JP5691567B2 - Anti-counterfeit structure - Google Patents

Anti-counterfeit structure Download PDF

Info

Publication number
JP5691567B2
JP5691567B2 JP2011016419A JP2011016419A JP5691567B2 JP 5691567 B2 JP5691567 B2 JP 5691567B2 JP 2011016419 A JP2011016419 A JP 2011016419A JP 2011016419 A JP2011016419 A JP 2011016419A JP 5691567 B2 JP5691567 B2 JP 5691567B2
Authority
JP
Japan
Prior art keywords
layer
particles
spherical
groove
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011016419A
Other languages
Japanese (ja)
Other versions
JP2012155265A (en
Inventor
新藤 直彰
直彰 新藤
一尋 屋鋪
一尋 屋鋪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2011016419A priority Critical patent/JP5691567B2/en
Publication of JP2012155265A publication Critical patent/JP2012155265A/en
Application granted granted Critical
Publication of JP5691567B2 publication Critical patent/JP5691567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば商品券やクレジットカード等有価証券類、あるいはブランド品や高級品等のステッカー等に偽造防止に用いられる偽造防止構造体に関する。   The present invention relates to an anti-counterfeit structure used for anti-counterfeiting, for example, for securities such as gift certificates and credit cards, or stickers for branded goods and luxury goods.

近年、紙幣、商品券、クレジットカード、ブランド品や高級品等の真正品であることの証明として、ホログラムを初めとするOVD(Optically Variable Device)が利用されている。尚、OVDの同義語としては、DOVID(Diffractive Optically Variable Imaging Device)がある。   In recent years, an OVD (Optically Variable Device) including a hologram has been used as a proof of authenticity such as banknotes, gift certificates, credit cards, branded goods, and luxury goods. A synonym for OVD is DOVID (Differential Optically Variable Imaging Device).

このOVDは、高度な製造技術を要すること、独特な視覚効果を有し、一瞥で真偽が判定できることから有効な偽造防止手段として利用されている。最近では、有価証券以外にもスポーツ用品やコンピュータ部品をはじめとする電気製品ソフトウエアー等に貼り付けられ、その製品の真正さを証明する認証ステッカーや、それら商品のパッケージに貼りつけられる封印ステッカーとしても広く使われている
ところが、近年ではホログラム製造技術の広がりにより、OVDは以前に比べ容易に偽造されるようになっている。
This OVD is used as an effective anti-counterfeiting means because it requires advanced manufacturing technology, has a unique visual effect, and can determine authenticity at a glance. Recently, in addition to securities, it is affixed to sports equipment, computer parts and other electrical product software, etc., as an authentication sticker to prove the authenticity of the product, and as a seal sticker to be affixed to the package of those products However, in recent years, due to the spread of hologram manufacturing technology, OVD has become easier to forge than before.

そこで、偽造防止効果を向上すべく、従来よりも微細な構造による複雑なデザインの提案や、光の波長以下の微細な周期的凹凸パターンからなる素子(サブ波長構造素子)による、反射防止機能、偏光分離機能、位相差機能等を有する物品や、計算機ホログラム等の提案がなされている(例えば特許文献1、2、3参照。)。   Therefore, in order to improve the anti-counterfeiting effect, an anti-reflection function by a proposal of a complicated design with a finer structure than the conventional one, and an element (sub-wavelength structure element) made of a fine periodic uneven pattern below the wavelength of light, Proposals have been made for articles having a polarization separation function, a phase difference function, etc., and computer generated holograms (see, for example, Patent Documents 1, 2, and 3).

ところで、従来のレリーフ型回折格子は、幅約1.0μm、深さ100nm程度の凹凸が刻まれているが、これに上記サブ波長構造素子による場合は、100nm〜800nmの微細で、かつ深さ250nm以上の高アスペクト比の凹凸であるために、偽造が困難となるが、一方で製造が難しいという問題を有する。   By the way, the conventional relief-type diffraction grating has a concavo-convex structure with a width of about 1.0 μm and a depth of about 100 nm. When the sub-wavelength structure element is used for this, it is fine and has a depth of 100 to 800 nm. Since the irregularities have a high aspect ratio of 250 nm or more, forgery is difficult, but on the other hand, there is a problem that manufacture is difficult.

この凹凸形状を成形する手法としては、熱エンボス法やフォトポリマー法等の技術が利用されているが、構造が微細なため成型時におけるレリーフ型へ樹脂が貼りつきやすく、高速での加工が困難であるという問題を有する。   Technologies such as the hot embossing method and the photopolymer method are used as a method for forming this concavo-convex shape, but the resin is easy to stick to the relief mold during molding due to the fine structure, making it difficult to process at high speed Have the problem of being.

この問題に対し、従来の成型法を用いずに効率よく、幅が狭くかつ高アスペクト比のサブ波長の回折格子構造を製造する手法が提案されている(例えば、特許文献4参照。)。   In order to solve this problem, there has been proposed a technique for efficiently manufacturing a sub-wavelength diffraction grating structure having a narrow width and a high aspect ratio without using a conventional molding method (see, for example, Patent Document 4).

