 4 and the GPS signal from each GPS satellite 1, and calculates its precise position and altitude information.
 [動作の説明]
 次に図7,図8を用いて本実施形態に係る補強情報送信システムの動作手順を説明する。
[Description of operation]
Next, the operation procedure of the reinforcement information transmission system according to the present embodiment will be described with reference to FIGS.
 GPS衛星群PRN#1~PRN#4はΔT秒周期で測位基準局群2-1~2-4に向けて、搬送波、距離コード、航法データから構成されるGPS信号を送信する(S1)。 The GPS satellite group PRN # 1 to PRN # 4 transmits a GPS signal composed of a carrier wave, a distance code, and navigation data to the positioning reference station group 2-1 to 2-4 with a period of ΔT seconds (S1).
 各測位基準局2は時刻tにおいてGPS衛星群PRN#1~PRN#4からGPS信号を受信し(S2)、搬送波、距離コード、航法データを補強情報作成器4へ送信する。また、各測位基準局2は受信した信号の電力と受信時の雑音の電力の比C/Notを算出すると共に、1式に基づいて擬似距離誤差σtを算出し(S3)、算出されたC/Not及びσtを電波干渉検出器3へ送信する。 Each positioning reference station 2 receives GPS signals from the GPS satellite groups PRN # 1 to PRN # 4 at time t (S2), and transmits a carrier wave, a distance code, and navigation data to the reinforcement information creator 4. Also, with each positioning reference station 2 calculates the ratio C / No t of noise during reception and the received signal power power, calculates a pseudo-range error sigma t based on Equation 1 (S3), the calculated C / No t and σ t are transmitted to the radio wave interference detector 3.
 補強情報作成器4は各測位基準局から送信された搬送波、距離コード、航法データを受信し(S4)、補強情報を作成する(S5)。 The reinforcement information creator 4 receives the carrier wave, distance code, and navigation data transmitted from each positioning reference station (S4), and creates reinforcement information (S5).
 電波干渉検出器3は各測位基準局2から送信されたC/Not及びσtを受信信号入力部3aで受信し(S6)、それぞれC/No記憶部3b、σ記憶部3cに記憶する(S7)。C/No記憶部3b、σ記憶部3cにはそれぞれ図4A、図4Bのようなデータが記憶される。 The radio wave interference detector 3 receives the C / No t and σ t transmitted from each positioning reference station 2 by the reception signal input unit 3a (S6), and stores them in the C / No storage unit 3b and the σ storage unit 3c, respectively ( S7). The C / No storage unit 3b and the σ storage unit 3c store data as shown in FIGS. 4A and 4B, respectively.
 次に、電波干渉検出器3はC/No記憶部3bからC/NotとC/Not-ΔTを取得し(S8)、Detectt算出部3dにおいて2式に基づいてC/Noの時間変化率PW_Detecttを算出する(S9)。パルス状に発生する干渉波を検出するため、差分間隔dtは小さく設定することが望ましい。差分間隔dtを小さく設定することでC/Noの詳細な時間変化を把握することができるので、パルス状に干渉波が発生した場合でもC/Noの時間変化を捉えることができる。ここではdt=ΔTとした。 Next, the interference detector 3 acquires the C / No t and C / No t-ΔT from C / No storage section 3b (S8), the time of C / No based on the two equations in Detect t calculating section 3d A change rate PW_Detect t is calculated (S9). In order to detect an interference wave generated in a pulse shape, it is desirable to set the difference interval dt small. By setting the difference interval dt to be small, it is possible to grasp the detailed time change of C / No. Therefore, even when an interference wave is generated in a pulse shape, the time change of C / No can be captured. Here, dt = ΔT.
 続いて、Thres.入力部3eがC/No判定で使用する閾値Thres.(>0)を取得する(S10)。電波干渉の無い場合でもC/Noは平均値C/No tから±2.5dBHz程度変動するため閾値Thres.は0.5dBHz/s程度とすることが望ましい。閾値Thres.は電波干渉の検出を行う以前に予め入力しておくことが望ましい。 Subsequently, a threshold Thres. (> 0) used by the Thres. Input unit 3e for C / No determination is acquired (S10). Even when there is no radio wave interference, C / No fluctuates by about ± 2.5 dBHz from the average value C / No t, so the threshold Thres. Is preferably about 0.5 dBHz / s. The threshold value Thres. Is preferably input in advance before the detection of radio wave interference.
 その後C/No判定部3fがC/NotとPW_Detecttとを用いてC/No判定を行う(S11)。C/No判定時の動作手順を図9に示す。まず、5式に示すように、C/Noと、C/No t-Thres.及びC/No t+Thres.と、の大小を比する(S111)。
5式
Figure JPOXMLDOC01-appb-I000005
Then C / No determination unit 3f performs C / No determined using a C / No t and PW_Detect t (S11). Fig. 9 shows the operation procedure for C / No judgment. First, as shown in Equation 5, Hisuru and C / No, the C / No t -Thres. And C / No ∞ t + Thres. , The magnitude of (S 111).
5 sets
Figure JPOXMLDOC01-appb-I000005
 5式を満たす場合、フラグに0を設定し(S112)、満たさない場合、フラグに1を設定する(S113)。C/No判定は各C/Notに対して行い、各信号に0または1のフラグが設定される。 If Formula 5 is satisfied, 0 is set in the flag (S112), and if not satisfied, 1 is set in the flag (S113). C / No decision is performed for each C / No t, 0 or 1 of the flag in each signal is set.
 C/No判定の処理を行った後、各信号に設定されたフラグの論理和を計算する(S12)。 After performing the C / No determination process, the logical sum of the flags set for each signal is calculated (S12).
 次に、算出した論理和が0か1かを判定する(S13)。論理和が0である場合、すべての信号のフラグが0であることから電波干渉波を受けておらず信号の信頼性が有ると考えられる。よって補強情報作成器4に航空機5へ補強情報を送信するよう指示する。一方、論理和が1である場合、C/No記憶部3bに記憶された16個の信号の内、少なくとも1つはフラグ"1"が設定されている状態である。よって電波干渉を受けている可能性があるため、σ判定部3hでσ判定を実施する。 Next, it is determined whether the calculated logical sum is 0 or 1 (S13). When the logical sum is 0, all the signal flags are 0, so that it is considered that the signal is reliable without receiving radio wave interference. Therefore, the reinforcement information creator 4 is instructed to transmit the reinforcement information to the aircraft 5. On the other hand, when the logical sum is 1, at least one of the 16 signals stored in the C / No storage unit 3b is in a state where the flag “1” is set. Therefore, since there is a possibility of radio wave interference, σ determination is performed by the σ determination unit 3h.
 σ判定を行うにあたり、f(σ)記憶部3gに記憶された検出確率分布f(σ)および所定の基準値から4式を満たすσ1を算出する(S14)。算出されたσ1はσ判定部3hに送信される。また、σ記憶部3cからσtを取得する(S15)。 In performing the σ determination, σ 1 satisfying the four expressions is calculated from the detection probability distribution f (σ) stored in the f (σ) storage unit 3g and a predetermined reference value (S14). The calculated σ 1 is transmitted to the σ determination unit 3h. Also, σ t is acquired from the σ storage unit 3c (S15).
 取得したσtとσ1との大小を比較し(S16)、すべての|σt|がσ1未満の場合、GPS信号の信頼性は有るとして補強情報作成器4に航空機5へ補強情報を送信するよう指示する。この場合、GBASの運用要件を逸脱することなく継続運用できる。一方、σt判定を行った16個のGPS信号の内、σ1以上の|σt|が少なくとも1つ存在する場合、電波干渉を受け且つICAOの擬似距離誤差検出失敗確率基準を満たさないことから、GPS信号の信頼性は無いと考えられる。よって航空機5へ補強情報を送信しない。 The obtained σ t and σ 1 are compared in size (S16) .If all | σ t | is less than σ 1 , the GPS signal is reliable and the reinforcement information generator 4 sends the reinforcement information to the aircraft 5. Instruct to send. In this case, the operation can be continued without departing from the operation requirements of GBAS. On the other hand, if there is at least one | σ t | greater than σ 1 among the 16 GPS signals that have been subjected to σ t determination, it must be subject to radio wave interference and not meet the ICAO pseudorange error detection failure probability criterion Therefore, it is considered that the GPS signal is not reliable. Therefore, the reinforcement information is not transmitted to the aircraft 5.
 補強情報作成器4はC/No判定後に補強情報送信指示を受信した場合(S17)、もしくはσ判定後に補強情報送信指示を受信した場合(S18)、航空機5へ補強情報を送信する(S19)。 When the reinforcement information creator 4 receives the reinforcement information transmission instruction after the C / No determination (S17), or when the reinforcement information transmission instruction is received after the σ determination (S18), the reinforcement information creator 4 transmits the reinforcement information to the aircraft 5 (S19). .
 [効果の説明]
 作成した補強情報を航空機5へ送信する前にC/No判定を行い、補強情報の作成に用いたデータの信頼性を評価する。これにより、航空機5へ電波干渉を受けたGPS信号に基づいて作成された補強情報が送信されることが抑制され、航空機5はより安全性の高い運航を達成できる。また、C/No判定を行った後にICAOによる擬似距離誤差検出失敗確率基準を参照する。これにより、仮にC/No判定によって電波干渉有りと判定されたとしても擬似距離誤差検出失敗確率基準を満たしていれば補強情報を使用でき、航空機5の継続的な運航を行うことができる。
[Description of effects]
C / No determination is performed before the created reinforcement information is transmitted to the aircraft 5, and the reliability of the data used for creating the reinforcement information is evaluated. As a result, transmission of reinforcement information created based on the GPS signal subjected to radio wave interference to the aircraft 5 is suppressed, and the aircraft 5 can achieve safer operation. In addition, after performing the C / No determination, reference is made to the pseudorange error detection failure probability criterion by ICAO. Thereby, even if it is determined that there is radio wave interference by the C / No determination, the reinforcement information can be used as long as the pseudorange error detection failure probability criterion is satisfied, and the aircraft 5 can be operated continuously.
 C/No判定において電波干渉有りと判定された場合、擬似距離誤差検出失敗確率基準に基づいた判定を行う。これにより、判定に要する時間や計算負荷を軽減することができ、且つ、GPS信号の信頼性の有無を迅速に判定することができる。 When it is determined that there is radio wave interference in the C / No determination, a determination based on the pseudorange error detection failure probability criterion is performed. Thereby, the time required for the determination and the calculation load can be reduced, and the presence or absence of the reliability of the GPS signal can be quickly determined.
 本実施形態では閾値Thres.は一定値としたが、図10に示すように閾値Thres.(許可領域)が時間変化するように設定してもよい。その結果GPS信号に要求される安全性のレベルが時々刻々変化したとしても、柔軟に対応することができる。航空機5が巡航飛行を行うようなGPS信号に要求される安全性のレベルが低い時間帯は閾値Thres.を大きくし、離着陸時のような高い安全性が必要な時間帯は閾値Thres.を小さくすることが望ましい。 In the present embodiment, the threshold value Thres. Is a constant value, but as shown in FIG. 10, the threshold value Thres. (Permitted area) may be set to change over time. As a result, even if the level of safety required for GPS signals changes from moment to moment, it is possible to flexibly respond. The threshold Thres. Is increased during times when the level of safety required for GPS signals, such as when the aircraft 5 performs cruise flight, and the threshold Thres. Is decreased during times when high safety is required, such as during takeoff and landing. It is desirable to do.
 本実施形態では電波干渉検出器3は地上に設置されている例を示したが、航空機5上にあってもよい。 In the present embodiment, the example in which the radio wave interference detector 3 is installed on the ground is shown, but it may be on the aircraft 5.
 [第二の実施形態]
 第二の実施形態では定常的な電波干渉の有無を検知するための補強情報送信システムについて説明する。電波干渉がない場合、あるいは何らかの方法で電波干渉の影響を取り除いた場合のC/Noの時間変化を図11に破線で示す。一方、定常的な電波干渉を受けた場合のC/Noの時間変化を図11に実線で示す。本実施形態ではt=430-510秒にかけて、定常時間が約40秒であるような電波と干渉したものとする。
[Second Embodiment]
In the second embodiment, a reinforcement information transmission system for detecting the presence or absence of stationary radio wave interference will be described. The time change of C / No when there is no radio wave interference or when the influence of radio wave interference is removed by some method is shown by a broken line in FIG. On the other hand, the time change of C / No when receiving a steady radio wave interference is shown by a solid line in FIG. In this embodiment, it is assumed that the radio wave interferes with a radio wave having a stationary time of about 40 seconds from t = 430 to 510 seconds.
 [構成の説明]
 Detectを算出する際、第一の実施形態ではC/Noのパルス的変化を検知するため1周期前のC/Noを参照しDetectを算出した。本実施形態ではC/Noの定常的な変化を検知するため数周期前のC/NoからDetectを算出する。ここでは例として5周期前のC/Noを参照する。
[Description of configuration]
When calculating Detect, in the first embodiment, Detect was calculated by referring to C / No one cycle before in order to detect a pulse-like change in C / No. In this embodiment, Detect is calculated from C / No several cycles before in order to detect a steady change in C / No. Here, as an example, reference is made to C / No five cycles ago.
 本実施形態では、Detectt算出部3dにおいて第一の実施形態とは異なる処理に基づいてDetecttを算出する。Detectt算出部3d以外の構成は第一の実施形態と同様であるため説明を省略する。 In the present embodiment, calculates the Detect t based on a different processing from the first embodiment in Detect t calculating section 3d. Since the configuration other than the Detect t calculation unit 3d is the same as that of the first embodiment, the description thereof is omitted.
 Detectt算出部3dは下記の後退差分の式(6式)に基づいてDetecttを算出する。本実施形態では5周期前のC/Noを参照するためdt=5ΔTとした。定常的な干渉波を検知する際に用いるDetecttを特にCW_ Detecttと示す。
6式
Figure JPOXMLDOC01-appb-I000006
Detect t calculating section 3d calculates the Detect t based on the equation (6 type) of backward difference below. In this embodiment, dt = 5ΔT is used to refer to C / No five cycles before. Detect t used for detecting stationary interference waves is particularly denoted as CW_Detect t .
6 formulas
Figure JPOXMLDOC01-appb-I000006
 [動作の説明]
 電波干渉検出器3は各測位基準局2から送信されたC/Not及びσtを受信信号入力部3aで受信し(S6)、それぞれC/No記憶部3b、σ記憶部3cに記憶する(S7)。C/No記憶部3b、σ記憶部3cにはそれぞれ図4A、図4Bのようなデータが記憶される。次に、C/NotとC/Not-5ΔTを用いて、Detectt算出部3dが6式に基づいてCW_Detecttを算出する(S9)。
[Description of operation]
The radio wave interference detector 3 receives the C / No t and σ t transmitted from each positioning reference station 2 by the reception signal input unit 3a (S6), and stores them in the C / No storage unit 3b and the σ storage unit 3c, respectively ( S7). Data as shown in FIGS. 4A and 4B is stored in the C / No storage unit 3b and the σ storage unit 3c, respectively. Next, using the C / No t and C / No t-5ΔT, Detect t calculating section 3d calculates the CW_Detect t based on the equation (6) (S9).
 続いて、Thres.入力部3eがC/No判定で使用する閾値Thres.(>0)を取得し(S10)、C/No判定部3fでC/No判定を行い、各信号に0もしくは1のフラグを設定する(S11)。フラグ設定後、各C/Notを対象にフラグの論理和を算出する(S12)。論理和が0である場合は補強情報作成器4に対して航空機5へ補強情報を送信するよう指示する。論理和が1の場合はσ判定部3hでσ判定を行う(S15)。σ判定の結果すべての|σt|がσ1未満の場合、電波干渉を受けているがGBASの運用に支障はないと考えられることから、補強情報作成器4に対して航空機5へ補強情報を送信するよう指示する。σ1以上の|σt|が少なくとも1つ存在する場合、GBASの安全要件を満たさないため補強情報作成器4に対して航空機5へ補強情報を送信しないよう指示する。 Subsequently, the threshold Thres. (> 0) used by the Thres. Input unit 3e for C / No determination is acquired (S10), C / No determination is performed by the C / No determination unit 3f, and each signal is set to 0 or 1 The flag is set (S11). After flagging, it calculates a logical sum of the flags in the subject of each C / No t (S12). If the logical sum is 0, the reinforcement information creator 4 is instructed to transmit the reinforcement information to the aircraft 5. When the logical sum is 1, σ determination is performed by the σ determination unit 3h (S15). If all | σ t | is less than σ 1 as a result of the σ determination, it is considered that there is no interference with GBAS operation due to radio wave interference. To send. If at least one | σ t | equal to or greater than σ 1 exists, the reinforcement information generator 4 is instructed not to transmit the reinforcement information to the aircraft 5 because it does not satisfy the GBAS safety requirements.
 補強情報作成器4はC/No判定後に補強情報送信指示を受信した場合(S17)、もしくはσ判定後に補強情報送信指示を受信した場合(S18)、航空機5へ補強情報を送信する(S19)。 When the reinforcement information creator 4 receives the reinforcement information transmission instruction after the C / No determination (S17), or when the reinforcement information transmission instruction is received after the σ determination (S18), the reinforcement information creator 4 transmits the reinforcement information to the aircraft 5 (S19). .
 [効果の説明]
 5周期前のC/Noを参照してC/Noの長期的な時間変化を取得することにより、定常的な干渉の有無を検知できる。その結果、定常的な電波干渉を受けたGPS信号に基づいて作成された補強情報を航空機5へ送信されることを抑制できる。
[Description of effects]
By acquiring a long-term change in C / No with reference to C / No five cycles ago, it is possible to detect the presence or absence of steady interference. As a result, it is possible to suppress transmission of the reinforcement information created based on the GPS signal subjected to steady radio wave interference to the aircraft 5.
 [第三の実施形態]
 第一及び第二の実施形態では、単一の干渉波を検出する目的でDetecttを算出し、閾値Thres.を設定した。本実施形態では定常時間がそれぞれ異なる定常的な干渉波及びパルス状の干渉波の両方が存在する場合を想定する。ただし定常時間は最大nΔT秒間であるとする。
[Third embodiment]
In the first and second embodiments, Detect t is calculated for the purpose of detecting a single interference wave, and the threshold value Thres. Is set. In the present embodiment, it is assumed that both stationary interference waves and pulsed interference waves having different stationary times exist. However, it is assumed that the steady time is a maximum of nΔT seconds.
 [構成の説明]
 本実施形態ではC/NotとC/Not-iΔTを用いてDetecttを算出する。ここでC/Not-iΔTはi周期前のC/Notである。本実施形態ではDetectt算出部3dが第一、第二の実施形態とは異なる処理に基づいてDetecttを算出する。Detectt算出部3d以外の構成は第一、第二の実施形態と同様であるため説明を省略する。
[Description of configuration]
In the present embodiment calculates the Detect t with C / No t and C / No t-iΔT. Here is a C / No t-iΔT is i cycles before the C / No t. In this embodiment Detect t calculating section 3d is first to calculate the Detect t based on a different processing from the second embodiment. Since the configuration other than the Detect t calculation unit 3d is the same as that of the first and second embodiments, the description thereof is omitted.
 Detectt算出部3dは下記の後退差分の式(7式)に基づいてDetecttを算出する。C/NotとC/Not-iΔTを用いて算出したDetecttを特にCW(i)_Detecttと示す。ただしi=1、2・・・、nである。
7式
Figure JPOXMLDOC01-appb-I000007
Detect t calculating section 3d calculates the Detect t based on equation (7 expression) of backward difference below. It shows the C / No t and C / No t-iΔT especially Detect t calculated using the CW (i) _Detect t. However, i = 1, 2,..., N.
7 sets
Figure JPOXMLDOC01-appb-I000007
 Thres.入力部3eはC/No判定部3fがC/No判定を行う際の閾値Thres.の入力を受け付ける。本実施形態では各iに対する閾値Thres.として閾値Thres._iが設定される。 The Thres. Input unit 3e receives an input of the threshold value Thres. When the C / No determination unit 3f performs C / No determination. In the present embodiment, a threshold value Thres._i is set as the threshold value Thres. For each i.
 C/No判定部3fはCW(i)_Detecttと閾値Thres._iを用いて各C/Notに対してC/No判定を行う。本実施形態では16×i個のGPS信号に対してC/No判定を行う。 C / No determination unit 3f performs C / No decision for each C / No t using CW (i) _Detect t and the threshold Thres._I. In this embodiment, C / No determination is performed on 16 × i GPS signals.
 [動作の説明]
 電波干渉検出器3は各測位基準局2から送信されたC/Not及びσtを受信信号入力部3aで受信し(S6)、それぞれC/No記憶部3b、σ記憶部3cに記憶する(S7)。C/No記憶部3b、σ記憶部3cにはそれぞれ図4A、図4Bのデータが記憶される。
[Description of operation]
The radio wave interference detector 3 receives the C / No t and σ t transmitted from each positioning reference station 2 by the reception signal input unit 3a (S6), and stores them in the C / No storage unit 3b and the σ storage unit 3c, respectively ( S7). The data of FIGS. 4A and 4B are stored in the C / No storage unit 3b and the σ storage unit 3c, respectively.
 次にC/NotとC/Not-iΔTを用いて、Detectt算出部3dが7式からCW(i)_Detecttを算出する(S9)。 Then using a C / No t and C / No t-iΔT, Detect t calculating section 3d calculates the CW (i) _Detect t from Equation 7 (S9).
 続いて、Thres.入力部3eがC/No判定で使用する閾値Thres._i(>0)を取得し(S10)、C/No判定部3fがC/No判定を行い、各信号に0もしくは1のフラグを設定する(S11)。フラグ設定後、各C/Notを対象にフラグの論理和を算出する(S12)。論理和が0である場合は補強情報作成器4に対して航空機5へ補強情報を送信するよう指示する。論理和が1の場合はσ判定部3hでσ判定を行う(S15)。σ判定の結果すべての|σt|がσ1未満の場合、電波干渉を受けているがGBASの運用に支障はないと考えられることから、補強情報作成器4に対して航空機5へ補強情報を送信するよう指示する。σ1以上の|σt|が少なくとも1つ存在する場合、補強情報作成器4に対して補強情報を航空機5へ送信しないよう指示する。 Subsequently, the threshold Thres._i (> 0) used by the Thres. Input unit 3e for C / No determination is acquired (S10), and the C / No determination unit 3f performs C / No determination. A flag of 1 is set (S11). After flagging, it calculates a logical sum of the flags in the subject of each C / No t (S12). If the logical sum is 0, the reinforcement information creator 4 is instructed to transmit the reinforcement information to the aircraft 5. When the logical sum is 1, σ determination is performed by the σ determination unit 3h (S15). If all | σ t | is less than σ 1 as a result of the σ determination, it is considered that there is no interference with GBAS operation due to radio wave interference. To send. If there is at least one | σ t | greater than or equal to σ 1 , the reinforcement information creator 4 is instructed not to transmit the reinforcement information to the aircraft 5.
 補強情報作成器4はC/No判定後に補強情報送信指示を受信した場合(S17)、もしくはσ判定後に補強情報送信指示を受信した場合(S18)、航空機5へ補強情報を送信する(S19)。 When the reinforcement information creator 4 receives the reinforcement information transmission instruction after the C / No determination (S17), or when the reinforcement information transmission instruction is received after the σ determination (S18), the reinforcement information creator 4 transmits the reinforcement information to the aircraft 5 (S19). .
 [効果の説明]
 i周期前までの全てのC/Noを用いてC/No判定を行うことで、パルスを含む様々な定常時間を有する干渉波を検出することができる。その結果、航空機5へ電波干渉を受けたGPS信号に基づいて作成された補強情報が送信されることを抑制できる。
[Description of effects]
By performing C / No determination using all C / Nos up to i cycles before, it is possible to detect interference waves having various stationary times including pulses. As a result, it is possible to suppress the reinforcement information created based on the GPS signal that has received radio wave interference from the aircraft 5 from being transmitted.
 ここで、電波干渉がない場合、あるいは何らかの方法でGPS信号に含まれる電波干渉の影響を除去した場合に定常時間ごとの干渉電波出現頻度を取得しておき、頻度に合わせて閾値Thres._iを設定することが望ましい。例えば、定常時間がi秒間である干渉電波の出現頻度が高いが、定常時間がm(<n)秒間である干渉電波の出現頻度は低くGBASの安全な運用に影響を及ぼさない場合、閾値Thres._mより閾値Thres._iを小さめに設定することでGBAS運用に影響する干渉波を高確率で検知できる。その結果、信頼性の低いGPS信号に基づいて作成された補強情報を航空機5へ送信されることを抑制できる。 Here, if there is no radio wave interference, or if the influence of radio wave interference included in the GPS signal is removed by some method, the frequency of interference radio wave appearance for each steady time is acquired, and the threshold Thres._i is set according to the frequency. It is desirable to set. For example, if the frequency of interference radio waves with a steady time of i seconds is high, but the frequency of interference radio waves with a stationary time of m (<n) seconds is low and does not affect the safe operation of GBAS, the threshold Thres Interference waves that affect GBAS operation can be detected with high probability by setting the threshold Thres._i smaller than ._m. As a result, it is possible to suppress transmission of reinforcement information created based on a GPS signal with low reliability to the aircraft 5.
 また、閾値Thres._iは一定値ではなく時間変化してもよい。干渉波の強度も時間変化する場合、各時刻において支配的な干渉波に合わせて閾値Thres._iをそれぞれ設定する。その結果、GBAS運用に影響する様々な定在時間を有する干渉波を高確率で検出し、信頼度が低い補強情報が送信されることが抑制される。 Threshold value Thres._i is not a constant value and may change over time. When the intensity of the interference wave also changes with time, the threshold Thres._i is set in accordance with the dominant interference wave at each time. As a result, interference waves having various standing times that affect GBAS operation are detected with high probability, and transmission of reinforcement information with low reliability is suppressed.
 本発明のGBAS以外の適用例として、移動体の自動走行時に利用するGPS信号の補強情報送信の可否を判定することが挙げられる。この場合、航空機における巡航、離着陸状態はそれぞれ駐車、高速走行時に対応する。高速道路などで移動体が高速移動している状態で自動制御を行う場合、GPS信号に基づいて算出した位置に含まれる偏差が原因で重大事故を起こす可能性がある。一方、市街走行時は低速で移動するためGPS信号に基づいて算出した位置に多少の偏差が含まれていたとしても重大事故につながる可能性は低い。よって、移動体の移動速度に合わせて閾値Thres.を変化させ、GPS信号の信頼性を判定することで、移動体へ信頼性が低い補強情報が送信されることを抑制できる。その結果、移動体のより安全な自動走行を行うことができる。 As an application example other than GBAS of the present invention, it is possible to determine whether or not it is possible to transmit the reinforcement information of the GPS signal used when the mobile object is automatically driven. In this case, the cruise and takeoff / landing states of the aircraft correspond to parking and high-speed driving, respectively. When automatic control is performed while a moving object is moving at high speed on an expressway or the like, a serious accident may occur due to a deviation included in the position calculated based on the GPS signal. On the other hand, since the vehicle travels at a low speed when traveling in the city, even if some deviation is included in the position calculated based on the GPS signal, it is unlikely to lead to a serious accident. Therefore, by changing the threshold value Thres. According to the moving speed of the moving body and determining the reliability of the GPS signal, it is possible to suppress transmission of reinforcement information with low reliability to the moving body. As a result, a safer automatic traveling of the moving body can be performed.
 本願発明は上記実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があってもこの発明に含まれる。また、上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。 The invention of the present application is not limited to the above-described embodiment, and any design change or the like within a range not departing from the gist of the invention is included in the invention. Moreover, although a part or all of said embodiment can be described also as the following additional remarks, it is not restricted to the following.
 [付記1]
所定の周期で受信したGPS信号の信号対雑音比を算出する手段と、
前記受信したGPS信号の補強情報を作成し移動体に送信可能な手段と、
前記受信したGPS信号の信号対雑音比の時間変化率を算出する手段と、
前記時間変化率に基づいて前記補強情報の前記移動体への送信可否を制御する手段と、
を有することを特徴とする衛星測位用電波干渉検出システム。
[Appendix 1]
Means for calculating a signal-to-noise ratio of a GPS signal received at a predetermined period;
Means for creating reinforcement information of the received GPS signal and transmitting it to a moving body;
Means for calculating a time change rate of a signal-to-noise ratio of the received GPS signal;
Means for controlling whether to transmit the reinforcement information to the mobile body based on the rate of time change;
A radio wave interference detection system for satellite positioning, characterized by comprising:
 [付記2]
前記時間変化率が所定の範囲内に含まれるか否かを判定する第1の判定を行う手段さらに有し、
前記時間変化率が前記所定の範囲内に含まれない場合、前記補強情報を作成し移動体に送信可能な手段は、前記補強情報を前記移動体に送信しない
ことを特徴とする付記1記載の衛星測位用電波干渉検出システム。
[Appendix 2]
Means for performing a first determination for determining whether the time change rate is included in a predetermined range;
The means according to claim 1, wherein when the rate of time change is not included in the predetermined range, the means capable of creating the reinforcement information and transmitting it to the mobile body does not transmit the reinforcement information to the mobile body. Radio interference detection system for satellite positioning.
 [付記3]
所定の周期でGPS信号を受信し、受信した前記GPS信号の擬似距離誤差を算出する手段と、GPS信号の擬似距離誤差の度数分布を記憶する手段と、
前記度数分布と所定の基準値とから擬似距離誤差閾値を算出する手段と、
前記擬似距離誤差と前記擬似距離誤差閾値との大小を比較する第2の判定手段と、
前記擬似距離誤差が前記擬似距離誤差閾値以上の場合、前記受信したGPS信号は電波干渉を受けていると判定する処理を行う手段と、
をさらに有することを特徴とする付記1記載の衛星測位用電波干渉検出システム。
[Appendix 3]
Means for receiving a GPS signal at a predetermined period, calculating a pseudorange error of the received GPS signal, means for storing a frequency distribution of the pseudorange error of the GPS signal;
Means for calculating a pseudo-range error threshold from the frequency distribution and a predetermined reference value;
A second determination means for comparing the magnitude of the pseudorange error and the pseudorange error threshold;
Means for performing a process of determining that the received GPS signal is subjected to radio wave interference when the pseudo distance error is equal to or greater than the pseudo distance error threshold;
The radio wave interference detection system for satellite positioning according to appendix 1, further comprising:
 [付記4]
前記第2の判定は、前記第1の判定において前記GPS信号は電波干渉を受けていると判定された場合に行う
ことを特徴とする付記4記載の衛星測位用電波干渉検出システム。
[Appendix 4]
5. The satellite positioning radio interference detection system according to appendix 4, wherein the second determination is performed when it is determined in the first determination that the GPS signal is subjected to radio interference.
 [付記5]
前記所定の範囲とは、パルス状の電波干渉の影響を無視できる範囲である
ことを特徴とする付記1または2記載の衛星測位用電波干渉検出システム。
[Appendix 5]
3. The satellite positioning radio wave interference detection system according to appendix 1 or 2, wherein the predetermined range is a range in which an influence of pulse radio wave interference can be ignored.
 [付記6]
前記移動体は航空機であり、
前記所定の範囲は、前記航空機の離着陸時の方が巡航時よりも狭い
ことを特徴とする付記5記載の衛星測位用電波干渉検出システム。
[Appendix 6]
The moving body is an aircraft;
6. The radio interference detection system for satellite positioning according to appendix 5, wherein the predetermined range is narrower when taking off and landing of the aircraft than when cruising.
 [付記7]
前記受信したGPS信号の信号対雑音比と、1周期前に受信したGPS信号の信号対雑音比とを基に前記時間変化率を算出する手段をさらに含む
ことを特徴とする付記1記載の衛星測位用電波干渉検出システム。
[Appendix 7]
The satellite according to claim 1, further comprising means for calculating the rate of time change based on a signal-to-noise ratio of the received GPS signal and a signal-to-noise ratio of the GPS signal received one period before. Radio interference detection system for positioning.
 [付記8]
前記受信したGPS信号の信号対雑音比と、複数周期前に受信したGPS信号の信号対雑音比とを基に前記時間変化率を算出する手段をさらに含む
ことを特徴とする付記1記載の衛星測位用電波干渉検出システム。
[Appendix 8]
The satellite according to claim 1, further comprising means for calculating the rate of time change based on a signal-to-noise ratio of the received GPS signal and a signal-to-noise ratio of the GPS signal received a plurality of periods ago. Radio interference detection system for positioning.
 [付記9]
前記受信したGPS信号の信号対雑音比と、複数周期前までに受信した各GPS信号の信号対雑音比とを基に前記時間変化率をそれぞれ算出する手段をさらに含む
ことを特徴とする付記1記載の衛星測位用電波干渉検出システム。
[Appendix 9]
The apparatus further includes means for calculating the rate of time change based on the signal-to-noise ratio of the received GPS signal and the signal-to-noise ratio of each GPS signal received up to a plurality of periods ago, respectively. Radio interference detection system for satellite positioning as described.
 [付記10]
所定の周期で受信したGPS信号の信号対雑音比を算出するステップと、
前記受信したGPS信号の信号対雑音比を用いて前記受信したGPS信号の信号対雑音比の時間変化率を算出するステップと、
前記時間変化率が所定の範囲内に含まれるか否かを判定する第1の判定を行うステップと、
前記時間変化率が前記所定の範囲内に含まれない場合、前記受信したGPS信号の補強情報の送信を停止する指示をするステップと、を有することを特徴とする衛星測位用電波干渉検出方法。
[Appendix 10]
Calculating a signal-to-noise ratio of a GPS signal received at a predetermined period;
Calculating a time change rate of a signal-to-noise ratio of the received GPS signal using a signal-to-noise ratio of the received GPS signal;
Performing a first determination to determine whether the time change rate is included in a predetermined range;
A radio wave interference detection method for satellite positioning, comprising: instructing to stop transmission of reinforcement information of the received GPS signal when the time change rate is not included in the predetermined range.
 本願発明は、GPS信号を用いて位置情報を演算する、GBASや移動体の自動走行システム等に広く適用することができる。 The present invention can be widely applied to GBAS, an automatic traveling system for moving objects, and the like that calculate position information using GPS signals.
 この出願は、2014年2月27日に出願された日本出願特願2014-036092を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2014-036092 filed on February 27, 2014, the entire disclosure of which is incorporated herein.
 1  GPS衛星
 2  測位基準局
 3  電波干渉検出器
 3a  受信信号入力部
 3b  C/No記憶部
 3c  σ記憶部
 3d  Detectt算出部
 3e  Thres.入力部
 3f  C/No判定部
 3g  f(σ)記憶部
 3h  σ判定部
 3i  電波干渉判定部
 4  補強情報作成器
 5  航空機
 10  補強情報送信システム
 20  補強情報生成手段
 30  衛星測位用電波干渉検知機構
 31  信号対雑音比取得手段
 32  変化率算出手段
 33  判定手段
 40  制御手段
1 GPS satellite 2 Positioning reference station 3 Radio interference detector 3a Received signal input unit 3b C / No storage unit 3c σ storage unit 3d Detect t calculation unit 3e Thres. Input unit 3f C / No determination unit 3g f (σ) storage unit 3h σ determination unit 3i Radio interference determination unit 4 Reinforcement information generator 5 Aircraft 10 Reinforcement information transmission system 20 Reinforcement information generation unit 30 Radio interference detection mechanism for satellite positioning 31 Signal-to-noise ratio acquisition unit 32 Change rate calculation unit 33 Determination unit 40 Control means

Claims (10)

  1. 受信されたGPS信号の信号対雑音比を取得する信号対雑音比取得手段と、
    前記取得された信号対雑音比の所定時間内における時間変化率を算出する変化率算出手段と、
    前記算出された時間変化率に基づいて受信したGPS信号への電波干渉の有無を判定する判定手段と、
    を備える衛星測位用電波干渉検知機構。
    A signal-to-noise ratio acquisition means for acquiring a signal-to-noise ratio of the received GPS signal;
    A rate-of-change calculating means for calculating a rate of time change within a predetermined time of the acquired signal-to-noise ratio;
    Determination means for determining the presence or absence of radio wave interference to the received GPS signal based on the calculated rate of time change,
    A radio wave interference detection mechanism for satellite positioning.
  2. 前記所定時間は、前記パルス状の電波のパルス幅よりも短いことを特徴とする請求項1記載の衛星測位用電波干渉検知機構。 The radio interference detection mechanism for satellite positioning according to claim 1, wherein the predetermined time is shorter than a pulse width of the pulsed radio wave.
  3. 前記所定時間は、前記GPS信号と電波干渉する定常波の電波を検出できる長さであることを特徴とする請求項1記載の衛星測位用電波干渉検知機構。 2. The radio interference detection mechanism for satellite positioning according to claim 1, wherein the predetermined time is a length capable of detecting a stationary radio wave that interferes with the GPS signal.
  4. 前記判定手段は、前記算出された時間変化率が所定の範囲内に含まれる場合はGPS信号への電波干渉が無いと判定し、前記算出された時間変化率が所定の範囲内に含まれない場合はGPS信号への電波干渉が有ると判定する、請求項1乃至3のいずれか1項に記載の衛星測位用電波干渉検知機構。 The determination means determines that there is no radio wave interference to the GPS signal when the calculated time change rate is included in a predetermined range, and the calculated time change rate is not included in the predetermined range. The radio interference detection mechanism for satellite positioning according to any one of claims 1 to 3, wherein it is determined that there is radio wave interference to a GPS signal.
  5. 前記受信されたGPS信号を用いて補強情報を生成する補強情報生成手段と、
    請求項4に記載の衛星測位用電波干渉検知機構と、
    電波干渉が無いと判定された場合は前記生成された補強情報を移動体へ送信し、電波干渉が有ると判定された場合は前記生成された補強情報を送信しない制御手段と、
    を備える補強情報送信システム。
    Reinforcement information generating means for generating reinforcement information using the received GPS signal;
    A radio wave interference detection mechanism for satellite positioning according to claim 4,
    When it is determined that there is no radio wave interference, the generated reinforcement information is transmitted to the mobile body, and when it is determined that there is radio wave interference, the control means that does not transmit the generated reinforcement information;
    A reinforcement information transmission system comprising:
  6. 前記受信されたGPS信号を用いて擬似距離誤差σを算出する擬似距離誤差算出手段をさらに備え、
    前記制御手段は、電波干渉が有ると判定された場合はさらに、前記算出された擬似距離誤差σが擬似距離誤差検出失敗確率基準を満足するか否か判定し、満足する場合は前記生成された補強情報を移動体へ送信する、
    請求項5に記載の補強情報送信システム。
    A pseudorange error calculating means for calculating a pseudorange error σ using the received GPS signal;
    The control means further determines whether or not the calculated pseudorange error σ satisfies the pseudorange error detection failure probability criterion when it is determined that there is radio wave interference, and if generated, the generated pseudorange error σ Send reinforcement information to the mobile,
    The reinforcement information transmission system according to claim 5.
  7. 電波干渉が無い時のGPS信号の擬似距離誤差σの度数分布および所定の基準値に基づいて擬似距離誤差閾値σ’を算出するσ閾値算出手段をさらに備え、
    前記制御手段は、|σ|<σ’の場合に前記擬似距離誤差検出失敗確率基準を満足すると判定し、|σ|≧σ’の場合に前記擬似距離誤差検出失敗確率基準を満足しないと判定する、
    請求項6に記載の補強情報送信システム。
    Σ threshold calculation means for calculating the pseudo distance error threshold σ ′ based on the frequency distribution of the pseudo distance error σ of the GPS signal when there is no radio wave interference and a predetermined reference value,
    The control means determines that the pseudorange error detection failure probability criterion is satisfied when | σ | <σ ′, and determines that the pseudorange error detection failure probability criterion is not satisfied when | σ | ≧ σ ′. To
    The reinforcement information transmission system according to claim 6.
  8. 前記移動体は航空機であり、
    前記航空機の離着陸時に前記判定手段において適用される前記所定の範囲は、前記航空機の巡航時に適用される前記所定の範囲よりも狭く設定される、
    請求項5乃至7のいずれか1項に記載の補強情報送信システム。
    The moving body is an aircraft;
    The predetermined range applied in the determination means at the time of takeoff and landing of the aircraft is set narrower than the predetermined range applied at the time of cruise of the aircraft.
    The reinforcement information transmission system according to any one of claims 5 to 7.
  9. 前記GPS信号を受信する受信手段をさらに備える、請求項5乃至8のいずれか1項に記載の補強情報送信システム。 The reinforcement information transmission system according to claim 5, further comprising reception means for receiving the GPS signal.
  10. 受信されたGPS信号の信号対雑音比を取得し、
    前記取得された信号対雑音比の所定時間内における時間変化率を算出し、
    前記算出された時間変化率が所定の範囲内に含まれる場合はGPS信号への電波干渉が無いと判定し、前記算出された時間変化率が所定の範囲内に含まれない場合はGPS信号への電波干渉が有ると判定する、
    衛星測位用電波干渉検知方法。
    Get the signal-to-noise ratio of the received GPS signal,
    Calculating a rate of time change within a predetermined time of the acquired signal-to-noise ratio;
    When the calculated time change rate is included in the predetermined range, it is determined that there is no radio wave interference to the GPS signal, and when the calculated time change rate is not included in the predetermined range, the GPS signal is determined. To determine that there is radio interference
    Radio interference detection method for satellite positioning.
PCT/JP2015/000875 2014-02-27 2015-02-23 Satellite positioning-use radio wave interference detection mechanism, satellite positioning-use radio wave interference detection method, and augmentary information transmission system provided with satellite positioning-use radio wave interference detection mechanism WO2015129243A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016505058A JPWO2015129243A1 (en) 2014-02-27 2015-02-23 Radio interference detection mechanism for satellite positioning, radio interference detection method for satellite positioning, and reinforcement information transmission system provided with radio interference detection mechanism for satellite positioning
PH12016501589A PH12016501589A1 (en) 2014-02-27 2016-08-11 Interference detection mechanism for satellite positioning radio wave, augmentation information transmission system comprising the same, and interference detection method for satellite positioning radio wave

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014036092 2014-02-27
JP2014-036092 2014-02-27

Publications (1)

Publication Number Publication Date
WO2015129243A1 true WO2015129243A1 (en) 2015-09-03

Family

ID=54008577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000875 WO2015129243A1 (en) 2014-02-27 2015-02-23 Satellite positioning-use radio wave interference detection mechanism, satellite positioning-use radio wave interference detection method, and augmentary information transmission system provided with satellite positioning-use radio wave interference detection mechanism

Country Status (4)

Country Link
JP (1) JPWO2015129243A1 (en)
PH (1) PH12016501589A1 (en)
TW (1) TW201543058A (en)
WO (1) WO2015129243A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018163040A (en) * 2017-03-27 2018-10-18 セコム株式会社 False signal determination device
CN109557562A (en) * 2018-12-03 2019-04-02 中国电波传播研究所(中国电子科技集团公司第二十二研究所) A kind of GNSS interference source localization method based on radio waves propagation model
JP2020515816A (en) * 2016-12-30 2020-05-28 ユー−ブロックス、アクチエンゲゼルシャフトu−blox AG GNSS receiver protection level
CN113572518A (en) * 2021-08-05 2021-10-29 上海寻航者智能科技有限公司 Recovery method and system for satellite positioning signals in unmanned aerial vehicle reverse braking area
JPWO2021245888A1 (en) * 2020-06-04 2021-12-09
JPWO2021245889A1 (en) * 2020-06-04 2021-12-09
WO2023155094A1 (en) * 2022-02-17 2023-08-24 北京航空航天大学 Reference station, control center, interference source determination method, and interference source detection system and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6366357B2 (en) * 2014-05-16 2018-08-01 三菱電機株式会社 Positioning device and positioning method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249754A (en) * 1999-02-04 2000-09-14 Conexant Systems Inc Jamming detection and blanking for gps receiver
JP2011242296A (en) * 2010-05-19 2011-12-01 Nec Corp Ground supplementary satellite navigation system, abnormality detection method and abnormality detection program used therefor
JP2012103229A (en) * 2010-11-15 2012-05-31 Nec Corp Threshold determination device, threshold determination method, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249754A (en) * 1999-02-04 2000-09-14 Conexant Systems Inc Jamming detection and blanking for gps receiver
JP2011242296A (en) * 2010-05-19 2011-12-01 Nec Corp Ground supplementary satellite navigation system, abnormality detection method and abnormality detection program used therefor
JP2012103229A (en) * 2010-11-15 2012-05-31 Nec Corp Threshold determination device, threshold determination method, and program

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020515816A (en) * 2016-12-30 2020-05-28 ユー−ブロックス、アクチエンゲゼルシャフトu−blox AG GNSS receiver protection level
JP2018163040A (en) * 2017-03-27 2018-10-18 セコム株式会社 False signal determination device
CN109557562A (en) * 2018-12-03 2019-04-02 中国电波传播研究所(中国电子科技集团公司第二十二研究所) A kind of GNSS interference source localization method based on radio waves propagation model
CN109557562B (en) * 2018-12-03 2023-03-31 中国电波传播研究所(中国电子科技集团公司第二十二研究所) GNSS interference source positioning method based on radio wave propagation model
JPWO2021245888A1 (en) * 2020-06-04 2021-12-09
WO2021245888A1 (en) * 2020-06-04 2021-12-09 日本電気株式会社 Information processing device, information provision system, information processing method, and storage medium having information processing program stored thereon
JPWO2021245889A1 (en) * 2020-06-04 2021-12-09
WO2021245889A1 (en) * 2020-06-04 2021-12-09 日本電気株式会社 Information processing device, information provision system, information processing method, and storage medium having information processing program stored thereon
CN113572518A (en) * 2021-08-05 2021-10-29 上海寻航者智能科技有限公司 Recovery method and system for satellite positioning signals in unmanned aerial vehicle reverse braking area
WO2023155094A1 (en) * 2022-02-17 2023-08-24 北京航空航天大学 Reference station, control center, interference source determination method, and interference source detection system and method

Also Published As

Publication number Publication date
PH12016501589A1 (en) 2017-02-06
TW201543058A (en) 2015-11-16
JPWO2015129243A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
WO2015129243A1 (en) Satellite positioning-use radio wave interference detection mechanism, satellite positioning-use radio wave interference detection method, and augmentary information transmission system provided with satellite positioning-use radio wave interference detection mechanism
US10761215B2 (en) Positioning device and positioning method
US8976064B2 (en) Systems and methods for solution separation for ground-augmented multi-constellation terminal area navigation and precision approach guidance
JP3548577B2 (en) Fail-safe operation differential GPS ground station system
US8909471B1 (en) Voting system and method using doppler aided navigation
JP5704298B2 (en) Ground augmented satellite navigation system and satellite anomaly detection method used in the system
US8742984B2 (en) Integrity method for differential corrections
US20200341153A1 (en) Reducing bias impact on gnss integrity
JPWO2006132003A1 (en) GPS receiver and GPS positioning correction method
CN103097911A (en) Method and device for detecting and excluding multiple satellite failures in a GNSS system
US9638806B2 (en) System and method for detecting ambiguities in satellite signals for GPS tracking of vessels
JP2010163118A (en) Train position detecting system
Felux et al. GBAS landing system–precision approach guidance after ILS
Rodríguez-Pérez et al. Inter-satellite links for satellite autonomous integrity monitoring
JP2017173137A (en) Satellite positioning system, positioning terminal, positioning method and program
JP2007010422A (en) Positioning system
Sabatini et al. A novel GNSS integrity augmentation system for civil and military aircraft
Bijjahalli et al. Masking and multipath analysis for unmanned aerial vehicles in an urban environment
Filip et al. The experimental evaluation of the EGNOS safety-of-life services for railway signalling
Zalewski GNSS integrity concepts for maritime users
RU2386176C2 (en) Aircraft landing system
FR3027410A1 (en) DETECTION OF DISTURBANCE OF A DIFFERENTIAL CORRECTION MESSAGE OF POSITIONING MEASUREMENT OF A SATELLITE GEOLOCATION DEVICE
RU2389042C2 (en) Method of determining protective limit around position of moving body calculated from satellite signals
US20180074186A1 (en) Airborne precision doppler velocity radar
RU2385469C1 (en) Method of landing aircraft using satellite navigation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755840

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016505058

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12016501589

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201606379

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 15755840

Country of ref document: EP

Kind code of ref document: A1