JP5693108B2 - Phosphor, method for manufacturing the same, and light emitting device having the same - Google Patents

Phosphor, method for manufacturing the same, and light emitting device having the same Download PDF

Info

Publication number
JP5693108B2
JP5693108B2 JP2010203248A JP2010203248A JP5693108B2 JP 5693108 B2 JP5693108 B2 JP 5693108B2 JP 2010203248 A JP2010203248 A JP 2010203248A JP 2010203248 A JP2010203248 A JP 2010203248A JP 5693108 B2 JP5693108 B2 JP 5693108B2
Authority
JP
Japan
Prior art keywords
phosphor
light
emitting device
blue
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010203248A
Other languages
Japanese (ja)
Other versions
JP2011225803A (en
Inventor
吉田 尚史
尚史 吉田
真央 沼田
真央 沼田
広朗 豊島
広朗 豊島
吉松 良
良 吉松
崇 國本
崇 國本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2010203248A priority Critical patent/JP5693108B2/en
Publication of JP2011225803A publication Critical patent/JP2011225803A/en
Application granted granted Critical
Publication of JP5693108B2 publication Critical patent/JP5693108B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Description

本発明は、蛍光体や、その製造方法及びこれを用いた発光装置に関し、より詳しくは、青緑色蛍光体、その製造方法及びこれを用いた発光装置に関する。   The present invention relates to a phosphor, a manufacturing method thereof, and a light emitting device using the same, and more particularly to a blue-green phosphor, a manufacturing method thereof, and a light emitting device using the same.

青色発光ダイオード(LED)や青色レーザー(LD)等を励起源とし、これを受けて蛍光を発光させ、白色光を発光させる発光装置が、従来の蛍光灯等と比較して消費電力が低く長寿命であることから、種々利用されている。また、これらのLEDを用いた発光装置は、不要な紫外線や赤外線を含まない光が簡単に得られるため、紫外線に敏感な文化財や芸術作品、熱照射を嫌う物等の各種照明等にも好適である。かかる発光装置の蛍光体として、LEDによる発光効率がよく、LEDによる劣化が少ない(Y,Gd)3(Al,Ga)512:Ce3+等のいわゆるYAG:Ce系蛍光体が使用されている。この種の発光装置として、具体的には、例えば、(RE1-xSmx3(AlyGa1-y512:Ceで表され、式中、REは、Y、Gdから選択される少なくとも1種で青色LEDにより励起され黄緑色を発光する蛍光体をモールドした発光ダイオード等が報告されている。しかしながら、これらの発光ダイオードにおいては、青色と黄色の補色による白色であることから、充分な演色性が得られないという問題がある。 A light-emitting device that emits white light using a blue light-emitting diode (LED) or blue laser (LD) as an excitation source is low in power consumption and long compared with conventional fluorescent lamps. Since it has a long life, it is used in various ways. In addition, light-emitting devices using these LEDs can easily obtain light that does not contain unnecessary ultraviolet rays and infrared rays, so they can be used for various illuminations such as cultural assets and art works sensitive to ultraviolet rays, and objects that do not like heat irradiation. Is preferred. As a phosphor of such a light-emitting device, a so-called YAG: Ce-based phosphor such as (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce 3+ is used which has good luminous efficiency by the LED and little deterioration by the LED. ing. As this type of light emitting device, specifically, for example, (RE 1-x Sm x ) 3 (Al y Ga 1-y) 5 O 12: represented by Ce, wherein, RE is, Y, from Gd There has been reported a light emitting diode or the like in which a phosphor that is excited by a blue LED and emits yellowish green is molded with at least one selected. However, these light emitting diodes have a problem that a sufficient color rendering property cannot be obtained because they are white by complementary colors of blue and yellow.

このような発光装置における演色性を向上させるため、青色LEDの発光により青緑色から緑色の蛍光を発光するオキシ窒化物蛍光体が開発されている(特許文献1−3)。LEDやLDからの青色により励起され、更なる発光効率の向上を図ることができる高強度の青緑色の蛍光を発光する蛍光体や、これを用いた発光装置が要請されている。   In order to improve the color rendering in such a light emitting device, an oxynitride phosphor that emits blue-green to green fluorescence by light emission of a blue LED has been developed (Patent Documents 1-3). There is a demand for a phosphor that emits high-intensity blue-green fluorescence that can be excited by blue from an LED or LD and can further improve luminous efficiency, and a light-emitting device using the phosphor.

特開2004−210921JP 2004-210921 A 特開2005−281700JP 2005-281700 A 特開2006−097034JP 2006-097034 A

本発明の課題は、充分なバンドギャップを有し、LEDやLDから発光される青色により励起され、高強度な青緑色の蛍光を発光することが可能な蛍光体を提供し、更に、この蛍光体を容易に効率よく製造することができる製造方法を提供することにある。   An object of the present invention is to provide a phosphor that has a sufficient band gap, is excited by blue light emitted from an LED or LD, and can emit high-intensity blue-green fluorescence. An object of the present invention is to provide a production method capable of producing a body easily and efficiently.

また、本発明は、励起光とするLEDやLDからの青色との演色性に優れ、色調に優れた白色光を得ることができ、且つ、発光効率がよく、充分な発光強度を有し、消費電力の低減を図ることができ、照明用として好適な蛍光体やその製造方法を提供し、これを用いた発光装置を提供することにある。   In addition, the present invention is excellent in color rendering with blue from LED or LD as excitation light, can obtain white light with excellent color tone, has good luminous efficiency, and has sufficient luminous intensity, An object of the present invention is to provide a phosphor that can reduce power consumption and is suitable for illumination and a method for manufacturing the same, and to provide a light-emitting device using the phosphor.

