JP5698963B2 - Surface shape measurement method - Google Patents

Surface shape measurement method Download PDF

Info

Publication number
JP5698963B2
JP5698963B2 JP2010260128A JP2010260128A JP5698963B2 JP 5698963 B2 JP5698963 B2 JP 5698963B2 JP 2010260128 A JP2010260128 A JP 2010260128A JP 2010260128 A JP2010260128 A JP 2010260128A JP 5698963 B2 JP5698963 B2 JP 5698963B2
Authority
JP
Japan
Prior art keywords
measurement
measurement data
surface shape
shape measuring
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010260128A
Other languages
Japanese (ja)
Other versions
JP2012112705A (en
Inventor
本田 裕
裕 本田
Original Assignee
株式会社小坂研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小坂研究所 filed Critical 株式会社小坂研究所
Priority to JP2010260128A priority Critical patent/JP5698963B2/en
Publication of JP2012112705A publication Critical patent/JP2012112705A/en
Application granted granted Critical
Publication of JP5698963B2 publication Critical patent/JP5698963B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、1つの測定対象部の表面形状を複数回に分けて測定し、その表面形状測定データを繋ぎ合せて1つの表面形状データを得る表面形状測定方法に関する。   The present invention relates to a surface shape measurement method for measuring a surface shape of one measurement target part in a plurality of times and connecting the surface shape measurement data to obtain one surface shape data.

測定対象物の表面形状を高精度に測定する方法として、レーザー光や白色光等の光干渉を利用した光学式表面形状測定方法が知られている。このような光干渉を利用した光学式表面形状測定機においては、測定の水平分解能を高めるため高倍率の対物レンズが使用され、それに伴い測定視野は小さくなり、一度に測定できる測定面領域はサブミリメートル若しくはそれ以下となることが多い。そのため測定を行おうとする領域を一度の測定で測定できない場合がある。このように測定対象となる領域が表面形状測定装置の測定視野を超える場合には、一般に、測定面領域を走査して複数回の測定を行い、得られた複数の面測定データを繋ぎ合せて表面形状測定装置の測定視野以上の面積の表面形状測定結果を得るというスティッチング法(開口合成法)が利用されている(例えば、特許文献1参照)。従来のスティッチング法は、レンズの歪み、参照面の形状誤差、精密ステージによる移動時の誤差及びその他測定誤差を補正するために、複雑な演算を行い、並進方向のみならず回転方向の補正を行った上で測定データを繋ぎ合せるようにしている(例えば、非特許文献1参照)。   As a method for measuring the surface shape of a measurement object with high accuracy, an optical surface shape measurement method using optical interference such as laser light or white light is known. In such an optical surface shape measuring instrument using optical interference, a high-magnification objective lens is used to increase the horizontal resolution of the measurement. Often millimeters or less. Therefore, there are cases where the region to be measured cannot be measured by a single measurement. When the area to be measured exceeds the measurement field of view of the surface shape measuring device in this way, generally, the measurement surface area is scanned and measured multiple times, and the obtained multiple surface measurement data are joined together. A stitching method (aperture synthesis method) that obtains a surface shape measurement result having an area larger than the measurement field of view of the surface shape measuring apparatus is used (for example, see Patent Document 1). Conventional stitching methods perform complex calculations to correct lens distortion, reference surface shape error, precision stage movement error, and other measurement errors, and correct not only the translation direction but also the rotation direction. Then, the measurement data are joined together (see, for example, Non-Patent Document 1).

特開平4−290905号公報JP-A-4-290905

「三次元形状測定データ群の接続による機能面全体測定に関する研究」、2004年度精密工学会春季大会学術講演会講演論文集(p.667-668)"Study on measurement of whole functional surface by connecting 3D shape measurement data group", 2004 JSPE Spring Conference Annual Lecture Proceedings (p.667-668)

しかしながら、従来のスティッチング法は、特に回転方向の補正を行うために、互いに重複する測定面領域であるオーバーラップ領域が例えば30%から50%程度も必要となり、それに伴い、測定対象とする領域を測定するための測定回数が増加するといった問題点があった。   However, the conventional stitching method requires, for example, about 30% to 50% of overlap areas, which are measurement surface areas that overlap each other, particularly in order to correct the rotational direction. There is a problem that the number of times of measurement for measuring increases.

また、ナノメートルオーダーの測定を行うような微細表面形状測定においては、装置温度、周囲温度の僅か1度の温度変化でも測定装置若しくは測定対象物の熱膨張により、測定結果に大きな影響を与えることとなるが、従来の方法では測定回数の増加に伴い測定時間が増大し、その間の温度変化の影響を受けやすくなるといった問題点もあった。   In addition, in the measurement of fine surface shapes that measure in nanometer order, even a temperature change of just 1 degree of the device temperature and ambient temperature has a great influence on the measurement result due to the thermal expansion of the measuring device or measurement object. However, the conventional method has a problem in that the measurement time increases as the number of measurements increases, and it is easily affected by temperature changes during the measurement.