しかしながら、上記特許文献4の技術にあっては、単分散な微粒子を配列することで、高アスペクト比のサブ波長の回析格子を得る手法であり、回析結果が粒子の配列に大きく依存するために、規則的に配列して充填することが不可欠となるという問題を有する。   However, the technique of the above-mentioned Patent Document 4 is a technique for obtaining a high-aspect ratio sub-wavelength diffraction grating by arranging monodisperse fine particles, and the result of the diffraction depends greatly on the arrangement of the particles. Therefore, there is a problem that it is indispensable to regularly arrange and fill.

特開2002−040219号公報Japanese Patent Laid-Open No. 2002-040219 特開2004−205990号公報JP 2004-205990 A 特開2005−010231号公報Japanese Patent Laying-Open No. 2005-010231 特開2009−116857号公報JP 2009-116857 A

本発明は、上記の事情に鑑みてなされたもので、球状微粒子の規則正しい配列を促し、回折効果の向上を図り得るようにして、効率よく、幅が狭くかつ高アスペクト比のサブ波長の回折格子構造を実現した偽造防止構造体を提供することを目的とする。   The present invention has been made in view of the above circumstances, and promotes the regular arrangement of spherical fine particles to improve the diffraction effect, so that the sub-wavelength diffraction grating can be efficiently narrowed and has a high aspect ratio. An object of the present invention is to provide a forgery prevention structure that realizes the structure.

請求項1の発明は、高分子樹脂からなる格子層上に微粒子層、反射層が配置固定された球状微粒子回折構造体であって、前記格子層を溝部と土手部でなる凹凸形状に形成して、この格子層の溝部に、平均粒径2.5μm以下で平均粒径の0.8〜1.2倍の範囲に70%以上の粒子個数を有する粒度分布でなる複数の球状微粒子を1重の平面状に、且つ、前記球状微粒子の各々の高さの半分以上が前記溝部に埋没しないように全面又は任意の形状で固定して前記微粒子層を形成し、且つ、前記反射層を、前記微粒子層のうち、前記溝
部に埋没されていない部分の少なくとも一部分を覆うよう配置し、前記格子層は、複数の前記溝部と複数の前記土手部とを備え、複数の前記溝部と複数の前記土手部とは、交互に連続して1つの方向に沿って並び、且つ、前記溝部の各々と前記土手部の各々とは、前記1つの方向と直交する方向に沿って、複数の前記微粒子が並ぶような幅を有し、前記1つの方向に沿う前記溝部の幅と前記土手部の幅との和である周期が前記微粒子の粒径以上であり、前記格子層において、前記周期には2種類以上のピッチが含まれ、且つ、同一のピッチの溝部と土手部とが、それぞれ固有の領域に形成され、前記複数の球状微粒子が、1種の球状微粒子から構成されていることを特徴とする。
The invention of claim 1 is a spherical fine particle diffractive structure in which a fine particle layer and a reflective layer are arranged and fixed on a lattice layer made of a polymer resin, and the lattice layer is formed in an uneven shape comprising a groove portion and a bank portion. In the groove portion of the lattice layer, a plurality of spherical fine particles having a particle size distribution having an average particle size of 2.5 μm or less and a particle number of 70% or more in a range of 0.8 to 1.2 times the average particle size are provided. And forming the fine particle layer by fixing the entire surface or an arbitrary shape so that more than half of the height of each spherical fine particle is not buried in the groove, and the reflective layer, The fine particle layer is disposed so as to cover at least a part of a portion not buried in the groove portion, and the lattice layer includes a plurality of the groove portions and a plurality of bank portions, and the plurality of the groove portions and the plurality of the plurality of groove portions. Banks are alternately aligned along one direction. And each of the groove portions and each of the bank portions has a width such that a plurality of the fine particles are arranged along a direction orthogonal to the one direction, and the groove portions along the one direction width Ri particle diameter or less on der of cycle the particles is the sum of the width of the bank portion in the grating layer, wherein the period includes two or more pitches, and the grooves of the same pitch A bank portion is formed in each unique region, and the plurality of spherical fine particles are composed of one kind of spherical fine particles .

上記構成によれば、球状微粒子の配列用の溝を有する格子層を設けることで、球状微粒子の規則正しい配列を促し、より回折効果の高い幅が狭くかつ高アスペクト比のサブ波長の回折格子構造を得ることができる。   According to the above configuration, by providing the grating layer having the grooves for arranging the spherical fine particles, the regular arrangement of the spherical fine particles is promoted, and a diffraction grating structure with a narrower width and a high aspect ratio of a sub-wavelength with a higher diffraction effect is obtained. Can be obtained.

