JP5693670B2 - 画像処理装置及び画像処理方法 - Google Patents

画像処理装置及び画像処理方法 Download PDF

Info

Publication number
JP5693670B2
JP5693670B2 JP2013143854A JP2013143854A JP5693670B2 JP 5693670 B2 JP5693670 B2 JP 5693670B2 JP 2013143854 A JP2013143854 A JP 2013143854A JP 2013143854 A JP2013143854 A JP 2013143854A JP 5693670 B2 JP5693670 B2 JP 5693670B2
Authority
JP
Japan
Prior art keywords
image
subject
sub
likelihood information
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013143854A
Other languages
English (en)
Other versions
JP2013235603A (ja
Inventor
八代 哲
哲 八代
東條 洋
洋 東條
睦凌 郭
睦凌 郭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013143854A priority Critical patent/JP5693670B2/ja
Publication of JP2013235603A publication Critical patent/JP2013235603A/ja
Application granted granted Critical
Publication of JP5693670B2 publication Critical patent/JP5693670B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Closed-Circuit Television Systems (AREA)
  • Image Analysis (AREA)

Description

本発明は、画像処理装置及び画像処理方法に関する。
画像中から被写体を検出する技術の例としては、ViolaとJonesの報告(非特許文献1参照)がある。これは、所定の大きさのサブウィンドウを走査し、サブウィンドウ内の画像を切り出したパターン画像に対し被写体であるか否かの2クラス判別を行う。この判別には、AdaBoostを使って多くの弱判別器を有効に組合せて判別器を構成し、判別精度を向上させる。一方、この判別器を直列に繋ぎ、カスケード型の検出器を構成するようにする技術もある。更に夫々の弱判別器をHaarタイプの矩形特徴量で構成し、矩形特徴量の算出を、積分画像を利用して高速に行う技術もある。このカスケード型の検出器は、まず前段の単純な(即ち計算量のより少ない)判別器を使って明らかに被写体でないパターンの候補をその場で除去する。それ以外の候補に対してのみ、より高い識別性能を持つ後段の複雑な(即ち計算量のより多い)判別器を使って被写体かどうかの判定を行なう。従って、全ての候補に対して複雑な判定を行う必要がないので高速である。
また、早い段階で被写体でないパターンを対象から外すことで高速化した技術が知られている(特許文献1参照)。これは、顔画像と非顔画像とを識別する顔学習辞書と、対象画像のエッジ画像と、に基づいて、対象画像から、顔画像を含むと思われる部分画像を抽出し、学習辞書を参照して、抽出された部分画像が、顔画像を含んでいるか否かを識別するものである。
動画から効率よく被写体を検出する場合、時間的に近いフレーム同士は相関が高いことを利用することができる事が知られている(特許文献2参照)。これは、物体検出処理によって、何れかの階層において特定物体が検出された場合には、次の入力画像に対しては、特定物体が検出された階層と同じ階層の階層画像に対して物体検出処理を行なうものである。
特開2003−44853号公報 特開2007−257358号公報
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'01) Rapid Object Detection using Boosted Cascade of Simple Features
非特許文献1及び特許文献1は1枚の画像を対象としたものであり、動画から被写体を効率的に探索することは考慮されていない問題がある。
特許文献2は検出結果によって次のフレームの探索範囲を絞り込むものであるが、検出しなかった場所は探索範囲外となる。従って、新たにフレームインした被写体や物陰から現れた被写体を検出するためには定期的に全領域を対象にして探索する必要があるため、効率よく検出することができない問題がある。
本発明はこのような問題点に鑑みなされたもので、動画から被写体を効率よく検出することを目的とする。
そこで、本発明の画像処理装置は、動画像を入力する動画像入力手段と、前記動画像の各フレームの画像を縮小してサイズの異なる複数の画像を生成する生成手段と、前記生成手段で生成された各サイズの画像に対して、前フレームの画像上のサブウィンドウ設定位置と対応付けて被写体尤度情報を記憶する被写体尤度情報記憶手段と、現フレームの各サイズの画像に対して、前フレームのサブウィンドウ設定位置とは異なる位置に設定されるサブウィンドウ候補位置の被写体尤度情報を、前フレームの対応する位置近傍の被写体尤度情報に基づいて補完し、前記被写体尤度情報記憶手段に設定する被写体尤度情報補完手段と、現フレームについて、前記複数の画像の各画像上で、前フレームのサブウィンドウ設定位置とは異なるサブウィンドウ候補位置であって、該画像のサイズに対して画像上の位置と対応付けて前記被写体尤度情報記憶手段に記憶されている被写体尤度情報所定の閾値以上である位置に、所定サイズのサブウィンドウを順次設定するサブウィンドウ設定手段と、前記サブウィンドウ設定手段で設定されたサブウィンドウ内のパターンの局所特徴量に基づいて、画像中の被写体を検出する被写体検出手段と、前記サブウィンドウに対する前記被写体検出手段の検出結果に基づいて、現フレームの当該サブウィンドウ設定位置に対する被写体尤度情報を導出する導出手段と、を有することを特徴とする。
また、本発明は、画像処理方法、プログラム及び記憶媒体としてもよい。
本発明によれば、動画から被写体を効率よく検出することができる。
画像処理装置のハードウェア構成の一例を示す図(その1)である。 画像処理装置の概略構成を示した図である。 本実施形態の概略処理の一例を示すフローチャートである。 サブウィンドウの走査方法の一例を示す図である。 表示装置209に表示する画面の一例を示す図である。 探索制御部102の処理の一例を示すフローチャートである。 被写体尤度情報の位置を移動する一例を示す図である。 被写体判別部103の概要の一例を示す図である。 各強判別部の一例を示す図である。 各弱判別部の一例を示す図である。 判別情報格納部805に格納される判別パラメータについて説明するための図である。 顔判別処理の一例を示すフローチャートである。 多重解像度化したパターンと画素番号との関係を示す図である。 画像処理装置のハードウェア構成の一例を示す図(その2)である。
以下、本発明の実施形態について図面に基づいて説明する。
<実施形態1>
(ハードウェア構成)
図1は、画像処理装置のハードウェア構成の一例を示す図(その1)である。
画像処理装置は、以下の構成により成る。
CPU201は、ROM202やRAM203に格納されたプログラムに従って命令を実行する。CPU201がプログラムに従って命令を実行することによって、後述する機能やフローチャートに係る処理が実現される。
ROM202は、本実施形態のプログラムやその他の制御に必要なプログラムやデータを格納する。
RAM203は、画像情報212、被写体尤度情報213の他、一時的なデータを格納する。
ドライブI/F204は、IDEやSCSI等の外部記憶装置とのインターフェースを実現する。
HDD205は、画像やパターン抽出等のプログラムや、顔、非顔のサンプルパターン等を記憶する。
動画像入力装置206は、デジタルビデオカメラやネットワークカメラ等の装置から動画像を入力する。
入力装置208は、キーボードやマウス等であって、オペレータからの入力を行う。
表示装置209は、ブラウン管や液晶ディスプレイ等である。
ネットワークI/F210は、インターネットやイントラネット等のネットワークと接続を行うモデムやLAN等である。
バス211は、これらを接続して相互にデータの入出力を行う。
(概略構成)
図2は、画像処理装置の概略構成を示した図である。
動画像入力部101は、動画像入力装置206から入力される動画像の各フレームを入力する。
探索制御部102は、被写体を評価するための後述する図4のサブウィンドウ501の走査方法を制御する。より具体的に説明すると、探索制御部102は、走査位置における前フレームの被写体尤度情報に従って走査幅の制御を行う。
被写体検出部103は、サブウィンドウ501上の画像情報が被写体であるかどうかを評価し、被写体らしさを出力し、かつ、所定の閾値によって被写体であることを判定する。
被写体尤度情報記憶部104は、入力画像の位置及び被写体サイズ毎に被写体らしさ(被写体尤度情報)を関連付けて記憶する。
(概略処理フローチャート)
図3は、本実施形態の概略処理の一例を示すフローチャートである。
本実施形態では被写体の一例として人間の顔を検出する画像処理装置を挙げて説明する。
ステップS301において、動画像入力部101は、動画像入力装置206から入力された各フレーム画像データをRAM203に読み込む。
ここで読み込まれた画像データは、例えば8ビットの画素により構成される2次元配列のデータであり、R、G、B、3つの面により構成される。このとき、画像データがMPEG,MotionJPEG等の方式により圧縮されている場合、動画像入力部101は、画像データを所定の解凍方式にしたがって解凍し、RGB各画素により構成される画像データとする。更に、本実施形態では動画像入力部101は、RGBデータを輝度画像データに変換し、輝度画像データを以後の処理に適用するものとして、RAM203に格納する。
動画像入力部101は、画像データとしてYCrCbのデータを入力する場合、Y成分をそのまま輝度画像データとしてもよい。
なお、以降の処理に適用するものは輝度画像データに限定されるものではない。明るさやコントラスト調整等の正規化、色変換処理の他に所定の方向のエッジの強さを示すエッジ画像や、微分、積分等の画像処理を行った1つ又は異なる画像処理を適用した複数の画像データを以降の処理に適用するようにしてもよい。
次に、ステップS302において、動画像入力部101は、画像データを所定の倍率に縮小した輝度画像データを生成する。これは、本実施形態では様々な大きさの顔の検出に対応するため複数のサイズの画像データに対して順次検出を行うようにしたためである。例えば、倍率が1.2倍程度異なる複数の画像への縮小処理が後段の検出処理のために順次適用される。
図4のAはステップS302で縮小されたそれぞれの縮小画像を示しており、ここでは、それぞれの縮小画像に対して所定の大きさの矩形領域を切り出すものとする。
次に、ステップS303において、探索制御部102は、縮小された輝度画像データ上に所定の大きさのサブウィンドウを設定する。この処理の詳細は後述する図6等を用いて説明する。
次に、ステップS304において、被写体判別部103は、照合パターンが顔パターンか非顔パターンかを判別する。この処理の詳細は後述する図12等を用いて説明する。
以上、S303からS305までの処理で、ステップS302の出力である縮小輝度画像に対して図4に示すようにサブウィンドウ501の走査が繰り返される。
また、倍率が異なる縮小処理が順次適用され、S302からS305までの処理が繰り返される。
ステップS305において、例えば被写体判別部103は、以上の繰り返し走査が完了したか判断し、完了した場合、ステップS306において、被写体判別部103は、顔と判別されたパターンに対して表示装置209へ顔領域として出力する。
図5は、表示装置209に表示する画面の一例を示す図である。図5では、入力画像1201に顔の検出結果を重畳して出力した画面表示の一例となっている。検出結果枠1202は、被写体判別部103によって抽出された顔パターンで、その位置と大きさとが示された枠である。ボタン1203は画面を閉じることを指定するボタンである。
次に、ステップS307において、例えば動画像入力部101は、動画が終了したか否かを判定し、終了するまでステップS301からステップS306までの処理を繰り返す。
(被写体尤度情報)
次に、被写体尤度情報213について説明する。
被写体尤度情報213は、図4のAにおける各縮小画像でのサブウィンドウの移動可能領域に基づいた入力画像1画像分のデータである。即ち、縮小画像1つにつき、1つの2次元データである。2次元データの幅は、縮小画像の幅−サブウィンドウの幅+1であり、高さは縮小画像の高さ−サブウィンドウの高さ+1の2次元データである。
例えば被写体判別部103は、サブウィンドウの位置に基づいて記憶アドレスを求め、この記憶アドレスに被写体尤度情報を記憶する。例えば被写体判別部103は、サブウィンドウの左上の座標に相当する位置に、サブウィンドウ内のパターンを評価して得られた被写体尤度情報を被写体尤度情報記憶部104に記憶する。被写体判別部103は、量子化を行い、被写体尤度情報を行い、2値としてもよい。
(探索制御部)
次に、ステップS303における探索制御処理について詳細に説明する。
図4のBは、非特許文献1において、それぞれの縮小画像から縦横順次に走査を繰り返していく途中の設定の様子を示すものである。図から分かるように、縮小率の大きな画像からサブウィンドウを設定して、サブウィンドウ内の画像パターン顔の判別を行う場合には、画像に対して大きな顔の検出を行うことになる。
本実施形態における探索制御部102は前フレームまでの被写体尤度情報に基づいて探索位置、即ちパターン評価を行うサブウィンドウの位置を設定する。
図6は、探索制御部102の処理の一例を示すフローチャートである。
ステップS401において、探索制御部102は、被写体尤度情報記憶部104に格納された被写体尤度情報を参照する。初回のフレーム画像では被写体尤度情報の情報は無いので、探索制御部102は、所定の尤度値で被写体尤度情報を初期化する。また、長期間評価しない座標では記憶していた尤度と映像との関係に誤差が生じるため、探索制御部102は、定期的に被写体判別を行う。
この際、探索制御部102は、時間的空間的に探索箇所を均等に分散する。即ち、探索制御部102は、例えば、偶数番目のフレームでは全探索を行い、奇数番目のフレームは探索しないというような探索方法を採らない。即ち、探索制御部102は、偶数番目のフレームでは偶数番目のラインを探索し、奇数番目のフレームでは奇数番目のラインを探索するようにする。つまり、探索制御部102は、前のフレームで決定したパターン切り出し位置以外の位置の被写体尤度情報を、前記位置とは異なる位置の被写体尤度情報に基づいて決定し、被写体尤度情報記憶部104に設定(又は記憶)するようにする。これにより、負荷の時間的分散が図れ、処理コストに対して精度向上を図ることができる。
また、探索制御部102は、オブジェクトの動きが既知であるならば、被写体尤度情報記憶部104に記憶されている被写体尤度情報の入力画像上の位置を移動させてもよい。
例えば、公知技術でオプティカルフロー等の動きベクトル生成技術がある。この技術は、主としてMPEG等の動画符号化技術で利用されている。
例えば探索制御部102は、この技術を複数のフレーム画像に適用することで生成した動きベクトル情報を、被写体尤度情報記憶部104に記憶した被写体尤度情報に適用して被写体尤度情報の位置を移動させることができる。
図7は、被写体尤度情報の位置を移動する一例を示す図である。図7において、(a)は時刻t=n−1におけるフレーム画像である。(c)は時刻t=nにおけるフレーム画像である。(b)はフレーム画像t=n−1からt=nにおいて、被写体の位置付近での動きベクトルを示す。また、(d)は時刻t=n−1におけるある縮小率における被写体尤度情報を2値化して可視化した図であり、黒い丸は被写体尤度情報が高いことを現す。(e)は、t=n−1における被写体尤度情報(d)と動きベクトル(b)とに基づいて被写体尤度情報が移動された後の被写体尤度情報である。動画を圧縮符号化する際には動きベクトル(動きベクトル情報)は被写体の有無に関わらず生成されるものである。探索制御部102は、動きベクトル情報を被写体が検出できていない被写体尤度情報の位置へ適用することで、被写体である可能性が高い場所のみを効果的に探索して被写体を検出することができる。
また、過去の被写体の位置情報から現在や未来の被写体の位置を予測する公知技術がある。例えば、カルマンフィルタ、パーティクルフィルタ等である。被写体を検出できた場合、例えば探索制御部102は、このような技術を用いて被写体の動きを求め、被写体尤度情報記憶部104に記憶した被写体尤度情報に適用する。そして、探索制御部102は、被写体尤度情報を移動させることで、被写体判別部103による被写体尤度情報の更新頻度を低減し、処理コストを抑えることができる。
次に、ステップS402において、探索制御部102は、最大尤度の拡張処理を行う。これは、ある位置における被写体尤度情報を所定範囲の近傍の最大の被写体尤度情報で置き換えることで実現する。
このステップの処理の目的は、前ステップでの説明で述べた、時間的空間的に探索箇所を均等に分散することで、探索が行われなかった位置に対して補完を行うことである。
次にステップS403において、探索制御部102は、図4のような走査を行い、サブウィンドウの位置に対応する尤度値(被写体尤度情報)が所定の閾値以上の位置へサブウィンドウの位置を設定する。
また、探索制御部102は、尤度値からサブウィンドウの移動量を決定してもよい。これには、探索制御部102は、被写体尤度情報に対応する移動幅を予め統計的に求めておいて、被写体尤度情報から移動量への変換テーブルを作成しておくことで実現する。
(被写体判別部103)
次に、ステップS304における顔判別の方法について詳細に説明する。
被写体判別部103は図8に示したように複数の強判別部601を直列に接続することで実現する。被写体判別部103は、前段の強判別部601に入力されたパターンデータが被写体であるか否かを判定し、被写体であった場合にのみ後段の強判別部601で同じパターンデータが被写体であるか否かの判定を前段より高い精度で行う。各強判別部及びその内部の弱判別部は同様な構成であり、各部の数や判別パラメータが異なるのみである。
図9は、各強判別部の一例を示す図である。各強判別部601は複数の弱判別部701で構成され、各々が出力する被写体尤度情報を加算器702で統合し、閾値処理703を行い、被写体であるか否かを出力する。
次に、各弱判別部について説明する。
図10は、各弱判別部の一例を示す図である。各弱判別部701は、解像度変換部801と、局所領域抽出部802と、特徴量算出部803と、被写体信頼度変換部804とから構成される。各々の部へは判別情報格納部805から判別パラメータが供給される。
図11は、判別情報格納部805に格納される判別パラメータについて説明するための図である。
判別パラメータは強判別部数901と、その数分の強判別パラメータ902と、が結合されたものである。各々の強判別パラメータ902は1つの強判別部に関するパラメータが格納される。各々の強判別パラメータ902は弱判別部数903とその数分の弱判別パラメータ904とが結合されたものである。各々の弱判別パラメータ904は1つの弱判別部に関するパラメータが格納される。各弱判別部数903は、それぞれの局所領域の画素数906と、局所領域の画素番号を列挙した画素番号リスト907と、画素数906に等しい行数*1列の行列である特徴抽出フィルタ908と、を含む。また、各弱判別部数903は、特徴量から被写体の信頼度への変換テーブルである、被写体信頼度変換ルックアップテーブル909を含む。
画素番号は、図13に示すように、本実施形態では顔パターンは目、口を含む20画素*20画素のパターンとしている。また、本実施形態ではこれを更に1/2に縮小し10画素*10画素にしたパターンと1/4に縮小して5画素*5画素にしたパターンとを作り、それぞれの画素に対して1から525までの画素番号を付与している。このように多重解像度にすることによって以下の2つのメリットを併せ持つことができる。即ち、低解像度側では顔を構成する器官同士の位置関係を効率良く照合でき、高解像度側では顔を構成する器官の部分的特徴を精度良く照合できる。
図12は、顔判別処理の一例を示すフローチャートである。
ステップS1101において、被写体判別部103は、解像度変換部801によりパターンの1/2と1/4との縮小画像を生成する。本実施形態では解像度は1/2n (nは整数)としているが、これに限ったものではない。1/1.2倍程度の刻みで複数の解像度の画像が得られているので、解像度変換部801は、それを利用して更に多くの解像度でのパターンを用いてもよく、この場合でも処理コストが増加することはほとんどない。多重解像度にすることによって以下の2つのメリットを併せ持つことができる。即ち、低解像度側では顔を構成する器官同士の位置関係を効率良く照合でき、高解像度側では顔を構成する器官の部分的特徴を精度良く照合できる。
次にステップS1102において、被写体判別部103は、強判別部ループカウンタNを初期化する。
次にステップS1103において、被写体判別部103は、弱判別部ループカウンタtを初期化する。
次にステップS1104において、特徴量算出部803は、局所特徴量を算出する。局所特徴量utは式(1)によって求める。
t,N =φtN Tt,N ・・・ 式(1)
ここで添え字t,NはN番目の強判別部のt番目の弱判別部を示す。
t,Nは局所特徴量を示す数値であり、
φt,Nは特徴抽出フィルタ908であり、
t,Nは局所領域抽出部802によって得られる画素番号リスト907で示されるパターン又は縮小パターン上の画素の輝度を要素とする画素数に等しい行数で1列の行列である。
次にステップS1105において、被写体信頼度変換部804は、式(2)の様に局所特徴量Ut,Nから被写体信頼度に変換する。
t,N = ft,N(Ut,N) ・・・ 式(2)
但しHtNは被写体信頼度の出力である。
t,Nは被写体信頼度変換ルックアップテーブル909を使って、局所特徴量Ut,Nからテーブル変換によって被写体信頼度に変換し、弱判別部の出力としている。
被写体信頼度変換部804は、局所特徴量Ut,Nが変換テーブルの上限又は下限を超えている場合はそれぞれ、上限値、下限値にしたうえで、テーブルを参照し、被写体信頼度を得る。
次にステップS1106において、被写体判別部103は、最後の弱判別部になるまでステップS1111で弱判別部番号tをインクリメントしながらステップS1104〜ステップS1106の処理を繰り返す。
最後の弱判別部まで被写体信頼度を求めた場合、ステップS1107に進み、加算器702は、式(3)のように被写体信頼度の総和を求める。
H = ΣttN ・・・ 式(3)
次にステップS1108において、閾値処理部703は、式(4)のように前ステップで求められた総和の閾値比較によって被写体か否かの判定を行う。
H ≧ ThN ・・・ 式(4)
強判別部601は、顔でないと判定した場合、顔でないとして終了する。
強判別部601は、顔であると判定した場合、ステップS1109に進む。ステップS1109において、被写体判別部103は、最後の強判別部の判定を終わるまでステップS1112で強判別部番号NをインクリメントしながらステップS1103〜ステップS1109の処理を繰り返す。
被写体判別部103は、最後の強判別部まで全て顔と判定された場合にのみ最終的に顔であると判定し、ステップS1110に進み、パターンの位置を記憶して終了する。
本実施形態では、局所特徴量として、照合パターンのうち所定解像度、所定サイズ、形状の局所領域における線形識別特徴を用いたが、非特許文献1にも適用できる。
(被写体尤度情報)
次に被写体尤度情報の求め方について説明する。例えば被写体判別部103は、複数ある強判別部を通過した数と実際に被写体である確率との関係を予め求めておき、強判別部の通過数に基づいて尤度を求める。また、被写体判別部103は、各強判別部で求められる、被写体信頼度の総和Hと実際に被写体である確率との関係を予め求めておき、被写体信頼度の総和に基づいて尤度(被写体尤度情報)を求めてもよい。
<実施形態2>
図14は、画像処理装置のハードウェア構成の一例を示す図(その2)である。実施形態1と共通する部分には同じ番号を付与している。
ブロック構成としてはプログラムを記録したDVD又はCDのような光ディスク214を追加し、ドライブインターフェース204にCD/DVDドライブ等の外部記憶読書装置215が接続されているところが実施形態1と異なる。
プログラムを記録した光ディスク214を外部記憶読書装置215に挿入するとCPU201は記録媒体からプログラムを読み取って、RAM203に展開することで、実施形態1と同様の処理を実現することができる。
<実施形態3>
実施形態1、実施形態2では顔抽出を行うシステムとしているが、上述した処理は顔以外の任意の物体に対して適用可能である。例えば、人体全身、人体上半身、生物、自動車等がある。工業、流通分野等では生産物、部品、流通物品等の同定や検査等に適用できる。
<その他の実施形態>
また、本発明の目的は、以下のようにすることによって達成される。即ち、上述した実施形態の機能を実現するソフトウェアのプログラムコードを記録した記憶媒体(又は記録媒体)を、システム或いは装置に供給する。そして、そのシステム或いは装置の中央演算処理手段(CPUやMPU)が記憶媒体に格納されたプログラムコードを読み出し実行する。この場合、記憶媒体から読み出されたプログラムコード自体が上述した実施形態の機能を実現することになり、そのプログラムコードを記録した記憶媒体は本発明を構成することになる。
また、システム或いは装置の前記中央演算処理手段が読み出したプログラムコードを実行することにより、そのプログラムコードの指示に基づき、システム或いは装置上で稼働しているオペレーティングシステム(OS)等が実際の処理の一部又は全部を行う。その処理によって上述した実施形態の機能が実現される場合も含まれる。
更に、記憶媒体から読み出されたプログラムコードが、前記システム或いは装置に挿入された機能拡張カードや、接続された機能拡張ユニットに備わるメモリに書込まれたとする。その後、そのプログラムコードの指示に基づき、その機能拡張カードや機能拡張ユニットに備わるCPU等が実際の処理の一部又は全部を行い、その処理によって上述した実施形態の機能が実現される場合も含まれる。
本発明を前記記憶媒体に適用する場合、その記憶媒体(コンピュータ読み取り可能な記憶媒体)には、先に説明したフローチャートに対応するプログラムコードが格納されることになる。
以上、上述した各実施形態によれば、被写体が存在する可能性が高い領域のみを探索するので、動画から被写体を効率よく検出することができる。
以上、本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
101 動画像入力部
102 探索制御部
103 被写体判別部
104 被写体尤度情報記憶部

Claims (7)

  1. 動画像を入力する動画像入力手段と、
    前記動画像の各フレームの画像を縮小してサイズの異なる複数の画像を生成する生成手段と、
    前記生成手段で生成された各サイズの画像に対して、前フレームの画像上のサブウィンドウ設定位置と対応付けて被写体尤度情報を記憶する被写体尤度情報記憶手段と、
    現フレームの各サイズの画像に対して、前フレームのサブウィンドウ設定位置とは異なる位置に設定されるサブウィンドウ候補位置の被写体尤度情報を、前フレームの対応する位置近傍の被写体尤度情報に基づいて補完し、前記被写体尤度情報記憶手段に設定する被写体尤度情報補完手段と、
    現フレームについて、前記複数の画像の各画像上で、前フレームのサブウィンドウ設定位置とは異なるサブウィンドウ候補位置であって、該画像のサイズに対して画像上の位置と対応付けて前記被写体尤度情報記憶手段に記憶されている被写体尤度情報所定の閾値以上である位置に、所定サイズのサブウィンドウを順次設定するサブウィンドウ設定手段と、
    前記サブウィンドウ設定手段で設定されたサブウィンドウ内のパターンの局所特徴量に基づいて、画像中の被写体を検出する被写体検出手段と、
    前記サブウィンドウに対する前記被写体検出手段の検出結果に基づいて、現フレームの当該サブウィンドウ設定位置に対する被写体尤度情報を導出する導出手段と、
    を有することを特徴とする画像処理装置。
  2. 前記被写体尤度情報補完手段は、前記サブウィンドウ候補位置の被写体尤度情報を、前フレームの対応する位置近傍の被写体尤度情報の最大値に決定することを特徴とする請求項1に記載の画像処理装置。
  3. 前記動画像の複数のフレームに基づいて動きベクトル情報を生成し、前記サブウィンドウ候補位置の被写体尤度情報を、前記動きベクトル情報に基づいて決定された前フレームの位置の被写体尤度情報に基づいて決定し、前記被写体尤度情報記憶手段に設定する被写体尤度情報設定手段を更に有することを特徴とする請求項1に記載の画像処理装置。
  4. 前記被写体尤度情報記憶手段は、前記各サイズの画像に対する前記被写体尤度情報を、前記サブウィンドウの移動可能領域に基づいた画像上の位置と対応する2次元データとして記憶することを特徴とする請求項1に記載の画像処理装置。
  5. 画像処理装置における画像処理方法であって、
    動画像を入力する動画像入力ステップと、
    前記動画像の各フレームの画像を縮小してサイズの異なる複数の画像を生成する生成ステップと、
    現フレームの各サイズの画像に対して、前フレームのサブウィンドウ設定位置とは異なる位置に設定されるサブウィンドウ候補位置の被写体尤度情報を、前フレームの対応する位置近傍の被写体尤度情報に基づいて補完し、各サイズの画像に対して前フレームの画像上のサブウィンドウ設定位置と対応付けて被写体尤度情報を記憶する被写体尤度情報記憶手段に設定する被写体尤度情報補完ステップと、
    現フレームについて、前記複数の画像の各画像上で、前フレームのサブウィンドウ設定位置とは異なるサブウィンドウ候補位置であって、該画像のサイズに対して画像上の位置と対応付けて前記被写体尤度情報記憶手段に記憶されている被写体尤度情報所定の閾値以上である位置に、所定サイズのサブウィンドウを順次設定するサブウィンドウ設定ステップと、
    前記サブウィンドウ設定ステップで設定されたサブウィンドウ内のパターンの局所特徴量に基づいて、画像中の被写体を検出する被写体検出ステップと、
    前記サブウィンドウに対する前記被写体検出ステップの検出結果に基づいて、現フレームの当該サブウィンドウ設定位置に対する被写体尤度情報を導出する導出ステップと、
    を含むことを特徴とする画像処理方法。
  6. コンピュータに、
    動画像を入力する動画像入力ステップと、
    前記動画像の各フレームの画像を縮小してサイズの異なる複数の画像を生成する生成ステップと、
    現フレームの各サイズの画像に対して、前フレームのサブウィンドウ設定位置とは異なる位置に設定されるサブウィンドウ候補位置の被写体尤度情報を、前フレームの対応する位置近傍の被写体尤度情報に基づいて補完し、各サイズの画像に対して前フレームの画像上のサブウィンドウ設定位置と対応付けて被写体尤度情報を記憶する被写体尤度情報記憶手段に設定する被写体尤度情報補完ステップと、
    現フレームについて、前記複数の画像の各画像上で、前フレームのサブウィンドウ設定位置とは異なるサブウィンドウ候補位置であって、該画像のサイズに対して画像上の位置と対応付けて前記被写体尤度情報記憶手段に記憶されている被写体尤度情報所定の閾値以上である位置に、所定サイズのサブウィンドウを順次設定するサブウィンドウ設定ステップと、
    前記サブウィンドウ設定ステップで設定されたサブウィンドウ内のパターンの局所特徴量に基づいて、画像中の被写体を検出する被写体検出ステップと、
    前記サブウィンドウに対する前記被写体検出ステップの検出結果に基づいて、現フレームの当該サブウィンドウ設定位置に対する被写体尤度情報を導出する導出ステップと、
    を実行させるためのプログラム。
  7. 請求項6に記載のプログラムを記憶したコンピュータにより読み取り可能な記憶媒体。
JP2013143854A 2013-07-09 2013-07-09 画像処理装置及び画像処理方法 Active JP5693670B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013143854A JP5693670B2 (ja) 2013-07-09 2013-07-09 画像処理装置及び画像処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013143854A JP5693670B2 (ja) 2013-07-09 2013-07-09 画像処理装置及び画像処理方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009005020A Division JP2010165052A (ja) 2009-01-13 2009-01-13 画像処理装置及び画像処理方法

Publications (2)

Publication Number Publication Date
JP2013235603A JP2013235603A (ja) 2013-11-21
JP5693670B2 true JP5693670B2 (ja) 2015-04-01

Family

ID=49761614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013143854A Active JP5693670B2 (ja) 2013-07-09 2013-07-09 画像処理装置及び画像処理方法

Country Status (1)

Country Link
JP (1) JP5693670B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7526101B2 (en) * 2005-01-24 2009-04-28 Mitsubishi Electric Research Laboratories, Inc. Tracking objects in videos with adaptive classifiers
JP4933186B2 (ja) * 2006-07-26 2012-05-16 キヤノン株式会社 画像処理装置、画像処理方法、プログラム及び記憶媒体
JP5035035B2 (ja) * 2007-03-08 2012-09-26 オムロン株式会社 対象物追跡方法、対象物追跡装置および対象物追跡プログラム

Also Published As

Publication number Publication date
JP2013235603A (ja) 2013-11-21

Similar Documents

Publication Publication Date Title
US10467458B2 (en) Joint face-detection and head-pose-angle-estimation using small-scale convolutional neural network (CNN) modules for embedded systems
US10268947B2 (en) Face detection using small-scale convolutional neural network (CNN) modules for embedded systems
CN107895150B (zh) 基于嵌入式系统小规模卷积神经网络模块的人脸检测和头部姿态角评估
CN107506707B (zh) 采用嵌入式系统中的小规模卷积神经网络模块的人脸检测
JP4933186B2 (ja) 画像処理装置、画像処理方法、プログラム及び記憶媒体
JP5726125B2 (ja) 奥行き画像内の物体を検出する方法およびシステム
JP5517504B2 (ja) 画像処理装置、画像処理方法、およびプログラム
CN107909026B (zh) 基于小规模卷积神经网络年龄和/或性别评估方法及系统
US20190244028A1 (en) System and Method for Detecting Objects in Video Sequences
WO2011080900A1 (ja) 移動体検出装置および移動体検出方法
JP2010165052A (ja) 画像処理装置及び画像処理方法
US11157749B2 (en) Crowd state recognition device, learning method, and learning program
JP5361524B2 (ja) パターン認識システム及びパターン認識方法
JP6095817B1 (ja) 物体検出装置
JP4724638B2 (ja) オブジェクト検出方法
US20130342559A1 (en) Temporally consistent superpixels
JP5294798B2 (ja) 画像処理装置及び画像処理方法
US7831068B2 (en) Image processing apparatus and method for detecting an object in an image with a determining step using combination of neighborhoods of a first and second region
US9053354B2 (en) Fast face detection technique
JP2013206458A (ja) 画像における外観及びコンテキストに基づく物体分類
JP2007025902A (ja) 画像処理装置、画像処理方法
JP5258506B2 (ja) 情報処理装置
US9842260B2 (en) Image processing apparatus and image processing method of performing image segmentation
JP2006323779A (ja) 画像処理方法、画像処理装置
JP5335554B2 (ja) 画像処理装置及び画像処理方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150203

R151 Written notification of patent or utility model registration

Ref document number: 5693670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151