JP5696311B2 - Organic compound dissolved amount measuring device - Google Patents

Organic compound dissolved amount measuring device Download PDF

Info

Publication number
JP5696311B2
JP5696311B2 JP2010039509A JP2010039509A JP5696311B2 JP 5696311 B2 JP5696311 B2 JP 5696311B2 JP 2010039509 A JP2010039509 A JP 2010039509A JP 2010039509 A JP2010039509 A JP 2010039509A JP 5696311 B2 JP5696311 B2 JP 5696311B2
Authority
JP
Japan
Prior art keywords
organic compound
unit
radical
gas
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010039509A
Other languages
Japanese (ja)
Other versions
JP2011174826A (en
Inventor
克純 梶井
克純 梶井
吉弘 中嶋
吉弘 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to JP2010039509A priority Critical patent/JP5696311B2/en
Publication of JP2011174826A publication Critical patent/JP2011174826A/en
Application granted granted Critical
Publication of JP5696311B2 publication Critical patent/JP5696311B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、水等の液体に含まれる有機化合物の溶存量を測定するための有機化合物溶存量測定装置に関する。   The present invention relates to an organic compound dissolved amount measuring apparatus for measuring the dissolved amount of an organic compound contained in a liquid such as water.

従来、液性の溶媒に可溶な物質を測定する方法として、液体クロマトグラフィーが知られている。この方法は、非常に高感度で、かつ高精度な定性定量分析法であるが、装置が大掛かりになり取り扱いが複雑となってしまう。そこで、化学物質の特定までは不要である場合には、分析時間を短縮するために、溶媒中の導電度の測定によって濃度を算出している。   Conventionally, liquid chromatography is known as a method for measuring a substance soluble in a liquid solvent. This method is a highly sensitive and highly accurate qualitative quantitative analysis method, but the apparatus becomes large and the handling becomes complicated. Therefore, when it is not necessary to specify the chemical substance, the concentration is calculated by measuring the conductivity in the solvent in order to shorten the analysis time.

ただし、電解質物質のみの検出となるので、有機化合物等の非電解質物質への濃度は測定できない。このような場合、例えば、n型半導体触媒膜に吸着させた測定対象水に光源から光を照射し、この際に酸化分解して放出されたハロゲンイオン量の変化を参照電極との電位差として検出して測定対象化合物を定量する方法が知られている(例えば、特許文献1参照。)。   However, since only the electrolyte substance is detected, the concentration of the organic compound or the like in the non-electrolyte substance cannot be measured. In such a case, for example, the water to be measured adsorbed on the n-type semiconductor catalyst film is irradiated with light from a light source, and a change in the amount of halogen ions released by oxidative decomposition is detected as a potential difference from the reference electrode. Thus, a method for quantifying a measurement target compound is known (for example, see Patent Document 1).

特開2002−014078号公報JP 2002-014078 A

しかしながら、上記従来の場合、光を照射してイオン分解させているので、物質に応じた光を照射する必要があり不便である。本発明は上記事情に鑑みて成されたものであり、簡便にかつ迅速に液体溶媒中の有機化合物量を測定することができる有機化合物溶存量測定装置を提供することを目的とする。   However, in the conventional case, since ion decomposition is performed by irradiating light, it is necessary to irradiate light according to the substance, which is inconvenient. The present invention has been made in view of the above circumstances, and an object thereof is to provide an organic compound dissolved amount measuring apparatus capable of easily and quickly measuring the amount of an organic compound in a liquid solvent.

本発明は、上記課題を解決するため、以下の手段を採用する。
本発明に係る有機化合物溶存量測定装置は、有機化合物が溶存された液状の試料が貯留される貯留部を有する液体試料供給部と、前記貯留部に貯留された前記試料を気化する加熱部と、気化された前記試料にオゾンガス及び標準ガスを供給するオゾン添加希釈部と、前記オゾンガスからOHラジカルを生成して前記試料と反応させるOHラジカル生成反応部と、前記OHラジカルの濃度の時間変化を計測するOHラジカル検出部と、を備えていることを特徴とする。
The present invention employs the following means in order to solve the above problems.
The organic compound dissolved amount measuring apparatus according to the present invention includes a liquid sample supply unit having a storage unit in which a liquid sample in which an organic compound is dissolved is stored, and a heating unit that vaporizes the sample stored in the storage unit. An ozone addition dilution section for supplying ozone gas and a standard gas to the vaporized sample, an OH radical generation reaction section for generating OH radicals from the ozone gas and reacting with the sample, and a change in the concentration of the OH radicals with time. And an OH radical detector to be measured.

この発明は、気化した試料にオゾンガスとともに標準ガスを加えて希釈し、添加したオゾンガスからOHラジカルを発生させ、試料中の有機化合物と反応させた際に減衰するOHラジカルの寿命から、反応した有機化合物量、すなわち、試料中の有機化合物量を算出する。   The present invention dilutes a vaporized sample by adding a standard gas together with ozone gas, generates OH radicals from the added ozone gas, and reacts with the organic compound in the sample from the lifetime of OH radicals that decay. The amount of compound, that is, the amount of organic compound in the sample is calculated.

また、本発明に係る有機化合物溶存量測定装置は、前記有機化合物溶存量測定装置であって、前記オゾン添加希釈部が、供給する前記標準ガスの供給量を追加調整する追加流量調節部を備えていることを特徴とする。   The organic compound dissolved amount measuring apparatus according to the present invention is the organic compound dissolved amount measuring apparatus, further comprising an additional flow rate adjusting unit that additionally adjusts the supply amount of the standard gas supplied by the ozone addition dilution unit. It is characterized by.

この発明は、OHラジカル生成反応部にて生成されるOHラジカル量に比べて試料中の有機化合物量が多い場合には、供給する標準ガス量を増加してOHラジカル生成反応部内でOHラジカルが残存可能な程度にまで試料を希釈する。   In the present invention, when the amount of organic compound in the sample is larger than the amount of OH radicals generated in the OH radical generation reaction unit, the amount of standard gas to be supplied is increased so that OH radicals are generated in the OH radical generation reaction unit. Dilute the sample to the extent that it can survive.

本発明に係る水質診断方法は、本発明に係る有機化合物溶存量測定装置を使用しての水質診断方法であって、診断対象となる水を気化する加熱工程と、気化された前記水にオゾンガス及び標準ガスを供給するオゾン添加希釈工程と、前記オゾンガスを生成するからOHラジカルを生成して前記水と反応させるOHラジカル生成反応工程と、前記OHラジカルの濃度の時間変化を計測するOHラジカル検出工程と、前記時間変化から前記試料に含有された有機化合物量を算出する演算工程と、を備えていることを特徴とする。   The water quality diagnosis method according to the present invention is a water quality diagnosis method using the organic compound dissolved amount measuring apparatus according to the present invention, and includes a heating step for vaporizing water to be diagnosed, and ozone gas in the vaporized water. And an ozone addition dilution process for supplying standard gas, an OH radical generation reaction process for generating OH radicals from the generation of the ozone gas and reacting with the water, and OH radical detection for measuring temporal changes in the concentration of the OH radicals And a calculation step of calculating the amount of the organic compound contained in the sample from the time change.

本発明によれば、簡便にかつ迅速に液体溶媒中の有機化合物量を測定することができる。また、試料中の有機化合物量にかかわらず、OHラジカルの濃度の時間変化を計測することができる。   According to the present invention, the amount of an organic compound in a liquid solvent can be measured easily and quickly. Moreover, the time change of the concentration of OH radicals can be measured regardless of the amount of the organic compound in the sample.

本発明の一実施形態に係る水質診断装置を示す概要図である。It is a schematic diagram which shows the water quality diagnostic apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る水質診断装置におけるオゾン添加希釈部を示す概要図である。It is a schematic diagram which shows the ozone addition dilution part in the water quality diagnostic apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る水質診断方法を示すフロー図である。It is a flowchart which shows the water quality diagnostic method which concerns on one Embodiment of this invention.