光干渉計はレンズの歪みや参照面の歪みに起因する光学的誤差を少なからず持っている。この光学的誤差は精密ステージによる誤差に比べれば小さいことが多いが、データを繋ぎ合せていく毎に誤差が累積し、最終的に無視できない大きな誤差となる場合がある。つまり、オーバーラップ領域に光学的誤差による歪みがあると、その歪みに合わせて並進方向のみならず回転方向も一致させて合成されることとなり、合成された測定データは本来の表面形状に比べて歪み角度の分だけ全体的に傾いた状態となる。この傾いた状態の測定データにさらに次の測定データを繋ぎ合せると、さらに傾き誤差は大きくなる。これを繰り返していくと最初は僅かであった誤差も累積されて大きな誤差となってしまうことが起こり得る。このように、従来の方法は主に精密ステージの移動誤差等を補正するために行われる回転方向補正が、場合によっては別の大きな累積誤差をもたらすという問題があった。図16は、平面測定において累積誤差が生じたときの測定例である。回転補正を行わない場合には、全体で5nmの誤差だが、回転補正を行った場合には100nm以上の誤差が生じている。   Optical interferometers have a considerable amount of optical errors due to lens distortion and reference surface distortion. Although this optical error is often smaller than the error due to the precision stage, the error accumulates every time data is connected, and may eventually become a large error that cannot be ignored. In other words, if there is distortion due to optical errors in the overlap area, not only the translation direction but also the rotation direction will be matched to match the distortion, and the synthesized measurement data will be compared to the original surface shape. The entire state is inclined by the amount of the distortion angle. If the next measurement data is further connected to the measurement data in the tilted state, the tilt error further increases. If this process is repeated, errors that were small at the beginning may be accumulated and become large errors. As described above, the conventional method has a problem that the rotational direction correction mainly performed to correct the movement error of the precision stage or the like causes another large accumulated error depending on the case. FIG. 16 is an example of measurement when a cumulative error occurs in planar measurement. When rotation correction is not performed, the error is 5 nm as a whole, but when rotation correction is performed, an error of 100 nm or more occurs.

そこで本発明は、上記従来技術の問題点を解決することを目的とする。具体的には、表面形状測定機の測定視野以上の測定領域の測定をするに際して、複数の測定結果の繋ぎ合せを簡易に行うことを可能とし、オーバーラップ領域を低減して全体の測定時間を削減し、さらに一定の累積誤差の発生を低減することが可能な表面形状測定方法を提供することを目的とするものである。   Accordingly, an object of the present invention is to solve the above-described problems of the prior art. Specifically, when measuring a measurement area that exceeds the measurement field of view of a surface shape measuring instrument, it is possible to easily combine multiple measurement results, reducing the overlap area and reducing the overall measurement time. An object of the present invention is to provide a surface shape measuring method capable of reducing the generation of a certain cumulative error.

すなわち、本発明は、複数回に分けて測定した表面形状測定データを繋ぎ合せて表面形状を測定する表面形状測定方法であって、測定対象物を水平面移動ステージに設置する第一の工程と、前記測定対象物の第一の測定面領域の三次元表面形状を光学式表面形状測定機で測定して第一の面測定データを取得する第二の工程と、前記第一の測定面領域の一部と重複するオーバーラップ領域を有する第二の測定面領域と前記光学式表面形状測定機の測定視野が一致するように前記水平面移動ステージを移動させる第三の工程と、前記第二の測定面領域の三次元表面形状を前記光学式表面形状測定機で測定して第二の面測定データを取得する第四の工程と、前記第一の面測定データにおける前記一部に対応する面測定データと前記第二の面測定データにおける前記オーバーラップ領域に対応する面測定データが重なり合うように前記第一の面測定データ及び前記第二の面測定データの一方又は両方を平行移動する第五の工程と、前記平行移動した前記第一の面測定データと前記第二の面測定データを合成して合成面測定データを生成する第六の工程と、を有する表面形状測定方法である。   That is, the present invention is a surface shape measurement method for measuring the surface shape by joining the surface shape measurement data measured in multiple times, the first step of installing the measurement object on the horizontal plane moving stage, A second step of obtaining a first surface measurement data by measuring a three-dimensional surface shape of the first measurement surface region of the measurement object with an optical surface shape measuring machine; and A third step of moving the horizontal plane moving stage so that a second measurement surface region having an overlap region overlapping with a part and a measurement field of view of the optical surface shape measuring machine coincide with each other; and the second measurement A fourth step of measuring a three-dimensional surface shape of a surface region with the optical surface shape measuring instrument to obtain second surface measurement data, and a surface measurement corresponding to the part of the first surface measurement data Data and second surface measurement data A fifth step of translating one or both of the first surface measurement data and the second surface measurement data so that the surface measurement data corresponding to the overlap region in the overlap, and the translated first And a sixth step of generating combined surface measurement data by combining the one surface measurement data and the second surface measurement data.

この表面形状測定方法では、繋ぎ合せ時に回転方向の補正を行わず平行移動のみを行うようにすることで、特に光学的歪みに起因する累積的誤差の発生を抑止できる。   In this surface shape measurement method, it is possible to suppress the occurrence of cumulative errors caused by optical distortion, in particular, by performing only translation without correcting the rotation direction at the time of joining.

好ましくは、前記オーバーラップ領域が前記光学式表面形状測定機の測定視野の10%以下の面積であるようにすることができる。   Preferably, the overlap region may have an area of 10% or less of a measurement visual field of the optical surface shape measuring instrument.

より好ましくは、前記オーバーラップ領域が前記光学式表面形状測定機の測定視野の1%以下の面積であるようにすることができる。   More preferably, the overlap area may be an area of 1% or less of a measurement visual field of the optical surface shape measuring instrument.

オーバーラップ領域を小さくすることは、本発明における表面形状測定方法に関して繋ぎ合せの精度には本質的な影響を与えないため、このように非常に小さな面積としても実質的に十分な性能を得ることができる。一方、オーバーラップ領域が小さくなることで、測定回数を減らすことができ、測定全体の所要時間を低減することができる。   Since reducing the overlap region does not substantially affect the accuracy of splicing with respect to the surface shape measurement method in the present invention, substantially sufficient performance can be obtained even with such a very small area. Can do. On the other hand, since the overlap region is reduced, the number of measurements can be reduced, and the time required for the entire measurement can be reduced.

さらに好ましくは、前記平行移動を高さ方向のみの移動とすることができる。   More preferably, the parallel movement can be a movement only in the height direction.

表面形状測定装置の水平方向の誤差が要求精度に対して十分に小さい場合には、平行移動を高さ方向のみとすることで、さらに測定を高速化させることができる。   When the horizontal error of the surface shape measuring device is sufficiently small with respect to the required accuracy, the measurement can be further speeded up by making the parallel movement only in the height direction.

また、具体的には、前記合成面測定データの生成を、前記第一の面測定データと前記第二の面測定データが連続的に繋がるように、前記第一の面測定データと前記第二の面測定データに対する重み付け平均処理によって互いに重なり合う測定面領域の面測定データを合成する合成面測定データの生成とすることができる。   Specifically, the first surface measurement data and the second surface measurement data are generated so that the first surface measurement data and the second surface measurement data are continuously connected. It is possible to generate synthetic surface measurement data that combines surface measurement data of measurement surface regions that overlap each other by weighted averaging processing of the surface measurement data.

通常は前記平行移動を行ったとしても、第一の面測定データと第二の面測定データの重複部分が完全に一致することはないため、その重複部分に関しては2つの面測定データから1つの新たな面測定データを生成して合成する必要がある。このとき、重複部分の位置に応じた重み付けを行った上で平均化することで、2つの面測定データから本来の測定対象物の表面形状を表すのに確からしい表面形状であり且つ第一の面測定データと第二の面測定データが連続的に繋がるような合成面測定データの生成が可能となる。   Normally, even if the parallel movement is performed, the overlapping portion of the first surface measurement data and the second surface measurement data does not completely coincide with each other. It is necessary to generate and synthesize new surface measurement data. At this time, by averaging after performing weighting according to the position of the overlapping portion, the surface shape is likely to represent the surface shape of the original measurement object from the two surface measurement data, and the first It is possible to generate composite surface measurement data in which the surface measurement data and the second surface measurement data are continuously connected.

さらに具体的には、前記光学式表面形状測定機は白色干渉計とすることができる。   More specifically, the optical surface profilometer can be a white interferometer.

また、前記第六の工程の後に、既に測定された測定面領域を第一の測定面領域として前記第三乃至第六の工程を繰り返し行う第七の工程を更に有するようにすることができる。   Further, after the sixth step, a seventh step of repeatedly performing the third to sixth steps using the already measured measurement surface region as the first measurement surface region can be provided.

このようにすることで、測定しようとする測定領域の全てが測定できるまで、測定とその測定データの繋ぎ合せを繰り返して行い、任意の面積の測定をすることが可能となる。   By doing in this way, it becomes possible to repeat the measurement and the connection of the measurement data and measure an arbitrary area until all the measurement regions to be measured can be measured.

以下、本発明に係る表面形状測定方法を添付図面に基づき説明する。   Hereinafter, a surface shape measuring method according to the present invention will be described with reference to the accompanying drawings.

本発明の表面形状測定方法に用いる表面形状測定装置の一実施例の概略図である。It is the schematic of one Example of the surface shape measuring apparatus used for the surface shape measuring method of this invention. 水平面移動ステージの移動方向と白色干渉計のCCDカメラのカメラ視野の関係を示す図である。It is a figure which shows the relationship between the moving direction of a horizontal surface moving stage, and the camera visual field of the CCD camera of a white interferometer. 白色干渉計のカメラ視野のスケール校正を示す。The scale calibration of the camera field of the white interferometer is shown. 本発明の表面形状測定方法の測定ステップを示すフローチャートである。It is a flowchart which shows the measurement step of the surface shape measuring method of this invention. 第一の測定面領域と第二の測定面領域がオーバーラップ領域をもって重なり合っている状態を示す。The state which the 1st measurement surface area | region and the 2nd measurement surface area | region overlap with an overlap area | region is shown. 平行移動前の面測定データを示す。The surface measurement data before translation is shown. 図6における2つの面測定データを合成した合成面測定データを示す。FIG. 7 shows combined surface measurement data obtained by combining the two surface measurement data in FIG. 6. オーバーラップ領域における面測定データの不一致の状態と、重み付け平均を行った後の合成面測定データを表すグラフである。It is a graph showing the state of disagreement of the surface measurement data in the overlap region and the combined surface measurement data after performing the weighted average. 本発明の表面形状測定方法による測定例における測定条件を示す表である。It is a table | surface which shows the measurement conditions in the example of a measurement by the surface shape measuring method of this invention. 本発明の表面形状測定方法による測定例のうち非球面レンズの測定を行った結果を示すグラフである。It is a graph which shows the result of having measured the aspherical lens among the measurement examples by the surface shape measuring method of this invention. 非球面レンズの測定結果について各測定条件間での比較を示すグラフである。It is a graph which shows the comparison between each measurement conditions about the measurement result of an aspherical lens. 非球面レンズの測定結果について1%オーバーラップ領域の測定結果と触針式表面形状測定機の測定結果の差を示すグラフである。It is a graph which shows the difference of the measurement result of a 1% overlap area | region, and the measurement result of a stylus type surface shape measuring machine about the measurement result of an aspherical lens. 本発明の表面形状測定方法による測定例のうち非球面レンズの測定結果について測定条件間の比較を示すグラフである。It is a graph which shows the comparison between measurement conditions about the measurement result of an aspherical lens among the measurement examples by the surface shape measuring method of this invention. クロム蒸着平面の測定結果について測定条件間での比較を示すグラフである。It is a graph which shows the comparison between measurement conditions about the measurement result of a chromium vapor deposition plane. 従来の回転補正を伴うスティッチングを示すグラフである。It is a graph which shows the stitching accompanying the conventional rotation correction. 従来方法による回転補正によって累積誤差が発生したときの測定例を示すグラフである。It is a graph which shows the example of a measurement when a cumulative error generate | occur | produces by the rotation correction by a conventional method.

図1に示す表面形状測定装置10は、白色干渉計11と水平面移動ステージ12と測定データのデータ演算を行うデータ演算部13とから構成される。白色干渉計11と水平面移動ステージ12は装置ベース21に固定されている。白色干渉計11は、参照ミラーを内蔵する干渉用対物レンズ15、測定用アクチュエータ16、光学ヘッド17及びCCDカメラ19を備えている。干渉用対物レンズ15は測定対象に合わせて適当な倍率のものが選択され、特に測定の水平分解能を高くしたい場合には高倍率のレンズを選定することとなる。干渉用対物レンズ15は測定用アクチュエータ16に取り付けられ、測定用アクチュエータ16は、干渉縞測定時に干渉用対物レンズ15を精密に垂直走査させて干渉用対物レンズ15と測定対象物30の距離を変化させるために使用される。測定用アクチュエータ16にはリニアスケールが内蔵されており、アクチュエータによる変化量を正確に測定できるようになっている。測定用アクチュエータ16はさらに光学ヘッド17に取り付けられている。光学ヘッド17には光源18が内蔵されており、光源18からの光を適切に干渉用対物レンズ15に導く光学系と、干渉用対物レンズ15に内蔵された参照ミラーと測定対象物30からの反射光による干渉縞を正確にCCDカメラの撮像面に結像させる光学系が内蔵されている。本装置では、光源として高輝度白色LED光源を採用している。従来のハロゲンランプに比べて熱の発生が抑えられるため、僅かな熱膨張も測定誤差の要因となる微細表面形状測定には特に有効である。白色干渉計11はZ軸駆動部20を介して装置ベース21に固定されている。白色干渉計11の下部に位置し、装置ベース21に固定された水平面移動ステージ12は、XY軸方向に駆動可能な高真直度XY軸ステージである。本実施例で使用した高真直度XY軸ステージは、株式会社小坂研究所製の微細形状測定機ETシリーズにも使用されているステージであり、その真直度は100mm移動時で0.1μm、5mm移動時で5nmを保証する高真直度のステージである。なお、当該表面形状測定装置では、光学式表面形状測定装置として白色干渉計を採用したがこれに限定されるわけではなく、その他の光学式表面形状測定装置、例えば位相シフト法やレーザービーム走査を用いた表面形状測定装置とすることも可能である。   A surface shape measuring apparatus 10 shown in FIG. 1 includes a white interferometer 11, a horizontal plane moving stage 12, and a data calculation unit 13 that performs data calculation of measurement data. The white interferometer 11 and the horizontal plane moving stage 12 are fixed to the apparatus base 21. The white interferometer 11 includes an interference objective lens 15 incorporating a reference mirror, a measurement actuator 16, an optical head 17, and a CCD camera 19. The interference objective lens 15 is selected to have an appropriate magnification in accordance with the object to be measured. In particular, when it is desired to increase the horizontal resolution of the measurement, a high magnification lens is selected. The interference objective lens 15 is attached to the measurement actuator 16, and the measurement actuator 16 precisely scans the interference objective lens 15 in the vertical direction during interference fringe measurement to change the distance between the interference objective lens 15 and the measurement object 30. Used to make. The measuring actuator 16 has a built-in linear scale so that the amount of change by the actuator can be measured accurately. The measurement actuator 16 is further attached to the optical head 17. The optical head 17 includes a light source 18, an optical system that appropriately guides light from the light source 18 to the interference objective lens 15, a reference mirror built in the interference objective lens 15, and the measurement object 30. An optical system that accurately forms an interference fringe due to reflected light on the imaging surface of the CCD camera is incorporated. In this apparatus, a high-intensity white LED light source is used as the light source. Since generation of heat is suppressed as compared with conventional halogen lamps, slight thermal expansion is particularly effective for fine surface shape measurement that causes measurement errors. The white interferometer 11 is fixed to the apparatus base 21 via the Z-axis drive unit 20. The horizontal plane moving stage 12 positioned below the white interferometer 11 and fixed to the apparatus base 21 is a high straightness XY axis stage that can be driven in the XY axis direction. The high straightness XY axis stage used in this example is a stage that is also used in the micro shape measuring machine ET series manufactured by Kosaka Laboratory Ltd., and the straightness is 0.1 μm and 5 mm when moving 100 mm. It is a high straightness stage that guarantees 5 nm when moving. In this surface shape measuring device, a white interferometer is adopted as the optical surface shape measuring device, but the present invention is not limited to this, and other optical surface shape measuring devices such as a phase shift method and laser beam scanning are used. It is also possible to use the surface shape measuring device used.

白色干渉計11が備えるCCDカメラ19は、図2に示すように高真直度XY軸ステージの移動方向X、Yとカメラ視野40の長辺方向Xa、短辺方向Yaを一致させて設置している。CCDカメラ19の位置調整は、例えば特徴的な微細突起部がある測定対象物を高真直度XY軸ステージ上に設置し、高真直度XY軸ステージでX軸方向に移動させた際に、微細突起部がXa方向に移動して見えるようにCCDカメラ19の回転方向を調整することにより行う。このとき、できるだけ良く一致させることが重要であり、例えば微細突起部がカメラ視野40の端から端まで移動した際に、Ya方向に1ピクセル分のずれが生じないようにCCDカメラ19の位置調整を行う。また、カメラ視野のX方向の長さXcとY方向の長さYcを高精度リニアスケールXs,Ysにより校正しておく。このように、予めCCDカメラのカメラ視野40の角度とスケールを調整しておくことで、面測定データのXY方向への拡大縮小、位置ずれ補正、回転処理を考慮する必要がなくなり、実際上は高さ方向(Z方向)のみの平行移動による測定データの繋ぎ合せで十分な精度の測定結果が得られることとなる。   As shown in FIG. 2, the CCD camera 19 provided in the white interferometer 11 is installed such that the movement directions X and Y of the high straightness XY axis stage coincide with the long side direction Xa and the short side direction Ya of the camera visual field 40. Yes. The position adjustment of the CCD camera 19 is performed when, for example, a measurement object having a characteristic fine protrusion is placed on a high straightness XY axis stage and moved in the X axis direction on the high straightness XY axis stage. This is done by adjusting the rotation direction of the CCD camera 19 so that the protrusions appear to move in the Xa direction. At this time, it is important to match as much as possible. For example, when the fine protrusion moves from one end of the camera visual field 40 to the other end, the position adjustment of the CCD camera 19 is performed so that the one-pixel shift does not occur in the Ya direction. I do. Further, the length Xc in the X direction and the length Yc in the Y direction of the camera field of view are calibrated using high-precision linear scales Xs and Ys. In this way, by adjusting the angle and scale of the camera field of view of the CCD camera in advance, there is no need to consider the enlargement / reduction of the surface measurement data in the XY direction, the positional deviation correction, and the rotation process. A measurement result with sufficient accuracy can be obtained by connecting measurement data by translation only in the height direction (Z direction).

次に、上記の表面形状測定装置10を用いた表面形状測定方法について図4のフローチャートに基づいて説明する。測定開始に際して、まず測定対象物30を水平面移動ステージ12上に設置する(S01)。測定中に測定対象物30が振動などにより位置ずれを起こさないように確実に固定しておく必要がある。   Next, a surface shape measuring method using the surface shape measuring apparatus 10 will be described based on the flowchart of FIG. At the start of measurement, first, the measurement object 30 is placed on the horizontal plane moving stage 12 (S01). It is necessary to securely fix the measurement object 30 so that the measurement object 30 is not displaced due to vibration during measurement.

次に、第一の測定面領域31の表面形状測定を白色干渉計11で行う(S02)。測定用アクチュエータ16で順次干渉用対物レンズを上下動させて測定された干渉縞はCCDカメラ19で撮像され、測定用アクチュエータ16の測定時の高さ情報と共にデータ演算部13に送られる。データ演算部13においてデータ処理が施され第一の面測定データとして記憶される。   Next, the surface shape of the first measurement surface region 31 is measured by the white interferometer 11 (S02). The interference fringes measured by sequentially moving the interference objective lens up and down by the measurement actuator 16 are picked up by the CCD camera 19 and sent to the data calculation unit 13 together with the height information at the time of measurement of the measurement actuator 16. Data processing is performed in the data calculation unit 13 and stored as first surface measurement data.

次に、第二の測定面領域32と白色干渉計11の測定視野が一致するように、水平面ステージ12を移動させる(S03)。ここで第二の測定面領域32は第一の測定面領域31と重複するオーバーラップ領域33分を含む測定面領域である。オーバーラップ領域の面積の大小は後に示すように互いに重なり合う面測定データの繋ぎ合せの精度にほとんど影響を与えない。面測定データに含まれるノイズを平均化するという意味においては、オーバーラップ領域は大きい方が良いが、実際にはオーバーラップ領域は測定視野の10%でも実用上問題はなく、さらに1%以下若しくは線(CCDカメラにおける1ピクセルの幅)としても、十分な繋ぎ合せ精度を確保できる。よって、本実施例では、通常、オーバーラップ領域を1%として測定を行っている。ただし、オーバーラップ領域にあたる部分の測定対象物の形状や材質によっては、白色干渉計で測定ができないか又は測定はできてもノイズが多くなって十分な精度で繋ぎ合せができなくなる場合がある。このような場合には、十分な精度で繋ぎ合わせができるようにオーバーラップ領域を適宜大きく設定する。   Next, the horizontal plane stage 12 is moved so that the second measurement surface region 32 and the measurement visual field of the white interferometer 11 coincide (S03). Here, the second measurement surface region 32 is a measurement surface region including an overlap region 33 that overlaps the first measurement surface region 31. As will be described later, the size of the area of the overlap region hardly affects the accuracy of joining the surface measurement data that overlap each other. In terms of averaging the noise included in the surface measurement data, it is better that the overlap region is large. However, in practice, the overlap region has no practical problem even if it is 10% of the measurement field of view. Even as a line (width of one pixel in a CCD camera), sufficient joining accuracy can be secured. Therefore, in the present embodiment, the measurement is usually performed with the overlap region as 1%. However, depending on the shape and material of the measurement object in the overlapping region, there are cases where measurement cannot be performed with a white interferometer, or even if measurement can be performed, noise increases and connection cannot be performed with sufficient accuracy. In such a case, the overlap region is appropriately set large so that the joining can be performed with sufficient accuracy.

次に、第二の測定面領域32の表面形状を第一の測定面領域31の場合と同様に白色干渉計11で行い、データ演算部13において第二の面測定データを生成し記憶する(S04)。   Next, the surface shape of the second measurement surface region 32 is set by the white interferometer 11 as in the case of the first measurement surface region 31, and the second surface measurement data is generated and stored in the data calculation unit 13 ( S04).

次に、第一の面測定データ34と第二の面測定データ35のオーバーラップ領域33に当たる部分を比較して、両データの測定時の位置ずれを求める。ここで、本発明においては、従来技術のようなX軸、Y軸、Z軸回りの回転補正は行わず、X方向、Y方向、Z方向の平行移動のみを行う。X方向もしくはY方向のデータの平行移動を行う場合には、各面測定データ内の特徴点のマッチング処理等の演算が必要となるが、高真直度のステージの採用とCCDカメラの正確な調整及び校正を事前に行っておくことで、実際上はX方向及びY方向の平行移動を行わなくても十分な測定精度を得ることができる。高さ方向(Z方向)については、白色干渉計11の測定アクチュエータ16の精度にもよるが、通常はナノメートルオーダーの精度を保証するには至らないため、正確に繋ぎ合せるためには高さ方向(Z方向)の平行移動は必要となる。本実施例では、高さ方向(Z軸方向)のみのずれ量(Zoffset)を計算して繋ぎ合せを行っている。具体的には、第一の面測定データ34と第二の面測定データ35の高さ方向のずれ量をオーバーラップ領域の高さ方向の差から求めて、その分だけ第二の面測定データ35の高さ方向データを全体に平行移動させてオーバーラップ領域33において両データ間の残差が最小となるようにする。本実施例では第二の面測定データ35を第一の面測定データ34に合わせるように高さ方向の平行移動を行っているが、第一の面測定データ34を平行移動して第二の面測定データ35に合わせても、若しくは両方の面測定データを平行移動して合せても本質的な差はなく得られる結果は同じである。   Next, a portion corresponding to the overlap region 33 of the first surface measurement data 34 and the second surface measurement data 35 is compared, and a positional deviation at the time of measurement of both data is obtained. Here, in the present invention, rotation correction around the X, Y, and Z axes as in the prior art is not performed, and only translation in the X, Y, and Z directions is performed. When translating data in the X or Y direction, calculations such as matching processing of feature points in each surface measurement data are required. However, the use of a high-straightness stage and accurate adjustment of the CCD camera are required. In addition, by performing calibration in advance, in practice, sufficient measurement accuracy can be obtained without performing parallel movement in the X direction and the Y direction. Regarding the height direction (Z direction), although it depends on the accuracy of the measurement actuator 16 of the white interferometer 11, it is usually not possible to guarantee nanometer-order accuracy. Translation in the direction (Z direction) is required. In this embodiment, the amount of displacement (Zoffset) only in the height direction (Z-axis direction) is calculated and connected. Specifically, the amount of deviation in the height direction between the first surface measurement data 34 and the second surface measurement data 35 is obtained from the difference in the height direction of the overlap region, and the second surface measurement data is correspondingly obtained. The 35 height direction data are translated in parallel so that the residual between the data in the overlap region 33 is minimized. In this embodiment, the second surface measurement data 35 is translated in the height direction so as to match the first surface measurement data 34. However, the first surface measurement data 34 is translated and the second surface measurement data 35 is translated. Even if it matches the surface measurement data 35 or both surface measurement data are translated and combined, there is no essential difference and the obtained result is the same.

次に、第一の面測定データと高さ方向に平行移動された第二の面測定データを合成して1つの合成面測定データ36を生成する。このとき、普通はオーバーラップ領域33における2つの面測定データは完全には一致せず、図8に示すようにデータにずれが生じる。このようなずれは、主にレンズの歪みや参照面の歪みといった光学的な歪みにより発生するものであり、測定前にこのような光学的歪みを補正しておくことである程度は低減させられる。しかし、それでもなお完全に一致することはないため、繋ぎ合せに際しては何らかの演算が必要となる。本実施例では、その一つの手段として重み付け平均を採用している。重み付け平均処理をした結果、両面測定データは図8に示すように滑らかに繋ぎ合される。なお、本実施例においては、特にこの光学的歪み補正について記載していないが、測定前に当該補正を行っておくことは必要に応じて適宜行われるものである。   Next, the first surface measurement data and the second surface measurement data translated in the height direction are combined to generate one combined surface measurement data 36. At this time, normally, the two surface measurement data in the overlap region 33 do not completely coincide with each other, and the data is shifted as shown in FIG. Such a shift is mainly caused by optical distortion such as lens distortion or reference surface distortion, and can be reduced to some extent by correcting such optical distortion before measurement. However, since there is still no perfect match, some operation is required for joining. In this embodiment, weighted average is adopted as one means. As a result of the weighted averaging process, the double-sided measurement data are smoothly joined as shown in FIG. In the present embodiment, this optical distortion correction is not particularly described, but the correction before measurement is appropriately performed as necessary.

測定しようとする面積は、状況により様々であり、これまでに説明したような2回の測定で測定しようとする全面積の測定が完了することは、むしろ稀である。このような場合には、既に測定した測定面領域を第一の測定面領域に置き換えて、それに一部重複する測定面領域を第二の測定面領域として表面形状測定を行い、合成するという工程を繰り返すことによって、すべての測定しようとする面積の測定ができる。例えば後述する測定例では、この工程を20回から40回繰り返し行って所定の面積の測定を行っている。   The area to be measured varies depending on the situation, and it is rather rare that the measurement of the entire area to be measured by two measurements as described above is completed. In such a case, the measurement surface area that has already been measured is replaced with the first measurement surface area, and the measurement surface area that partially overlaps the second measurement surface area is measured and synthesized. By repeating the above, it is possible to measure all areas to be measured. For example, in the measurement example described later, this process is repeated 20 to 40 times to measure a predetermined area.

図10乃至図14は、上記実施例の方法に従って実際に測定をした際の測定結果を示すものである。以下、測定例について説明する。
まず、幅4.5mmで凸部が30μmの非球面レンズの表面形状を測定した測定例について説明する。図10及び図11に示した結果から、50%オーバーラップ領域と1%オーバーラップ領域を比較したときに10nm程度の差がみられる。さらに、図12に示すように1%オーバーラップ領域で測定したときと触針式表面形状測定機で測定したときの差は約20nmであるが、30μmの凸形状の測定に対して0.1%以下で一致しているため、十分な性能であると言える。ちなみにこれらの測定間の差には、測定方法による差だけでなく、測定場所の違いや感度係数の違いによる影響も含まれているため、単純に測定方法の違いのみに着目した場合には、もっと高い精度で一致していると考えられる。なお、比較に使用した触針式表面形状測定機の高さ方向の最高測定分解能は0.1nm、段差測定の再現性は2nm以内(1σ)である。
10 to 14 show the measurement results when actually measuring according to the method of the above embodiment. Hereinafter, measurement examples will be described.
First, a measurement example in which the surface shape of an aspheric lens having a width of 4.5 mm and a convex portion of 30 μm is measured will be described. From the results shown in FIGS. 10 and 11, a difference of about 10 nm is seen when comparing the 50% overlap region and the 1% overlap region. Further, as shown in FIG. 12, the difference between the measurement with the 1% overlap region and the measurement with the stylus type surface shape measuring instrument is about 20 nm, but 0.1% for the measurement of the convex shape of 30 μm. %, It can be said that the performance is sufficient. By the way, the difference between these measurements includes not only differences due to measurement methods, but also effects due to differences in measurement locations and sensitivity factors. It is considered that they match with higher accuracy. The maximum measurement resolution in the height direction of the stylus type surface shape measuring machine used for comparison is 0.1 nm, and the reproducibility of the step measurement is within 2 nm (1σ).

図14に示した1%オーバーラップ領域時の本発明による測定結果と触針式表面形状測定機での測定結果の差は5nm以下であり、極めてよい一致を示している。非球面レンズの測定例に比べてさらに良い一致を示しているのは、クロム蒸着面が非球面レンズのガラス面に比べて光の反射率が高いことにより光干渉計法による測定時のノイズが小さいこと、及び平面であるため両測定間の測定位置のずれの影響がほとんどないことによるものである。   The difference between the measurement result of the present invention in the 1% overlap region shown in FIG. 14 and the measurement result of the stylus type surface shape measuring machine is 5 nm or less, which shows a very good agreement. Compared to the measurement example of the aspherical lens, it shows a better match than the glass surface of the aspherical lens because the chromium deposition surface has a higher light reflectivity, and the noise during measurement by the optical interferometer method is higher. This is due to the small size and the fact that there is almost no influence of the displacement of the measurement position between the two measurements because of the flat surface.

なお、4.5mmの領域の測定を行うのに50%オーバーラップ領域では40回の測定を行い、40の面測定データを繋ぎ合せる必要があるが、1%オーバーラップ領域では半分の20回の測定で足りる。つまり、従来のように30%から50%ものオーバーラップ領域を要していたのに比べて、約半分の時間で測定を完了できることになる。これは、単に測定時間を短縮できるという効果をもたらすのみならず、測定時間を短縮することで、その間の温度などの環境変化も小さくなり、測定結果の精度向上にも貢献することとなる。   In addition, in order to measure the 4.5 mm area, it is necessary to perform 40 measurements in the 50% overlap area and to connect the 40 surface measurement data, but in the 1% overlap area, it is 20 times half. Measurement is enough. That is, the measurement can be completed in about half the time compared to the conventional case where an overlap region of 30% to 50% is required. This not only brings about the effect that the measurement time can be shortened, but also shortens the measurement time, thereby reducing environmental changes such as temperature during that time and contributing to improving the accuracy of the measurement results.

10 表面形状測定装置
11 白色干渉計
12 水平面移動ステージ
13 データ演算部
15 干渉用対物レンズ
16 測定用アクチュエータ
17 光学ヘッド
18 光源
19 CCDカメラ
20 Z軸駆動部
21 装置ベース
30 測定対象物
31 第一の測定面領域
32 第二の測定面領域
33 オーバーラップ領域
34 第一の面測定データ
35 第二の面測定データ
36 合成面測定データ
40 カメラ視野
DESCRIPTION OF SYMBOLS 10 Surface shape measuring device 11 White interferometer 12 Horizontal surface moving stage 13 Data calculating part 15 Interference objective lens 16 Measuring actuator 17 Optical head 18 Light source 19 CCD camera 20 Z-axis drive part 21 Device base 30 Measurement object 31 1st Measurement surface region 32 Second measurement surface region 33 Overlap region 34 First surface measurement data 35 Second surface measurement data 36 Composite surface measurement data 40 Camera field of view

Claims (6)

複数回に分けて測定した表面形状測定データを繋ぎ合せて表面形状を測定する表面形状測定方法であって、
装置ベースに対して固定された真直度が5mm移動時で5nm以下である水平面移動ステージに測定対象物を設置する第一の工程と、
前記測定対象物の第一の測定面領域の三次元表面形状を装置ベースに対して水平面方向で固定されている光学式表面形状測定機で測定して第一の面測定データを取得する第二の工程と、
前記第一の測定面領域の一部と重複するオーバーラップ領域を有する第二の測定面領域と前記光学式表面形状測定機の測定視野が一致するように前記水平面移動ステージを前記光学式表面形状測定機に対して移動させる第三の工程と、
前記第二の測定面領域の三次元表面形状を前記光学式表面形状測定機で測定して第二の面測定データを取得する第四の工程と、
前記第一の面測定データにおける前記一部に対応する面測定データと前記第二の面測定データにおける前記オーバーラップ領域に対応する面測定データが重なり合うように前記第一の面測定データ及び前記第二の面測定データの一方又は両方を高さ方向にのみ平行移動する第五の工程と、
前記平行移動した前記第一の面測定データと前記第二の面測定データを合成して合成面測定データを生成する第六の工程と、
を有する表面形状測定方法。
It is a surface shape measurement method for measuring the surface shape by connecting the surface shape measurement data measured in multiple times,
A first step of installing a measurement object on a horizontal plane moving stage whose straightness fixed with respect to the apparatus base is 5 nm or less when moving 5 mm ;
A second measurement unit obtains first surface measurement data by measuring the three-dimensional surface shape of the first measurement surface region of the measurement object with an optical surface shape measuring instrument fixed in the horizontal plane direction with respect to the apparatus base. And the process of
The first part and the second measuring surface region and the optical surface profile measuring instrument measurement field of view and is the horizontal moving stage the optical surface to match the having overlapping area overlapping the measurement surface area A third step of moving relative to the shape measuring machine ;
A fourth step of obtaining the second surface measurement data by measuring the three-dimensional surface shape of the second measurement surface region with the optical surface shape measuring instrument;
The first surface measurement data and the first surface measurement data so that the surface measurement data corresponding to the part of the first surface measurement data and the surface measurement data corresponding to the overlap region in the second surface measurement data overlap. A fifth step of translating one or both of the two surface measurement data only in the height direction ;
A sixth step of synthesizing the translated first surface measurement data and the second surface measurement data to generate combined surface measurement data;
A surface shape measuring method having
前記オーバーラップ領域が、前記光学式表面形状測定機の測定視野の10%以下の面積である請求項1に記載の表面形状測定方法。   The surface shape measuring method according to claim 1, wherein the overlap region has an area of 10% or less of a measurement visual field of the optical surface shape measuring instrument. 前記オーバーラップ領域が、前記光学式表面形状測定機の測定視野の1%以下の面積である請求項1に記載の表面形状測定方法。   The surface shape measuring method according to claim 1, wherein the overlap region has an area of 1% or less of a measurement visual field of the optical surface shape measuring instrument. 前記合成面測定データの生成が、前記第一の面測定データと前記第二の面測定データが連続的に繋がるように、前記第一の面測定データと前記第二の面測定データに対する重み付け平均処理によって互いに重なり合う測定面領域の面測定データを合成する合成面測定データの生成である請求項1乃至のいずれか一項に記載の表面形状測定方法。 Generation of the composite surface measurement data is a weighted average for the first surface measurement data and the second surface measurement data so that the first surface measurement data and the second surface measurement data are continuously connected. surface shape measuring method according to any one of claims 1 to 3 is the generation of synthetic surface measurement data synthesizing surface measurement data of the measurement surface areas overlap each other by the processing. 前記光学式表面形状測定機が、白色干渉計である請求項1乃至のいずれか一項に記載の表面形状測定方法。 The surface shape measuring method according to any one of claims 1 to 4 , wherein the optical surface shape measuring instrument is a white interferometer. 前記第六の工程の後に、既に測定された測定面領域を第一の測定面領域として前記第三乃至第六の工程を繰り返し行う第七の工程を更に有する請求項1乃至のいずれか一項に記載の表面形状測定方法。
The method according to any one of claims 1 to 5 , further comprising a seventh step of repeating the third to sixth steps after the sixth step, with the already measured measurement surface region as the first measurement surface region. The surface shape measuring method according to item .
JP2010260128A 2010-11-22 2010-11-22 Surface shape measurement method Active JP5698963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010260128A JP5698963B2 (en) 2010-11-22 2010-11-22 Surface shape measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010260128A JP5698963B2 (en) 2010-11-22 2010-11-22 Surface shape measurement method

Publications (2)

Publication Number Publication Date
JP2012112705A JP2012112705A (en) 2012-06-14
JP5698963B2 true JP5698963B2 (en) 2015-04-08

Family

ID=46497091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010260128A Active JP5698963B2 (en) 2010-11-22 2010-11-22 Surface shape measurement method

Country Status (1)

Country Link
JP (1) JP5698963B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6095486B2 (en) * 2013-05-27 2017-03-15 株式会社ミツトヨ Image measuring device
JP6212314B2 (en) * 2013-07-22 2017-10-11 株式会社ミツトヨ Image measuring apparatus and program
JP6589371B2 (en) * 2015-05-25 2019-10-16 三菱電機株式会社 Surface level difference measuring method, surface level difference measuring device, and liquid crystal display manufacturing method
US10055849B2 (en) 2015-12-08 2018-08-21 Mitutoyo Corporation Image measurement device and controlling method of the same
JP7080718B2 (en) * 2018-05-08 2022-06-06 株式会社ミツトヨ Optical device and shape measurement method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04290905A (en) * 1991-03-19 1992-10-15 Fuji Photo Optical Co Ltd Shape measuring device
JPH07174535A (en) * 1993-12-20 1995-07-14 Advantest Corp Surface shape measurement device
JPH10170243A (en) * 1996-12-11 1998-06-26 Matsushita Electric Ind Co Ltd Method and device for measuring shape
JP3562338B2 (en) * 1998-09-10 2004-09-08 富士ゼロックス株式会社 Surface shape measuring method and device
JP2002148025A (en) * 2000-11-09 2002-05-22 Ricoh Co Ltd Three-dimensional shape measuring apparatus
JP4183576B2 (en) * 2003-08-08 2008-11-19 株式会社ミツトヨ Scanning surface shape measuring apparatus and surface shape measuring method
JP2005127805A (en) * 2003-10-22 2005-05-19 Mitsutoyo Corp Planar shape measuring method and system
JP5252777B2 (en) * 2005-12-22 2013-07-31 東芝機械株式会社 Scanning mechanism and scanning method for vertical two-dimensional surface
JP4245054B2 (en) * 2007-01-26 2009-03-25 セイコーエプソン株式会社 In-pixel functional liquid form measuring method, in-pixel functional liquid form measuring apparatus and droplet discharge apparatus, electro-optical apparatus manufacturing method, electro-optical apparatus, and electronic apparatus

Also Published As

Publication number Publication date
JP2012112705A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
CN112987288B (en) Confocal imaging apparatus having a curved focal plane or target reference element and a field compensator
TWI553342B (en) Measuring topography of aspheric and other non-flat surfaces
JP5260703B2 (en) 3D measurement method
Wang et al. Development of structured light 3D-scanner with high spatial resolution and its applications for additive manufacturing quality assurance
JP5698963B2 (en) Surface shape measurement method
JP5597205B2 (en) Apparatus for measuring shape of test surface and program for calculating shape of test surface
WO2012159651A1 (en) Method and device for non-contact measuring surfaces
US11257232B2 (en) Three-dimensional measurement method using feature amounts and device using the method
US20160033753A1 (en) Image acquiring apparatus
JP2010133860A (en) Shape calculation method
JP2013160680A (en) Method for measuring plane shape, plane shape measuring device, program, optical element, and method for manufacturing optical element
CN108801148A (en) Method and system for the height map for calculating body surface
US7616324B2 (en) Ultra precision profile measuring method
JP3728187B2 (en) Imaging optical system performance measuring method and apparatus
CN113091637A (en) Ultra-high precision plane mirror full-aperture medium-frequency surface shape measuring device and method
JP5649926B2 (en) Surface shape measuring apparatus and surface shape measuring method
CN113566740A (en) Ultra-precise measurement device and method based on microscopic stereo deflection beam technology
CN108413872B (en) Three-dimensional size precision measurement method based on Fabry-Perot multi-beam interference
JP6732680B2 (en) Map making method, mask inspection method and mask inspection apparatus
US6867871B2 (en) Moiré grating noise eliminating method
JP2009267064A (en) Measurement method and exposure apparatus
JP2009216702A (en) Optical measuring instrument
JP2005024505A (en) Device for measuring eccentricity
JP5618727B2 (en) Shape measuring method and shape measuring device
JP3349235B2 (en) Interference measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150216

R150 Certificate of patent or registration of utility model

Ref document number: 5698963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250