JP2008285606A - Phosphor, method for producing the same and light-emitting device - Google Patents

Phosphor, method for producing the same and light-emitting device Download PDF

Info

Publication number
JP2008285606A
JP2008285606A JP2007133076A JP2007133076A JP2008285606A JP 2008285606 A JP2008285606 A JP 2008285606A JP 2007133076 A JP2007133076 A JP 2007133076A JP 2007133076 A JP2007133076 A JP 2007133076A JP 2008285606 A JP2008285606 A JP 2008285606A
Authority
JP
Japan
Prior art keywords
phosphor
light
red
emitting device
yellow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007133076A
Other languages
Japanese (ja)
Inventor
Makoto Yoshimatsu
良 吉松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hotalux Ltd
Original Assignee
NEC Lighting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Lighting Ltd filed Critical NEC Lighting Ltd
Priority to JP2007133076A priority Critical patent/JP2008285606A/en
Priority to TW097115212A priority patent/TWI379894B/en
Priority to KR1020080045287A priority patent/KR20080101752A/en
Publication of JP2008285606A publication Critical patent/JP2008285606A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phosphor which has a sufficient band gap, emits yellow to red fluorescent lights, can sequentially change the color tone of the emitted fluorescent light from yellow to red by changing the molar ratio of the elements contained therein, can easily give objective yellow to red color tone, and is good in light-emitting efficacy in blue color LED and blue color LD, and to provide a method for producing the phosphor, by which the phosphor can easily and efficiently be produced. <P>SOLUTION: This phosphor is represented by composition formula (1): Y<SB>3-a-b</SB>Ce<SB>a</SB>L<SB>b</SB>Al<SB>5-c</SB>Si<SB>c</SB>O<SB>12-d</SB>N<SB>d</SB>(1) (wherein, L is one or more elements selected from Gd, La, Tb, Lu, and Sc; a, b, c and d are numerical values satisfying 0.01<a<0.50, 0.0≤b<2.5, 0.0<c<2.0 and 0.01<d<2.67, respectively). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、蛍光体、その製造方法及びこれを用いた発光装置に関し、より詳しくは、黄色から赤色系蛍光体及びこれを用いた発光装置に関する。   The present invention relates to a phosphor, a method for manufacturing the same, and a light emitting device using the same, and more particularly to a yellow to red phosphor and a light emitting device using the same.

青色発光ダイオード(LED)や青色レーザー(LD)等を励起源とし、これを受けて黄色領域の蛍光を発光させ、演色性を図り、白色光を発光させる白色LED装置が、従来の蛍光灯等と比較して消費電力が低く長寿命であることから、種々利用されている。また、これらのLEDを用いた発光装置は、不要な紫外線や赤外線を含まない光が簡単に得られるため、紫外線に敏感な文化財や芸術作品、熱照射を嫌う物等の各種照明等にも好適である。かかる発光装置の蛍光体として、LEDによる発光効率がよく、LEDによる劣化が少ない(Y,Gd)3(Al,Ga)5O12:Ce3+等のいわゆるYAG:Ce系蛍光体が使用されている。この種の発光装置として、具体的には、例えば、(RE1-xSmx3(AlyGa1-y512:Ceで表され、式中、REは、Y、Gdから選択される少なくとも1種で青色LEDにより励起され黄緑色を発光する蛍光体をモールドした発光ダイオード(特許文献1〜3)等が報告されている。しかしながら、これらの発光ダイオードにおいては、青色と黄色の補色による白色であることから、演色性が充分得られないという問題がある。 A white light emitting diode (LED), a blue laser (LD), etc. is used as an excitation source and emits fluorescent light in the yellow region to achieve color rendering and emit white light. Compared to the above, the power consumption is low and the life is long. In addition, light-emitting devices using these LEDs can easily obtain light that does not contain unnecessary ultraviolet rays and infrared rays, so they can be used for various illuminations such as cultural assets and art works sensitive to ultraviolet rays, and objects that do not like heat irradiation. Is preferred. As a phosphor of such a light-emitting device, a so-called YAG: Ce-based phosphor such as (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce 3+ is used which has good luminous efficiency by LED and little deterioration by LED. ing. As this type of light emitting device, specifically, for example, (RE 1-x Sm x ) 3 (Al y Ga 1-y) 5 O 12: represented by Ce, wherein, RE is, Y, from Gd There have been reported light emitting diodes (Patent Documents 1 to 3) and the like molded with phosphors that emit at least one selected from blue LEDs and emit yellowish green light. However, these light emitting diodes have a problem that a sufficient color rendering property cannot be obtained because they are white by complementary colors of blue and yellow.

このような発光装置における演色性を向上させるため、青色LEDの発光により長波長よりの黄色から赤色領域の蛍光を発光する蛍光体が開発されている。かかる蛍光体として、例えば、構成成分以外の金属不純物の含有量を低減し、α−サイアロンを主成分とする酸窒化物蛍光体(特許文献4)や、CaAlSiN3結晶相中にランタニド金属等を固溶するもの(特許文献5)や、ランタニド金属等を含むαサイアロン型化合物からなる蛍光体(特許文献6)等が報告されている。その他、非粒子状の蛍光体層を青色LED上に成膜したLED(特許文献7)等が報告されている。 In order to improve the color rendering in such a light emitting device, a phosphor that emits fluorescent light in a yellow to red region from a long wavelength by light emission of a blue LED has been developed. As such a phosphor, for example, an oxynitride phosphor (Patent Document 4) containing α-sialon as a main component with a reduced content of metal impurities other than the constituent components, a lanthanide metal or the like in a CaAlSiN 3 crystal phase is used. A solid solution (Patent Document 5), a phosphor composed of an α sialon type compound containing a lanthanide metal or the like (Patent Document 6), and the like have been reported. In addition, an LED in which a non-particulate phosphor layer is formed on a blue LED (Patent Document 7) has been reported.

この種のサイアロン系蛍光体を用いた白色LED装置においては、YAG:Ce蛍光体を用いた白色LED装置と比較して、色温度の低い温かみのある白色が得られる傾向にある。しかし上記蛍光体においては、その励起エネルギーと青色LEDからの発光のエネルギーとのずれがあり、更なる発光効率の向上が要請されている。   In a white LED device using this type of sialon phosphor, a warm white color having a low color temperature tends to be obtained as compared with a white LED device using a YAG: Ce phosphor. However, in the phosphor, there is a difference between the excitation energy and the energy of light emitted from the blue LED, and further improvement in light emission efficiency is required.

また、紫外発光ダイオード(UV−LED)と青色、緑色、赤色蛍光体を組み合わせた白色LED(特許文献8)が開発されているが、青色LEDに対し、黄色から赤色領域の蛍光を発光し、演色性に優れ、且つ、青色LEDからの発光のエネルギーと励起エネルギーとがより近似し、更なる発光効率の向上を図ることができる蛍光体が要請されている。
特許第2900928号 特許第2998696号 特許第2927279号 特開2004−238506 特開2005−235934 特開2006−265506 特開平11−046015 特表2000−509912
In addition, a white LED (Patent Document 8) that combines an ultraviolet light emitting diode (UV-LED) and a blue, green, and red phosphor has been developed. There has been a demand for a phosphor that is excellent in color rendering and has a more approximate emission energy and excitation energy from a blue LED and can further improve the light emission efficiency.
Patent No. 2900928 Patent No. 29998696 Japanese Patent No. 2927279 JP 2004-238506 A JP 2005-235934 A JP 2006-265506 A JP 11-046015 A Special table 2000-509912

本発明の課題は、充分なバンドギャップを有し、黄色から赤色系の蛍光を発光し、その含有する元素のモル比を変更して、発光される蛍光の色調を黄色から赤色系へ順次変調することができ、目的とする黄色から赤色系の色調を得ることが容易であり、しかも、青色LEDや青色LDによる発光効率がよい蛍光体を提供し、これを容易に効率よく製造することができる蛍光体の製造方法を提供することにある。また、本発明の課題は、蛍光体を構成する元素のモル比を変更することにより、所望の色調に調整することを可能とし、組み合わせる他の色調の蛍光体を選ばず、演色性に優れ、色調の優れた白色光を発光することができ、且つ、発光効率がよく、充分な発光強度を有し、消費電力の低減を図ることができ、照明用として好適な発光装置を提供することにある。   The object of the present invention is to provide a sufficient band gap, emit yellow to red fluorescence, change the molar ratio of the elements contained therein, and sequentially modulate the color of the emitted fluorescence from yellow to red It is possible to easily obtain a desired yellow to red color tone, and to provide a phosphor having a high luminous efficiency by a blue LED or blue LD, which can be easily and efficiently manufactured. An object of the present invention is to provide a method for producing a phosphor that can be used. In addition, the problem of the present invention is that by changing the molar ratio of the elements constituting the phosphor, it is possible to adjust to a desired color tone, and it is excellent in color rendering, regardless of the other color tone phosphor to be combined. To provide a light-emitting device that can emit white light with excellent color tone, has high luminous efficiency, has sufficient luminous intensity, can reduce power consumption, and is suitable for illumination. is there.

本発明者らは、青色LED等からの発光のエネルギーとその励起エネルギーが近似し、充分なバンドギャップを有し、しかも、励起により発光される蛍光波長が黄色から赤色の長波長側にシフトした蛍光体を見い出すべく鋭意研究を行った。その結果、特定の元素組成の蛍光体が、青色LEDの発光により発光ピーク強度が高い黄色から赤色領域の蛍光を発光することの知見を得た。かかる知見に基づき本発明を完成するに至った。   The inventors of the present invention approximated the energy of light emitted from a blue LED or the like and its excitation energy, had a sufficient band gap, and the fluorescence wavelength emitted by the excitation shifted from yellow to red on the longer wavelength side. We conducted intensive research to find phosphors. As a result, it has been found that a phosphor having a specific elemental composition emits fluorescent light in a yellow to red region having a high emission peak intensity due to light emission of a blue LED. Based on this finding, the present invention has been completed.

すなわち本発明は、組成式(1)
3-a-bCeabAl5-cSic12-dd (1)
(式中、LはGd、La、Tb、Lu、若しくはScのいずれか1種又は2種以上の元素を示し、aは0.01<a<0.50、bは0.0≦b<2.5、cは0.0<c<2.0、0.01<d<2.7を満たす数値を示す。)で表される蛍光体に関する。
That is, the present invention provides a composition formula (1)
Y 3-ab Ce a L b Al 5-c Si c O 12-d N d (1)
(In the formula, L represents one or more elements of Gd, La, Tb, Lu, or Sc, a is 0.01 <a <0.50, and b is 0.0 ≦ b <. 2.5 and c are numerical values satisfying 0.0 <c <2.0 and 0.01 <d <2.7.)

また、本発明は、上記蛍光体の製造方法であって、組成式(1)を構成する元素を含む化合物を、陽圧下で焼成することを特徴とする蛍光体の製造方法に関する。   The present invention also relates to a method for producing a phosphor, characterized in that a compound containing an element constituting the composition formula (1) is baked under a positive pressure.

また、本発明は、上記蛍光体を用いたことを特徴とする発光装置に関する。   The present invention also relates to a light-emitting device using the phosphor.

本発明の蛍光体は、充分なバンドギャップを有し、黄色から赤色系の蛍光を発光し、その含有する元素のモル比を変更して、発光される蛍光の色調を黄色から赤色系へ順次変調することができ、目的とする黄色から赤色系の色調を得ることが容易であり、しかも、青色LEDや青色LDによる発光効率がよい。   The phosphor of the present invention has a sufficient band gap, emits yellow to red fluorescence, changes the molar ratio of the elements contained therein, and sequentially changes the color of emitted fluorescence from yellow to red. It is possible to modulate, and it is easy to obtain a target yellow to red color tone, and the light emission efficiency by a blue LED or blue LD is good.

また、本発明の蛍光体の製造方法は、上記蛍光体を容易に効率よく製造することができる。   In addition, the phosphor production method of the present invention can produce the phosphor easily and efficiently.

また、本発明の発光装置は、蛍光体を構成する元素のモル比を変更することにより、所望の色調に調整することを可能とし、組み合わせる他の色調の蛍光体を選ばず、演色性に優れ、色調に優れた白色光を発光することができ、且つ、発光効率がよく、充分な発光強度を有し、消費電力の低減を図ることができ、照明用として好適な発光装置を提供することにある。   In addition, the light emitting device of the present invention can be adjusted to a desired color tone by changing the molar ratio of the elements constituting the phosphor, and is excellent in color rendering, regardless of the other color tone phosphor to be combined. To provide a light-emitting device that can emit white light with excellent color tone, has high luminous efficiency, has sufficient luminous intensity, can reduce power consumption, and is suitable for illumination. It is in.

本発明の蛍光体は、組成式(1)
3-a-bCeabAl5-cSic12-dd (1)
で表される。式中、LはGd、La、Tb、Lu、若しくはScのいずれか1種又は2種以上を示し、aは0.01<a<0.50、bは0.0≦b<2.5、cは0.0<c<2.0、0.01<d<2.7を満たす数値を示す。
The phosphor of the present invention has a composition formula (1)
Y 3-ab Ce a L b Al 5-c Si c O 12-d N d (1)
It is represented by In the formula, L represents one or more of Gd, La, Tb, Lu, or Sc, a is 0.01 <a <0.50, and b is 0.0 ≦ b <2.5. , C is a numerical value satisfying 0.0 <c <2.0 and 0.01 <d <2.7.

本発明の蛍光体は、Y、Ce、Al、Si、O、Nを含み、必要に応じて、Gd、La、Tb、Lu、若しくはScのいずれか1種又は2種以上を含むものである。上記蛍光体中、YとCeとL、AlとSi、OとNのモル比は3:5:12である。全蛍光体のモル数を20としたとき、Yのモル比は0.00より大きく2.99より小さく、Ceのモル比は0.01より大きく0.50より小さい。好ましくは、Yのモル比は0.5より大きく、Ceのモル比は0.02より大きく0.3より小さい範囲を挙げることができる。全蛍光体のモル数を20としたとき、Alのモル比は3.0より大きく5.0より小さく、Siのモル比は0.0より大きく2.0より小さい。好ましくはAlのモル比は4.0より大きく4.99より小さく、Siのモル比は0.01より大きく1.0より小さい範囲を挙げることができる。全蛍光体のモル数を20としたとき、Oのモル比は9.33より大きく11.99より小さく、Nのモル比は0.01より大きく2.67より小さい。好ましくは、Oのモル比は10.0より大きく11.95より小さく、Nのモル比は0.05より大きく2.00より小さい範囲を挙げることができる。   The phosphor of the present invention contains Y, Ce, Al, Si, O, and N, and contains one or more of Gd, La, Tb, Lu, or Sc as necessary. In the phosphor, the molar ratio of Y and Ce and L, Al and Si, and O and N is 3: 5: 12. When the number of moles of all phosphors is 20, the molar ratio of Y is larger than 0.00 and smaller than 2.99, and the molar ratio of Ce is larger than 0.01 and smaller than 0.50. Preferably, the molar ratio of Y is larger than 0.5, and the molar ratio of Ce is larger than 0.02 and smaller than 0.3. When the number of moles of all phosphors is 20, the Al molar ratio is larger than 3.0 and smaller than 5.0, and the Si molar ratio is larger than 0.0 and smaller than 2.0. Preferably, the molar ratio of Al is larger than 4.0 and smaller than 4.99, and the molar ratio of Si is larger than 0.01 and smaller than 1.0. When the number of moles of all phosphors is 20, the molar ratio of O is larger than 9.33 and smaller than 11.99, and the molar ratio of N is larger than 0.01 and smaller than 2.67. Preferably, the molar ratio of O is larger than 10.0 and smaller than 11.95, and the molar ratio of N is larger than 0.05 and smaller than 2.00.

これらの元素が結晶を構成していることが好ましい。結晶性に優れた蛍光体においては、励起光による結晶格子欠損に起因するフォノンの生成を抑制し、蛍光の発光が阻害されるのを抑制させ得る。   It is preferable that these elements constitute crystals. In a phosphor excellent in crystallinity, generation of phonons due to crystal lattice defects caused by excitation light can be suppressed, and inhibition of fluorescence emission can be suppressed.

組成式(1)で表される蛍光体は、波長400〜520nm光によって励起されるワイドバンドギャップを有する。かかる励起エネルギーを有する励起光を発光する励起源として、青色レーザーや青色LED等を挙げることができる。上記励起源の青色LEDとしては、具体的には、InGaN等を挙げることができる。   The phosphor represented by the composition formula (1) has a wide band gap excited by light having a wavelength of 400 to 520 nm. Examples of an excitation source that emits excitation light having such excitation energy include a blue laser and a blue LED. Specific examples of the blue LED as the excitation source include InGaN.

上記蛍光体は上記青色LEDにより励起され、赤色領域の蛍光を発光する。YAG:Ce蛍光より長波長にシフトした560nm〜700nmの赤色領域の蛍光を発光する。赤色系の発光に関与する元素はSiとNが考えられ、組成式(1)の元素をこの組成の範囲で変更することにより、発光ピーク波長を黄色から赤色領域へ変化させることができ、目的とする黄色から赤色系の色調を得ることが容易である。   The phosphor is excited by the blue LED and emits red region fluorescence. YAG: emits fluorescence in the red region of 560 nm to 700 nm shifted to a longer wavelength than Ce fluorescence. The elements involved in red light emission are Si and N. By changing the element of the composition formula (1) within this composition range, the emission peak wavelength can be changed from yellow to the red region. It is easy to obtain a yellow to red color tone.

上記蛍光体を製造するには、目的とする元素組成に相当するように、各元素を含有する化合物を組み合わせ、陽圧下で焼成する方法を挙げることができる。原料として、蛍光体に含まれる元素の酸化物や窒化物を用いることができる。具体的には、酸化イットリウム(Y2O3)、酸化アルミニウム (Al2O3)、窒化アルミニウム(AlN)、酸化ケイ素(SiO2)、窒化ケイ素(Si3N4)、酸化セリウム(CeO2)等を用いることができる。更に、結晶性の優れた構造の蛍光体を形成するため、結晶構造中の欠陥を少なくするためにフラックス材を用いることが好ましい。フラックス材は後述する焼成による各金属酸化物等の溶融時に、これらの元素の融合を促進させ、結晶格子欠陥を減少させ、結晶性に優れた蛍光体の形成を可能とする。フラックス材としてフッ化アルミニウム(AlF3)や、塩化アンモニウム(NH4Cl)等のハロゲン化物を用いることができる。フラックス材の使用量としては、蛍光体に対して、1〜5モル%を挙げることができる。 In order to produce the phosphor, there can be mentioned a method in which compounds containing respective elements are combined and fired under a positive pressure so as to correspond to the target elemental composition. As a raw material, an oxide or nitride of an element contained in the phosphor can be used. Specifically, yttrium oxide (Y 2 O 3 ), aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), cerium oxide (CeO 2 ) Etc. can be used. Further, in order to form a phosphor having a structure with excellent crystallinity, it is preferable to use a flux material in order to reduce defects in the crystal structure. The flux material promotes the fusion of these elements when each metal oxide or the like is melted by firing, which will be described later, reduces crystal lattice defects, and enables formation of a phosphor having excellent crystallinity. A halide such as aluminum fluoride (AlF 3 ) or ammonium chloride (NH 4 Cl) can be used as the flux material. As usage-amount of a flux material, 1-5 mol% can be mentioned with respect to fluorescent substance.

これら各原料を目的とする組成式に従って秤量、採取し、乾式または湿式で十分混合する。湿式混合の場合は、エタノールやイソプロピルアルコール等のアルコール、アセトン等の有機溶剤を用いることが好ましい。これらの有機溶剤と、秤量した原料を、セラミックス製等のボールミルにアルミナ若しくはジルコニア製などのボールと共に入れ、1時間から24時間混合することができる。その後、有機溶剤を乾燥除去し、混合された原料粉末とすることができる。   These raw materials are weighed and collected in accordance with the target composition formula, and thoroughly mixed in a dry or wet manner. In the case of wet mixing, it is preferable to use an alcohol such as ethanol or isopropyl alcohol, or an organic solvent such as acetone. These organic solvents and the weighed raw materials can be put in a ball mill made of ceramics together with balls made of alumina or zirconia and mixed for 1 to 24 hours. Thereafter, the organic solvent can be removed by drying to obtain a mixed raw material powder.

得られた混合原料粉末をカーボンルツボやカーボントレイ、窒化ホウ素ルツボ、窒化ホウ素トレイなどの耐熱容器に充填し焼成する。焼成温度は、例えば、1300〜1800℃が好ましく、より好ましくは1350〜1750℃、さらに好ましくは1400〜1700℃である。焼成時間は、例えば、3〜10時間とすることができる。上記焼成時の雰囲気としては、窒素と水素の混合ガス、アンモニア、窒素ガス等還元雰囲気が好ましい。窒素と水素の混合ガスとしては、窒素と水素との容量比において、10〜90:90〜10であることが好ましく、窒素:水素が1:3であることが好ましい。   The obtained mixed raw material powder is filled in a heat-resistant container such as a carbon crucible, a carbon tray, a boron nitride crucible, or a boron nitride tray and fired. The firing temperature is, for example, preferably 1300 to 1800 ° C, more preferably 1350 to 1750 ° C, and still more preferably 1400 to 1700 ° C. The firing time can be, for example, 3 to 10 hours. As the atmosphere at the time of firing, a reducing atmosphere such as a mixed gas of nitrogen and hydrogen, ammonia, or nitrogen gas is preferable. The mixed gas of nitrogen and hydrogen is preferably 10 to 90:90 to 10 in terms of the volume ratio of nitrogen and hydrogen, and nitrogen: hydrogen is preferably 1: 3.

上記混合原料粉末の焼成雰囲気は陽圧とする。陽圧下で焼成することにより、Si34等の窒化物が分解するのを抑制し、目的とする組成の蛍光体を得ることができる。かかる焼成雰囲気の圧力としては、1.00〜1.50気圧が好ましく、より好ましくは1.02〜1.3気圧、更に好ましくは1.05〜1.2気圧である。焼成時の圧力が1.50気圧以下であれば、目的生成物である蛍光体が完全に焼結するのを抑制し、粉末化の際に強力な粉砕力を負荷して結晶を破壊し、蛍光体の発光効率が低下するのを抑制することができる。焼成は、焼成後、冷却し、再焼成することを反復し、複数回に亘って行うこともできる。得られた焼成物に対し、粉砕、洗浄、乾燥、篩い分け等を施して、粉末状の蛍光体とすると、LED素子等に好適である。 The firing atmosphere of the mixed raw material powder is a positive pressure. By firing under a positive pressure, it is possible to suppress decomposition of nitrides such as Si 3 N 4 and obtain a phosphor having a desired composition. The pressure in the firing atmosphere is preferably 1.00 to 1.50 atm, more preferably 1.02 to 1.3 atm, and further preferably 1.05 to 1.2 atm. If the pressure at the time of firing is 1.50 atm or less, the phosphor as the target product is prevented from being completely sintered, and a strong pulverization force is applied at the time of powdering to destroy the crystal. It can suppress that the luminous efficiency of fluorescent substance falls. Firing can be performed multiple times by repeating cooling and refiring after firing. The obtained fired product is pulverized, washed, dried, sieved, and the like to obtain a powdered phosphor, which is suitable for an LED element or the like.

本発明の発光装置は、上記蛍光体を用いたものであれば、いずれであってもよい。例えば、本発明の発装置としては、400〜520nmの波長光を発光する半導体を有する発光ダイオード等のLED素子や、エレクトロルミネッセンス素子、カソードからの電子を蛍光体へ直接衝突させ発光させる電界放出型表示(FED)や、真空蛍光表示(VFD)等の電子線発光装置、その他冷陰極蛍光ランプや熱陰極蛍光ランプ等の蛍光ランプ等を挙げることができる。   The light emitting device of the present invention may be any as long as it uses the above phosphor. For example, the light emitting device of the present invention includes an LED element such as a light emitting diode having a semiconductor that emits light having a wavelength of 400 to 520 nm, an electroluminescent element, and a field emission type that emits light by directly colliding electrons from a cathode with a phosphor. Examples thereof include electron beam light emitting devices such as display (FED) and vacuum fluorescent display (VFD), and other fluorescent lamps such as cold cathode fluorescent lamps and hot cathode fluorescent lamps.

本発明の発光装置の一例として、図1の概略構成図に示す白色LED装置を挙げることができる。図1に示す白色LED装置には、主として、リフレクタの機能を有する筐体12と、該筐体に固定されたサブマウント(図示せず)上に固定されたLEDチップ13と、該LEDチップ13を包囲する透明樹脂14と、透明樹脂を覆うように蛍光体含有ガラスシート11とが設けられる。LEDチップ13は、Al23またはSIOの基板上にGaN等の400〜520nmの青色光を発する上述の半導体等が積層された発光層を有するものが好ましい。LEDチップのLEDは配線15によりその電極がワイヤボンドされて図示しない電源に電気的に接続される。 As an example of the light emitting device of the present invention, a white LED device shown in the schematic configuration diagram of FIG. 1 can be given. The white LED device shown in FIG. 1 mainly includes a casing 12 having a reflector function, an LED chip 13 fixed on a submount (not shown) fixed to the casing, and the LED chip 13. The transparent resin 14 that surrounds the phosphor and the phosphor-containing glass sheet 11 are provided so as to cover the transparent resin. The LED chip 13 preferably has a light emitting layer in which the above-described semiconductor or the like that emits blue light of 400 to 520 nm such as GaN is laminated on an Al 2 O 3 or SIO substrate. The LED of the LED chip is electrically connected to a power source (not shown) by wire-bonding its electrodes by wiring 15.

上記透明樹脂はLEDチップの保護のため設けられ、LEDからの発光の透過性に優れ、そのエネルギーに対して耐性を有する、例えば、エポキシ樹脂、ユリア樹脂、シリコーン樹脂等が好適に用いられる。透明樹脂の上面に設けられる蛍光体含有ガラスシート11には上記蛍光体11aが含有される。ガラスシート11には、上記LEDを励起源として緑色や赤色を発光する赤色系蛍光体、緑色系蛍光体等が含有されていることが好ましい。ここで使用する赤色系蛍光体としては、例えば、SrS:Eu、CaS:Eu、CaAlSiN3:Eu を挙げることができ、緑色系蛍光体としては、例えば、(Ba,Sr)2SiO4:Eu、SrGa2S4:Eu、(Ba,Sr,Ca)Si2O2N2:Eu、β−サイアロン:Eu等を挙げることができる。 For example, an epoxy resin, a urea resin, a silicone resin, or the like, which is provided for protecting the LED chip, has excellent light transmission from the LED, and has resistance to the energy, is preferably used. The phosphor-containing glass sheet 11 provided on the upper surface of the transparent resin contains the phosphor 11a. The glass sheet 11 preferably contains a red phosphor or a green phosphor that emits green or red light using the LED as an excitation source. Examples of the red phosphor used here include SrS: Eu, CaS: Eu, CaAlSiN3: Eu, and the like , and examples of the green phosphor include (Ba, Sr) 2SiO4: Eu, SrGa2S4. : Eu, (Ba, Sr, Ca) Si2O2N2: Eu, β-sialon: Eu, and the like.

かかるガラスシートは、ガラスを構成するガラス成分と蛍光体とを溶融混合して薄膜状に形成することができる。また、蛍光体は透明樹脂中に含有させることもできる。   Such a glass sheet can be formed into a thin film by melting and mixing a glass component constituting the glass and a phosphor. Further, the phosphor can be contained in the transparent resin.

上記白色LED装置において、LEDから青色が発光されると、ガラスシートに含有される蛍光体が励起され、黄色から赤色領域、赤色領域波、緑色領域の蛍光が発光される。これらの蛍光とLEDからの青色光が、ガラスシート内で拡散され混色され、ガラスシート表面から色調の優れた白色光が放出される。   In the white LED device, when blue light is emitted from the LED, the phosphor contained in the glass sheet is excited, and fluorescent light from yellow to red region, red region wave, and green region is emitted. These fluorescent light and blue light from the LED are diffused and mixed in the glass sheet, and white light with excellent color tone is emitted from the glass sheet surface.

本発明の発光装置の一例として、電界放出型表示(フィールド・エミッション・ディスプレイ:FED)装置を例示することができる。この種のFED装置としては、図2の部分略断面図に示すように、1対のガラス製等のアノード基板31とカソード基板32を備え、これらが図示しない支持枠により数mm以下の間隔で平行に配置され、内部が真空に保持されるようになっている。アノード基板31には、内面に透明なアノード電極31aを介して蛍光体31bが設けられ、蛍光体は黄色から赤色系蛍光体、赤色系蛍光体、緑色系蛍光体、青色系蛍光体等各画素が交互に付与されて形成される。これらの各蛍光体の各画素間にはこれらを隔離する黒色導電材からなる光吸収体が設けられていてもよい。黄色から赤色系蛍光体として上記蛍光体が用いられ、これとの組み合わせにおいて選択される、赤色系蛍光体、緑色系蛍光体としては、上述の蛍光体と同様のものを、具体的に例示することができる。一方、カソード基板32の内面にはカソード電極32aを介して炭素膜等からなる電子放出素子(エミッタ)32bが、各蛍光体の画素に対応して設けられる。各電子放出素子は支持枠に設けられる信号入力端子(図示せず)に接続されカソード基板に形成される図示しない配線によってそれぞれ電圧が印加されるようになっている。更に、エミッタからの過剰な電子の衝突により蛍光体表面が帯電し、蛍光体と電子との衝突が阻害されるのを回避するため、蛍光体表面に電導層を設け、蛍光体表面に蓄積された電子とエミッタ間の異常放電を抑制するようにしてもよい。電導層は電導性材料を蛍光体表面にコーティングする方法等により形成することができる。   As an example of the light emitting device of the present invention, a field emission display (field emission display: FED) device can be exemplified. As shown in the partial schematic cross-sectional view of FIG. 2, this type of FED apparatus includes a pair of an anode substrate 31 made of glass or the like and a cathode substrate 32, which are separated by a support frame (not shown) at intervals of several millimeters or less. Arranged in parallel, the inside is kept in a vacuum. The anode substrate 31 is provided with a phosphor 31b on the inner surface via a transparent anode electrode 31a. The phosphor is a yellow to red phosphor, a red phosphor, a green phosphor, a blue phosphor, or other pixels. Are formed alternately. Between each pixel of each of these phosphors, a light absorber made of a black conductive material that separates them may be provided. The above phosphors are used as yellow to red phosphors, and red phosphors and green phosphors selected in combination with them are specifically exemplified by the same phosphors as described above. be able to. On the other hand, an electron-emitting device (emitter) 32b made of a carbon film or the like is provided on the inner surface of the cathode substrate 32 via a cathode electrode 32a corresponding to each phosphor pixel. Each electron-emitting device is connected to a signal input terminal (not shown) provided on the support frame and is applied with a voltage by a wiring (not shown) formed on the cathode substrate. Furthermore, a conductive layer is provided on the phosphor surface to prevent the phosphor surface from being charged by the collision of excessive electrons from the emitter and impinging the collision between the phosphor and the electron, and accumulated on the phosphor surface. An abnormal discharge between the electrons and the emitter may be suppressed. The conductive layer can be formed by a method of coating the surface of the phosphor with a conductive material.

このようなFED装置において、カソード電極32aとアノード電極31a間に電圧が印加されると、電子放出素子32bから電子が放出され、放出された電子は矢印Aに示すように、アノード電極31aに引き付けられ、蛍光体31bに衝突し、蛍光を発生させ、発生した蛍光は白色光となってアノード基板31から矢印Bに示すように、外部へ放出される。上記蛍光体を用いることにより、色調に優れた白色光を発光させることができる。   In such an FED device, when a voltage is applied between the cathode electrode 32a and the anode electrode 31a, electrons are emitted from the electron-emitting device 32b, and the emitted electrons are attracted to the anode electrode 31a as indicated by an arrow A. Then, it collides with the phosphor 31b to generate fluorescence, and the generated fluorescence becomes white light and is emitted from the anode substrate 31 to the outside as indicated by an arrow B. By using the phosphor, white light with excellent color tone can be emitted.

また、本発明の発光装置の一例として、真空蛍光表示(バキューム・フルオロセント・ディスプレイ:VFD)装置を例示することができる。この種のVFD装置としては、図3の部分略断面図に示すように、ガラス製等の基板41上に設けられた各配線42に絶縁体層43に設けられたスルーホール44を介してそれぞれ接続されるアノード45が設けられ、各アノード上には蛍光体層46a、46b、46cが形成される。蛍光体層46a、46b、46cは、それぞれ上記黄色から赤色系蛍光体、赤色系蛍光体、緑色系蛍光体等を含有して交互に設けられる。黄色から赤色系蛍光体としては上記蛍光体が用いられ、これとの組み合わせにおいて選択される、赤色系蛍光体、緑色系蛍光体としては、具体的には、上述の蛍光体と同様のものを例示することができる。この蛍光体層を覆うように、上方にグリッド47が配置され、グリッド47は基板上に設けられた図示しない端子に導通するように設けられる。更に、グリッドの上方にフィラメント状のカソード48が基板両端に設けられた支持体に張架されて設けられ、これらが真空空間を形成する容器49内に設けられる。また、蛍光体表面に電導層を設け、蛍光体表面の帯電を抑制し異常放電を抑制するようにしてもよい。電導層は上記FED装置における電導層と同様に形成することができる。   Further, as an example of the light emitting device of the present invention, a vacuum fluorescent display (vacuum fluorocent display: VFD) device can be exemplified. As this type of VFD device, as shown in the partial schematic cross-sectional view of FIG. 3, each wiring 42 provided on a substrate 41 made of glass or the like is connected through a through hole 44 provided in an insulator layer 43. Connected anodes 45 are provided, and phosphor layers 46a, 46b, and 46c are formed on each anode. The phosphor layers 46a, 46b, and 46c are alternately provided containing the yellow to red phosphors, red phosphors, green phosphors, and the like. The above phosphors are used as yellow to red phosphors, and the red phosphors and green phosphors selected in combination therewith are specifically the same phosphors as described above. It can be illustrated. A grid 47 is disposed above the phosphor layer so as to cover the phosphor layer, and the grid 47 is provided so as to be electrically connected to a terminal (not shown) provided on the substrate. Further, a filamentary cathode 48 is provided above the grid so as to be stretched on a support provided at both ends of the substrate, and these are provided in a container 49 that forms a vacuum space. Further, a conductive layer may be provided on the phosphor surface to suppress abnormal charging by suppressing charging of the phosphor surface. The conductive layer can be formed in the same manner as the conductive layer in the FED device.

このような真空蛍光表示装置においては、カソードからの電子を蛍光体に当てて蛍光体からの発光により表示を行い、環境温度、特に低温による発光強度の変動が少なく、上記蛍光体を含有することにより演色性を図り、一定の蛍光を継続して発生させることができる。   In such a vacuum fluorescent display device, display is performed by emitting light from the phosphor by applying electrons from the cathode to the phosphor, and there is little fluctuation in emission intensity due to environmental temperature, particularly low temperature, and the phosphor is contained. Thus, color rendering properties can be achieved and constant fluorescence can be continuously generated.

以下、本発明の蛍光体を実施例を挙げて更に詳細に説明する。
[実施例1]
粉末原料として、Y2O319.53g、Al2O313.95g、Si3N40.96g、CeO20.61gを用いて、これらをアセトンとジルコニアボールと共にセラミックス製ボールミルに入れ、12時間混合した。混合した原料液からジルコニアボールを篩により除去し、アセトンを除去した後、混合物を窒化ホウ素ルツボに充填し、電気炉にセットし、1.1気圧の窒素還元雰囲気中において1400℃で3時間焼成した。焼成後は徐冷して、得られた焼成物を粉砕混合した。その後、同様に1450℃で3時間再焼成施した。焼成物を粉砕混合、洗浄して、目的のY2.94Ce0.06Al4.95Si0.05O11.9N0.1の蛍光体を得た。
Hereinafter, the phosphor of the present invention will be described in more detail with reference to examples.
[Example 1]
Y 2 O 3 19.53 g, Al 2 O 3 13.95 g, Si 3 N 4 0.96 g, CeO 2 0.61 g were used as powder raw materials, and these were put into a ceramic ball mill together with acetone and zirconia balls and mixed for 12 hours. . After the zirconia balls were removed from the mixed raw material liquid with a sieve and acetone was removed, the mixture was filled in a boron nitride crucible, set in an electric furnace, and baked at 1400 ° C. in a nitrogen reducing atmosphere at 1.1 atm for 3 hours. After firing, the product was gradually cooled, and the obtained fired product was pulverized and mixed. Thereafter, it was again fired at 1450 ° C. for 3 hours. The fired product was pulverized, mixed, and washed to obtain the target phosphor of Y 2.94 Ce 0.06 Al 4.95 Si 0.05 O 11.9 N 0.1 .

得られた蛍光体について、以下のように励起光(Photoluminescence Excitation:PLE)測定、フォトルミネッセンス(Photoluminescence:PL)測定を行った。   About the obtained fluorescent substance, excitation light (Photoluminescence Excitation: PLE) measurement and photoluminescence (Photoluminescence: PL) measurement were performed as follows.

[PL測定]
得られた蛍光体について、励起光として450nmを用いて、蛍光分光光度計(RF−5300PC:島津製作所製)により、大気中室温雰囲気下で行った。得られた蛍光体のPL強度(発光スペクトル)を図4に示す。
[PL measurement]
About the obtained fluorescent substance, 450 nm was used as excitation light, and it carried out by the fluorescence spectrophotometer (RF-5300PC: Shimadzu Corporation make) under the room temperature atmosphere in air | atmosphere. FIG. 4 shows the PL intensity (emission spectrum) of the obtained phosphor.

[PLE測定]
得られた蛍光体について、大気中室温雰囲気下で、励起波長を変化させ、蛍光体の発光ピーク波長をモニターして測定を行った。励起光波長に対するPLE強度(励起スペクトル)を図5に示す。
[PLE measurement]
The obtained phosphor was measured by changing the excitation wavelength and monitoring the emission peak wavelength of the phosphor in the atmosphere at room temperature. FIG. 5 shows the PLE intensity (excitation spectrum) with respect to the excitation light wavelength.

[白色色度]
得られた蛍光体から発光される蛍光のCIE(Commission International de l'Eclairage:国際照明委員会)色度座標を図6、表1に示す。青色LEDの励起光に相当する青色光のCIE色度座標を(0.130,0.075)と設定し、同色度図において、蛍光の座標と青色光の座標とを結ぶ直線と黒体輻射線との交点として求められる白色光の色度座標を、表2に示す。この白色光の色温度、平均演色評価数を以下の方法により求めた。結果を表2に示す。
[White chromaticity]
FIG. 6 and Table 1 show CIE (Commission International de l'Eclairage) chromaticity coordinates of fluorescence emitted from the obtained phosphor. The CIE chromaticity coordinate of blue light corresponding to the excitation light of the blue LED is set to (0.130, 0.075), and in the same chromaticity diagram, the intersection of the line connecting the fluorescence coordinate and the blue light coordinate and the black body radiation Table 2 shows the chromaticity coordinates of white light obtained as follows. The color temperature of this white light and the average color rendering index were determined by the following method. The results are shown in Table 2.

[白色LED装置]
得られた蛍光体と青色LEDを用いた白色LED装置における発光強度の測定を行った。結果を図7に示す。
[White LED device]
The emission intensity in a white LED device using the obtained phosphor and blue LED was measured. The results are shown in FIG.

[実施例2〜5]
目的とする組成の蛍光体が得られるように粉末原料の使用量を変更した他は、実施例1と同様にして蛍光体を作製し、得られた蛍光体について、PL測定、PLE測定を行い、これから得られる白色光の色度座標、色温度、平均演色評価数を求めた。結果を、図4〜6、表1、2に示す。
[Examples 2 to 5]
A phosphor was prepared in the same manner as in Example 1 except that the amount of the powder raw material was changed so that a phosphor having the target composition was obtained, and PL measurement and PLE measurement were performed on the obtained phosphor. The chromaticity coordinates, color temperature, and average color rendering index of white light obtained from this were determined. The results are shown in FIGS.

[比較例]
蛍光体として、YAG:Ceを用い、実施例1と同様にして、PL測定、PLE測定を行い、これから得られる白色光の色度座標、色温度、平均演色評価数を求めた。結果を、図4〜6、表1、2に示す。更に、用いた蛍光体を変更した他は実施例1と同様にして、白色LED装置における発光強度の測定を行った。結果を図7に示す。
[Comparative example]
Using YAG: Ce as the phosphor, PL measurement and PLE measurement were performed in the same manner as in Example 1, and the chromaticity coordinates, color temperature, and average color rendering index of white light obtained therefrom were obtained. The results are shown in FIGS. Furthermore, the emission intensity in the white LED device was measured in the same manner as in Example 1 except that the phosphor used was changed. The results are shown in FIG.

Figure 2008285606
Figure 2008285606

Figure 2008285606
Figure 2008285606

実施例、比較例共に、励起光のピーク波長は450〜480nmであった。また、比較例において、PL測定における発光ピ−ク波長は550nm近傍であるところ、実施例では、発光ピークは長波長側へシフトした。また、CIE色度図上、青色LEDに相当する青色光と蛍光体から得られる白色光は、色温度、平均演色評価数は、比較例においていずれも高く、青色の色調が強いことが示されるのに対し、実施例の蛍光体では、色温度、平均演色評価数は共に、電球色、若しくは太陽光のそれらに近似しており、自然光の色調であることが示されている。実際の白色LEDの発光は色度図上の黒色輻射線から求められる白色光の色度と一致していた。   In both Examples and Comparative Examples, the peak wavelength of the excitation light was 450 to 480 nm. Further, in the comparative example, the emission peak wavelength in PL measurement is near 550 nm, and in the example, the emission peak shifted to the long wavelength side. In addition, on the CIE chromaticity diagram, blue light corresponding to a blue LED and white light obtained from a phosphor have a high color temperature and average color rendering index in the comparative example, indicating that the blue color tone is strong. On the other hand, in the phosphors of the examples, both the color temperature and the average color rendering index are similar to those of the light bulb color or sunlight, indicating that the color tone is natural light. The actual light emission of the white LED coincided with the chromaticity of white light obtained from the black radiation on the chromaticity diagram.

結果から、組成式(1)で表される蛍光体において、励起源に対し発光効率がよく、黄色から赤色系の蛍光を発光し、他の蛍光体を用いずに単独で用いても、青色LED等と共に、自然光に近似する色調の白色光が得られることが明らかである。   From the results, the phosphor represented by the composition formula (1) has good emission efficiency with respect to the excitation source, emits yellow to red fluorescence, and can be used alone without using other phosphors. It is clear that white light having a color tone similar to natural light can be obtained together with the LED and the like.

本発明の発光装置の一例としてのLED素子の概略構成図を示す図である。It is a figure which shows the schematic block diagram of the LED element as an example of the light-emitting device of this invention. 本発明の発光装置の一例としてのFED装置の概略断面図を示す図である。It is a figure which shows the schematic sectional drawing of the FED apparatus as an example of the light-emitting device of this invention. 本発明の発光装置の一例としてのVFD装置の概略構成図を示す図である。It is a figure which shows the schematic block diagram of the VFD apparatus as an example of the light-emitting device of this invention. 本発明の蛍光体の一例のPL強度(発光スペクトル)を示す図である。It is a figure which shows PL intensity (emission spectrum) of an example of the fluorescent substance of this invention. 本発明の蛍光体の一例のPLE強度(励起スペクトル)を示す図である。It is a figure which shows the PLE intensity | strength (excitation spectrum) of an example of the fluorescent substance of this invention. 本発明の蛍光体の一例のCIE色度図を示す図である。It is a figure which shows the CIE chromaticity diagram of an example of the fluorescent substance of this invention. 本発明の蛍光装置の一例の白色LED装置の発光強度を示す図である。It is a figure which shows the emitted light intensity of the white LED apparatus of an example of the fluorescent device of this invention.

符号の説明Explanation of symbols

46a、46b、46c 蛍光体層
11a、31b 蛍光体
46a, 46b, 46c phosphor layers 11a, 31b phosphor

Claims (6)

組成式(1)
3-a-bCeabAl5-cSic12-dd (1)
(式中、LはGd、La、Tb、Lu、若しくはScのいずれか1種又は2種以上の元素を示し、aは0.01<a<0.50、bは0.0≦b<2.5、cは0.0<c<2.0、0.01<d<2.7を満たす数値を示す。)で表される蛍光体。
Composition formula (1)
Y 3-ab Ce a L b Al 5-c Si c O 12-d N d (1)
(In the formula, L represents one or more elements of Gd, La, Tb, Lu, or Sc, a is 0.01 <a <0.50, and b is 0.0 ≦ b <. 2.5 and c are phosphors represented by the following values: 0.0 <c <2.0 and 0.01 <d <2.7.
400〜520nm波長光に励起され、黄色から赤色系蛍光を発光することを特徴とする請求項1記載の蛍光体。   The phosphor according to claim 1, which is excited by light having a wavelength of 400 to 520 nm and emits yellow to red fluorescence. 請求項1又は2に記載の蛍光体の製造方法であって、組成式(1)を構成する元素を含む化合物を、陽圧下で焼成することを特徴とする蛍光体の製造方法。   3. The method for producing a phosphor according to claim 1, wherein the compound containing an element constituting the composition formula (1) is baked under a positive pressure. 4. 請求項1又は2に記載の蛍光体を用いたことを特徴とする発光装置。   A light-emitting device using the phosphor according to claim 1. 緑色系蛍光体及び赤色系蛍光体から選択されるいずれか1種又は2種以上の蛍光体を有する白色ダイオード装置であることを特徴とする請求項4記載の発光装置。   5. The light emitting device according to claim 4, wherein the light emitting device is a white diode device having one or more phosphors selected from green phosphors and red phosphors. 緑色系蛍光体及び赤色系蛍光体から選択されるいずれか1種又は2種以上の蛍光体を有する電子線発光装置であることを特徴とする請求項4記載の発光装置。   5. The light-emitting device according to claim 4, wherein the light-emitting device is an electron beam light-emitting device having at least one phosphor selected from a green phosphor and a red phosphor.
JP2007133076A 2007-05-18 2007-05-18 Phosphor, method for producing the same and light-emitting device Pending JP2008285606A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007133076A JP2008285606A (en) 2007-05-18 2007-05-18 Phosphor, method for producing the same and light-emitting device
TW097115212A TWI379894B (en) 2007-05-18 2008-04-25 Fluorescent material, method of manufacturing thereof and light-emitting device
KR1020080045287A KR20080101752A (en) 2007-05-18 2008-05-16 Fluorescent substance, manufacturing method thereof and luminous device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007133076A JP2008285606A (en) 2007-05-18 2007-05-18 Phosphor, method for producing the same and light-emitting device

Publications (1)

Publication Number Publication Date
JP2008285606A true JP2008285606A (en) 2008-11-27

Family

ID=40145652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007133076A Pending JP2008285606A (en) 2007-05-18 2007-05-18 Phosphor, method for producing the same and light-emitting device

Country Status (3)

Country Link
JP (1) JP2008285606A (en)
KR (1) KR20080101752A (en)
TW (1) TWI379894B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102517017A (en) * 2011-12-09 2012-06-27 苏州晶能科技有限公司 Phosphor and its preparation method and white LED plane light source containing phosphor
CN103173217A (en) * 2011-12-23 2013-06-26 李建立 Temperature-resisting nitride fluorescent material and light-emitting device comprising same
JP2015046513A (en) * 2013-08-28 2015-03-12 日亜化学工業株式会社 Wavelength conversion member, light-emitting device, and method of manufacturing light-emitting device
JP6206696B1 (en) * 2016-07-04 2017-10-04 パナソニックIpマネジメント株式会社 Phosphor and light emitting device
WO2018008284A1 (en) * 2016-07-04 2018-01-11 パナソニックIpマネジメント株式会社 Projector device
WO2018008282A1 (en) * 2016-07-04 2018-01-11 パナソニックIpマネジメント株式会社 Light-emitting device using fluorophore
WO2018008171A1 (en) * 2016-07-04 2018-01-11 パナソニックIpマネジメント株式会社 Fluorophore and light-emitting device
WO2018008283A1 (en) * 2016-07-04 2018-01-11 パナソニックIpマネジメント株式会社 Fiber light source, endoscope, and endoscope system
JP7454785B2 (en) 2020-04-17 2024-03-25 パナソニックIpマネジメント株式会社 Phosphors and light emitting devices using them

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006094139A2 (en) * 2005-03-01 2006-09-08 Gelcore, Llc Oxynitride phosphors for use in lighting applications having improved color quality
JP2006520836A (en) * 2003-03-17 2006-09-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Illumination system having radiation source and fluorescent material
WO2006095284A1 (en) * 2005-03-08 2006-09-14 Philips Intellectual Property & Standards Gmbh Illumination system comprising a radiation source and a luminescent material
JP2008285608A (en) * 2007-05-18 2008-11-27 Nec Lighting Ltd Phosphor, method for producing the same and light-emitting device
JP2009541520A (en) * 2006-06-21 2009-11-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light emitting device having at least one ceramic spherical color conversion material
JP2010507880A (en) * 2006-10-18 2010-03-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting system and display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006520836A (en) * 2003-03-17 2006-09-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Illumination system having radiation source and fluorescent material
WO2006094139A2 (en) * 2005-03-01 2006-09-08 Gelcore, Llc Oxynitride phosphors for use in lighting applications having improved color quality
WO2006095284A1 (en) * 2005-03-08 2006-09-14 Philips Intellectual Property & Standards Gmbh Illumination system comprising a radiation source and a luminescent material
JP2009541520A (en) * 2006-06-21 2009-11-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light emitting device having at least one ceramic spherical color conversion material
JP2010507880A (en) * 2006-10-18 2010-03-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting system and display device
JP2008285608A (en) * 2007-05-18 2008-11-27 Nec Lighting Ltd Phosphor, method for producing the same and light-emitting device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN5008000915; VAN KREVEL J W H: MATERIALS RESEARCH BULLETIN V35 N5, 20000315, P747-754, ELSEVIER *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102517017A (en) * 2011-12-09 2012-06-27 苏州晶能科技有限公司 Phosphor and its preparation method and white LED plane light source containing phosphor
CN102517017B (en) * 2011-12-09 2013-12-04 苏州晶能科技有限公司 Phosphor and its preparation method and white LED plane light source containing phosphor
CN103173217A (en) * 2011-12-23 2013-06-26 李建立 Temperature-resisting nitride fluorescent material and light-emitting device comprising same
JP2015046513A (en) * 2013-08-28 2015-03-12 日亜化学工業株式会社 Wavelength conversion member, light-emitting device, and method of manufacturing light-emitting device
WO2018008283A1 (en) * 2016-07-04 2018-01-11 パナソニックIpマネジメント株式会社 Fiber light source, endoscope, and endoscope system
JP2018021198A (en) * 2016-07-04 2018-02-08 パナソニックIpマネジメント株式会社 Fluophor and light-emitting device
WO2018008282A1 (en) * 2016-07-04 2018-01-11 パナソニックIpマネジメント株式会社 Light-emitting device using fluorophore
WO2018008171A1 (en) * 2016-07-04 2018-01-11 パナソニックIpマネジメント株式会社 Fluorophore and light-emitting device
JP6206696B1 (en) * 2016-07-04 2017-10-04 パナソニックIpマネジメント株式会社 Phosphor and light emitting device
JP6264706B1 (en) * 2016-07-04 2018-01-24 パナソニックIpマネジメント株式会社 Projector device
JP6273637B1 (en) * 2016-07-04 2018-02-07 パナソニックIpマネジメント株式会社 Fiber light source, endoscope and endoscope system
WO2018008284A1 (en) * 2016-07-04 2018-01-11 パナソニックIpマネジメント株式会社 Projector device
CN107851950A (en) * 2016-07-04 2018-03-27 松下知识产权经营株式会社 Optical fiber source, endoscope and endoscopic system
CN108138045A (en) * 2016-07-04 2018-06-08 松下知识产权经营株式会社 Fluorophor and light-emitting device
JP2018138991A (en) * 2016-07-04 2018-09-06 パナソニックIpマネジメント株式会社 Projector device
CN107851950B (en) * 2016-07-04 2021-11-09 松下知识产权经营株式会社 Optical fiber light source, endoscope, and endoscope system
CN108138045B (en) * 2016-07-04 2022-04-26 松下知识产权经营株式会社 Phosphor and light-emitting device
JP7454785B2 (en) 2020-04-17 2024-03-25 パナソニックIpマネジメント株式会社 Phosphors and light emitting devices using them

Also Published As

Publication number Publication date
KR20080101752A (en) 2008-11-21
TW200909570A (en) 2009-03-01
TWI379894B (en) 2012-12-21

Similar Documents

Publication Publication Date Title
US10020428B2 (en) White light emitting device having high color rendering
US6621211B1 (en) White light emitting phosphor blends for LED devices
JP5185421B2 (en) Red light emitting phosphor and light emitting device using the same
JP2008285606A (en) Phosphor, method for producing the same and light-emitting device
JP6102763B2 (en) Phosphor, light emitting device using the same, and method for producing phosphor
JP6167913B2 (en) Phosphor and light emitting device using the same
US20170005239A1 (en) Light emitting device
KR20130106394A (en) Blue-light-emitting phosphor and light-emitting device equipped with the blue-light-emitting phosphor
JP5758415B2 (en) Method for producing red-emitting phosphor
TWI569466B (en) Light emitting device employing luminescent substances with oxyorthosilicate luminophores
JP5463495B2 (en) Phosphor manufacturing method and light emitting device
JP4899433B2 (en) Phosphor, and light emitting device, image display device, and illumination device using the same
JP5693108B2 (en) Phosphor, method for manufacturing the same, and light emitting device having the same
US10236425B2 (en) White light emitting device having high color rendering
KR101176212B1 (en) Alkali-earth Phosporus Nitride system phosphor, manufacturing method thereof and light emitting devices using the same
JP2013194078A (en) Phosphor, method for producing the same, light-emitting device and image display device
KR20160074745A (en) Nitride phosphor, light emitting device, display apparatus and illumination apparatus
EP2516584B1 (en) Light emitting device having strontium/barium oxyorthosilicate type phosphors
JP6169468B2 (en) Phosphor
JP6288343B2 (en) Phosphor and light emitting device using the same
TW202104548A (en) Phosphor and its manufacturing method and light emitting element
CN104152147A (en) Rare earth oxysalt phosphor and its application
US10982142B1 (en) Red phosphor and light emitting device using the same
JP2013035957A (en) Blue light-emitting phosphor and light-emitting device using the blue light-emitting phosphor
US20140077687A1 (en) Red phosphor and light-emitting device comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108