本発明者らは、LEDやLDから発光される青色光のエネルギーとその励起エネルギーが近似し、充分なバンドギャップを有し、しかも、励起により発光される蛍光波長が青緑色系である蛍光体を見い出すべく鋭意研究を行った。その結果、特定の元素組成の蛍光体が、LEDやLDから発光される紫外光から青色光により発光ピーク強度が高い青緑色の蛍光を発光することの知見を得た。かかる知見に基づき本発明を完成するに至った。   The present inventors have obtained a phosphor whose blue light energy emitted from an LED or LD approximates its excitation energy, has a sufficient band gap, and has a blue-green fluorescence wavelength emitted by excitation. We conducted intensive research to find out. As a result, it has been found that a phosphor having a specific element composition emits blue-green fluorescence having a high emission peak intensity due to blue light from ultraviolet light emitted from an LED or LD. Based on this finding, the present invention has been completed.

すなわち本発明は、 組成式(1)
Ca 7−y Eu Si 10 14 (1)
(式中、yは0.013≦y≦0.015を満たす。)で表され、格子定数a(nm)が1.5<a<1.6を満たす立方晶系で空間群Pa−3(No.205)の結晶構造を有することを特徴とする蛍光体を提供する。

That is, the present invention provides a composition formula (1)
Ca 7-y Eu y Si 10 O 6 N 14 (1)
( Wherein y satisfies 0.013 ≦ y ≦ 0.015 ) and the space constant Pa-3 is a cubic system in which the lattice constant a (nm) satisfies 1.5 <a <1.6. A phosphor having the crystal structure of (No. 205) is provided .

また、本発明は、上記蛍光体の製造方法であって、組成式(1)を構成する元素を含む化合物を、陽圧下で焼成することを特徴とする蛍光体の製造方法に関する。   The present invention also relates to a method for producing a phosphor, characterized in that a compound containing an element constituting the composition formula (1) is baked under a positive pressure.

また、本発明は、上記蛍光体を用いたことを特徴とする発光装置に関する。   The present invention also relates to a light-emitting device using the phosphor.

本発明の蛍光体は、充分なバンドギャップを有し、LEDやLDから発光される青色により励起され、高強度な青緑色の蛍光を発光することができる。   The phosphor of the present invention has a sufficient band gap, and is excited by blue light emitted from an LED or LD, and can emit high-intensity blue-green fluorescence.

また、本発明の蛍光体の製造方法は、上記蛍光体を容易に効率よく製造することができる。   In addition, the phosphor production method of the present invention can produce the phosphor easily and efficiently.

また、本発明の発光装置は、励起光とするLEDやLDからの青色との演色性に優れ、色調に優れた白色光を得ることができ、且つ、発光効率がよく、充分な発光強度を有し、消費電力の低減を図ることができ、照明用として好適である。   In addition, the light emitting device of the present invention is excellent in color rendering with blue light from LEDs and LDs as excitation light, can obtain white light with excellent color tone, has high luminous efficiency, and has sufficient luminous intensity. And can reduce power consumption and is suitable for illumination.

本発明の蛍光体の結晶構造を示すX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern which shows the crystal structure of the fluorescent substance of this invention. 本発明の発光装置の一例としてのLED素子の概略構成図を示す図である。It is a figure which shows the schematic block diagram of the LED element as an example of the light-emitting device of this invention. 本発明の発光装置の一例としてのFED装置の概略断面図を示す図である。It is a figure which shows the schematic sectional drawing of the FED apparatus as an example of the light-emitting device of this invention. 本発明の発光装置の一例としてのVFD装置の概略構成図を示す図である。It is a figure which shows the schematic block diagram of the VFD apparatus as an example of the light-emitting device of this invention. 本発明の蛍光体の一例のPLE(励起スペクトル)及びPL強度(発光スペクトル)を示す図である。It is a figure which shows PLE (excitation spectrum) and PL intensity (emission spectrum) of an example of the fluorescent substance of this invention. 本発明の蛍光体の一例のPLE(励起スペクトル)及びPL強度(発光スペクトル)を示す図である。It is a figure which shows PLE (excitation spectrum) and PL intensity (emission spectrum) of an example of the fluorescent substance of this invention. 本発明の蛍光体の結晶構造を示すX線回折パターンのリートベルト解析結果を示す図である。It is a figure which shows the Rietveld analysis result of the X-ray-diffraction pattern which shows the crystal structure of the fluorescent substance of this invention. 本発明の蛍光体の結晶構造を示す図である。It is a figure which shows the crystal structure of the fluorescent substance of this invention.

本発明の蛍光体は組成式(1)
xySizbc (1)
(式中、Aは少なくともCaを含み、Ba、Sr、Mg又はZnのいずれか1種又は2種以上を含んでいてもよい元素を示し、Lは少なくともEuを含み、Ce、Pr、Yb、Tm、Tb又はSmのいずれか1種又は2種以上を含んでいてもよい元素を示し、xは5.8≦x≦7.8、yは0.001<y≦0.2、zは6≦z≦10、bは6≦b≦8、cは9≦c≦14を満たす数値を示す。)で表され、格子定数a(nm)が1.45<a<1.65を満たす立方晶系の結晶構造を有することを特徴とする。
The phosphor of the present invention has a composition formula (1)
A x L y Si z O b N c (1)
(In the formula, A represents an element that contains at least Ca, and may contain any one or more of Ba, Sr, Mg, or Zn, L contains at least Eu, Ce, Pr, Yb, An element that may contain one or more of Tm, Tb, or Sm is shown, x is 5.8 ≦ x ≦ 7.8, y is 0.001 <y ≦ 0.2, and z is 6 ≦ z ≦ 10, b is a numerical value satisfying 6 ≦ b ≦ 8, and c is a numerical value satisfying 9 ≦ c ≦ 14.) And the lattice constant a (nm) satisfies 1.45 <a <1.65. It has a cubic crystal structure.

本発明の蛍光体は、Ca、Eu、Si、O、Nを含み、必要に応じて、Ba、Sr、Mg又はZnのいずれか1種又は2種を含んでいてもよく、或いは、Ce、Pr、Yb、Tm、Tb又はSmのいずれか1種又は2種以上を含んでいてもよい。式(1)中、Caと、必要に応じて含有されるBa、Sr、Mg又はZnとの合計のモル比xは、5.8≦x≦7.8を満たす。これらの元素のモル比xがこの範囲であることにより、式(1)で表される蛍光体の結晶構造が後述の立方晶系を有するものとなる。   The phosphor of the present invention contains Ca, Eu, Si, O, N, and may contain any one or two of Ba, Sr, Mg, or Zn as necessary, or Ce, Any one or more of Pr, Yb, Tm, Tb or Sm may be included. In formula (1), the total molar ratio x of Ca and Ba, Sr, Mg, or Zn contained as necessary satisfies 5.8 ≦ x ≦ 7.8. When the molar ratio x of these elements is in this range, the crystal structure of the phosphor represented by the formula (1) has a cubic system described later.

また、Euと、必要に応じて含有されるCe、Pr、Yb、Tm、Tb又はSmとの合計のモル比yは、0.001<y≦0.2を満たす。これらの元素のモル比yがこの範囲であることにより、式(1)で表される蛍光体の結晶構造が後述の立方晶系を有するものとなる。   Further, the total molar ratio y of Eu and Ce, Pr, Yb, Tm, Tb or Sm contained as necessary satisfies 0.001 <y ≦ 0.2. When the molar ratio y of these elements is within this range, the crystal structure of the phosphor represented by the formula (1) has a cubic system described later.

また、ケイ素原子のモル比zは6≦z≦10、酸素原子のモル比bは6≦b≦8、窒素原子のモル比cは9≦c≦14を満たす。これらの原子のモル比がこの範囲であれば、式(1)で表される蛍光体の結晶構造が後述の立方晶系を有するものとなる。   Further, the molar ratio z of silicon atoms satisfies 6 ≦ z ≦ 10, the molar ratio b of oxygen atoms satisfies 6 ≦ b ≦ 8, and the molar ratio c of nitrogen atoms satisfies 9 ≦ c ≦ 14. If the molar ratio of these atoms is within this range, the crystal structure of the phosphor represented by the formula (1) has a cubic system described later.

式(1)で表される蛍光体は格子定数a(nm)が1.45<a<1.65の立方晶系の結晶構造を有する。このような立方晶系を有することにより、青色光により励起され、青緑色の蛍光を効率よく発光し、結晶性に優れた蛍光体が得られ、かかる蛍光体においては、励起光による結晶格子欠損に起因するフォノンの生成を抑制し、蛍光の発光が阻害されるのを抑制させ得る。   The phosphor represented by the formula (1) has a cubic crystal structure with a lattice constant a (nm) of 1.45 <a <1.65. By having such a cubic system, a phosphor that is excited by blue light and emits blue-green fluorescence efficiently and has excellent crystallinity is obtained. In such a phosphor, crystal lattice defects due to excitation light are obtained. It is possible to suppress the generation of phonons due to the above, and to inhibit the emission of fluorescence.

上記組成式(1)で示される蛍光体は、組成式(2)
7-yySi10614 (2)
(式中、A、L、yはそれぞれ式(1)中に示すA、L、yと同じものを示す。)で表され、格子定数a(nm)が1.5<a<1.6を満たす立方晶系で空間群Pa−3(No.205)の結晶構造を有する蛍光体が特に好ましい。式(2)で表される蛍光体は上記組成により、格子定数a(nm)が1.5<a<1.6の立方晶系で空間群Pa−3(No.205)の結晶構造を有する。このような立方晶系を有することにより、青色光により励起され、青緑色の蛍光を効率よく発光し、結晶性に優れた蛍光体が得られ、かかる蛍光体においては、励起光による結晶格子欠損に起因するフォノンの生成を抑制し、蛍光の発光が阻害されるのを抑制させ得る。
The phosphor represented by the composition formula (1) is composed of the composition formula (2).
A 7-y Ly Si 10 O 6 N 14 (2)
(Wherein A, L, and y are the same as A, L, and y shown in Formula (1), respectively), and the lattice constant a (nm) is 1.5 <a <1.6. A phosphor having a cubic structure and a crystal structure of the space group Pa-3 (No. 205) is particularly preferable. The phosphor represented by the formula (2) has a cubic structure in which the lattice constant a (nm) is 1.5 <a <1.6 and has a crystal structure of the space group Pa-3 (No. 205) with the above composition. Have. By having such a cubic system, a phosphor that is excited by blue light and emits blue-green fluorescence efficiently and has excellent crystallinity is obtained. In such a phosphor, crystal lattice defects due to excitation light are obtained. It is possible to suppress the generation of phonons due to the above, and to inhibit the emission of fluorescence.

結晶構造は粉末X線回折測定(RINT−2000;理学電機(株)製)により、X線回折パターン10°〜130°の範囲で測定した。得られる回折パターンより抽出された回折ピークから結晶系を決定し、構造計算プログラムにより、最適化された格子定数の数値を得た。図1に示すように、式(1)で示される蛍光体は、31.6度、32.7度、33.7度に回折ピークを有する。   The crystal structure was measured by powder X-ray diffraction measurement (RINT-2000; manufactured by Rigaku Corporation) in an X-ray diffraction pattern range of 10 ° to 130 °. A crystal system was determined from a diffraction peak extracted from the obtained diffraction pattern, and an optimized lattice constant value was obtained by a structure calculation program. As shown in FIG. 1, the phosphor represented by the formula (1) has diffraction peaks at 31.6 degrees, 32.7 degrees, and 33.7 degrees.

このX線回折パターンより未知構造解析およびリートベルト解析により、図7に示すようなリートベルト解析によりフィッティングされた回折パターンが得られる。フィッティングパラメータR値(Rwp、Rp、RB、RF)はすべて5%以下を示しており、求められた結晶構造が妥当であることを示している。構造解析の結果、結晶系は立方晶で空間群Pa-3(No.205)、単位格子は約1.548nmと見積もられ、図8に示すような具体的な結晶構造を得る。この結晶構造は、Siサイトはすべて[Si(O,N)4]多面体構造で構成されており、この母体結晶は共有結合性が強く、強固であり、熱的に安定であると推測することができる。図7および図8より得られたCa6.988Eu0.012Si10614の結晶構造データを表1に示す。 From this X-ray diffraction pattern, a diffraction pattern fitted by Rietveld analysis as shown in FIG. 7 is obtained by unknown structure analysis and Rietveld analysis. The fitting parameter R values (Rwp, Rp, RB, RF) all indicate 5% or less, indicating that the obtained crystal structure is appropriate. As a result of structural analysis, it is estimated that the crystal system is cubic, the space group Pa-3 (No. 205), and the unit cell is about 1.548 nm, and a specific crystal structure as shown in FIG. 8 is obtained. As for this crystal structure, all Si sites are composed of [Si (O, N) 4] polyhedral structure, and it is assumed that this base crystal has strong covalent bond, is strong, and is thermally stable. Can do. Table 1 shows the crystal structure data of Ca 6.988 Eu 0.012 Si 10 O 6 N 14 obtained from FIG. 7 and FIG.

式(1)、式(2)で表される蛍光体は、波長300〜500nmによって励起されるワイドバンドギャップを有する。かかる励起エネルギーを有する励起光を発光する励起源として、青色レーザーや青色LED等を挙げることができる。上記励起源の青色LEDとしては、具体的には、InGaN等を挙げることができる。   The phosphors represented by the formulas (1) and (2) have a wide band gap excited by a wavelength of 300 to 500 nm. Examples of an excitation source that emits excitation light having such excitation energy include a blue laser and a blue LED. Specific examples of the blue LED as the excitation source include InGaN.

上記蛍光体は上記LEDやLD等から発光される青色により励起され、450〜600nm波長の青緑色の蛍光を発光する。   The phosphor is excited by blue light emitted from the LED or LD, and emits blue-green fluorescence having a wavelength of 450 to 600 nm.

上記蛍光体を製造するには、目的とする元素組成に相当するように、各元素を含有する化合物を組み合わせ、陽圧下で焼成する方法を挙げることができる。原料として、蛍光体に含まれる元素の酸化物や窒化物を用いることができる。具体的には、酸化カルシウム、酸化バリウム、酸化ストロンチウム、酸化マグネシウム、酸化亜鉛、酸化ユウロピウム、酸化ケイ素、窒化ケイ素等を用いることができる。更に、結晶性の優れた構造の蛍光体を形成するため、結晶構造中の欠陥を少なくするためにフラックス材を用いてもよい。   In order to produce the phosphor, there can be mentioned a method in which compounds containing respective elements are combined and fired under a positive pressure so as to correspond to the target elemental composition. As a raw material, an oxide or nitride of an element contained in the phosphor can be used. Specifically, calcium oxide, barium oxide, strontium oxide, magnesium oxide, zinc oxide, europium oxide, silicon oxide, silicon nitride, or the like can be used. Further, in order to form a phosphor having a structure with excellent crystallinity, a flux material may be used to reduce defects in the crystal structure.

これら各原料を目的とする組成式に従って秤量、採取し、乾式または湿式で十分混合する。湿式混合の場合は、エタノールやイソプロピルアルコール等のアルコール、アセトン等の有機溶剤を用いることが好ましい。これらの有機溶剤と、秤量した原料を、セラミックス製等のボールミルにアルミナ若しくはジルコニア製などのボールと共に入れ、1時間から24時間混合することができる。その後、有機溶剤を乾燥除去し、混合された原料粉末とすることができる。   These raw materials are weighed and collected in accordance with the target composition formula, and thoroughly mixed in a dry or wet manner. In the case of wet mixing, it is preferable to use an alcohol such as ethanol or isopropyl alcohol, or an organic solvent such as acetone. These organic solvents and the weighed raw materials can be put in a ball mill made of ceramics together with balls made of alumina or zirconia and mixed for 1 to 24 hours. Thereafter, the organic solvent can be removed by drying to obtain a mixed raw material powder.

得られた混合原料粉末をカーボンルツボやカーボントレイ、窒化ホウ素ルツボ、窒化ホウ素トレイなどの耐熱容器に充填し焼成する。焼成温度は、例えば、1300〜1700℃が好ましく、より好ましくは1400〜1600℃である。焼成時間は、例えば、1〜10時間等とすることができる。上記焼成時の雰囲気としては、窒素ガスや、窒素と水素の混合ガス、アンモニア等還元雰囲気が好ましく、特に、窒素ガスであることが好ましい。   The obtained mixed raw material powder is filled in a heat-resistant container such as a carbon crucible, a carbon tray, a boron nitride crucible, or a boron nitride tray and fired. The firing temperature is, for example, preferably 1300 to 1700 ° C, more preferably 1400 to 1600 ° C. The firing time can be, for example, 1 to 10 hours. As the atmosphere at the time of firing, nitrogen gas, a mixed gas of nitrogen and hydrogen, a reducing atmosphere such as ammonia is preferable, and nitrogen gas is particularly preferable.

上記混合原料粉末の焼成雰囲気は陽圧とする。陽圧下で焼成することにより、Si34等の窒化物が分解するのを抑制し、目的とする組成の蛍光体を得ることができる。かかる焼成雰囲気の圧力としては、0.8〜1.50気圧等を挙げることができ、より好ましくは0.85〜1.1気圧等である。焼成時の圧力が上記範囲であれば、粉末化の際に負荷する外力により結晶を破壊して蛍光体の発光効率を低下させるのを抑制することができる。焼成は、焼成後、冷却し、再焼成することを反復し、複数回に亘って行うこともできる。得られた焼成物に対し、粉砕、洗浄、乾燥、篩い分け等を施して、粉末状の蛍光体とすると、LED素子等に好適である。 The firing atmosphere of the mixed raw material powder is a positive pressure. By firing under a positive pressure, it is possible to suppress decomposition of nitrides such as Si 3 N 4 and obtain a phosphor having a desired composition. Examples of the pressure of the firing atmosphere include 0.8 to 1.50 atm, and more preferably 0.85 to 1.1 atm. If the pressure at the time of baking is the said range, it can suppress that the crystal | crystallization is destroyed by the external force loaded in the case of pulverization, and the luminous efficiency of fluorescent substance is reduced. Firing can be performed multiple times by repeating cooling and refiring after firing. The obtained fired product is pulverized, washed, dried, sieved, and the like to obtain a powdered phosphor, which is suitable for an LED element or the like.

本発明の発光装置は、上記蛍光体を用いたものであれば、いずれであってもよい。例えば、本発明の発装置としては、300〜500nmの波長光を発光する半導体を有する発光ダイオード等のLED素子や、エレクトロルミネッセンス素子、カソードからの電子を蛍光体へ直接衝突させ発光させる電界放出型表示(FED)や、真空蛍光表示(VFD)等の電子線発光装置、その他冷陰極蛍光ランプや熱陰極蛍光ランプ等の蛍光ランプ等を挙げることができる。   The light emitting device of the present invention may be any as long as it uses the above phosphor. For example, as a light emitting device of the present invention, an LED element such as a light emitting diode having a semiconductor that emits light having a wavelength of 300 to 500 nm, an electroluminescence element, or a field emission type that emits light by directly colliding electrons from a cathode with a phosphor. Examples thereof include electron beam light emitting devices such as display (FED) and vacuum fluorescent display (VFD), and other fluorescent lamps such as cold cathode fluorescent lamps and hot cathode fluorescent lamps.

本発明の発光装置の一例として、図2の概略構成図に示すLED素子を挙げることができる。図2に示すLED素子には、主として、リフレクタの機能を有する筐体12と、該筐体に固定されたサブマウント(図示せず)上に固定されたLEDチップ13と、該LEDチップ13を包囲する透明樹脂14と、透明樹脂を覆うように、例えば、ガラス製等の蛍光体含有シート11とが設けられる。LEDチップ13は、Al23またはSIOの基板上にGaN等の半導体等が積層されて形成される発光層を有し、該発光層が300〜500nmの紫外光から青色光を発光するものが好ましい。LEDチップのLEDは配線15によりその電極がワイヤボンドされて図示しない電源に電気的に接続される。上記透明樹脂はLEDチップの保護のため設けられ、LEDからの発光の透過性に優れ、そのエネルギーに対して耐性を有する、例えば、エポキシ樹脂、ユリア樹脂、シリコーン樹脂等が好適に用いられる。透明樹脂の上面に設けられる蛍光体含有シート11には式(1)で表される蛍光体が含有される。シート11には、LED素子から発光させる光を所望の波長にする場合、また、更なる演色性を得る場合には、必要に応じて、緑色、黄色、赤色などの蛍光を発光する蛍光体を含有させることができる。例えば、緑色発光蛍光体としては、Y3(Al,Ga)512:Ce、SrGa24:Eu、(Ba,Sr)2SiO4:Eu、Ca3Sc2Si312:Ce、CaSc24:Ce、Eu賦活β-サイアロン、(Sr,Ba)Si222:Eu、Ba3Si6122:Eu、BAM:Eu,Mn等を挙げることができる。黄色蛍光体としては、(Y,Gd)3Al512:Ce、Tb3Al512;Ce、CaGa24:Eu、(Sr,Ca,Ba)2SiO4:Eu、Eu賦活Ca-α-サイアロン、La3Si611:Ce等を挙げることができる。赤色蛍光体としては、(Sr,Ca)S:Eu、(Ca,Sr)2Si58:Eu、CaAlSiN3:Eu、(Sr,Ba)3SiO5:Eu、K2TiF6:Mn等を挙げることができる。 As an example of the light emitting device of the present invention, an LED element shown in the schematic configuration diagram of FIG. 2 can be given. The LED element shown in FIG. 2 mainly includes a casing 12 having a reflector function, an LED chip 13 fixed on a submount (not shown) fixed to the casing, and the LED chip 13. For example, the surrounding transparent resin 14 and the phosphor-containing sheet 11 made of glass or the like are provided so as to cover the transparent resin. The LED chip 13 has a light emitting layer formed by laminating a semiconductor such as GaN on an Al 2 O 3 or SIO substrate, and the light emitting layer emits blue light from ultraviolet light of 300 to 500 nm. Is preferred. The LED of the LED chip is electrically connected to a power source (not shown) by wire-bonding its electrodes by wiring 15. For example, an epoxy resin, a urea resin, a silicone resin, or the like, which is provided for protecting the LED chip, has excellent light transmission from the LED, and has resistance to the energy, is preferably used. The phosphor-containing sheet 11 provided on the upper surface of the transparent resin contains the phosphor represented by the formula (1). The sheet 11 is provided with a phosphor that emits fluorescence such as green, yellow, red, etc., if necessary, when the light emitted from the LED element is set to a desired wavelength, or when further color rendering is obtained. It can be included. For example, as a green light emitting phosphor, Y 3 (Al, Ga) 5 O 12 : Ce, SrGa 2 S 4 : Eu, (Ba, Sr) 2 SiO 4 : Eu, Ca 3 Sc 2 Si 3 O 12 : Ce , CaSc 2 O 4 : Ce, Eu-activated β-sialon, (Sr, Ba) Si 2 O 2 N 2 : Eu, Ba 3 Si 6 O 12 N 2 : Eu, BAM: Eu, Mn, etc. . As the yellow phosphor, (Y, Gd) 3 Al 5 O 12 : Ce, Tb 3 Al 5 O 12 ; Ce, CaGa 2 S 4 : Eu, (Sr, Ca, Ba) 2 SiO 4 : Eu, Eu activation Examples thereof include Ca-α-sialon, La 3 Si 6 N 11 : Ce, and the like. As red phosphors, (Sr, Ca) S: Eu, (Ca, Sr) 2 Si 5 N 8 : Eu, CaAlSiN 3 : Eu, (Sr, Ba) 3 SiO 5 : Eu, K 2 TiF 6 : Mn Etc.

上記シートは、例えば、ガラス成分と蛍光体とを溶融混合して薄膜状に形成することができる。また、蛍光体は透明樹脂中に含有させることもできる。   For example, the sheet can be formed into a thin film by melting and mixing a glass component and a phosphor. Further, the phosphor can be contained in the transparent resin.

上記LED素子において、LEDから励起光が発光されると、シートに含有される蛍光体が励起され、青緑色領域を含んだ蛍光が発光される。これらの蛍光とLEDからの青色光が、シート内で拡散され混色され、シート表面から色調の優れた白色光が放出される。   In the LED element, when excitation light is emitted from the LED, the phosphor contained in the sheet is excited, and fluorescence including a blue-green region is emitted. These fluorescent light and blue light from the LED are diffused and mixed in the sheet, and white light with excellent color tone is emitted from the sheet surface.

本発明の発光装置の一例として、電界放出型表示(フィールド・エミッション・ディスプレイ:FED)装置を例示することができる。この種のFED装置としては、図3の部分略断面図に示すように、1対のガラス製等のアノード基板31とカソード基板32を備え、これらが図示しない支持枠により数mm以下の間隔で平行に配置され、内部が真空に保持されるようになっている。アノード基板31には、内面に透明なアノード電極31aを介して蛍光体31bが設けられ、蛍光体は赤色系蛍光体、青緑色系蛍光体、緑色系蛍光体等各画素が交互に付与されて形成される。これらの各蛍光体の各画素間にはこれらを隔離する黒色導電材からなる光吸収体が設けられていてもよい。青緑色系蛍光体として上記蛍光体が用いられ、これとの組み合わせにおいて、赤色系蛍光体、緑色系蛍光体が適宜選択される。一方、カソード基板32の内面にはカソード電極32aを介して炭素膜等からなる電子放出素子(エミッタ)32bが、各蛍光体の画素に対応して設けられる。各電子放出素子は支持枠に設けられる信号入力端子(図示せず)に接続されカソード基板に形成される図示しない配線によってそれぞれ電圧が印加されるようになっている。   As an example of the light emitting device of the present invention, a field emission display (field emission display: FED) device can be exemplified. As shown in the partial schematic cross-sectional view of FIG. 3, this type of FED apparatus includes a pair of glass-made anode substrate 31 and cathode substrate 32, which are separated by a support frame (not shown) at intervals of several millimeters or less. Arranged in parallel, the inside is kept in a vacuum. The anode substrate 31 is provided with a phosphor 31b on the inner surface through a transparent anode electrode 31a. The phosphor is provided with pixels such as a red phosphor, a blue-green phosphor, and a green phosphor alternately. It is formed. Between each pixel of each of these phosphors, a light absorber made of a black conductive material that separates them may be provided. The above phosphor is used as a blue-green phosphor, and a red phosphor and a green phosphor are appropriately selected in combination with the phosphor. On the other hand, an electron-emitting device (emitter) 32b made of a carbon film or the like is provided on the inner surface of the cathode substrate 32 via a cathode electrode 32a corresponding to each phosphor pixel. Each electron-emitting device is connected to a signal input terminal (not shown) provided on the support frame and is applied with a voltage by a wiring (not shown) formed on the cathode substrate.

このようなFED装置において、カソード電極32aとアノード電極31a間に電圧が印加されると、電子放出素子32bから電子が放出され、放出された電子は矢印Aに示すように、アノード電極31aに引き付けられ、蛍光体31bに衝突し、蛍光を発生させ、発生した蛍光は白色光となってアノード基板31から矢印Bに示すように、外部へ放出される。上記蛍光体を用いることにより、色調に優れた白色光を発光させることができる。   In such an FED device, when a voltage is applied between the cathode electrode 32a and the anode electrode 31a, electrons are emitted from the electron-emitting device 32b, and the emitted electrons are attracted to the anode electrode 31a as indicated by an arrow A. Then, it collides with the phosphor 31b to generate fluorescence, and the generated fluorescence becomes white light and is emitted from the anode substrate 31 to the outside as indicated by an arrow B. By using the phosphor, white light with excellent color tone can be emitted.

上記FED装置には、エミッタからの過剰な電子が放出され蛍光体表面を帯電させ、蛍光体と電子との衝突が阻害されるのを回避するため、蛍光体表面に電導層を設け、蛍光体表面に蓄積された電子とエミッタ間の異常放電を抑制するようにしてもよい。電導層は可視光領域で吸収がない透明な酸化インジウムや、酸化亜鉛等の導電性を有する微粒子を含有する電導性材料を蛍光体表面にコーティングする方法等により形成することができる。   The FED device is provided with a conductive layer on the phosphor surface in order to avoid excessive electrons from the emitter being emitted and charging the phosphor surface to prevent collision between the phosphor and the electrons. You may make it suppress the abnormal discharge between the electron accumulate | stored on the surface and an emitter. The conductive layer can be formed by a method of coating a phosphor material with a conductive material containing transparent indium oxide that does not absorb in the visible light region or conductive fine particles such as zinc oxide.

また、本発明の発光装置の一例として、真空蛍光表示(バキューム・フルオロセント・ディスプレイ:VFD)装置を例示することができる。この種のVFD装置としては、図4の部分略断面図に示すように、ガラス製等の基板41上に設けられた各配線42に絶縁体層43に設けられたスルーホール44を介してそれぞれ接続されるアノード45が設けられ、各アノード上には蛍光体層46a、46b、46cが形成される。蛍光体層46a、46b、46cは、それぞれ赤色系蛍光体、青緑色系蛍光体、緑色系蛍光体等を含有して交互に設けられる。青緑色系蛍光体としては上記蛍光体が用いられ、これとの組み合わせにおいて、赤色系蛍光体、緑色系蛍光体を適宜選択することができる。この蛍光体層を覆うように、上方にグリッド47が配置され、グリッド47は基板上に設けられた図示しない端子に導通するように設けられる。更に、グリッドの上方にフィラメント状のカソード48が基板両端に設けられた支持体に張架されて設けられ、これらが真空空間を形成する容器49内に設けられる。また、蛍光体表面に電導層を設け、蛍光体表面の帯電を抑制し異常放電を抑制するようにしてもよい。電導層は上記FED装置における電導層と同様に形成することができる。   Further, as an example of the light emitting device of the present invention, a vacuum fluorescent display (vacuum fluorocent display: VFD) device can be exemplified. As this type of VFD device, as shown in the partial schematic cross-sectional view of FIG. 4, each wiring 42 provided on a substrate 41 made of glass or the like is respectively connected through a through hole 44 provided in an insulator layer 43. Connected anodes 45 are provided, and phosphor layers 46a, 46b, and 46c are formed on each anode. The phosphor layers 46a, 46b, and 46c are alternately provided with red phosphors, blue-green phosphors, green phosphors, and the like. As the blue-green phosphor, the above-described phosphor is used, and in combination therewith, a red phosphor and a green phosphor can be appropriately selected. A grid 47 is disposed above the phosphor layer so as to cover the phosphor layer, and the grid 47 is provided so as to be electrically connected to a terminal (not shown) provided on the substrate. Further, a filamentary cathode 48 is provided above the grid so as to be stretched on a support provided at both ends of the substrate, and these are provided in a container 49 that forms a vacuum space. Further, a conductive layer may be provided on the phosphor surface to suppress abnormal charging by suppressing charging of the phosphor surface. The conductive layer can be formed in the same manner as the conductive layer in the FED device.

このような真空蛍光表示装置においては、カソードからの電子を蛍光体に当てて蛍光体からの発光により表示を行い、環境温度、特に低温による発光強度の変動が少なく、上記蛍光体を含有することにより演色性を図り、一定の蛍光を継続して発生させることができる。   In such a vacuum fluorescent display device, display is performed by emitting light from the phosphor by applying electrons from the cathode to the phosphor, and there is little fluctuation in emission intensity due to environmental temperature, particularly low temperature, and the phosphor is contained. Thus, color rendering properties can be achieved and constant fluorescence can be continuously generated.

以下、本発明の蛍光体を実施例を挙げて更に詳細に説明する。
[実施例1]
粉末原料として、CaCO3を3.08g、Si34を1.92g、Eu23を0.01g秤量し、原料を混合した。混合物を窒化ホウ素ルツボに充填し、電気炉にセットし、0.9気圧の窒素還元雰囲気中において1500℃で3時間焼成した。焼成後は徐冷して、得られた焼成物を粉砕混合、洗浄して、目的のCa7-yEuySi10614(y=0.015)の蛍光体を得た。
Hereinafter, the phosphor of the present invention will be described in more detail with reference to examples.
[Example 1]
As powder raw materials, 3.08 g of CaCO 3 , 1.92 g of Si 3 N 4 and 0.01 g of Eu 2 O 3 were weighed and mixed. The mixture was filled in a boron nitride crucible, set in an electric furnace, and fired at 1500 ° C. for 3 hours in a nitrogen reducing atmosphere of 0.9 atm. After firing, the product was gradually cooled, and the obtained fired product was pulverized, mixed, and washed to obtain a target phosphor of Ca 7-y Eu y Si 10 O 6 N 14 (y = 0.015).

得られた蛍光体について、以下のように励起光(Photoluminescence Excitation:PLE)測定、フォトルミネッセンス(Photoluminescence:PL)測定を行った。   About the obtained fluorescent substance, excitation light (Photoluminescence Excitation: PLE) measurement and photoluminescence (Photoluminescence: PL) measurement were performed as follows.

[PLE測定]
得られた蛍光体について、蛍光分光光度計(RF−5300PC:島津製作所製)により、大気中室温雰囲気下で、励起波長を変化させ、蛍光体の発光ピーク波長をモニターして測定を行った。蛍光体を励起可能な波長範囲は330nm近傍にピークを有し、300〜500nmに及んだ。励起光波長に対するPLE強度(励起スペクトル)を図5中の点線で示す。
[PLE measurement]
The obtained phosphor was measured with a fluorescence spectrophotometer (RF-5300PC: manufactured by Shimadzu Corporation) by changing the excitation wavelength and monitoring the emission peak wavelength of the phosphor in the atmosphere at room temperature. The wavelength range in which the phosphor can be excited has a peak near 330 nm and extends from 300 to 500 nm. The PLE intensity (excitation spectrum) with respect to the excitation light wavelength is indicated by a dotted line in FIG.

[PL測定]
得られた蛍光体について、励起光として365nmを用いて、蛍光分光光度計(RF−5300PC:島津製作所製)により、大気中室温雰囲気下で行った。発光は490nm近傍にピークを有し、450〜600nmに及んだ。得られた蛍光体のPL強度(発光スペクトル)を図5中の実線で示す。
[PL measurement]
About the obtained fluorescent substance, it carried out by the fluorescence spectrophotometer (RF-5300PC: Shimadzu Corp. make) using the 365 nm as excitation light in air | atmosphere at room temperature atmosphere. The emission had a peak in the vicinity of 490 nm and ranged from 450 to 600 nm. The PL intensity (emission spectrum) of the obtained phosphor is shown by a solid line in FIG.

[実施例2]
粉末原料として、CaCO3を3.16g、Si34を1.73g、Eu23を0.01g、SiO2を0.11g秤量して用いた他は、実施例1と同様にして蛍光体を作製し、目的のCa7-yEuySi10614(y=0.013)の蛍光体を得た。得られた蛍光体について、PLE測定、PL測定を行った。PLE強度を点線で、PL強度を実線で、図6に示す。
[Example 2]
The same procedure as in Example 1 was conducted except that 3.16 g of CaCO 3 , 1.73 g of Si 3 N 4 , 0.01 g of Eu 2 O 3 and 0.11 g of SiO 2 were weighed and used as powder raw materials. A phosphor was produced, and the target phosphor of Ca 7-y Eu y Si 10 O 6 N 14 (y = 0.003) was obtained. About the obtained fluorescent substance, PLE measurement and PL measurement were performed. FIG. 6 shows the PLE intensity as a dotted line and the PL intensity as a solid line.

46a、46b、46c 蛍光体層
11a、31b 蛍光体
46a, 46b, 46c phosphor layers 11a, 31b phosphor

Claims (5)

組成式(1)
Ca 7−y Eu Si 10 14 (1)
(式中、yは0.013≦y≦0.015を満たす。)で表され、格子定数a(nm)が1.5<a<1.6を満たす立晶系で空間群Pa−3(No.205)の結晶構造を有することを特徴とする蛍光体。
Composition formula (1)
Ca 7-y Eu y Si 10 O 6 N 14 (1)
(Wherein, y satisfies. The 0.013 ≦ y ≦ 0.015) is represented by space group with standing orthorhombic system satisfying the lattice constant a (nm) is 1.5 <a <1.6 Pa- A phosphor having a crystal structure of No. 3 (No. 205) .
300乃至460nm波長光に励起されることを特徴とする請求項1記載の蛍光体。 Phosphor of claim 1, wherein 300 to be excited in the 460nm wavelength light. 450乃至600nm波長光を発光することを特徴とする請求項1又は2記載の蛍光体。 450 to claim 1 or 2 phosphor according to, characterized in that emit 600nm wavelength light. 請求項1乃至3のいずれかに記載の蛍光体を有することを特徴とする発光装置。 The light emitting device characterized by having a phosphor according to any one of claims 1 to 3. 請求項1乃至3のいずれか記載の蛍光体の製造方法であって、組成式(1)を構成する元素を含む化合物を、陽圧下で焼成することを特徴とする蛍光体の製造方法。 The method for producing a phosphor according to any one of claims 1 to 3 , wherein the compound containing the element constituting the composition formula (1) is baked under a positive pressure.
JP2010203248A 2010-03-30 2010-09-10 Phosphor, method for manufacturing the same, and light emitting device having the same Active JP5693108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010203248A JP5693108B2 (en) 2010-03-30 2010-09-10 Phosphor, method for manufacturing the same, and light emitting device having the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010079404 2010-03-30
JP2010079404 2010-03-30
JP2010203248A JP5693108B2 (en) 2010-03-30 2010-09-10 Phosphor, method for manufacturing the same, and light emitting device having the same

Publications (2)

Publication Number Publication Date
JP2011225803A JP2011225803A (en) 2011-11-10
JP5693108B2 true JP5693108B2 (en) 2015-04-01

Family

ID=45041566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010203248A Active JP5693108B2 (en) 2010-03-30 2010-09-10 Phosphor, method for manufacturing the same, and light emitting device having the same

Country Status (1)

Country Link
JP (1) JP5693108B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101856534B1 (en) 2011-12-07 2018-05-14 삼성전자주식회사 Oxinitride phosphor and light emitting device comprising the same
JP2013205743A (en) * 2012-03-29 2013-10-07 Sumitomo Chemical Co Ltd Method and apparatus for manufacturing polarizing plate
CN108174467B (en) * 2017-06-01 2024-05-14 欧普照明股份有限公司 LED heating method, device, assembly, bathroom heater and warmer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045080A (en) * 2006-08-21 2008-02-28 National Institute For Materials Science Method for producing inorganic compound

Also Published As

Publication number Publication date
JP2011225803A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
JP4953065B2 (en) Phosphor and production method thereof
JP5190475B2 (en) Phosphor and light emitting device using the same
JP5185421B2 (en) Red light emitting phosphor and light emitting device using the same
JP4836229B2 (en) Phosphor and light emitting device
JP5129283B2 (en) Phosphor, phosphor manufacturing method, light emitting device, and light emitting module
US8674392B2 (en) Light-emitting device
JP2008285606A (en) Phosphor, method for producing the same and light-emitting device
US20180346808A1 (en) Phosphor that includes cerium
JP6718991B2 (en) Lutetium nitride fluorescent powder and light emitting device having the fluorescent powder
KR20130106394A (en) Blue-light-emitting phosphor and light-emitting device equipped with the blue-light-emitting phosphor
JP5592729B2 (en) Phosphor and light emitting device using the same
JP5758415B2 (en) Method for producing red-emitting phosphor
Wu et al. Synthesis and luminescence characteristics of nitride Ca 1.4 Al 2.8 Si 9.2 N 16: Ce 3+, Li+ for light-emitting devices and field emission displays
TWI569466B (en) Light emitting device employing luminescent substances with oxyorthosilicate luminophores
KR101009848B1 (en) Phosphor, method of manufacturing the same and light emitting device
JP5693108B2 (en) Phosphor, method for manufacturing the same, and light emitting device having the same
JP5920773B2 (en) Phosphor, method for manufacturing the same, light emitting device, and image display device
JP5748769B2 (en) Light emitting device having phosphor of strontium oxyorthosilicate type
KR101072572B1 (en) Red phosphor and its forming method for use in solid state lighting
CN111247228B (en) Luminescent material and conversion type LED
JP6169468B2 (en) Phosphor
JP5736272B2 (en) Blue light emitting phosphor and light emitting device using the blue light emitting phosphor
CN115397948B (en) Narrow-band green luminescent material
JP5398778B2 (en) Method for manufacturing phosphor
US20210102118A1 (en) Red phosphor and light emitting device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130717

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20131211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150203

R150 Certificate of patent or registration of utility model

Ref document number: 5693108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250