上記構成によれば、格子層の溝と土手の周期(溝と土手の幅の和)を2種類とすることで、同一形状の球状微粒子を2つの異なる周期構造で配列することが可能となり、異なる色変化を付与することができる。これにより、視認性の向上と偽造防止効果の向上を図ることができる。   According to the above configuration, it is possible to arrange spherical fine particles having the same shape with two different periodic structures by using two types of groove and bank period (sum of the width of the groove and bank) in the lattice layer, Different color changes can be imparted. Thereby, the improvement of visibility and the improvement of the forgery prevention effect can be aimed at.

本発明によれば、球状微粒子の規則正しい配列が促されて、回折効果の向上を図ることができることにより、効率よく、幅が狭くかつ高アスペクト比のサブ波長の回折格子構造を実現した偽造防止構造体を提供することができる。   According to the present invention, an anti-counterfeit structure that realizes a sub-wavelength diffraction grating structure with a narrow width and a high aspect ratio efficiently by promoting the regular arrangement of spherical fine particles and improving the diffraction effect. The body can be provided.

本発明の偽造防止構造体の基本構成を示した断面図である。It is sectional drawing which showed the basic composition of the forgery prevention structure of this invention. 本発明の格子層を説明するために示した断面図である。It is sectional drawing shown in order to demonstrate the lattice layer of this invention. 本発明の格子層を説明するために示した平面図である。It is the top view shown in order to demonstrate the lattice layer of this invention. 本発明の偽造防止構造体のステッカー構成を示した断面図である。It is sectional drawing which showed the sticker structure of the forgery prevention structure of this invention.

以下、本発明の偽造防止構造体について図面を参照して詳細に説明する。   Hereinafter, the forgery prevention structure of the present invention will be described in detail with reference to the drawings.

図1は本発明の一実施の形態に係る偽造防止媒体の基本構成を示すものであり、格子層3、微粒子層4及び反射層5が順に積重されて形成されている。   FIG. 1 shows a basic configuration of an anti-counterfeit medium according to an embodiment of the present invention, in which a lattice layer 3, a fine particle layer 4, and a reflective layer 5 are sequentially stacked.

微粒子層4は、平均粒径が2.5μm以下で、かつ平均粒径の0.8倍以上、1.2倍以下の範囲に70%以上の粒子個数を有する球状微粒子で形成されている。この球状微粒子は、入射された光を回折する効果を有し、光が微粒子によって回折されると、見る角度によって色調が変化する発色を示す。この微粒子による回折は、微粒子の輪郭が回折格子と同様の凹凸形状をなすことによって光が回折を受けると考えることができ、均一な微粒子を規則的に充填することによって、得られる効果である。特に、高い発色性、及び観察角度による鮮やかな色調変化を得る為に必要な、微粒子の形状、粒度分布、充填形状について以下に詳しく説明する。   The fine particle layer 4 is formed of spherical fine particles having an average particle diameter of 2.5 μm or less and a particle number of 70% or more in a range of 0.8 times or more and 1.2 times or less of the average particle diameter. The spherical fine particles have an effect of diffracting incident light. When the light is diffracted by the fine particles, the spherical fine particles exhibit a color that changes in color tone depending on the viewing angle. The diffraction by the fine particles can be considered that light is diffracted when the contour of the fine particles has the same uneven shape as the diffraction grating, and is an effect obtained by regularly filling the uniform fine particles. In particular, the shape of fine particles, the particle size distribution, and the filling shape necessary for obtaining high color developability and vivid color tone change depending on the observation angle will be described in detail below.

球状微粒子の形状は、球形状が好ましく、より真球状にすることで、粒径の方向による形状の違いが小さくなり、粒子の周期構造のバラツキが低減されて、鮮やかな色調変化を得ることができる。この球状微粒子とは、1個の粒子の最大径と最少径の比が1.0以上1.2以内である粒子を指す。   The shape of the spherical fine particles is preferably a spherical shape, and by making it more spherical, the difference in shape depending on the direction of the particle size is reduced, the variation in the periodic structure of the particles is reduced, and a vivid color tone change can be obtained. it can. The spherical fine particles refer to particles in which the ratio of the maximum diameter to the minimum diameter of one particle is 1.0 or more and 1.2 or less.

球状微粒子の粒度分布は、より狭い範囲にあることが好ましい。この粒度分布を狭くすることで、回折角のバラツキが低減されて、鮮やかな色調変化を得ることができるためである。   The particle size distribution of the spherical fine particles is preferably in a narrower range. This is because by narrowing the particle size distribution, the variation in diffraction angle is reduced and a vivid color tone change can be obtained.

また、球状微粒子は、平均粒径の0.8倍以上、1.2倍以下の範囲に、70%以上の粒子個数を有し、粒度分布の狭い球状微粒子であることを特徴としており、より好ましくは、平均粒径の0.9倍以上、1.1倍以下の範囲に、90%以上の粒子個数を有する。このようなシャープな粒度分布の球状粒子を使用することで、更に鮮やかな色調変化を得ることができる。ここで、平均粒径の確認方法、及び平均粒径の0.8倍以上、1.2倍以下の範囲に、70%以上の粒子個数を有することの確認方法としては、SEM(走査型電子顕微鏡)、又はTEM(透過型電子顕微鏡)による観察写真により確認することが好ましい。   Further, the spherical fine particles are characterized in that they are spherical fine particles having a particle number of 70% or more in a range of 0.8 times or more and 1.2 times or less of the average particle diameter and having a narrow particle size distribution. Preferably, the number of particles is 90% or more in a range of 0.9 times to 1.1 times the average particle size. By using spherical particles having such a sharp particle size distribution, a more vivid color tone change can be obtained. Here, as a confirmation method of the average particle diameter and a confirmation method of having a particle number of 70% or more in a range of 0.8 times or more and 1.2 times or less of the average particle diameter, SEM (scanning electron) It is preferable to confirm with an observation photograph using a microscope) or a TEM (transmission electron microscope).

さらに、上記球状微粒子は、SEM(走査型電子顕微鏡)、又はTEM(透過型電子顕微鏡)における観察写真にて、1個の粒子の最大径と最小径の比が1.0以上1.2以内である粒子を指す。このため、粒子径の測定では、1個の粒子の最大径、又は最小径のどちらかに統一してデータ採取をする必要がある。なお、本明細書では最大径にて表示する。   Furthermore, the spherical fine particles have a ratio of the maximum diameter and the minimum diameter of one particle of 1.0 or more and 1.2 or less in an observation photograph in SEM (scanning electron microscope) or TEM (transmission electron microscope). Refers to particles that are For this reason, in the measurement of the particle diameter, it is necessary to collect data by unifying either the maximum diameter or the minimum diameter of one particle. In this specification, the maximum diameter is displayed.

また、球状微粒子の充填形状は、1重の平面状に、より密に配置されることが好ましい。2重以上にランダムに粒子を積層した場合には、1重目で回折された各波長の光が、2重目以降でランダムな方向へ散乱され、結果として、発色強度が低下され、また、観察角度による鮮やかな色調変化も得られない。   Moreover, it is preferable that the filled shape of the spherical fine particles is more densely arranged in a single plane. When particles are stacked randomly in a double layer or more, light of each wavelength diffracted in the first layer is scattered in a random direction in the second and subsequent layers. As a result, the color intensity is reduced, A vivid color change due to the viewing angle cannot be obtained.

充填率に関するパラメーターとしては、球状微粒子の集積の程度を面積充填率によって規定される。ここで、面積充填率とは、偽造防止構造体の平面に対して垂直上方方向から、SEM(走査型電子顕微鏡)、又はTEM(透過型電子顕微鏡)により観察し、単位面積当たりの粒子面積(粒子1つの粒子面積を平均粒径の円の面積とする)によって算出され、測定する面積範囲としては、400μm2以上が好ましい。 As a parameter related to the filling factor, the degree of accumulation of spherical fine particles is defined by the area filling factor. Here, the area filling rate is observed from the upper direction perpendicular to the plane of the anti-counterfeit structure by SEM (scanning electron microscope) or TEM (transmission electron microscope), and the particle area per unit area ( The area of the area to be measured is preferably 400 μm 2 or more.

なお、面積範囲は、2500μm2の範囲を任意に5ヵ所選定し、該範囲内の粒子数を計数し、粒子の面積充填率を算出することとした。この面積充填率が30%未満になると、発色強度が低下し、また、観察角度による鮮やかな色調変化も得られないことから、30%以上の面積充填率で粒子が集積されていることが好ましく、より好ましくは60%以上である。 In addition, the area range was arbitrarily selected from five ranges of 2500 μm 2 , the number of particles in the range was counted, and the area filling rate of the particles was calculated. When the area filling rate is less than 30%, the color intensity is reduced, and a vivid color tone change depending on the observation angle cannot be obtained. Therefore, it is preferable that particles are accumulated with an area filling rate of 30% or more. More preferably, it is 60% or more.

上記球状微粒子としては、有機材料系、又は無機材料系の単分散性球状微粒子が好ましく、具体的に、有機材料系としては、アクリル、ポリスチレン、ポリエステル、ポリイミド、ポリオレフィン、ポリ(メタ)アクリル酸メチル、ポリエチレン、ポリプロピレン、ポリエチレン、ポリエーテルスルフォン、ポリアミド、ナイロン、ポリウレタン、ポリ塩化ビニル、ポリ塩化ビニリデン、アクリルアミド等の樹脂や、2種以上の樹脂からなる共重合樹脂等を挙げることができる。また、同様に無機系材料の単分散性球状微粒子としては、炭酸カルシウム、炭酸バリウム、炭酸マグネウム、珪酸カルシウム、珪酸バリウム、珪酸マグネシウム、燐酸カルシウム、燐酸バリウム、燐酸マグネシウム、シリカ、酸化チタン、酸化鉄、酸化コバルト、酸化亜鉛、酸化ニッケル、酸化マンガン、酸化アルミニウム、水酸化鉄、水酸化ニッケル、水酸化アルミニウム、水酸化カルシウム、水酸化クロム、珪酸亜鉛、珪酸アルミニウム、炭酸亜鉛、塩基性炭酸銅、硫化亜鉛、ガラス、各種金属粒子などが挙げられる。上記の有機材料、無機材料の2種以上を使った、表面修飾型の微粒子、コアシェル型粒子、積層球状型粒子、数珠状の球状粒子等が挙げられる。   As the spherical fine particles, organic material-based or inorganic material-based monodispersed spherical fine particles are preferable. Specific examples of the organic material-based fine particles include acrylic, polystyrene, polyester, polyimide, polyolefin, and poly (meth) acrylate. And resins such as polyethylene, polypropylene, polyethylene, polyether sulfone, polyamide, nylon, polyurethane, polyvinyl chloride, polyvinylidene chloride, and acrylamide, and copolymer resins composed of two or more resins. Similarly, monodisperse spherical fine particles of inorganic materials include calcium carbonate, barium carbonate, magnesium carbonate, calcium silicate, barium silicate, magnesium silicate, calcium phosphate, barium phosphate, magnesium phosphate, silica, titanium oxide, iron oxide. , Cobalt oxide, zinc oxide, nickel oxide, manganese oxide, aluminum oxide, iron hydroxide, nickel hydroxide, aluminum hydroxide, calcium hydroxide, chromium hydroxide, zinc silicate, aluminum silicate, zinc carbonate, basic copper carbonate, Examples include zinc sulfide, glass, and various metal particles. Examples include surface-modified fine particles, core-shell particles, laminated spherical particles, and bead-shaped spherical particles using two or more of the above organic materials and inorganic materials.

なお、球状微粒子としては、上記の有機材料、及び無機材料を使用した中空球状粒子、微粒子の球状凝集体、ポーラス球状粒子、熱膨張性球状粒子等も例として挙げたが、これらに限定されるものでない。   Examples of the spherical fine particles include hollow spherical particles using the above organic materials and inorganic materials, spherical aggregates of fine particles, porous spherical particles, thermally expandable spherical particles, and the like, but are not limited thereto. Not a thing.

粒径としては、観察する波長領域が、紫外光領域、可視光領域、赤外光領域の全て(波長2500nm以下)にわたる場合、粒径2.5μm以下が望ましい。この2.5μm以下であれば、観察する光線領域である2500nm以下の全ての回折光を得ることができる。   As the particle diameter, when the observed wavelength region covers all of the ultraviolet light region, visible light region, and infrared light region (wavelength 2500 nm or less), the particle size is preferably 2.5 μm or less. If it is 2.5 μm or less, all diffracted light of 2500 nm or less, which is the light beam region to be observed, can be obtained.

微粒子層4の形成方法としては、例えば上述した球形微粒子を高分子樹脂と混合、溶剤で希釈し、公知の印刷法で塗工した後、溶媒媒乾燥して形成される。また、高分子樹脂分として架橋反応、熱硬化反応、光重合反応性の材料を用いてより強固に格子層3上に、球状微粒子を固定させることも可能である。   As a method for forming the fine particle layer 4, for example, the above-described spherical fine particles are mixed with a polymer resin, diluted with a solvent, applied by a known printing method, and then dried by a solvent medium. It is also possible to more firmly fix the spherical fine particles on the lattice layer 3 by using a crosslinking reaction, thermosetting reaction, or photopolymerization reactive material as the polymer resin component.

次に、上記格子層3について説明する。この格子層3は、図2及び図3に示すように球状微粒子の配列を規則正しく配置することを促すための溝部21及び土手部22を有し、その溝部21に対して粒子を配置して球状微粒子が固定位置される。この溝部21を作成する方法としては、金属金型を用いて成型加工する手法が挙げられる。それゆえ材料としては、成型加工が可能な高分子樹脂材料が用いられ、例えば、アクリル系樹脂、エポキシ系樹脂、セルロース系樹脂、ビニル系樹脂等の熱可塑性樹脂や、反応性水酸基を有するアクリルポリオールやポリエステルポリオール等にポリイソシアネートを架橋剤として添加、架橋したウレタン樹脂や、メラミン系樹脂、フェノール系樹脂等の熱硬化樹脂、エポキシ(メタ)アクリル、ウレタン(メタ)アクリレート等の紫外線あるいは電子線硬化樹脂等が挙げられ、単独もしくはこれらを複合して使用に供される。   Next, the lattice layer 3 will be described. As shown in FIGS. 2 and 3, the lattice layer 3 has a groove portion 21 and a bank portion 22 for urging the regular arrangement of spherical fine particles, and particles are arranged in the groove portion 21 to form a spherical shape. Fine particles are fixed. As a method of creating the groove portion 21, a method of forming using a metal mold can be cited. Therefore, as a material, a polymer resin material that can be molded is used. For example, a thermoplastic resin such as an acrylic resin, an epoxy resin, a cellulose resin, or a vinyl resin, or an acrylic polyol having a reactive hydroxyl group. UV or electron beam curing such as urethane resin, cross-linked urethane resin, melamine resin, phenolic resin, etc., epoxy (meth) acryl, urethane (meth) acrylate, etc. Resins etc. are mentioned, and these are used alone or in combination.

上記溝部21及び土手部22の幅は、用いる球状微粒子の粒径により決定され、溝部21に粒子を1個ずつ配置するためには、溝部21と土手部22の和(周期)が粒径と等しい、あるいはそれ以上の大きさとする必要があり、かつ深さが球状粒子の半径以下とすることが好ましい。   The width of the groove portion 21 and the bank portion 22 is determined by the particle size of the spherical fine particles to be used. In order to arrange the particles one by one in the groove portion 21, the sum (period) of the groove portion 21 and the bank portion 22 is the particle size. The size needs to be equal to or larger than that, and the depth is preferably equal to or smaller than the radius of the spherical particles.

また、格子層3は、その他、2種類以上の周期(溝部21と土手部22の和)を用いて視認可能な大きさの領域に分けて形成するように構成してもよい。これによれば、球状微粒子の配列構造を変えることが可能となり、1種の球状微粒子を用いて、複数の色変化を付与することもできる。   In addition, the lattice layer 3 may be formed so as to be divided into regions of a size that can be visually recognized using two or more types of cycles (the sum of the groove portion 21 and the bank portion 22). According to this, the arrangement structure of the spherical fine particles can be changed, and a plurality of color changes can be imparted using one kind of spherical fine particles.

上記反射層5は、回折効率を高めるために設けられる層であり、材料としては、TiO2、Si2O3、SiO、Fe2O3、ZnS、などの高屈折率材料やより反射効果の高いAl、Sn、Cr、Ni、Cu、Au等の金属材料が挙げられ、これら材料を単独あるいは積層して使用される。これらの材料は、真空蒸着法、スパッタリング等の公知の薄膜形成技術にて形成され、その膜厚は5〜1000nm程度で形成される。   The reflective layer 5 is a layer provided to increase the diffraction efficiency. As a material, a high refractive index material such as TiO2, Si2O3, SiO, Fe2O3, ZnS, Al, Sn, Cr, Examples thereof include metal materials such as Ni, Cu, and Au, and these materials are used alone or in layers. These materials are formed by a well-known thin film forming technique such as a vacuum deposition method or sputtering, and the film thickness is about 5 to 1000 nm.

また、上記の金属材料、セラミックスの微粒子を有機高分子樹脂に分散して得られる高輝性光反射インキを使用することもできる。さらには、反射層5を部分的なパターン状に設けてもよい。この加工方法としては、パスタ加工、水洗シーライト加工、オイルアブレーション加工、レーザー加工などが例として挙げられる。   Moreover, the high gloss light reflection ink obtained by disperse | distributing the said metal material and ceramic microparticles | fine-particles to organic polymer resin can also be used. Further, the reflective layer 5 may be provided in a partial pattern. Examples of this processing method include pasta processing, flushed sealight processing, oil ablation processing, and laser processing.

以上、基本となる格子層3、微粒子層4、反射層5を詳しく説明しましたが、続いて、本願発明による具体的な実施例と、比較例とを以下の如く作製して比較検討する。   Although the basic lattice layer 3, fine particle layer 4, and reflective layer 5 have been described in detail above, specific examples according to the present invention and comparative examples will be manufactured and compared as follows.

(実施例)
実施例として、図4に示すステッカー構成の偽造防止構造体を作製し、厚み38μmの透明ポリエチレンテレフタレート(PET)フィルムからなる支持体41を以下の如く積重配置した。
(Example)
As an example, a forgery prevention structure having a sticker configuration shown in FIG. 4 was prepared, and a support 41 made of a transparent polyethylene terephthalate (PET) film having a thickness of 38 μm was stacked as follows.

(1)格子層3として後述の塗料をグラビア法にて2μm塗布して形成した。 (1) The lattice layer 3 was formed by applying a paint described later by 2 μm by a gravure method.

(2)ニッケル製のプレス版を用いて、ロールエンボス法にて成型加工を施し、溝部21が巾0.4μm、深さ0.1μm、土手部22が0.1μmとなる格子層3を成型した。 (2) Using a press plate made of nickel, a forming process is performed by a roll embossing method, and a lattice layer 3 having a groove 21 having a width of 0.4 μm, a depth of 0.1 μm, and a bank 22 having a thickness of 0.1 μm is formed. did.

(3)微粒子層4として後述の塗料をバーコート法にて0.5μm塗布して形成した。 (3) The fine particle layer 4 was formed by applying 0.5 μm of a paint described later by a bar coating method.

(4)反射層5として真空蒸着法にて50nmのアルミニウムの金属薄膜を全面に塗布して形成した。 (4) The reflective layer 5 was formed by applying a 50 nm aluminum metal thin film over the entire surface by vacuum deposition.

(5)予め離型紙(セパレータ)に接着層46を形成する粘着剤を20μm塗布し、上記のフィルムの反射層5上に貼り合わせてラベルを形成した。 (5) A pressure-sensitive adhesive for forming the adhesive layer 46 was applied in advance to a release paper (separator) to a thickness of 20 μm and pasted onto the reflective layer 5 of the film to form a label.

[格子層3塗料]
塩化ビニル−酢酸ビニル共重合体 … 15部
ウレタン樹脂 … 10部
メチルエチルケトン … 50部
トルエン … 25部
[微粒子層4塗料]
スチレン粒子 (粒径500nm) … 40部
ビニールアルコール樹脂 … 2部
水(溶媒) … 58部
尚、スチレン粒子は、平均粒径の0.8〜1.2倍の範囲に90%以上の粒子個数を有する(株)モリテックス製粒子を用いた。
[Lattice layer 3 paint]
Vinyl chloride-vinyl acetate copolymer ... 15 parts Urethane resin ... 10 parts Methyl ethyl ketone ... 50 parts Toluene ... 25 parts
[Fine particle layer 4 paint]
Styrene particles (particle size 500 nm) 40 parts Vinyl alcohol resin 2 parts Water (solvent) 58 parts In addition, the number of styrene particles is 90% or more in the range of 0.8 to 1.2 times the average particle diameter. Particles made by Moritex Co., Ltd. having

[接着層46塗料]
アクリル系粘着剤 … 30部
酢酸エチル … 40部
酢酸ブチル … 30部
(比較例)
比較例として、格子層3の溝部21及び土手部22を形成せずに球形微粒子を用いた偽造防止構造体を作製した。そして、この比較例は、その他の部分を上記実施例と同様の加工方法、材料を用いて成形加工した。
[Adhesive layer 46 paint]
Acrylic adhesive ... 30 parts Ethyl acetate ... 40 parts Butyl acetate ... 30 parts (Comparative example)
As a comparative example, an anti-counterfeit structure using spherical fine particles was produced without forming the groove portion 21 and bank portion 22 of the lattice layer 3. In this comparative example, the other parts were molded using the same processing methods and materials as in the above examples.

(検討結果)
充填面積率は、SEM(走査型電子顕微鏡)観察により、単位面積当たりの粒子面積の比率を算出した。
(Study results)
For the packing area ratio, the ratio of the particle area per unit area was calculated by SEM (scanning electron microscope) observation.

この比較結果は、表1に示すように実施例の方が格子層3の溝部21及び土手部22の作用により、比較例に比して規則正しい配列が促され、充填面積率が向上されて、よりはっきりとした回折光による発色を示したことが確認された。

Figure 0005691567
As shown in Table 1, the results of the comparison are shown in Table 1. By the action of the groove portions 21 and the bank portions 22 of the lattice layer 3 in the example, a regular arrangement is promoted compared to the comparative example, and the filling area ratio is improved. It was confirmed that the color developed by clearer diffracted light.
Figure 0005691567

本発明によれば、球状微粒子の規則正しい配列が促されて、回折効果の向上を図ることができることにより、効率よく、幅が狭くかつ高アスペクト比のサブ波長の回折格子構造を有した偽造防止構造体を実現することができる。   According to the present invention, a regular arrangement of spherical fine particles is promoted, and the diffraction effect can be improved, so that an anti-counterfeit structure having a diffraction grating structure with a narrow width and a sub-wavelength with a high aspect ratio can be achieved. The body can be realized.

3…回析層
4…微粒子層
5…反射層
21…溝部
22…土手部
41…支持体
46…接着層
DESCRIPTION OF SYMBOLS 3 ... Diffraction layer 4 ... Fine particle layer 5 ... Reflective layer 21 ... Groove part 22 ... Bank part 41 ... Support body 46 ... Adhesive layer

Claims (1)

高分子樹脂からなる格子層上に微粒子層、反射層が配置固定された球状微粒子回折構造体であって、
前記格子層を溝部と土手部でなる凹凸形状に形成して、この格子層の溝部に、平均粒径2.5μm以下で平均粒径の0.8〜1.2倍の範囲に70%以上の粒子個数を有する粒度分布でなる複数の球状微粒子を1重の平面状に、且つ、前記球状微粒子の各々の高さの半分以上が前記溝部に埋没しないように全面又は任意の形状で固定して前記微粒子層を形成し、且つ、前記反射層を、前記微粒子層のうち、前記溝部に埋没されていない部分の少なくとも一部分を覆うよう配置し、
前記格子層は、複数の前記溝部と複数の前記土手部とを備え、複数の前記溝部と複数の前記土手部とは、交互に連続して1つの方向に沿って並び、且つ、前記溝部の各々と前記土手部の各々とは、前記1つの方向と直交する方向に沿って、複数の前記微粒子が並ぶような幅を有し、前記1つの方向に沿う前記溝部の幅と前記土手部の幅との和である周期が前記微粒子の粒径以上であり、
前記格子層において、前記周期には2種類以上のピッチが含まれ、且つ、同一のピッチの溝部と土手部とが、それぞれ固有の領域に形成され、
前記複数の球状微粒子が、1種の球状微粒子から構成されていることを特徴とする偽防止構造体。
A spherical fine particle diffractive structure in which a fine particle layer and a reflective layer are arranged and fixed on a lattice layer made of a polymer resin,
The lattice layer is formed in a concavo-convex shape including a groove portion and a bank portion, and the groove portion of the lattice layer has an average particle diameter of 2.5 μm or less and a range of 0.8 to 1.2 times the average particle diameter of 70% or more. A plurality of spherical fine particles having a particle size distribution having a number of particles are fixed in a single plane and fixed in the entire surface or in an arbitrary shape so that more than half of each height of the spherical fine particles is not buried in the groove. Forming the fine particle layer, and disposing the reflective layer so as to cover at least a portion of the fine particle layer that is not buried in the groove,
The lattice layer includes a plurality of the groove portions and a plurality of the bank portions, and the plurality of groove portions and the plurality of bank portions are arranged alternately and continuously along one direction, and the groove portions Each of the bank portions has a width such that a plurality of the fine particles are arranged along a direction orthogonal to the one direction, and the width of the groove portion and the bank portion along the one direction. Ri particle diameter or less on der of cycle the particles is the sum of the width,
In the lattice layer, the period includes two or more types of pitches, and a groove portion and a bank portion having the same pitch are formed in unique regions, respectively.
Wherein the plurality of spherical particles, counterfeit prevention structure characterized by being composed of one spherical particle.
JP2011016419A 2011-01-28 2011-01-28 Anti-counterfeit structure Active JP5691567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011016419A JP5691567B2 (en) 2011-01-28 2011-01-28 Anti-counterfeit structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011016419A JP5691567B2 (en) 2011-01-28 2011-01-28 Anti-counterfeit structure

Publications (2)

Publication Number Publication Date
JP2012155265A JP2012155265A (en) 2012-08-16
JP5691567B2 true JP5691567B2 (en) 2015-04-01

Family

ID=46837009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011016419A Active JP5691567B2 (en) 2011-01-28 2011-01-28 Anti-counterfeit structure

Country Status (1)

Country Link
JP (1) JP5691567B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4170619B2 (en) * 2001-08-30 2008-10-22 株式会社リコー Method for producing fine particle structure
JP2005138011A (en) * 2003-11-05 2005-06-02 Sony Corp Particle arranging structure and its manufacturing method
JP5228666B2 (en) * 2007-10-19 2013-07-03 凸版印刷株式会社 Anti-counterfeit structure, anti-counterfeit sticker, anti-counterfeit transfer foil, anti-counterfeit ink, anti-counterfeit medium, anti-counterfeit paper, and authenticity determination method
JP5549059B2 (en) * 2008-07-09 2014-07-16 凸版印刷株式会社 Anti-counterfeit structure, anti-counterfeit single body using the same, and authenticity determination method thereof
TWI382239B (en) * 2008-09-12 2013-01-11 Eternal Chemical Co Ltd Optical film

Also Published As

Publication number Publication date
JP2012155265A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5424564B2 (en) Security element and manufacturing method thereof
EP2493699B1 (en) Security device and method of manufacturing the same
JP5228666B2 (en) Anti-counterfeit structure, anti-counterfeit sticker, anti-counterfeit transfer foil, anti-counterfeit ink, anti-counterfeit medium, anti-counterfeit paper, and authenticity determination method
AU2010268786B2 (en) Multi-layer body
AU2011101684A4 (en) Optical Security Device with Nanoparticle Ink
JP5163036B2 (en) Display and labeled goods
US20090257126A1 (en) Zero-order diffractive pigments
WO2011116425A1 (en) Security document with integrated security device and method of manufacture
JP6394917B2 (en) Multiple image display
RU2702946C1 (en) Single-layer film for image projection
CA2613830A1 (en) An article with micro indicia security enhancement
JP6256018B2 (en) Diffraction structure and anti-counterfeit medium using the same
CN106796316A (en) Safety diaphragm
JP5163137B2 (en) Display body and article with display body
JP5245430B2 (en) Display and labeled goods
JP5691567B2 (en) Anti-counterfeit structure
JP2009134093A (en) Diffraction structure, forgery prevention medium using the same, and forgery prevention paper
WO2009010377A2 (en) Process for preparing platelet-like (embossed) particles
JP7059575B2 (en) Infrared latent image device
WO2014127402A1 (en) Security devices including highly reflective areas and methods of manufacture
AU2013100171A4 (en) Methods of manufacturing security devices including highly reflective areas
EP3888929B1 (en) A method of manufacturing a discretized optical security microstructure on a substrate and a shim for use in the method
JP5458519B2 (en) Anti-counterfeit structure and anti-counterfeit medium using the same
JP5621308B2 (en) Anti-counterfeit media
JP2008080503A (en) Transfer sheet

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130920

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20131008

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150119

R150 Certificate of patent or registration of utility model

Ref document number: 5691567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250