JP5703517B2 - Zinc oxide crystal production method, zinc oxide crystal - Google Patents

Zinc oxide crystal production method, zinc oxide crystal Download PDF

Info

Publication number
JP5703517B2
JP5703517B2 JP2011055522A JP2011055522A JP5703517B2 JP 5703517 B2 JP5703517 B2 JP 5703517B2 JP 2011055522 A JP2011055522 A JP 2011055522A JP 2011055522 A JP2011055522 A JP 2011055522A JP 5703517 B2 JP5703517 B2 JP 5703517B2
Authority
JP
Japan
Prior art keywords
zinc oxide
anionic surfactant
layer
aqueous solution
oxide crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011055522A
Other languages
Japanese (ja)
Other versions
JP2012188336A (en
Inventor
裕史 柴田
裕史 柴田
橋本 和明
和明 橋本
孝之 河合
孝之 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba Institute of Technology
Original Assignee
Chiba Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba Institute of Technology filed Critical Chiba Institute of Technology
Priority to JP2011055522A priority Critical patent/JP5703517B2/en
Publication of JP2012188336A publication Critical patent/JP2012188336A/en
Application granted granted Critical
Publication of JP5703517B2 publication Critical patent/JP5703517B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cosmetics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は酸化亜鉛結晶の生成方法、及びこれにより生成される酸化亜鉛結晶に関する。   The present invention relates to a method for producing zinc oxide crystals and a zinc oxide crystal produced thereby.

酸化亜鉛は、紫外線吸収剤、創傷治療剤、光触媒などの材料として、多岐にわたる分野で用いられている。また、pH値を調整したり、有機物を添加したりすることで様々な形状の酸化亜鉛結晶を生成可能であることが可能である。   Zinc oxide is used in various fields as a material for ultraviolet absorbers, wound healing agents, photocatalysts and the like. In addition, it is possible to generate zinc oxide crystals of various shapes by adjusting the pH value or adding an organic substance.

例えば、特許文献1においては、亜鉛イオンとアミン化合物を含むpH7以上の水溶液に基材を浸漬することによって、基材上に結晶形状が花状の酸化亜鉛結晶を自己組織的に析出させる方法が開示されている。   For example, in Patent Document 1, there is a method in which zinc oxide crystals having a flower shape are self-organized on a substrate by immersing the substrate in an aqueous solution containing zinc ions and an amine compound and having a pH of 7 or higher. It is disclosed.

また、特許文献2においては、亜鉛化合物水溶液とアミン化合物とを混合し、混合水溶液のpHを7以上として沈殿物を析出させ、さらに水溶液を40℃以上に加熱することによって、マイクロスケールの針状形状を有する酸化亜鉛粒子や花びら形状を有する酸化亜鉛集積体などを製造する方法が開示されている。   Moreover, in patent document 2, a zinc compound aqueous solution and an amine compound are mixed, the pH of the mixed aqueous solution is set to 7 or more to precipitate a precipitate, and the aqueous solution is further heated to 40 ° C. or more to obtain a microscale needle-like shape. Methods for producing zinc oxide particles having a shape, zinc oxide aggregates having a petal shape, and the like are disclosed.

特開2008−230877JP2008-230877 特開2008−254991JP2008-254991

しかしながら、従来技術においては、酸化亜鉛結晶の形状に関してマイクロスケールでの制御が主であり、ナノスケールでの制御については報告されていなかった。そこで、本発明者は、マイクロスケールで制御された酸化亜鉛結晶に対して、薬物成分などを保持することが可能なナノスケールの構造を同時に付与することを目的として研究を行った。その結果、アニオン性界面活性剤の存在下においては、マイクロスケールの板状の酸化亜鉛結晶を生成することが可能であり、同時に薬物成分などを保持することが可能なナノスケールの構造を付与することが可能であることがわかった。   However, in the prior art, the control on the microscale is mainly performed on the shape of the zinc oxide crystal, and the control on the nanoscale has not been reported. Therefore, the present inventor conducted research for the purpose of simultaneously imparting a nanoscale structure capable of retaining drug components and the like to zinc oxide crystals controlled on a microscale. As a result, in the presence of an anionic surfactant, it is possible to produce microscale plate-like zinc oxide crystals, and at the same time impart a nanoscale structure capable of retaining drug components and the like. It turns out that it is possible.

本発明は、アニオン性界面活性剤を含む水溶液に亜鉛イオンを加えることでアニオン性界面活性剤層と酸化亜鉛層とからなる多層構造を有する酸化亜鉛結晶を生成する酸化亜鉛結晶の生成方法などを提案する。また、アニオン性界面活性剤を含む水溶液に亜鉛イオンを加えることで板状の酸化亜鉛結晶を生成する酸化亜鉛結晶の生成方法などを提案する。   The present invention relates to a method for producing a zinc oxide crystal, which produces a zinc oxide crystal having a multilayer structure composed of an anionic surfactant layer and a zinc oxide layer by adding zinc ions to an aqueous solution containing an anionic surfactant. suggest. Moreover, the production | generation method of the zinc oxide crystal | crystallization etc. which produce | generate a plate-shaped zinc oxide crystal | crystallization by adding zinc ion to the aqueous solution containing an anionic surfactant are proposed.

本発明の生成方法により生成される酸化亜鉛結晶は、アニオン性界面活性剤と酸化亜鉛層とからなるナノスケールの多層構造を有するため、当該多層構造の内部に肌の保湿成分や創傷治療成分を内包することが可能になる。これにより、酸化亜鉛の効果に加えて内包成分の効果を同時に発揮することが可能になる。また、全体としてマイクロスケールの板状構造となっているため、針状形状や球状形状などの酸化亜鉛結晶に比べて紫外線などの光を吸収する実効面積が大きく、優れたサンスクリーン剤などの材料として用いることが可能になる。   Since the zinc oxide crystal produced by the production method of the present invention has a nanoscale multilayer structure composed of an anionic surfactant and a zinc oxide layer, the skin moisturizing component and wound healing component are contained inside the multilayer structure. It can be included. Thereby, in addition to the effect of zinc oxide, the effect of the inclusion component can be exhibited simultaneously. In addition, since it has a microscale plate-like structure as a whole, it has a large effective area for absorbing light such as ultraviolet rays compared to zinc oxide crystals such as needles and spheres, and is an excellent material such as a sunscreen agent. Can be used.

酸化亜鉛結晶の生成・抽出方法の処理の流れの一例を示す図The figure which shows an example of the processing flow of the production / extraction method of the zinc oxide crystal 多層構造が形成される様子を示した図Diagram showing how a multilayer structure is formed 実施例1の酸化亜鉛結晶の生成方法の流れを示す図The figure which shows the flow of the production | generation method of the zinc oxide crystal | crystallization of Example 1. 実施例1の酸化亜鉛結晶のSEM像SEM image of the zinc oxide crystal of Example 1 実施例1の酸化亜鉛結晶の低角XRDパターンを示す図The figure which shows the low angle XRD pattern of the zinc oxide crystal of Example 1. 実施例1の酸化亜鉛結晶のTEM像TEM image of the zinc oxide crystal of Example 1 実施例2の酸化亜鉛結晶のSEM像SEM image of the zinc oxide crystal of Example 2

以下、本件発明の実施の形態について、添付図面を用いて説明する。なお、本件発明は、これら実施形態に何ら限定されるべきものではなく、その要旨を逸脱しない範囲において、種々なる態様で実施し得る。
<実施形態:概要>
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, this invention should not be limited to these embodiments at all, and can be implemented in various modes without departing from the gist thereof.
<Embodiment: Overview>

本発明の生成方法により生成される酸化亜鉛結晶は、全体としてマイクロスケールの板状構造となっており、同時にアニオン性界面活性剤と酸化亜鉛層とからなるナノスケールの多層構造を備える。   The zinc oxide crystal produced by the production method of the present invention has a microscale plate-like structure as a whole, and at the same time has a nanoscale multilayer structure comprising an anionic surfactant and a zinc oxide layer.

<酸化亜鉛結晶の生成・抽出>
本発明の酸化亜鉛結晶は、アニオン性界面活性剤を含んだ水溶液に亜鉛イオンを加え、撹拌処理を行うといった簡便な手法によって、生成することが可能である。
<Formation and extraction of zinc oxide crystals>
The zinc oxide crystal of the present invention can be produced by a simple method of adding zinc ions to an aqueous solution containing an anionic surfactant and stirring the solution.

図1は、酸化亜鉛結晶の生成・抽出方法の処理の流れの一例を示す図である。まずステップS0101において、アニオン性界面活性剤をイオン交換水に溶解させ、水溶液がアルカリ性となるようにpH調整剤を添加する。次にステップS0102において、ステップS0101にて得られた水溶液に対して亜鉛イオンを加え、撹拌する。次にステップS0103において、ステップS0102にて得られた撹拌後の混合溶液をろ過・洗浄して、固液分離する。次にステップS0104において、ステップS0103にて得られた粒子を乾燥させる。以上の処理を経ることによって、酸化亜鉛結晶の生成と抽出を行うことが可能になる。   FIG. 1 is a diagram illustrating an example of a processing flow of a method for generating and extracting zinc oxide crystals. First, in step S0101, an anionic surfactant is dissolved in ion-exchanged water, and a pH adjuster is added so that the aqueous solution becomes alkaline. Next, in step S0102, zinc ions are added to the aqueous solution obtained in step S0101, and stirred. Next, in step S0103, the mixed solution after stirring obtained in step S0102 is filtered and washed to perform solid-liquid separation. Next, in step S0104, the particles obtained in step S0103 are dried. Through the above treatment, it is possible to generate and extract zinc oxide crystals.

イオン交換水に溶解させるアニオン性界面活性剤としては、長鎖アルキル鎖を有し親水部にスルホ基を有するアニオン性界面活性剤や、長鎖アルキル鎖を有し親水部にカルボキシル基を有するアニオン性界面活性剤などを用いる。具体的には、炭素鎖長がC8、C10、C12、C14、C16のアニオン性界面活性剤を用いることが好ましい。炭素鎖長がC12のアニオン性界面活性剤としてはドデシル硫酸ナトリウム(SDS)が挙げられる。   Examples of the anionic surfactant to be dissolved in ion-exchanged water include an anionic surfactant having a long alkyl chain and a sulfo group in the hydrophilic portion, and an anion having a long alkyl chain and a carboxyl group in the hydrophilic portion. A surfactant is used. Specifically, it is preferable to use an anionic surfactant having a carbon chain length of C8, C10, C12, C14, or C16. An example of an anionic surfactant having a carbon chain length of C12 is sodium dodecyl sulfate (SDS).

なお、アニオン性界面活性剤の他にカチオン性界面活性剤をイオン交換水に溶解させてもよい。この場合、多層構造を形成するためにはアニオン性界面活性剤はカチオン性界面活性剤と比べて相対的に多くする必要があるが、割合としては9:1とすることも可能であるし、6:4とすることも可能である。カチオン性界面活性剤を加えることによって、酸化亜鉛結晶の角が丸くなり、発がん性を抑制することが可能になる。   In addition to the anionic surfactant, a cationic surfactant may be dissolved in the ion exchange water. In this case, in order to form a multilayer structure, the anionic surfactant needs to be relatively larger than the cationic surfactant, but the ratio can be 9: 1. 6: 4 is also possible. By adding a cationic surfactant, the corners of the zinc oxide crystal are rounded, and carcinogenicity can be suppressed.

カチオン性界面活性剤としては、長鎖アルキル鎖を有する四級アンモニウム塩型カチオン性界面活性剤などを用いる。例えばセチルトリメチルアンモニウムブロミド(CTAB)を用いることが可能である。   As the cationic surfactant, a quaternary ammonium salt type cationic surfactant having a long alkyl chain is used. For example, cetyltrimethylammonium bromide (CTAB) can be used.

水溶液はアルカリ性であれば足りるが、酸化亜鉛結晶の形状を板状に近い形状とするために、pHは10〜14の範囲とすることが好ましい。なお、以下の実施例1、2で示すように、pHを12.0〜12.5とした場合は、酸化亜鉛結晶は六角板状の構造となり、pHを13.0〜13.8とした場合は、花弁状構造となる。pH調整剤としては、種々のものが考えられるが、例えばアンモニア水溶液を用いることが可能である。   The aqueous solution need only be alkaline, but the pH is preferably in the range of 10 to 14 in order to make the shape of the zinc oxide crystals close to a plate shape. As shown in Examples 1 and 2 below, when the pH was 12.0 to 12.5, the zinc oxide crystals had a hexagonal plate structure, and the pH was 13.0 to 13.8. In the case, it becomes a petal-like structure. Various pH adjusting agents are conceivable. For example, an aqueous ammonia solution can be used.

撹拌後の混合溶液をろ過・洗浄する方法としては、濾過器を用いたり、遠心分離を行った後にイオン交換水で外溶液の洗浄を行ったりすることが考えられる。また、合わせて超音波照射を行うことも可能である。   As a method for filtering and washing the mixed solution after stirring, it is conceivable to use a filter or to wash the outer solution with ion-exchanged water after centrifugation. In addition, ultrasonic irradiation can be performed together.

得られた結晶を乾燥させる際は、温度は100℃〜150℃程度で数分〜数時間程度行うことが好ましい。なお、結晶性を高めるために、得られた酸化亜鉛結晶を粉砕して、焼成することも可能である。この場合、温度は200℃〜800℃程度とし、数分〜数時間程度行うことが好ましい。   When drying the obtained crystal | crystallization, it is preferable to carry out temperature for about several minutes-about several hours at about 100 to 150 degreeC. In addition, in order to improve crystallinity, the obtained zinc oxide crystal can be pulverized and fired. In this case, the temperature is preferably about 200 ° C. to 800 ° C., and is preferably performed for about several minutes to several hours.

図2は、アニオン性界面活性剤を含む水溶液に亜鉛イオンを加えることでアニオン性界面活性剤層と酸化亜鉛層とからなる多層構造が形成される様子を示した図である。この図に示すように、アニオン性界面活性剤の疎水基部は互いに向き合ってつながり、疎水性のアニオン性界面活性剤層(アニオン性界面活性剤の分子集合体)を形成している。また、亜鉛イオン(Zn2+)は静電的相互作用によってアニオン性界面活性剤の親水基部周辺に酸化亜鉛層を形成している。アニオン性界面活性剤層と酸化亜鉛層は互いに重なり合うことによって多層構造を形成する。多層構造は数ナノメートル程度の周期性を有する構造(ラメラ構造)になっている。 FIG. 2 is a diagram showing a state in which a multilayer structure composed of an anionic surfactant layer and a zinc oxide layer is formed by adding zinc ions to an aqueous solution containing an anionic surfactant. As shown in this figure, the hydrophobic groups of the anionic surfactant are connected to each other to form a hydrophobic anionic surfactant layer (molecular assembly of anionic surfactant). Zinc ions (Zn 2+ ) form a zinc oxide layer around the hydrophilic base of the anionic surfactant by electrostatic interaction. The anionic surfactant layer and the zinc oxide layer overlap each other to form a multilayer structure. The multilayer structure is a structure having a periodicity of about several nanometers (lamella structure).

また、上記疎水性のアニオン性界面活性剤層は、略規則的なメソ構造を有する。当該アニオン性界面活性剤層には、ヒアルロン酸などの肌の保湿成分やアラントインなどの創傷治療成分を内包させることが可能である。よって、これらの成分を有する酸化亜鉛結晶を生成する際には、予め水溶液中に肌の保湿成分や創傷治療成分を加えておく。   The hydrophobic anionic surfactant layer has a substantially regular mesostructure. The anionic surfactant layer can contain a skin moisturizing component such as hyaluronic acid and a wound treatment component such as allantoin. Therefore, when producing zinc oxide crystals having these components, a skin moisturizing component and a wound healing component are added in advance to the aqueous solution.

<効果>
本発明の生成方法により生成される酸化亜鉛結晶は、マイクロスケールの板状の構造を有するため、球状粒子などに比べて紫外線などの光を吸収する実効面積が大きくなり、優れたサンスクリーン剤などの材料として用いることが可能になる。同時に、アニオン性界面活性剤と酸化亜鉛層とからなるナノスケールの多層構造に肌の保湿成分や創傷治療成分を内包させることができるため、皮膚の保湿性を一定に保つことが可能な新規なサンスクリーン剤や切り傷などの回復を促進する新規な創傷治療剤などの材料として用いることが可能になる。
<Effect>
Since the zinc oxide crystal produced by the production method of the present invention has a microscale plate-like structure, the effective area for absorbing light such as ultraviolet rays is larger than that of spherical particles and the like, and an excellent sunscreen agent, etc. It becomes possible to use it as a material. At the same time, a nano-scale multilayer structure consisting of an anionic surfactant and a zinc oxide layer can contain skin moisturizing ingredients and wound healing ingredients, making it possible to keep skin moisturizing constant. It can be used as a material such as a novel wound healing agent that promotes recovery of sunscreen agents and cuts.

<酸化亜鉛結晶の生成方法>
本実施例の酸化亜鉛結晶を生成するために、アニオン性界面活性剤としてドデシル硫酸ナトリウム(SDS)を用い、酸化亜鉛の出発原料として硫酸亜鉛七水和物(ZnSO・7HO)を用い、pH調整剤としてアンモニア水(NH(aq))を用いた。
<Method of forming zinc oxide crystals>
In order to produce the zinc oxide crystals of this example, sodium dodecyl sulfate (SDS) was used as the anionic surfactant, and zinc sulfate heptahydrate (ZnSO 4 .7H 2 O) was used as the starting material for zinc oxide. Ammonia water (NH 3 (aq)) was used as a pH adjuster.

図3は、本実施例の酸化亜鉛結晶の生成方法の流れを示す。まずステップS0301において、所定量のドデシル硫酸ナトリウムをイオン交換水に溶解させ、0mM(ドデシル硫酸ナトリウム不添加)、100mM、300mM、500mMのドデシル硫酸ナトリウム水溶液45mlをそれぞれ生成した。次にステップS0302において、ステップS0301にて得られた各硫酸ナトリウム水溶液にアンモニア水5mlを加えて数分間撹拌し、pH12.0〜12.5に調整した。次にステップS0303において、ステップS0302にて得られた各溶液に2Mの硫酸亜鉛七水和物を10ml加えて24時間撹拌した。次にステップS0304において、ステップS0303にて得られた各溶液に対して超音波照射を10分間行った後、遠心分離を行ってイオン交換水で外溶液の洗浄を行った。次にステップS0305において、ステップS0304にて得られた粒子を120℃で12時間乾燥処理を行った。   FIG. 3 shows the flow of the method for producing zinc oxide crystals of this example. First, in step S0301, a predetermined amount of sodium dodecyl sulfate was dissolved in ion-exchanged water to produce 45 ml of 0 mM (no sodium dodecyl sulfate added), 100 mM, 300 mM, and 500 mM sodium dodecyl sulfate aqueous solutions. Next, in step S0302, 5 ml of aqueous ammonia was added to each sodium sulfate aqueous solution obtained in step S0301, and the mixture was stirred for several minutes to adjust the pH to 12.0 to 12.5. Next, in Step S0303, 10 ml of 2M zinc sulfate heptahydrate was added to each solution obtained in Step S0302, and stirred for 24 hours. Next, in step S0304, each solution obtained in step S0303 was subjected to ultrasonic irradiation for 10 minutes, and then centrifuged to wash the outer solution with ion-exchanged water. Next, in step S0305, the particles obtained in step S0304 were dried at 120 ° C. for 12 hours.

<解析方法>
上記生成方法により得られた試料について構造特性評価を行った。具体的には、得られた試料についてX線解析測定を行い、走査型電子顕微鏡(SEM)及び透過型電子顕微鏡(TEM)により観察した。
<Analysis method>
The structural characteristics of the sample obtained by the above generation method were evaluated. Specifically, the obtained sample was subjected to X-ray analysis measurement and observed with a scanning electron microscope (SEM) and a transmission electron microscope (TEM).

<結果>
図4は、走査型電子顕微鏡(SEM)により得られた酸化亜鉛結晶の像である(左図:0mMドデシル硫酸ナトリウムを用いた場合、右図:500mMドデシル硫酸ナトリウムを用いた場合)。この像が示すように、上記ステップS0301において500mMのドデシル硫酸ナトリウムを生成した場合は、直径約2〜7μm、厚さ400〜500nmの六角板状結晶が確認された。また、ステップS0301において、ドデシル硫酸ナトリウムを添加しなかった場合は、形成される酸化亜鉛結晶の実効面積(板面積)は小さくなった。
<Result>
FIG. 4 is an image of a zinc oxide crystal obtained by a scanning electron microscope (SEM) (left figure: when 0 mM sodium dodecyl sulfate is used, right figure: when 500 mM sodium dodecyl sulfate is used). As shown in this image, when 500 mM sodium dodecyl sulfate was produced in step S0301, hexagonal plate crystals having a diameter of about 2 to 7 μm and a thickness of 400 to 500 nm were confirmed. Moreover, in step S0301, when sodium dodecyl sulfate was not added, the effective area (plate area) of the zinc oxide crystal formed became small.

図5は、X線解析測定により得られた酸化亜鉛結晶の低角XRDパターンを示す図である(横軸:2θ(CuKα)、縦軸:X線強度)。この図に示すように、ステップS0301において、100mM、300mM、500mMのドデシル硫酸ナトリウム水溶液を用いた場合は、2θ=2.9°、5.8°、8.6°近傍に、ラメラ構造の(100)、(200)、(300)面に帰属する回折ピークが検出された。一方、ドデシル硫酸ナトリウムを加えなかった場合は、これらの回折ピークは検出されなかった。   FIG. 5 is a diagram showing a low-angle XRD pattern of a zinc oxide crystal obtained by X-ray analysis measurement (horizontal axis: 2θ (CuKα), vertical axis: X-ray intensity). As shown in this figure, in the case where 100 mM, 300 mM, and 500 mM sodium dodecyl sulfate aqueous solution was used in step S0301, the lamellar structure (2θ = 2.9 °, 5.8 °, 8.6 °) Diffraction peaks attributed to the (100), (200), and (300) planes were detected. On the other hand, when no sodium dodecyl sulfate was added, these diffraction peaks were not detected.

また、図6は、透過型電子顕微鏡(TEM)により得られた六角板状結晶の像である(左図中央の黒い部分が六角板状粒子)。この像が示すように、六角板状粒子の外縁部分に層状の構造が形成されており、当該多層構造の周期はナノスケールとなっている。   FIG. 6 is an image of a hexagonal plate crystal obtained by a transmission electron microscope (TEM) (the black part in the center of the left diagram is a hexagonal plate particle). As this image shows, a layered structure is formed at the outer edge portion of the hexagonal plate-like particles, and the period of the multilayer structure is nanoscale.

<考察>
以上の結果から、上記生成方法により生成される酸化亜鉛結晶は、全体としてマイクロスケールの六角板状のモルフォロジーを有し、一部にナノスケールのアニオン性界面活性剤層と酸化亜鉛層とからなる多層構造(ラメラ構造)を有していることがわかる。
<Discussion>
From the above results, the zinc oxide crystal produced by the production method has a microscale hexagonal plate-like morphology as a whole, and is partially composed of a nanoscale anionic surfactant layer and a zinc oxide layer. It turns out that it has a multilayer structure (lamella structure).

上記酸化亜鉛結晶は六角板状のモルフォロジーを有しているため、針状形状の結晶や球状の結晶と比較して、紫外線などの光を吸収する実効面積が大きい。また、ナノスケールの多層構造を有しているため、ヒアルロン酸などの皮膚の保湿性を保つ成分やアラントインなどの創傷治療成分を内包させることが可能になる。   Since the zinc oxide crystal has a hexagonal plate-like morphology, the effective area for absorbing light such as ultraviolet rays is larger than that of a needle-like crystal or a spherical crystal. Moreover, since it has a nanoscale multilayer structure, it becomes possible to encapsulate components for maintaining the moisture of the skin such as hyaluronic acid and wound treatment components such as allantoin.

よって、紫外線吸収効率が高く、かつ皮膚の保湿性を一定に保つことが可能な新規なサンスクリーン剤や、切り傷などの回復を促進する新規な創傷治療剤などの材料として用いることができる。   Therefore, it can be used as a material such as a novel sunscreen agent that has high ultraviolet absorption efficiency and can keep the moisture retention of the skin constant, and a novel wound treatment agent that promotes recovery of cuts and the like.

<酸化亜鉛結晶の生成方法・解析方法>
基本的に実施例1の酸化亜鉛結晶の生成方法の流れと同じであるが、ステップS0302において混合溶液をpH13.0〜13.8に調整して酸化亜鉛結晶を生成・抽出した。また、得られた酸化亜鉛結晶を走査型電子顕微鏡により観察した。
<Methods for generating and analyzing zinc oxide crystals>
Basically, the flow of the method for producing zinc oxide crystals in Example 1 was the same, but in step S0302, the mixed solution was adjusted to pH 13.0 to 13.8 to produce and extract zinc oxide crystals. The obtained zinc oxide crystals were observed with a scanning electron microscope.

<結果>
図7は、走査型電子顕微鏡(SEM)により得られた像である。この図が示すように、上記ステップS0301において500mMのドデシル硫酸ナトリウムを生成し、ステップS0302において混合溶液をpH13.0〜13.8に調整した場合は、直径約2〜7μm、厚さ400〜500nmの花弁状構造の酸化亜鉛結晶が確認された。なお、ステップS0302において、ドデシル硫酸ナトリウムを添加しなかった場合(0mMのドデシル硫酸ナトリウム水溶液)は、酸化亜鉛結晶は形成されなかった。
<Result>
FIG. 7 is an image obtained by a scanning electron microscope (SEM). As shown in this figure, when 500 mM sodium dodecyl sulfate was produced in step S0301, and the mixed solution was adjusted to pH 13.0 to 13.8 in step S0302, the diameter was about 2 to 7 μm and the thickness was 400 to 500 nm. The petal-like structure of zinc oxide crystals was confirmed. In Step S0302, when no sodium dodecyl sulfate was added (0 mM sodium dodecyl sulfate aqueous solution), zinc oxide crystals were not formed.

<考察>
上記生成方法により生成される花弁状構造の酸化亜鉛結晶は、実施例1で得られた六角板状粒子と同様に板状構造になっている。なお、本実施例において示していないが、当該花弁状構造の酸化亜鉛結晶に関しても実施例1と同様にアニオン性界面活性剤層と酸化亜鉛層とからなる多層構造が存在する。
<Discussion>
The petal-like zinc oxide crystals produced by the production method have a plate-like structure similar to the hexagonal plate-like particles obtained in Example 1. Although not shown in this example, the petal-like zinc oxide crystal also has a multilayer structure composed of an anionic surfactant layer and a zinc oxide layer as in Example 1.

よって、本実施例にて生成される花弁状構造の酸化亜鉛結晶は、実施例1の六角板状の酸化亜鉛結晶と同様に、針状形状の結晶や球状の結晶と比較して紫外線などの光を吸収する実効面積が大きい。また、ナノスケールの多層構造を有しているため、ヒアルロン酸などの皮膚の保湿性を保つ成分やアラントインなどの創傷治療成分を内包させることが可能になる。   Therefore, the petal-like structure zinc oxide crystal produced in this example is similar to the hexagonal plate-like zinc oxide crystal of Example 1 in comparison with needle-like crystals and spherical crystals. Large effective area for absorbing light. Moreover, since it has a nanoscale multilayer structure, it becomes possible to encapsulate components for maintaining the moisture of the skin such as hyaluronic acid and wound treatment components such as allantoin.

Claims (8)

アニオン性界面活性剤を含む水溶液に亜鉛イオンを加えることでアニオン性界面活性剤層と酸化亜鉛層とからなる多層構造を有する酸化亜鉛結晶を生成する酸化亜鉛結晶の生成方法であって、
前記水溶液中に肌の保湿成分又は/及び創傷治療成分をさらに加えることで前記アニオン性界面活性剤層と酸化亜鉛層とからなる多層構造のアニオン性界面活性剤層に肌の保湿成分又は/及び創傷治療成分を含ませる酸化亜鉛結晶の生成方法
A method for producing a zinc oxide crystal, wherein zinc oxide is added to an aqueous solution containing an anionic surfactant to produce a zinc oxide crystal having a multilayer structure composed of an anionic surfactant layer and a zinc oxide layer ,
By further adding a skin moisturizing component or / and a wound healing component to the aqueous solution, the skin moisturizing component or / and / or the multilayered anionic surfactant layer comprising the anionic surfactant layer and the zinc oxide layer. A method for producing zinc oxide crystals containing a wound healing component .
アニオン性界面活性剤を含む水溶液に亜鉛イオンを加えることで板状の酸化亜鉛結晶を生成する酸化亜鉛結晶の生成方法であって、
前記水溶液中に肌の保湿成分又は/及び創傷治療成分をさらに加えることで前記アニオン性界面活性剤層と酸化亜鉛層とからなる多層構造のアニオン性界面活性剤層に肌の保湿成分又は/及び創傷治療成分を含ませる酸化亜鉛結晶の生成方法
A method for producing zinc oxide crystals, wherein zinc ions are added to an aqueous solution containing an anionic surfactant to produce plate-like zinc oxide crystals ,
By further adding a skin moisturizing component or / and a wound healing component to the aqueous solution, the skin moisturizing component or / and / or the multilayered anionic surfactant layer comprising the anionic surfactant layer and the zinc oxide layer. A method for producing zinc oxide crystals containing a wound healing component .
相対的に多いアニオン性界面活性剤とこれに比べて相対的に少ないカチオン性界面活性剤とを含む水溶液に亜鉛イオンを加えることで板状の酸化亜鉛結晶を生成する酸化亜鉛結晶の生成方法であって、
前記水溶液中に肌の保湿成分又は/及び創傷治療成分をさらに加えることで前記アニオン性界面活性剤層と酸化亜鉛層とからなる多層構造のアニオン性界面活性剤層に肌の保湿成分又は/及び創傷治療成分を含ませる酸化亜鉛結晶の生成方法
A zinc oxide crystal production method in which zinc ions are added to an aqueous solution containing a relatively large amount of an anionic surfactant and a relatively small amount of a cationic surfactant. There,
By further adding a skin moisturizing component or / and a wound healing component to the aqueous solution, the skin moisturizing component or / and / or the multilayered anionic surfactant layer comprising the anionic surfactant layer and the zinc oxide layer. A method for producing zinc oxide crystals containing a wound healing component .
前記水溶液のpHは、10〜14の範囲である請求項1から3のいずれか一に記載の酸化亜鉛結晶の生成方法。 The method for producing zinc oxide crystals according to any one of claims 1 to 3, wherein the pH of the aqueous solution is in the range of 10 to 14. 前記アニオン性界面活性剤は、長鎖アルキル鎖を有し親水部にスルホ基を有するアニオン性界面活性剤である請求項1から4のいずれか一に記載の酸化亜鉛結晶の生成方法。 The method for producing a zinc oxide crystal according to any one of claims 1 to 4 , wherein the anionic surfactant is an anionic surfactant having a long alkyl chain and a sulfo group in a hydrophilic portion. 前記長鎖アルキル鎖を有し親水部にスルホ基を有するアニオン性界面活性剤は、ドデシル硫酸ナトリウムである請求項5に記載の酸化亜鉛結晶の生成方法。 The method for producing a zinc oxide crystal according to claim 5 , wherein the anionic surfactant having a long alkyl chain and having a sulfo group in a hydrophilic part is sodium dodecyl sulfate. 前記カチオン性界面活性剤は、長鎖アルキル鎖を有する四級アンモニウム塩型カチオン性界面活性剤である請求項3又は請求項3に従属する請求項4から6のいずれか一に記載の酸化亜鉛結晶の生成方法。 7. The zinc oxide according to claim 3, which is dependent on claim 3 or claim 3, wherein the cationic surfactant is a quaternary ammonium salt type cationic surfactant having a long alkyl chain. Crystal production method. 請求項1から7のいずれか一に記載の酸化亜鉛結晶の生成方法により生成された酸化亜鉛結晶。 The zinc oxide crystal produced | generated by the production | generation method of the zinc oxide crystal as described in any one of Claim 1 to 7 .
JP2011055522A 2011-03-14 2011-03-14 Zinc oxide crystal production method, zinc oxide crystal Expired - Fee Related JP5703517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011055522A JP5703517B2 (en) 2011-03-14 2011-03-14 Zinc oxide crystal production method, zinc oxide crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011055522A JP5703517B2 (en) 2011-03-14 2011-03-14 Zinc oxide crystal production method, zinc oxide crystal

Publications (2)

Publication Number Publication Date
JP2012188336A JP2012188336A (en) 2012-10-04
JP5703517B2 true JP5703517B2 (en) 2015-04-22

Family

ID=47081912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011055522A Expired - Fee Related JP5703517B2 (en) 2011-03-14 2011-03-14 Zinc oxide crystal production method, zinc oxide crystal

Country Status (1)

Country Link
JP (1) JP5703517B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245139A (en) * 2012-05-28 2013-12-09 Chiba Inst Of Technology Method for producing zinc oxide crystal
JP2017124973A (en) * 2017-03-29 2017-07-20 学校法人千葉工業大学 Zinc oxide crystal production method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676214B2 (en) * 1991-03-11 1994-09-28 株式会社林金属工業所 Method for producing ultrafine zinc flower
JPH0648742A (en) * 1992-07-27 1994-02-22 Nitto Chem Ind Co Ltd Interlaminar compound
JP4051433B2 (en) * 2002-09-04 2008-02-27 独立行政法人産業技術総合研究所 Zinc oxide polycrystalline tube
JP4106432B2 (en) * 2003-03-19 2008-06-25 独立行政法人産業技術総合研究所 Organic-inorganic nanocomposite and method for producing the same
JP2005325063A (en) * 2004-05-14 2005-11-24 Asahi Kasei Chemicals Corp Cosmetic
JP5008433B2 (en) * 2007-03-19 2012-08-22 三菱マテリアル株式会社 Method for producing zinc oxide crystals
JP2008254991A (en) * 2007-04-09 2008-10-23 Ishihara Sangyo Kaisha Ltd Zinc oxide, method for producing the same, and cosmetic using the same
JP2008254993A (en) * 2007-04-09 2008-10-23 Ishihara Sangyo Kaisha Ltd Zinc oxide, method for producing the same, and cosmetic using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245139A (en) * 2012-05-28 2013-12-09 Chiba Inst Of Technology Method for producing zinc oxide crystal
JP2017124973A (en) * 2017-03-29 2017-07-20 学校法人千葉工業大学 Zinc oxide crystal production method

Also Published As

Publication number Publication date
JP2012188336A (en) 2012-10-04

Similar Documents

Publication Publication Date Title
Zhao et al. Sol–gel assisted hydrothermal synthesis of ZnO microstructures: morphology control and photocatalytic activity
Mao et al. One-pot synthesis of BiOCl half-shells using microemulsion droplets as templates with highly photocatalytic performance for the degradation of ciprofloxacin
Li et al. A novel approach to hierarchical sphere-like ZnAl-layered double hydroxides and their enhanced adsorption capability
Huang et al. Flower-like and hollow sphere-like WO3 porous nanostructures: Selective synthesis and their photocatalysis property
CN105032342B (en) A kind of effective layered bi-metal oxide adsorbent preparation method for removing low phosphorus acid group
AU2012340368B2 (en) Mesoporous titanium dioxide nanoparticles and process for their production
Oppong et al. Synthesis and characterisation of neodymium doped-zinc oxide–graphene oxide nanocomposite as a highly efficient photocatalyst for enhanced degradation of indigo carmine in water under simulated solar light
Zou et al. A new method for synthesis of ZnO flower-like nanostructures and their photocatalytic performance
Shen et al. Hierarchical PbMoO 4 microspheres: hydrothermal synthesis, formation mechanism and photocatalytic properties
JP2013245139A (en) Method for producing zinc oxide crystal
Zhao et al. Synthesis of carbon-doped nanosheets m-BiVO 4 with three-dimensional (3D) hierarchical structure by one-step hydrothermal method and evaluation of their high visible-light photocatalytic property
JP5703517B2 (en) Zinc oxide crystal production method, zinc oxide crystal
JP6362281B2 (en) Method for producing zinc oxide crystals
CN104591287B (en) A kind of nanometer Zinc Tungstate raw powder&#39;s production technology of anti-microbial property better than wolframic acid silver
Qiu et al. Synthesis of peroxo-titanium decorated H-titanate-nanotube-based hierarchical microspheres with enhanced visible-light photocatalytic activity in degradation of Rhodamine B
Zhao et al. Synthesis of parallel squared nanosheet-assembled Bi2WO6 microstructures under alkalescent hydrothermal treatment
Fu et al. A general synthesis strategy for hierarchical porous metal oxide hollow spheres
Yang et al. Preparation of micro/nanostructure TiO2 spheres by controlling pollen as hard template and soft template
Lee et al. Preparation of dumbbell-like Er/ZnO microrods with efficient energy upconversion for the catalytic degradation of tartaric acid in water
Wang et al. Synthesis of hierarchical self-assembled CuO and their structure-enhanced photocatalytic performance
Guo et al. Fabrication of BiVO4: Effect of structure and morphology on photocatalytic activity and its methylene blue decomposition mechanism
Gorokhovsky et al. Potassium polytitanates intercalated with nickel ions and their thermal transformations
Lan et al. Fabrication of chain-like TiO2 hollow microspheres with enhanced photocatalytic activity
JP2006069877A (en) Mesoporous titania
Zhang et al. Synthesis of Fibrous Sm 3+-Doped Titanium Dioxide Using Collagen Fiber As a Template and Its Photocatalytic Properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150205

R150 Certificate of patent or registration of utility model

Ref document number: 5703517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees