JP5008433B2 - Method for producing zinc oxide crystals - Google Patents

Method for producing zinc oxide crystals Download PDF

Info

Publication number
JP5008433B2
JP5008433B2 JP2007070558A JP2007070558A JP5008433B2 JP 5008433 B2 JP5008433 B2 JP 5008433B2 JP 2007070558 A JP2007070558 A JP 2007070558A JP 2007070558 A JP2007070558 A JP 2007070558A JP 5008433 B2 JP5008433 B2 JP 5008433B2
Authority
JP
Japan
Prior art keywords
aqueous solution
zinc oxide
crystal
petal
soluble polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007070558A
Other languages
Japanese (ja)
Other versions
JP2008230877A (en
Inventor
浩代 瀬川
礼子 泉
年治 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Tokyo Institute of Technology NUC
Original Assignee
Mitsubishi Materials Corp
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Tokyo Institute of Technology NUC filed Critical Mitsubishi Materials Corp
Priority to JP2007070558A priority Critical patent/JP5008433B2/en
Publication of JP2008230877A publication Critical patent/JP2008230877A/en
Application granted granted Critical
Publication of JP5008433B2 publication Critical patent/JP5008433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Catalysts (AREA)

Description

本発明は、発光体や色素増感型太陽電池、光触媒などへの用途に利用、応用が期待される、酸化亜鉛結晶の製造方法に関するものである。 The present invention relates to a method for producing a zinc oxide crystal, which is expected to be used and applied in applications such as light emitters, dye-sensitized solar cells, and photocatalysts.

ここ数年活発に開発が進められている酸化亜鉛の成膜方法として、スパッタリング法、分子線エピタキシー法、有機金属気相成長法、イオンプレーティング法、反応性プラズマ蒸着法などの気相法があるが、どれも特殊で非常に高価な装置が必要であった。またその薄膜作製には長時間を要する等の点でコストや製作効率の観点から課題を有している方法が多かった。   Vapor deposition methods such as sputtering, molecular beam epitaxy, metal organic vapor phase epitaxy, ion plating, and reactive plasma deposition have been actively developed in recent years. All of them required special and very expensive equipment. In addition, many methods have problems from the viewpoint of cost and production efficiency in that the thin film preparation takes a long time.

そのため、気相法に比べて、製造コストが低く、環境負荷のかかりにくい液相法による研究が進められている。   For this reason, research is being carried out on the liquid phase method, which is less expensive to produce and less burdensome on the environment than the gas phase method.

例えば、電解液中に基板を保持する工程、及び電着により該基板上に酸化亜鉛を形成する工程を含み、かつ該電解液には亜鉛イオンと少なくとも1種類以上の添加剤が含まれていることを特徴とする酸化亜鉛針状構造体の製造方法が開示されている(例えば、特許文献1参照。)。この特許文献1の方法に使用される添加剤として、有機溶媒、ハロゲン化物、モノマー、モノマーの重合体、或いは界面活性剤が挙げられている。   For example, the method includes a step of holding a substrate in an electrolytic solution and a step of forming zinc oxide on the substrate by electrodeposition, and the electrolytic solution includes zinc ions and at least one or more additives. A method for producing a zinc oxide needle-like structure characterized by this is disclosed (for example, see Patent Document 1). Examples of the additive used in the method of Patent Document 1 include organic solvents, halides, monomers, monomer polymers, and surfactants.

また、一定方位への規則的な結晶配向構造を有する金属含有材料を含む結晶面を有する基板を金属酸化物が析出可能な反応溶液中に浸漬させて該金属含有材料を含む結晶面に金属酸化物結晶を析出させることを特徴とする金属酸化物構造体の製造方法が開示されている(例えば、特許文献2参照。)。この特許文献2では、針状及び棒状のいずれかの形状を有する金属酸化物構造体及び金属酸化物粒子を効率良く低コストで製造することができると記載されている。
特開2002−356400号公報(特許請求の範囲[請求項1]及び[請求項2]) 特開2006−96591号公報(特許請求の範囲[請求項1]、明細書[0007])
In addition, a substrate having a crystal plane containing a metal-containing material having a regular crystal orientation structure in a fixed orientation is immersed in a reaction solution capable of depositing a metal oxide to oxidize the crystal plane containing the metal-containing material. A manufacturing method of a metal oxide structure characterized by depositing a physical crystal is disclosed (for example, see Patent Document 2). This Patent Document 2 describes that a metal oxide structure and metal oxide particles having either a needle shape or a rod shape can be produced efficiently and at low cost.
JP 2002-356400 A (Claims [Claim 1] and [Claim 2]) JP 2006-96591 A (Claims [Claim 1], Specification [0007])

しかし、上記特許文献1に示される方法では、特別な電解等の設備が必要であった。また、上記特許文献2に示される方法では、基板として高配向結晶膜を有する必要があるため、使用する基板に制限があるか、又は、基板上にシード層を形成する必要があり生産性が低い問題を有していた。   However, the method disclosed in Patent Document 1 requires special equipment such as electrolysis. In addition, in the method disclosed in Patent Document 2, since it is necessary to have a highly oriented crystal film as a substrate, there is a limitation on the substrate to be used, or it is necessary to form a seed layer on the substrate, and productivity is increased. Had low problems.

一方、酸化亜鉛を色素増感型太陽電池や光触媒へ応用する際には、表面積が大きいことが求められるが、上記特許文献1や上記特許文献2で得られているのは、針状酸化亜鉛膜であり、これまでに溶液内析出法にて表面積が十分に大きい酸化亜鉛が得られた例はなかった。   On the other hand, when zinc oxide is applied to a dye-sensitized solar cell or a photocatalyst, it is required to have a large surface area. There has been no example in which zinc oxide having a sufficiently large surface area was obtained by the in-solution precipitation method.

本発明の目的は、表面積が大きな酸化亜鉛結晶の製造方法を提供することにある。
本発明の目的は、焼成が不要で、低温で簡便に製造し得る酸化亜鉛結晶の製造方法を提供することにある。
An object of the present invention is to provide a method for producing a zinc oxide crystal having a large surface area.
The objective of this invention is providing the manufacturing method of the zinc oxide crystal | crystallization which does not require baking and can be manufactured simply at low temperature.

請求項1に係る発明は、亜鉛イオン、アミン化合物及び添加剤として水溶性高分子を少なくとも含みかつpHが7以上に調整された水溶液を50℃〜90℃に調整し、上記温度調整した水溶液に基材を浸漬し、浸漬した状態で所定の時間静置することによって、基材上に結晶形状が複数枚の花びら状部とこれらの花びら状部で囲まれた中心部により構成された花状の酸化亜鉛結晶を自己組織的に析出させることを特徴とする酸化亜鉛結晶の製造方法である。
請求項1に係る発明では、亜鉛イオン及びアミン化合物を少なくとも含む水溶液に基材を浸漬するという簡便な工程で、基材上に結晶形状が花状の酸化亜鉛結晶を製造することができる。また、水溶液中に水溶性高分子を添加剤として含ませること、水溶液の温度を上記範囲内とすることで、花状の酸化亜鉛結晶の花びら状部の数を増加させることができる。本発明で得られた酸化亜鉛結晶は、焼成が不要であり、従来の技術に比べて生産性が高い。このようにして得られた酸化亜鉛結晶は、大きな表面積を有する。
The invention according to claim 1 adjusts an aqueous solution containing at least a water-soluble polymer as a zinc ion, an amine compound and an additive and having a pH adjusted to 7 or higher to 50 ° C. to 90 ° C. Immerse the base material and leave it in the immersed state for a predetermined time, so that the crystal shape on the base material is composed of a plurality of petal-like parts and a central part surrounded by these petal-like parts. This zinc oxide crystal is precipitated in a self-organized manner.
In the invention according to claim 1, a zinc oxide crystal having a flower shape on the substrate can be produced by a simple process of immersing the substrate in an aqueous solution containing at least zinc ions and an amine compound. Moreover, the number of petal-like parts of flower-like zinc oxide crystals can be increased by including a water-soluble polymer as an additive in the aqueous solution and setting the temperature of the aqueous solution within the above range. The zinc oxide crystal obtained in the present invention does not need to be fired and has higher productivity than the conventional technique. The zinc oxide crystal thus obtained has a large surface area.

請求項2に係る発明は、請求項1に係る発明であって、アミン化合物がアンモニアである製造方法である。
請求項2に係る発明では、アミン化合物がアンモニアであれば、花状の酸化亜鉛結晶の花びら状部の数を増加させることができる。
The invention according to claim 2 is the manufacturing method according to claim 1, wherein the amine compound is ammonia.
In the invention which concerns on Claim 2, if an amine compound is ammonia, the number of petal-like parts of a flower-like zinc oxide crystal can be increased.

請求項3に係る発明は、請求項1に係る発明であって、水溶性高分子がポリオール系水溶性高分子である製造方法である。
請求項3に係る発明では、水溶性高分子がポリオール系水溶性高分子であれば、花状の酸化亜鉛結晶の花びら状部の数を特に増加させることができる。
The invention according to claim 3 is the method according to claim 1, wherein the water-soluble polymer is a polyol-based water-soluble polymer.
In the invention according to claim 3, if the water-soluble polymer is a polyol-based water-soluble polymer, the number of petal-like portions of flower-like zinc oxide crystals can be particularly increased.

請求項4に係る発明は、請求項1ないし3いずれか1項に係る発明であって、水溶液中の亜鉛イオン濃度が0.005〜0.50mol/Lである製造方法である。
請求項4に係る発明では、亜鉛イオン濃度が上記範囲内であれば、花状の酸化亜鉛結晶の花びら状部の数を増加させることができる。
The invention according to claim 4 is the manufacturing method according to any one of claims 1 to 3, wherein the zinc ion concentration in the aqueous solution is 0.005 to 0.50 mol / L.
In the invention which concerns on Claim 4, if the zinc ion density | concentration is in the said range, the number of petal-like parts of a flower-like zinc oxide crystal can be increased.

請求項5に係る発明は、亜鉛イオン、アミン化合物及び添加剤として水溶性高分子を少なくとも含みかつpHが7以上に調整され、50℃〜90℃に温度調整した液中に基材を浸漬し、浸漬した状態で所定の時間静置することによって、基材上に結晶形状が複数枚の花びら状部とこれらの花びら状部で囲まれた中心部により構成された花状の酸化亜鉛結晶を自己組織的に析出させる、請求項1記載の製造方法に用いられる酸化亜鉛結晶作製用水溶液である。   The invention according to claim 5 includes immersing the substrate in a solution that includes at least a water-soluble polymer as a zinc ion, an amine compound, and an additive, has a pH adjusted to 7 or more, and is adjusted to a temperature of 50 ° C. to 90 ° C. By leaving it in a dipped state for a predetermined time, a flower-like zinc oxide crystal whose crystal shape is composed of a plurality of petal-like parts and a central part surrounded by these petal-like parts on a substrate is obtained. It is the aqueous solution for zinc oxide crystal preparation used for the manufacturing method of Claim 1 made to precipitate in a self-organizing manner.

請求項6に係る発明は、請求項5に係る発明であって、アミン化合物がアンモニアである水溶液である。   The invention according to claim 6 is the aqueous solution according to claim 5, wherein the amine compound is ammonia.

請求項7に係る発明は、請求項5に係る発明であって、水溶性高分子がポリオール系水溶性高分子である水溶液である。   The invention according to claim 7 is the invention according to claim 5, wherein the water-soluble polymer is an aqueous solution of a polyol-based water-soluble polymer.

請求項8に係る発明は、請求項5ないし7いずれか1項に係る発明であって、亜鉛イオン濃度が0.005〜0.50mol/Lである水溶液である。   The invention according to claim 8 is the invention according to any one of claims 5 to 7, wherein the aqueous zinc solution has a zinc ion concentration of 0.005 to 0.50 mol / L.

本発明の酸化亜鉛結晶の製造方法は、亜鉛イオン、アミン化合物及び添加剤として水溶性高分子を少なくとも含みかつpHが7以上に調整された水溶液を用意し、この水溶液を50℃〜90℃に調整し、上記温度調整した水溶液に基材を浸漬し、浸漬した状態で所定の時間静置することによって、基材上に結晶形状が複数枚の花びら状部とこれらの花びら状部で囲まれた中心部により構成された花状の酸化亜鉛結晶を自己組織的に析出させる。亜鉛イオン及びアミン化合物を少なくとも含む水溶液に基材を浸漬するという簡便な工程で、高温焼成することなく、特に高価な装置や複雑な装置を用いず、溶液内で基材に直接析出させるというコスト的に非常に有利な方法によって、結晶形状が花状の酸化亜鉛結晶を製造することができる。また、水溶液中に水溶性高分子を添加剤として含ませること、水溶液の温度を上記範囲内とすることで、花状の酸化亜鉛結晶の花びら状部の数を増加させることができる。   The method for producing a zinc oxide crystal according to the present invention comprises preparing an aqueous solution containing at least a water-soluble polymer as a zinc ion, an amine compound and an additive and having a pH adjusted to 7 or more. The substrate is immersed in the adjusted and temperature-adjusted aqueous solution, and left in the immersed state for a predetermined time, so that the crystal shape is surrounded by a plurality of petal-like portions and these petal-like portions on the substrate. The flower-like zinc oxide crystal formed by the central part is deposited in a self-organized manner. Cost of depositing the substrate directly in the solution in a simple process of immersing the substrate in an aqueous solution containing at least zinc ions and an amine compound, without firing at a high temperature, and without using an expensive or complicated device. In particular, it is possible to produce a zinc oxide crystal having a flower shape by a very advantageous method. Moreover, the number of petal-like parts of flower-like zinc oxide crystals can be increased by including a water-soluble polymer as an additive in the aqueous solution and setting the temperature of the aqueous solution within the above range.

次に本発明を実施するための最良の形態を説明する。
本発明の酸化亜鉛結晶の製造方法は、亜鉛イオン及びアミン化合物を少なくとも含みかつpHが7以上に調整された水溶液を用意し、この水溶液に基材を浸漬することによって、基材上に結晶形状が花状の酸化亜鉛結晶を自己組織的に析出させることを特徴とする。亜鉛イオン及びアミン化合物を少なくとも含む水溶液に基材を浸漬するという簡便な工程で、高温焼成することなく、特に高価な装置や複雑な装置を用いず、溶液内で基材に直接析出させるというコスト的に非常に有利な方法によって、基材上に結晶形状が花状の酸化亜鉛結晶を製造することができる。
Next, the best mode for carrying out the present invention will be described.
The method for producing a zinc oxide crystal according to the present invention comprises preparing an aqueous solution containing at least zinc ions and an amine compound and having a pH adjusted to 7 or more, and immersing the substrate in this aqueous solution, thereby forming a crystal shape on the substrate. Is characterized by precipitating flower-like zinc oxide crystals in a self-organized manner. Cost of depositing the substrate directly in the solution in a simple process of immersing the substrate in an aqueous solution containing at least zinc ions and an amine compound, without firing at a high temperature, and without using an expensive or complicated device. In particular, it is possible to produce a zinc oxide crystal having a flower shape on a substrate by a very advantageous method.

酸化亜鉛結晶の析出に使用する水溶液は、亜鉛イオンとアミン化合物を水に溶解してpHを調整することにより調製される。水溶液中で亜鉛イオンを形成することが可能な化合物として、硝酸亜鉛、硫酸亜鉛、酢酸亜鉛、塩化亜鉛などが挙げられる。   The aqueous solution used for precipitation of zinc oxide crystals is prepared by dissolving zinc ions and an amine compound in water and adjusting the pH. Examples of the compound capable of forming zinc ions in an aqueous solution include zinc nitrate, zinc sulfate, zinc acetate, and zinc chloride.

水溶液中の亜鉛イオン濃度は0.005〜0.50mol/Lの範囲内に調整される。ここで、水溶液中の亜鉛イオン濃度を0.005〜0.50mol/Lの範囲としたのは、亜鉛イオン濃度が0.005mol/L未満であると、濃度が低すぎて基材上に結晶が析出されないからであり、亜鉛イオン濃度が0.50mol/Lを越えると、花状の酸化亜鉛結晶の花びら状部の数が減ってしまい、表面積が小さくなってしまうからである。このうち、水溶液中の亜鉛イオン濃度は0.01〜0.20mol/Lとなるような割合が、0.01mol/L未満では結晶の析出速度が遅くなる傾向にあり、0.20mol/Lを越えても結晶の析出速度が上がらなくなる傾向にあるため、特に好ましい。   The zinc ion concentration in the aqueous solution is adjusted within the range of 0.005 to 0.50 mol / L. Here, the zinc ion concentration in the aqueous solution was in the range of 0.005 to 0.50 mol / L because if the zinc ion concentration was less than 0.005 mol / L, the concentration was too low and crystals were formed on the substrate. This is because when the zinc ion concentration exceeds 0.50 mol / L, the number of petal-like parts of the flower-like zinc oxide crystal is reduced and the surface area is reduced. Among these, the ratio that the zinc ion concentration in the aqueous solution is 0.01 to 0.20 mol / L tends to decrease the rate of crystal precipitation when it is less than 0.01 mol / L. Since exceeding the crystal deposition rate tends to not increase even if the value is exceeded, it is particularly preferable.

アミン化合物は、結晶形状が花状の酸化亜鉛結晶を作製するために必須な成分であるが、その他にも、水溶液のpH調整として機能する。アミン化合物としては、アンモニア、エチルアミン、ジエチルアミン、トリエチルアミン、ヘキサメチレンテトラミン等が挙げられる。このうち、花状の酸化亜鉛結晶の花びら状部の数を増加させることができるため、アンモニアが特に好ましい。   The amine compound is an essential component for producing a zinc oxide crystal having a flower shape, but also functions as pH adjustment of the aqueous solution. Examples of amine compounds include ammonia, ethylamine, diethylamine, triethylamine, hexamethylenetetramine and the like. Among these, ammonia is particularly preferable because the number of petal-like portions of flower-like zinc oxide crystals can be increased.

ここで、水溶液のpHを7以上としたのは、pHが7未満であると、基板上に膜が析出しないためである。このうち、水溶液のpHは8〜11となるような割合が、結晶の析出速度の観点から、特に好ましい。   Here, the reason why the pH of the aqueous solution is set to 7 or more is that when the pH is less than 7, the film does not precipitate on the substrate. Among these, the ratio that the pH of the aqueous solution is 8 to 11 is particularly preferable from the viewpoint of the precipitation rate of crystals.

また、水溶液の原料として、水溶性高分子を添加剤として含ませることで、特に表面積の大きい、即ち花びら状部の数が多い花状の酸化亜鉛結晶が得られるため、好適である。水溶性高分子としてはポリオール系水溶性高分子が挙げられる。水溶性高分子がポリオール系水溶性高分子であれば、花状の酸化亜鉛結晶の花びら状部の数を特に増加させることができる。ポリオール系水溶性高分子としては、ポリエチレングリコール、ポリプロピレングリコール、それらの共重合体及び誘導体等が挙げられる。例えば、水溶性高分子としてポリエチレングリコール(PEG)を用いた場合は、PEG中のC−O−C基(親水部)が酸化亜鉛表面に部分的に修飾されるため、結晶成長するサイトが部分的になり、花びら状部の数が多い花状の酸化亜鉛結晶が得られるものと考えられる。   In addition, it is preferable to include a water-soluble polymer as an additive as a raw material for an aqueous solution, since a flower-like zinc oxide crystal having a particularly large surface area, that is, having a large number of petal-like parts is obtained. Examples of the water-soluble polymer include polyol-based water-soluble polymers. If the water-soluble polymer is a polyol-based water-soluble polymer, the number of petal-like parts of flower-like zinc oxide crystals can be particularly increased. Examples of the polyol-based water-soluble polymer include polyethylene glycol, polypropylene glycol, copolymers and derivatives thereof. For example, when polyethylene glycol (PEG) is used as the water-soluble polymer, the C—O—C group (hydrophilic portion) in PEG is partially modified on the surface of zinc oxide, so that the site for crystal growth is partially Thus, it is considered that a flower-like zinc oxide crystal having a large number of petal-like parts is obtained.

水溶液に基材を浸漬する際に、水溶液の温度を調整する。酸化亜鉛結晶を析出させる際の水溶液の温度は50〜90℃である。水溶液の温度が上記範囲内であれば、花状の酸化亜鉛結晶の花びら状部の数を増加させることができる。ここで、水溶液の温度を50〜90℃としたのは、50℃未満では反応が進まず、90℃を越えると水の蒸発が早く、亜鉛イオン水溶液が乾固するという不具合を生じるからである。このうち、水溶液の温度は60〜80℃が膜の析出速度の観点から、特に好ましい。   The temperature of the aqueous solution is adjusted when the substrate is immersed in the aqueous solution. The temperature of the aqueous solution when depositing zinc oxide crystals is 50 to 90 ° C. When the temperature of the aqueous solution is within the above range, the number of petal-like parts of flower-like zinc oxide crystals can be increased. Here, the temperature of the aqueous solution is set to 50 to 90 ° C., because the reaction does not proceed at a temperature lower than 50 ° C., and when the temperature exceeds 90 ° C., the water evaporates quickly and the zinc ion aqueous solution becomes dry. . Among these, the temperature of the aqueous solution is particularly preferably 60 to 80 ° C. from the viewpoint of the deposition rate of the film.

基材としては、pHが7以上で表面が負電荷を帯びるようなものであれば、どのような基材を使用しても良い。特に、金属酸化物からなる基材が好ましく、例えば、シリコンウェーハやガラス基板をpHが7.0以上の水溶液に浸漬することによって、表面が負電荷を帯びた基材が得られる。   Any substrate may be used as long as the pH is 7 or more and the surface is negatively charged. In particular, a base material made of a metal oxide is preferable. For example, a base material having a negatively charged surface can be obtained by immersing a silicon wafer or a glass substrate in an aqueous solution having a pH of 7.0 or more.

調製された水溶液に基材を浸漬し、所定の時間静置することによって、基材上に結晶形状が花状の酸化亜鉛結晶を自己組織的に析出させる。例えば、アミン化合物としてアンモニアを使用し、その表面が負電荷を帯びた基材を水溶液に浸漬した場合、次の式(1)〜式(2)に示すように、水溶液中で亜鉛イオンはアンモニアとアンミン錯体を形成し、次いで、基材上に存在する負電荷との相互作用によって、正電荷を帯びたアンミン錯体イオンが基板表面に集まり、その集まったアンミン錯体が水溶液中のOH-と反応してZnO核形成を起こし、そこを基点に核成長が急速に進み、花状の形状を有する酸化亜鉛結晶が基材上に形成されるものと推察される。 By immersing the base material in the prepared aqueous solution and allowing to stand for a predetermined time, a zinc oxide crystal having a flower shape is deposited on the base material in a self-organized manner. For example, when ammonia is used as an amine compound and a substrate having a negatively charged surface is immersed in an aqueous solution, zinc ions are converted into ammonia in the aqueous solution as shown in the following formulas (1) to (2). Then, an ammine complex ion that is positively charged gathers on the substrate surface due to the interaction with the negative charge existing on the substrate, and the collected ammine complex reacts with OH in the aqueous solution. Thus, it is assumed that ZnO nucleation occurs, nucleus growth proceeds rapidly from that point, and a zinc oxide crystal having a flower-like shape is formed on the substrate.

Zn2+ + 4NH3 → Zn(NH34 2+ ……(1)
Zn(NH34 2+ + 2OH- → ZnO + H2O + 4NH3 ……(2)
なお、基材を浸漬することなく、水溶液をただ単に静置しただけでは、酸化亜鉛は両性であるため、水溶液のpHが高い場合には、水溶液中に溶解したまま析出しないことが知られている。
Zn 2+ + 4NH 3 → Zn (NH 3 ) 4 2+ (1)
Zn (NH 3 ) 4 2+ + 2OH → ZnO + H 2 O + 4NH 3 (2)
In addition, it is known that zinc oxide is amphoteric if the aqueous solution is simply allowed to stand without immersing the base material, and therefore, when the pH of the aqueous solution is high, it does not precipitate while dissolved in the aqueous solution. Yes.

基材を水溶液中に浸漬する時間は2時間以下が好ましい。ここで、浸漬時間を2時間以下としたのは、浸漬時間が長すぎると形成される結晶の花びら状部の数が減る傾向があるためである。このうち、浸漬時間は2時間以下が、特に好ましい。   The time for immersing the substrate in the aqueous solution is preferably 2 hours or less. Here, the reason why the immersion time is set to 2 hours or less is that when the immersion time is too long, the number of the petal-like parts formed tends to decrease. Among these, the immersion time is particularly preferably 2 hours or less.

なお、基材を水溶液に浸漬して酸化亜鉛結晶を析出させる際の容器はどのようなものを用いてもよい。結晶を析出させる際の諸条件に併せて、開放型容器や密閉系容器を使い分けることが好ましい。   In addition, what kind of thing may be used for the container at the time of immersing a base material in aqueous solution and depositing a zinc oxide crystal | crystallization. It is preferable to use an open container or a closed container in accordance with various conditions for depositing crystals.

上記製造方法により製造された酸化亜鉛結晶は、直径が1〜20μmの範囲内であり、花状の結晶形状を形成する。花状の酸化亜鉛結晶は、複数枚の花びら状部とこれらの花びら状部で囲まれた中心部により構成される。花びら状部の一端は尖形であり、花びら状部の他端が中心部の外周部に位置し、花びら状部の横幅が0.1〜1μm、長さが0.2〜5μmである。中心部は微粒子が凝集した1又は2以上の二次凝集体から構成され、中心部の大きさが1〜5μmである。このような形状を有する酸化亜鉛結晶は、大きな表面積を有する。   The zinc oxide crystal manufactured by the above manufacturing method has a diameter in the range of 1 to 20 μm and forms a flower-like crystal shape. The flower-like zinc oxide crystal is composed of a plurality of petal-like parts and a central part surrounded by these petal-like parts. One end of the petal-like part is pointed, the other end of the petal-like part is located on the outer peripheral part of the center part, and the lateral width of the petal-like part is 0.1 to 1 μm and the length is 0.2 to 5 μm. The central portion is composed of one or two or more secondary aggregates in which fine particles are aggregated, and the size of the central portion is 1 to 5 μm. A zinc oxide crystal having such a shape has a large surface area.

上記酸化亜鉛結晶は、紫外及び緑色領域の少なくとも一方の波長領域で発光波長を有するため、LEDのような発光体に使用することができる。また、上記酸化亜鉛結晶は、その表面積が大きいため、色素増感型太陽電池に使用することができる。更に、上記酸化亜鉛結晶は、光触媒機能を有し、特に防汚、防曇、超親水、抗菌効果を示すため、光触媒としての用途に有効である。   Since the zinc oxide crystal has a light emission wavelength in at least one wavelength region of the ultraviolet and green regions, it can be used for a light emitting body such as an LED. Moreover, since the said zinc oxide crystal has a large surface area, it can be used for a dye-sensitized solar cell. Furthermore, the zinc oxide crystal has a photocatalytic function and exhibits antifouling, antifogging, superhydrophilic and antibacterial effects, and is therefore effective for use as a photocatalyst.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
亜鉛源として硝酸亜鉛六水和物を、添加剤として分子量が約1000のポリエチレングリコールを用意した。また、pH調整のためのアルカリ源として、アンモニアを用意した。また、基材としてシリコン基板を用意した。先ず、0.027mol/Lの硝酸亜鉛六水和物を溶解させた水溶液50mlに、分子量が約1000のポリエチレングリコールを0.05質量%含んだ1mol/Lアンモニア水溶液をpHが10.6になるように添加し、30分室温で攪拌することにより水溶液を調製した。なお、調製した水溶液中の亜鉛イオン濃度は0.019mol/Lとなるように調整した。次に、調製した水溶液をビーカーに入れて水溶液温度を70℃に加温し、そこにシリコン基板を浸漬し、水溶液温度を70℃に保持しながら静置し、6時間後に水溶液からシリコン基板を取り出した。取り出したシリコン基板上には結晶が析出されていた。その後、結晶が析出されたシリコン基板を洗浄した後、60℃で乾燥した。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
Zinc nitrate hexahydrate was prepared as a zinc source, and polyethylene glycol having a molecular weight of about 1000 was prepared as an additive. Moreover, ammonia was prepared as an alkali source for pH adjustment. Moreover, the silicon substrate was prepared as a base material. First, a 1 mol / L aqueous ammonia solution containing 0.05% by mass of polyethylene glycol having a molecular weight of about 1000 in 50 ml of an aqueous solution in which 0.027 mol / L zinc nitrate hexahydrate is dissolved has a pH of 10.6. And an aqueous solution was prepared by stirring at room temperature for 30 minutes. The zinc ion concentration in the prepared aqueous solution was adjusted to 0.019 mol / L. Next, the prepared aqueous solution is put into a beaker, the temperature of the aqueous solution is raised to 70 ° C., the silicon substrate is immersed therein, and the solution is allowed to stand while maintaining the aqueous solution temperature at 70 ° C. After 6 hours, the silicon substrate is removed from the aqueous solution. I took it out. Crystals were deposited on the extracted silicon substrate. Then, after washing | cleaning the silicon substrate in which the crystal | crystallization precipitated, it dried at 60 degreeC.

得られた結晶をSEM(scanning electron microscope、走査型電子顕微鏡)により観察したところ、図1(a)及び図1(b)に示すように、シリコン基板上に結晶形状が花状の結晶が成長していることが確認された。また、X線回折(XRD、X-ray Diffractmeter)による測定の結果、図2に示すように、結晶のXRDパターンは酸化亜鉛(JCPDSカードNo.36−1451)と一致し、シリコン基板表面に析出した結晶形状が花状の結晶が酸化亜鉛結晶であることが確認された。   When the obtained crystal was observed with a scanning electron microscope (SEM), as shown in FIGS. 1 (a) and 1 (b), a flower-like crystal grew on the silicon substrate. It was confirmed that Further, as a result of measurement by X-ray diffraction (XRD, X-ray Diffractometer), as shown in FIG. 2, the XRD pattern of the crystal coincides with zinc oxide (JCPDS card No. 36-1451) and is deposited on the surface of the silicon substrate. It was confirmed that the crystal having a flower shape was a zinc oxide crystal.

<実施例2>
基材をシリコン基板からスライドガラスに変更した以外は、実施例1の方法と同様の方法により、スライドガラス上に結晶を析出させた。実施例1と同様にSEM観察及びXRD測定を行ったところ、スライドガラス上に析出された結晶は、結晶形状が花状の酸化亜鉛結晶であることが確認された。
<Example 2>
Crystals were deposited on the slide glass by the same method as in Example 1 except that the substrate was changed from a silicon substrate to a slide glass. When SEM observation and XRD measurement were performed in the same manner as in Example 1, it was confirmed that the crystals deposited on the slide glass were flower-like zinc oxide crystals.

<実施例3>
基材をシリコン基板からITO膜付きガラス基板に変更した以外は、実施例1の方法と同様の方法により、ITO膜付きガラス基板上に結晶を析出させた。実施例1と同様にSEM観察及びXRD測定を行ったところ、ITO膜付きガラス基板上に析出された結晶は、結晶形状が花状の酸化亜鉛結晶であることが確認された。
<Example 3>
Crystals were deposited on the ITO film-coated glass substrate in the same manner as in Example 1 except that the substrate was changed from the silicon substrate to the ITO film-coated glass substrate. When SEM observation and XRD measurement were performed in the same manner as in Example 1, it was confirmed that the crystals deposited on the glass substrate with the ITO film were flower-like zinc oxide crystals.

<参考例1>
水溶液を調製する際に添加剤を添加しなかったこと以外は、実施例1の方法と同様の方法により、シリコン基板上に結晶を析出させた。実施例1と同様にSEMにより観察したところ、図3(a)及び図3(b)に示すように、シリコン基板上に結晶形状が花状の結晶が成長していることが確認された。なお、この参考例1で得られた結晶を、実施例1で得られた結晶とを比較すると、一つ当たりの花状の酸化亜鉛結晶に備わっている花びら状部の数が少なかった。また、実施例1と同様にXRD測定を行ったところ、シリコン基板上に析出された結晶は、酸化亜鉛結晶であることが確認された。この結果から、水溶液中に溶解させる添加剤の存在の有無にかかわらず結晶形状が花状の酸化亜鉛結晶は析出すること、添加剤の存在によって花状の酸化亜鉛結晶の花びら状部の数を増加させることができることが確認された。
<Reference Example 1>
Crystals were deposited on the silicon substrate by the same method as in Example 1 except that no additive was added when preparing the aqueous solution. When observed by SEM in the same manner as in Example 1, it was confirmed that crystals having a flower shape grew on the silicon substrate, as shown in FIGS. 3 (a) and 3 (b). When the crystal obtained in Reference Example 1 was compared with the crystal obtained in Example 1, the number of petal-like parts provided in each flower-like zinc oxide crystal was small. Further, when XRD measurement was performed in the same manner as in Example 1, it was confirmed that the crystals deposited on the silicon substrate were zinc oxide crystals. From this result, it can be seen that regardless of the presence or absence of the additive dissolved in the aqueous solution, the flower-shaped zinc oxide crystal precipitates, and the presence of the additive determines the number of petal-like parts of the flower-like zinc oxide crystal. It was confirmed that it can be increased.

<比較例1>
アンモニアの代わりに水酸化ナトリウムを用いた以外は、実施例1の方法と同様の方法により、水溶液中にシリコン基板を浸漬したが、シリコン基板上に結晶は析出されなかった。なお、水溶液中にも粒子は生成されていなかった。
<Comparative Example 1>
The silicon substrate was immersed in the aqueous solution by the same method as in Example 1 except that sodium hydroxide was used instead of ammonia, but no crystals were deposited on the silicon substrate. No particles were generated in the aqueous solution.

<比較例2>
水溶液のpHを10.6から6.8に変更した以外は、実施例1の方法と同様の方法により、水溶液中にシリコン基板を浸漬したが、シリコン基板上に結晶は析出されなかった。なお、水溶液中には粒子は生成されていた。
<Comparative example 2>
The silicon substrate was immersed in the aqueous solution by the same method as in Example 1 except that the pH of the aqueous solution was changed from 10.6 to 6.8, but no crystals were deposited on the silicon substrate. In addition, the particle | grains were produced | generated in aqueous solution.

<実施例4>
実施例1で作製した酸化亜鉛結晶付きシリコン基板について、蛍光測定を行った。その結果、図4に示すように、発光スペクトルでは、波長約385nmの紫外発光と、約550nmにピークトップを持つ緑色発光が検出され、本発明の実施例1で作製した酸化亜鉛結晶付きガラス基板の酸化亜鉛結晶が良好な発光体であることが示された。
<Example 4>
The silicon substrate with zinc oxide crystal produced in Example 1 was subjected to fluorescence measurement. As a result, as shown in FIG. 4, ultraviolet emission having a wavelength of about 385 nm and green emission having a peak top at about 550 nm were detected in the emission spectrum, and the glass substrate with zinc oxide crystals produced in Example 1 of the present invention. The zinc oxide crystals were shown to be good light emitters.

<実施例5>
アセトニトリルとエタノールからなる混合溶媒にルテニウム錯体(Ru(dcbpy)2(NCS)2;小島化学薬品社製)を溶解させて色素溶液を調製した。この色素溶液に実施例3で作製した酸化亜鉛結晶が析出したITO膜付きガラス基板を一晩浸漬し、色素を吸着させることにより、色素電極を得た。一方、導電性ガラス基板に白金をコートした白金電極を用意し、この白金電極と色素電極とを各々の活性面が20μm間隔で向かい合わせとなるように固定し、その間に電解液を注入して色素増感型太陽電池を作製した。注入した電解液には、アセトニトリルに、0.1mol/Lのヨウ化リチウム、0.05mol/Lのヨウ素及び0.5mol/Lのテトラブチルアンモニウムヨウ素塩をそれぞれ溶解させることにより調製された液を用いた。作製した色素増感型太陽電池は、日中の屋外にばく露したところ、起電力の発現を確認した。
<Example 5>
A ruthenium complex (Ru (dcbpy) 2 (NCS) 2 ; manufactured by Kojima Chemical Co., Ltd.) was dissolved in a mixed solvent consisting of acetonitrile and ethanol to prepare a dye solution. The glass substrate with the ITO film on which the zinc oxide crystals prepared in Example 3 were deposited was immersed in this dye solution overnight, and the dye was adsorbed to obtain a dye electrode. On the other hand, a platinum electrode coated with platinum on a conductive glass substrate is prepared, and the platinum electrode and the dye electrode are fixed so that their active surfaces face each other at intervals of 20 μm, and an electrolytic solution is injected therebetween. A dye-sensitized solar cell was produced. In the injected electrolyte solution, a solution prepared by dissolving 0.1 mol / L lithium iodide, 0.05 mol / L iodine and 0.5 mol / L tetrabutylammonium iodine salt in acetonitrile, respectively. Using. When the produced dye-sensitized solar cell was exposed outdoors during the day, the expression of electromotive force was confirmed.

<実施例6>
実施例1で作製した酸化亜鉛結晶付きシリコン基板の光触媒活性を評価した。なお、光触媒活性は、以下に示す手順により評価した。
<Example 6>
The photocatalytic activity of the silicon substrate with zinc oxide crystals produced in Example 1 was evaluated. The photocatalytic activity was evaluated according to the following procedure.

先ず、酸化亜鉛結晶付きシリコン基板を1Lのガラス製容器に入れ、容器を密閉した。次いで、容器内に350ppm(初期濃度)のアセトアルデヒドを導入した。次に、このアセトアルデヒドを導入した容器を照射量1.2mW/cm2の紫外線ランプで1時間照射した。照射後の容器内部のアセトアルデヒド濃度をガス検知管(ガステック社製)で測定し、下記に示す式(1)に基づいて除去率を求めた。 First, a silicon substrate with a zinc oxide crystal was placed in a 1 L glass container, and the container was sealed. Next, 350 ppm (initial concentration) of acetaldehyde was introduced into the container. Next, the container into which this acetaldehyde was introduced was irradiated with an ultraviolet lamp having an irradiation amount of 1.2 mW / cm 2 for 1 hour. The acetaldehyde concentration inside the container after irradiation was measured with a gas detector tube (manufactured by Gastec Corporation), and the removal rate was determined based on the formula (1) shown below.

除去率[%]=[(初期濃度−光照射後の濃度)÷初期濃度]×100 ……(1)
評価の結果、アセトアルデヒド除去率が98%と高い結果が得られた。この結果から、本発明の酸化亜鉛結晶付きシリコン基板の酸化亜鉛結晶が良好な光触媒機能を有することが示された。
Removal rate [%] = [(initial density−density after light irradiation) ÷ initial density] × 100 (1)
As a result of the evaluation, a high acetaldehyde removal rate of 98% was obtained. From this result, it was shown that the zinc oxide crystal of the silicon substrate with a zinc oxide crystal of the present invention has a good photocatalytic function.

実施例1で作製した結晶形状が花状の酸化亜鉛結晶のSEM画像を示す図。The figure which shows the SEM image of the zinc oxide crystal whose crystal shape produced in Example 1 is a flower shape. 実施例1で作製した結晶形状が花状の酸化亜鉛結晶のXRDパターンを示す図。The figure which shows the XRD pattern of the zinc oxide crystal whose crystal shape produced in Example 1 is a flower shape. 参考例1で作製した結晶形状が花状の酸化亜鉛結晶のSEM画像を示す図。The figure which shows the SEM image of the zinc oxide crystal whose crystal shape produced in Reference Example 1 was a flower shape. 実施例1で作製した結晶形状が花状の酸化亜鉛結晶の発光スペクトルを示す図。FIG. 3 shows an emission spectrum of a zinc oxide crystal having a flower shape produced in Example 1.

Claims (8)

亜鉛イオン、アミン化合物及び添加剤として水溶性高分子を少なくとも含みかつpHが7以上に調整された水溶液を50℃〜90℃に調整し、前記温度調整した水溶液に基材を浸漬し、浸漬した状態で所定の時間静置することによって、前記基材上に結晶形状が複数枚の花びら状部とこれらの花びら状部で囲まれた中心部により構成された花状の酸化亜鉛結晶を自己組織的に析出させることを特徴とする酸化亜鉛結晶の製造方法。   An aqueous solution containing at least a water-soluble polymer as a zinc ion, an amine compound and an additive and having a pH adjusted to 7 or higher was adjusted to 50 ° C. to 90 ° C., and the substrate was immersed in the aqueous solution adjusted in temperature. By standing for a predetermined time in a state, a self-organization of flower-like zinc oxide crystals composed of a plurality of petal-like parts and a central part surrounded by these petal-like parts on the base material A method for producing a zinc oxide crystal, characterized in that the precipitation is carried out. アミン化合物がアンモニアである請求項1記載の製造方法。   The process according to claim 1, wherein the amine compound is ammonia. 水溶性高分子がポリオール系水溶性高分子である請求項1記載の製造方法。   The production method according to claim 1, wherein the water-soluble polymer is a polyol-based water-soluble polymer. 水溶液中の亜鉛イオン濃度が0.005〜0.50mol/Lである請求項1ないし3いずれか1項に記載の製造方法。   The manufacturing method according to any one of claims 1 to 3, wherein a zinc ion concentration in the aqueous solution is 0.005 to 0.50 mol / L. 亜鉛イオン、アミン化合物及び添加剤として水溶性高分子を少なくとも含みかつpHが7以上に調整され、50℃〜90℃に温度調整した液中に基材を浸漬し、浸漬した状態で所定の時間静置することによって、前記基材上に結晶形状が複数枚の花びら状部とこれらの花びら状部で囲まれた中心部により構成された花状の酸化亜鉛結晶を自己組織的に析出させる、請求項1記載の製造方法に用いられる酸化亜鉛結晶作製用水溶液。   The base material is immersed in a solution containing at least a water-soluble polymer as a zinc ion, an amine compound and an additive and having a pH adjusted to 7 or higher and adjusted to a temperature of 50 ° C to 90 ° C. By allowing it to stand, a crystal-like zinc oxide crystal composed of a plurality of petal-like parts and a central part surrounded by these petal-like parts is deposited on the base material in a self-organized manner. An aqueous solution for producing zinc oxide crystals used in the production method according to claim 1. アミン化合物がアンモニアである請求項5記載の水溶液。   The aqueous solution according to claim 5, wherein the amine compound is ammonia. 水溶性高分子がポリオール系水溶性高分子である請求項5記載の水溶液。   The aqueous solution according to claim 5, wherein the water-soluble polymer is a polyol-based water-soluble polymer. 亜鉛イオン濃度が0.005〜0.50mol/Lである請求項5ないし7いずれか1項に記載の水溶液。   The aqueous solution according to claim 5, wherein the zinc ion concentration is 0.005 to 0.50 mol / L.
JP2007070558A 2007-03-19 2007-03-19 Method for producing zinc oxide crystals Active JP5008433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007070558A JP5008433B2 (en) 2007-03-19 2007-03-19 Method for producing zinc oxide crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007070558A JP5008433B2 (en) 2007-03-19 2007-03-19 Method for producing zinc oxide crystals

Publications (2)

Publication Number Publication Date
JP2008230877A JP2008230877A (en) 2008-10-02
JP5008433B2 true JP5008433B2 (en) 2012-08-22

Family

ID=39904128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007070558A Active JP5008433B2 (en) 2007-03-19 2007-03-19 Method for producing zinc oxide crystals

Country Status (1)

Country Link
JP (1) JP5008433B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101834978B1 (en) * 2009-04-15 2018-03-06 더 리전츠 오브 더 유니버시티 오브 캘리포니아 Low temperature continuous circulation reactor for the aqueous synthesis of ZnO films, nanostructures, and bulk single crystals
JP2012109558A (en) * 2010-10-29 2012-06-07 Kyocera Corp Photoelectric conversion element, photoelectric conversion device, and method of manufacturing photoelectric conversion element
JP5703517B2 (en) * 2011-03-14 2015-04-22 学校法人千葉工業大学 Zinc oxide crystal production method, zinc oxide crystal
US9343202B2 (en) * 2013-08-07 2016-05-17 The Regents Of The University Of California Transparent metal oxide nanoparticle compositions, methods of manufacture thereof and articles comprising the same
JP6456365B2 (en) * 2014-05-01 2019-01-23 日本碍子株式会社 Method for producing hexagonal plate-like zinc oxide particles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2683389B2 (en) * 1987-11-16 1997-11-26 花王株式会社 Flaky zinc oxide powder and method for producing the same
US6171580B1 (en) * 1997-11-18 2001-01-09 Shiseido Company Ltd. Ultraviolet-screening zinc oxide excellent in transparency and composition containing the same
JP2003026422A (en) * 2001-07-11 2003-01-29 Fm Giken Kk Particle dispersion sol of metal oxide and/or metal peroxide and method of manufacturing the same and particulate powder
JP2004149367A (en) * 2002-10-31 2004-05-27 Japan Science & Technology Agency Aqueous solution for producing zinc oxide particle or film, and method for producing zinc oxide particle or film

Also Published As

Publication number Publication date
JP2008230877A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP4906550B2 (en) Zinc oxide functional film production method and zinc oxide functional film obtained by the method
Xiao et al. Synthesis of a monoclinic BiVO 4 nanorod array as the photocatalyst for efficient photoelectrochemical water oxidation
Marimuthu et al. Electrochemical synthesis of one-dimensional ZnO nanostructures on ZnO seed layer for DSSC applications
Qiu et al. Solution-derived 40 µm vertically aligned ZnO nanowire arrays as photoelectrodes in dye-sensitized solar cells
Ren et al. Photoelectrochemical water splitting strongly enhanced in fast-grown ZnO nanotree and nanocluster structures
JP5008433B2 (en) Method for producing zinc oxide crystals
JP2013539499A (en) Spinel-type catalyst for water and hydrocarbon oxidation
JP5263750B2 (en) Method for producing nano acicular anatase TiO2 crystal aggregated particles and porous anatase TiO2 crystal film
Dhara et al. Two stage chemical bath deposition of MoO 3 nanorod films
Kim et al. Thorny CdSe nanotubes via an aqueous anion exchange reaction process and their photoelectrochemical applications
JP2004149367A (en) Aqueous solution for producing zinc oxide particle or film, and method for producing zinc oxide particle or film
Zulkiflee et al. Bismuth oxyhalides: recent progress and its applications in photocatalysis, hydrogen production, antibacterial studies, and sensors
Ayal Enhanced photocurrent of titania nanotube photoelectrode decorated with CdS nanoparticles
JP5339372B2 (en) Hybrid film made of Zn (OH) 2 nanosheet and ZnO nanowhisker film, hybrid film made of ZnO nanosheet and ZnO nanowhisker film, and method for producing them
JP5339346B2 (en) Method for producing aluminum-substituted α-type nickel hydroxide
Mohapatra et al. Enhancement in photocurrent conversion efficiency via recrystallization of zinc tin hydroxide nanostructures
Pouretedal et al. Preparation, characterization and catalytic activity of tin dioxide and zero-valent tin nanoparticles
Tan et al. Growth of crystallized titania from the cores of amorphous tetrabutyl titanate@ PVDF nanowires
Nevárez Martínez et al. Insights into the intrinsic creation of heterojunction-based ordered TiO2 nanotubes obtained from the one-step anodic oxidation of titanium alloys
Ghobadi et al. The effect of pH on the optical band gap of PbSe thin film with usability in the quantum dot solar cell and photocatalytic activity
Hong et al. Understanding the growth and photoelectrochemical properties of mesocrystals and single crystals: a case of anatase TiO 2
JP2011042535A (en) Multi-needle type titanium dioxide particle, multi-needle type titanium dioxide particle coating, titanium dioxide-based device, and methods for manufacturing them
CN109065738A (en) Method based on Pot metal in-situ one-step synthesis high-crystallinity Copper-cladding Aluminum Bar perovskite thin film
KR101960746B1 (en) Manufacturing method of titanium oxide nanostructures in free-standing powder form and titanium oxide nanostructures manufactured thereby
KR101798602B1 (en) Photoelectrode comprising tantalium thin film for water-splitting hydrogen evolution reaction and method for preparing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120529

R150 Certificate of patent or registration of utility model

Ref document number: 5008433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250