本発明に係る一実施形態について、図1から図3を参照して説明する。
本実施形態に係る水質診断装置(有機化合物溶存量測定装置)1は、液体試料供給部2と、加熱部3と、オゾン添加希釈部5と、OHラジカル生成反応部6と、OHラジカル検出部7と、制御部8と、を備えている。
An embodiment according to the present invention will be described with reference to FIGS.
A water quality diagnostic apparatus (organic compound dissolved amount measuring apparatus) 1 according to the present embodiment includes a liquid sample supply unit 2, a heating unit 3, an ozone addition dilution unit 5, an OH radical generation reaction unit 6, and an OH radical detection unit. 7 and a control unit 8.

液体試料供給部2は、農薬や洗剤成分等の有機化合物が溶存された水(液状の試料)Wが貯留される貯留部10と、貯留部10と加熱部3とを連通する配管11と、所定量の水Wを加熱部3へ移送するための移動ガス供給部12と、を備えている。移動ガス供給部12は、制御部8の指示に基づき、例えば所定量の窒素ガスNを貯留部10に供給する。 The liquid sample supply unit 2 includes a storage unit 10 that stores water (liquid sample) W in which organic compounds such as agricultural chemicals and detergent components are dissolved, a pipe 11 that communicates the storage unit 10 and the heating unit 3, and And a moving gas supply unit 12 for transferring a predetermined amount of water W to the heating unit 3. The moving gas supply unit 12 supplies, for example, a predetermined amount of nitrogen gas N 2 to the storage unit 10 based on an instruction from the control unit 8.

加熱部3は、配管11と連通された気化室13と、気化室13を覆う第一ヒーター15と、を備えている。そして、貯留部10から気化室13に移送された水Wを第一ヒーター15で加熱して気化する。   The heating unit 3 includes a vaporization chamber 13 communicated with the pipe 11 and a first heater 15 that covers the vaporization chamber 13. Then, the water W transferred from the storage unit 10 to the vaporizing chamber 13 is heated by the first heater 15 and vaporized.

オゾン添加希釈部5は、例えば、窒素ガスN及び酸素ガスOのみから構成される零位調整標準ガスである標準ガスZGが供給されて、標準ガスZG中の酸素ガスからオゾンガスを生成するオゾン生成部16と、オゾン生成部16と連通されてオゾンガス生成に必要な標準ガスZGの供給量を調整するガス流量調節部17と、を備えている。 For example, the ozone addition dilution unit 5 is supplied with a standard gas ZG that is a zero-adjustment standard gas composed of only nitrogen gas N 2 and oxygen gas O 2, and generates ozone gas from oxygen gas in the standard gas ZG. An ozone generation unit 16 and a gas flow rate adjustment unit 17 that communicates with the ozone generation unit 16 and adjusts the supply amount of the standard gas ZG necessary for ozone gas generation are provided.

オゾン添加希釈部5は、加熱部3とOHラジカル生成反応部6との間に接続されて、加熱部3で気化された水Wにオゾンガス及び標準ガスZGを供給する。ここで、オゾン添加希釈部5は、オゾン生成部16の出口側配管18と連通される複数の追加ガス流量調節部(追加流量調節部)20と、それぞれに対応するバルブ21と、を備えていてもよい。例えば、本実施形態では、3つの追加ガス流量調節部20が配されている。これら追加ガス流量調節部20は、OHラジカルの減衰速度を所定範囲内に抑えて測定分解能を上げるために、標準ガスZGで水Wを希釈する。   The ozone addition dilution unit 5 is connected between the heating unit 3 and the OH radical generation reaction unit 6 and supplies ozone gas and the standard gas ZG to the water W vaporized by the heating unit 3. Here, the ozone addition dilution unit 5 includes a plurality of additional gas flow rate control units (additional flow rate control units) 20 communicated with the outlet side pipe 18 of the ozone generation unit 16 and valves 21 corresponding to the respective additional gas flow rate control units. May be. For example, in this embodiment, three additional gas flow rate control units 20 are arranged. These additional gas flow rate adjusting units 20 dilute the water W with the standard gas ZG in order to suppress the decay rate of the OH radicals within a predetermined range and increase the measurement resolution.

ここで、標準ガスZGの汚染を極力抑えるため、標準ガスZGの供給系統には、ポンプ等の機械的な動力源を配さないようにしている。   Here, in order to suppress the contamination of the standard gas ZG as much as possible, a mechanical power source such as a pump is not arranged in the supply system of the standard gas ZG.

OHラジカル生成反応部6は、例えば、“OHラジカル寿命観測による都市大気質の診断”、吉野彩子他、大気環境学会誌、第40巻、第1号に記載のものと同様のものとされ、真空チャンバー22と、その周囲に巻回された第二ヒーター23と、真空チャンバー22内に配された不図示のレーザー照射部と、を備えている。そして、水W及びオゾンガスからOHラジカルを生成して水Wと反応させる。   The OH radical generation reaction unit 6 is, for example, the same as that described in “Diagnosis of urban air quality by OH radical lifetime observation”, Ayako Yoshino et al., Journal of Atmospheric Environment, Vol. 40, No. 1, A vacuum chamber 22, a second heater 23 wound around the vacuum chamber 22, and a laser irradiation unit (not shown) disposed in the vacuum chamber 22 are provided. Then, OH radicals are generated from the water W and ozone gas and reacted with the water W.

OHラジカル検出部7は、OHラジカル生成反応部6と連通して配され、例えば、上記の文献に記載のようにレーザー誘起法を利用して、OHラジカル生成反応部6におけるOHラジカル濃度の時間変化を計測する。   The OH radical detection unit 7 is arranged in communication with the OH radical generation reaction unit 6. For example, the time of the OH radical concentration in the OH radical generation reaction unit 6 using a laser induction method as described in the above document. Measure changes.

制御部8は、移動ガス供給部12において、所定量の水Wを気化室13に移送するための窒素ガス量の制御や、ガス流量調節部17における標準ガスZGのガス量の制御を行う。また、OHラジカル検出部7にて検出されたOHラジカル濃度の時間変化から、OHラジカルの消失速度を算出して、例えば、上記文献記載の方法のように、予め計測しておいた各種有機化合物の濃度とOHラジカルの寿命との関係を適用する等により、水W中の有機化合物量の総量を定量的に算出する。   The control unit 8 controls the amount of nitrogen gas for transferring a predetermined amount of water W to the vaporization chamber 13 in the moving gas supply unit 12 and controls the amount of standard gas ZG in the gas flow rate adjustment unit 17. Further, the disappearance rate of the OH radical is calculated from the time change of the OH radical concentration detected by the OH radical detector 7, and various organic compounds measured in advance, for example, as in the method described in the above document The total amount of organic compounds in the water W is quantitatively calculated by applying the relationship between the concentration of OH and the lifetime of OH radicals.

次に、本実施形態に係る水質診断装置1による水質診断方法について説明する。
本実施形態に係る水質診断方法は、診断対象となる水Wを気化する加熱工程(S01)と、気化された水にオゾンガス及び標準ガスZGを供給するオゾン添加希釈工程(S02)と、オゾンガスを生成するからOHラジカルを生成して水と反応させるOHラジカル生成反応工程(S03)と、OHラジカルの濃度の時間変化を計測するOHラジカル検出工程(S04)と、この時間変化から水Wに含有された有機化合物量を算出する演算工程(S05)と、を備えている。
Next, a water quality diagnostic method by the water quality diagnostic apparatus 1 according to the present embodiment will be described.
The water quality diagnosis method according to the present embodiment includes a heating step (S01) for vaporizing water W to be diagnosed, an ozone addition dilution step (S02) for supplying ozone gas and standard gas ZG to the vaporized water, and ozone gas. OH radical generation reaction step (S03) in which OH radicals are generated and reacted with water, OH radical detection step (S04) for measuring the time change of the concentration of OH radicals, and water W is contained from this time change. And a calculation step (S05) for calculating the amount of the organic compound.

加熱工程(S01)では、まず、診断対象となる水Wを貯留部10に入れる。そして、移動ガス供給部12により所定量の窒素ガスNを貯留部10に供給し、供給量に応じた水Wの一部を気化室13に移送する。そして、第一ヒーター15によって気化室13内の水Wを加熱して気化する。 In the heating step (S01), first, water W to be diagnosed is put into the storage unit 10. Then, a predetermined amount of nitrogen gas N 2 is supplied to the storage unit 10 by the moving gas supply unit 12, and a part of the water W corresponding to the supply amount is transferred to the vaporization chamber 13. Then, the water W in the vaporizing chamber 13 is heated and vaporized by the first heater 15.

オゾン添加希釈工程(S02)では、オゾン添加希釈部5のガス流量調節部17にて、所定量の標準ガスZGをオゾン生成部16に供給する。そして、オゾン生成部16にて、標準ガスZG中の酸素から公知の方法によってオゾンガスを生成する。   In the ozone addition dilution step (S02), the gas flow rate adjustment unit 17 of the ozone addition dilution unit 5 supplies a predetermined amount of standard gas ZG to the ozone generation unit 16. Then, the ozone generator 16 generates ozone gas from oxygen in the standard gas ZG by a known method.

そして、OHラジカル生成反応工程(S03)に移行して、オゾン添加希釈部5で生成されたオゾンガスと標準ガスZGとを気化した水Wに供給して、これらの混合ガスを生成する。そして、OHラジカル生成反応部6内にて、公知の方法によってオゾンガスを光分解してOHラジカルを発生させる。   And it transfers to the OH radical production | generation reaction process (S03), the ozone gas produced | generated in the ozone addition dilution part 5 and the standard gas ZG are supplied to the vaporized water W, and these mixed gas is produced | generated. And in the OH radical production | generation reaction part 6, ozone gas is photodegraded by a well-known method, and OH radical is generated.

このとき、OHラジカルは真空チャンバー22内で混合ガス中の有機化合物と反応して減衰する。OHラジカル検出工程(S04)では、OHラジカル検出部7内でレーザー光を照射して励起させ、発せられた蛍光を光電子増倍管等によって検出して計測し、OHラジカル濃度の時間変化を測定する。こうして、演算工程(S05)に移行して、OHラジカルの寿命を算出する。   At this time, the OH radicals are attenuated by reacting with the organic compound in the mixed gas in the vacuum chamber 22. In the OH radical detection step (S04), the OH radical detector 7 is excited by irradiating laser light, and the emitted fluorescence is detected and measured by a photomultiplier tube, etc., and the time change of the OH radical concentration is measured. To do. Thus, the process proceeds to the calculation step (S05) to calculate the lifetime of the OH radical.

この際、OHラジカルの減衰速度が大きい場合には、混合ガス中の有機化合物量が多すぎるためと考えられる。そこで、オゾン添加希釈部5よりオゾンガスを供給する際に、制御部8の指示に基づき、追加ガス流量調節部20を順次作動させて標準ガスZGの供給量を増加してさらに希釈して、希釈量に応じた補正を制御部8にて行う。   At this time, if the decay rate of the OH radical is large, it is considered that the amount of the organic compound in the mixed gas is too large. Therefore, when supplying ozone gas from the ozone addition dilution unit 5, based on the instruction of the control unit 8, the additional gas flow rate adjustment unit 20 is sequentially operated to increase the supply amount of the standard gas ZG and further dilute, The control unit 8 performs correction according to the amount.

すなわち、加熱工程(S01)にて供給される窒素ガスの流量をQw、オゾン添加希釈工程(S02)にて添加されるオゾンガスの添加流量をQo3及び標準ガスZGの流量をQzg、としたとき、総ガス流量Qtは、Qw+Qo3+Gzgとなるので、希釈率nは、Qw/Qtとなる。当初、デフォルトとしてこの希釈率nはある値に設定される。そして、実際にOHラジカル寿命を測定したときの測定値(τmeans)が、測定可能なOHラジカル寿命の下限値(τmax)よりも下回る場合には、τmaxを上回るように希釈率nを変更して再度、上記各工程を繰り返す。   That is, when the flow rate of nitrogen gas supplied in the heating step (S01) is Qw, the addition flow rate of ozone gas added in the ozone addition dilution step (S02) is Qo3, and the flow rate of the standard gas ZG is Qzg, Since the total gas flow rate Qt is Qw + Qo3 + Gzg, the dilution rate n is Qw / Qt. Initially, the dilution rate n is set to a certain value as a default. And when the measured value (τmeans) when actually measuring the OH radical lifetime is lower than the lower limit value (τmax) of the measurable OH radical lifetime, the dilution ratio n is changed so as to exceed τmax. The above steps are repeated again.

こうして、τmeans×nの関係式から算出したものを水W中の有機化合物と反応させた際に減衰するみかけ上のOHラジカルの寿命(τsample)とする。そして、あらかじめ基準となる試料水(例えば純水)のOHラジカル寿命(τstandard)を同様に測定したものとの差(τsample−τstandard)を、水W中の有機化合物と反応させた際に減衰する真のOHラジカルの寿命(τtrue)として、この大きさから水Wの水質診断を行なう。   Thus, the value calculated from the relational expression of τmeans × n is set as the apparent lifetime (τsample) of the OH radical that decays when reacted with the organic compound in the water W. Then, the difference (τsample−τstandard) from the previously measured OH radical lifetime (τstandard) of the sample water (for example, pure water) as a reference in advance is attenuated when reacted with the organic compound in the water W. The water quality diagnosis of the water W is performed from this magnitude as the lifetime of the true OH radical (τtrue).

この水質診断装置1によれば、気化した水Wにオゾンガスとともに標準ガスZGを加えて希釈し、添加したオゾンガスからOHラジカルを発生させ、水W中の有機化合物と反応させた際に減衰するOHラジカルの寿命(τsample)を計測することができる。そして、これから、さらに上述のようにτtrueを算出することにより、水Wの水質診断を行なうことができる。このとき、OHラジカル寿命を特定の1種類の有機化合物濃度に換算することができ(例えばベンゼン換算濃度)、反応した有機化合物量、すなわち、水W中の有機化合物量の総量を定量的に算出することができる。   According to this water quality diagnostic apparatus 1, the standard gas ZG is added to the vaporized water W and diluted with ozone gas, and OH radicals are generated from the added ozone gas and attenuated when reacted with an organic compound in the water W. The radical lifetime (τsample) can be measured. Then, the water quality diagnosis of the water W can be performed by calculating τtrue as described above. At this time, the OH radical lifetime can be converted into a specific one kind of organic compound concentration (for example, benzene conversion concentration), and the amount of the reacted organic compound, that is, the total amount of the organic compound in the water W is quantitatively calculated. can do.

特に、オゾン添加希釈部5が、供給する標準ガスZGの供給量を追加調整する追加ガス流量調節部20を備えている。そのため、OHラジカル生成反応部6にて生成されるOHラジカル量に比べて水W中の有機化合物量が多い場合には、供給する標準ガスZGの量を増加してOHラジカル生成反応部6内でOHラジカルが残存可能な程度にまで試料を希釈することができる。そして、水W中の有機化合物量にかかわらず、OHラジカルの濃度の時間変化を計測することができる。   In particular, the ozone addition dilution unit 5 includes an additional gas flow rate adjustment unit 20 that additionally adjusts the supply amount of the standard gas ZG to be supplied. Therefore, when the amount of the organic compound in the water W is larger than the amount of OH radicals generated in the OH radical generation reaction unit 6, the amount of the standard gas ZG to be supplied is increased and the inside of the OH radical generation reaction unit 6 is increased. The sample can be diluted to such an extent that OH radicals can remain. Regardless of the amount of the organic compound in the water W, it is possible to measure the temporal change in the concentration of OH radicals.

なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態では、オゾン添加希釈部5が3つの追加ガス流量調節部20を備えているとしているが、これに限らず、測定対象試料の量とOHラジカルの減衰速度との関係から決めればよい。
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the above-described embodiment, the ozone addition / dilution unit 5 includes the three additional gas flow rate adjustment units 20. However, the present invention is not limited to this, and can be determined from the relationship between the amount of the sample to be measured and the decay rate of the OH radicals. That's fine.

1 水質診断装置(有機化合物溶存量測定装置)
2 液体試料供給部
3 加熱部
5 オゾン添加希釈部
6 OHラジカル生成反応部
7 OHラジカル検出部
8 制御部
10 貯留部
20 追加ガス流量調節部(追加流量調節部)
W 水(試料)
ZG 標準ガス
1 Water quality diagnostic equipment (organic compound dissolved amount measuring equipment)
2 liquid sample supply unit 3 heating unit 5 ozone addition dilution unit 6 OH radical generation reaction unit 7 OH radical detection unit 8 control unit 10 storage unit 20 additional gas flow rate adjustment unit (additional flow rate adjustment unit)
W Water (sample)
ZG standard gas

Claims (3)

有機化合物が溶存された液状の試料が貯留される貯留部を有する液体試料供給部と、
前記貯留部に貯留された前記試料を気化する加熱部と、
気化された前記試料にオゾンガス及び標準ガスを供給するオゾン添加希釈部と、
前記オゾンガスからOHラジカルを生成して前記試料と反応させるOHラジカル生成反
応部と、
前記OHラジカルの濃度の時間変化を計測するOHラジカル検出部と、
前記時間変化から前記試料に含有された有機化合物量を算出する制御部と、
を備えていることを特徴とする有機化合物溶存量測定装置。
A liquid sample supply unit having a reservoir for storing a liquid sample in which an organic compound is dissolved;
A heating unit for vaporizing the sample stored in the storage unit;
An ozone addition dilution section for supplying ozone gas and standard gas to the vaporized sample;
An OH radical generation reaction unit that generates OH radicals from the ozone gas and reacts with the sample;
An OH radical detector for measuring a change in the concentration of the OH radical over time;
A control unit for calculating the amount of the organic compound contained in the sample from the time change;
An organic compound dissolved amount measuring apparatus comprising:
前記オゾン添加希釈部が、供給する前記標準ガスの供給量を追加調整する追加流量調節部を備えていることを特徴とする請求項1に記載の有機化合物溶存量測定装置。   The organic compound dissolved amount measuring apparatus according to claim 1, wherein the ozone addition dilution unit includes an additional flow rate adjusting unit that additionally adjusts a supply amount of the standard gas to be supplied. 請求項1又は2に記載の有機化合物溶存量測定装置を使用しての水質診断方法であって、
診断対象となる水を気化する加熱工程と、
気化された前記水にオゾンガス及び標準ガスを供給するオゾン添加希釈工程と、
前記オゾンガスからOHラジカルを生成して前記水と反応させるOHラジカル生成反応工程と、
前記OHラジカルの濃度の時間変化を計測するOHラジカル検出工程と、
前記時間変化から前記試料に含有された有機化合物量を算出する演算工程と、
を備えていることを特徴とする水質診断方法。
A water quality diagnosis method using the organic compound dissolved amount measuring apparatus according to claim 1 or 2,
A heating step for vaporizing water to be diagnosed;
An ozone addition dilution process for supplying ozone gas and standard gas to the vaporized water;
An OH radical generation reaction step of generating OH radicals from the ozone gas and reacting with the water;
An OH radical detection step for measuring a change with time in the concentration of the OH radical;
A calculation step of calculating the amount of the organic compound contained in the sample from the time change;
A water quality diagnostic method characterized by comprising:
JP2010039509A 2010-02-25 2010-02-25 Organic compound dissolved amount measuring device Expired - Fee Related JP5696311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010039509A JP5696311B2 (en) 2010-02-25 2010-02-25 Organic compound dissolved amount measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010039509A JP5696311B2 (en) 2010-02-25 2010-02-25 Organic compound dissolved amount measuring device

Publications (2)

Publication Number Publication Date
JP2011174826A JP2011174826A (en) 2011-09-08
JP5696311B2 true JP5696311B2 (en) 2015-04-08

Family

ID=44687811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010039509A Expired - Fee Related JP5696311B2 (en) 2010-02-25 2010-02-25 Organic compound dissolved amount measuring device

Country Status (1)

Country Link
JP (1) JP5696311B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108896704B (en) * 2018-05-10 2021-02-26 四川理工学院 Gas online dilution sampling and standard gas generating device and method
CN115069192A (en) * 2021-03-11 2022-09-20 上海市环境科学研究院 Device and method capable of uniformly and quantitatively generating hydroxyl radicals in flow pipe

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2811135C2 (en) * 1978-03-15 1986-04-24 Hoechst Ag, 6230 Frankfurt Method for the quantitative determination of carbon organic compounds in water
JPH07167850A (en) * 1993-12-16 1995-07-04 Meidensha Corp Measuring device of absorbance of ultraviolet rays of ozone treatment liquid
JP3548999B2 (en) * 2001-09-06 2004-08-04 独立行政法人 科学技術振興機構 Photochemical ozone generation concentration estimation method by pump-probe method and photochemical ozone generation concentration estimation device using the method

Also Published As

Publication number Publication date
JP2011174826A (en) 2011-09-08

Similar Documents

Publication Publication Date Title
EP0916937B1 (en) Method for measuring the concentration of hydrogen peroxide vapor
US10241035B2 (en) Spectrophotometric sensors and methods of using same
JP5696311B2 (en) Organic compound dissolved amount measuring device
US10168290B2 (en) X-ray fluorescence spectrometer
Zhu et al. Solution cathode glow discharge induced vapor generation of iodine for determination by inductively coupled plasma optical emission spectrometry
Shimizu et al. Combining advanced oxidation principles and electrochemical detection for indirect determination of phosphonate in scale inhibitors employed in the oilfield
WO2018218960A1 (en) Pre-treatment method for measuring total halogenated organic compound in water
Yuan et al. Temporal resolved atomic emission spectroscopy on a pulsed electrolyte cathode discharge for improving the detection sensitivity of Cu
JP2003075348A (en) Method and instrument for measuring water quality
AU2012211358B2 (en) Method for detecting a concentration of chlorate-ions in an aqueous solution, apparatus for detecting a concentration of chlorate-ions and control unit
Locht et al. Medium and high resolution vacuum UV photoabsorption spectroscopy of methyl iodide (CH3I) and its deuterated isotopomers CD3I and CH2DI. A Rydberg series analysis
Nakahara et al. Analyte volatilization procedure for continuous-flow determination of bromine by atmospheric pressure helium microwave-induced plasma atomic emission spectrometry
Nakahara et al. Continuous-flow determination of aqueous sulfur by atmospheric-pressure helium microwave-induced plasma atomic emission spectrometry with gas-phase sample introduction
JP2002328090A (en) Concentration measuring device for trace amount of component
JP6128523B2 (en) Method for chemiluminescence analysis of water-soluble selenium
Srivastava et al. Probing time-resolved plasma-driven solution electrochemistry in a falling liquid film plasma reactor: Identification of HO2− as a plasma-derived reducing agent
Gao et al. Negative photoionization chloride ion attachment ion mobility spectrometry for the detection of organic acids
Burylin et al. Determination of Selenium in Drinking Water by Electrothermal Atomic Absorption Spectrometry after Photochemical Generation, Distillation, and Preconcentration of Its Gaseous Compounds in a Graphite Furnace
Matsumoto et al. Determination of phosphorus by gas-phase chemiluminescence after hydride generation
JP2017083183A (en) Performance check method of uv ray irradiation device, reference uv ray irradiation device, uv ray irradiation device system, and reference uv ray irradiation device system
Reddy et al. Direct determination of ultra-trace sodium in reactor secondary coolant waters and other waters by electrolyte cathode discharge atomic emission spectrometry
US20230277712A1 (en) Device to generate reactive oxygen species (ros) and method thereof
Pulgarín et al. Kinetic–spectrometric three-dimensional chemiluminescence as an effective analytical tool. Application to the determination of benzo (a) pyrene
JP5100473B2 (en) Singlet oxygen generator
KR101926058B1 (en) Quantum-yield measurement device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120106

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130521

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141227

R150 Certificate of patent or registration of utility model

Ref document number: 5696311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees