JP5684770B2 - Granulator - Google Patents

Granulator Download PDF

Info

Publication number
JP5684770B2
JP5684770B2 JP2012242458A JP2012242458A JP5684770B2 JP 5684770 B2 JP5684770 B2 JP 5684770B2 JP 2012242458 A JP2012242458 A JP 2012242458A JP 2012242458 A JP2012242458 A JP 2012242458A JP 5684770 B2 JP5684770 B2 JP 5684770B2
Authority
JP
Japan
Prior art keywords
powder
container
cylindrical body
cylindrical portion
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012242458A
Other languages
Japanese (ja)
Other versions
JP2013046911A (en
Inventor
富士夫 堀
富士夫 堀
Original Assignee
富士夫 堀
富士夫 堀
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士夫 堀, 富士夫 堀 filed Critical 富士夫 堀
Priority to JP2012242458A priority Critical patent/JP5684770B2/en
Publication of JP2013046911A publication Critical patent/JP2013046911A/en
Application granted granted Critical
Publication of JP5684770B2 publication Critical patent/JP5684770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glanulating (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、粉体を所定の粒径以上に成長させて大径粒体を製造する造粒装置に関する。   The present invention relates to a granulating apparatus for producing a large-diameter granule by growing a powder to a predetermined particle size or more.

従来この種の造粒装置としては、所謂、「ワースター式」の流動層装置を利用したものが知られている。   Conventionally, as this type of granulating apparatus, a so-called “Worster type” fluidized bed apparatus is known.

具体的には、造粒容器の中心部に両端開放の筒体を浮かした状態に配置し、筒体の内部に上昇気流を発生させることで、造粒容器の中心部、天井部、側部、底部そして中心部の順番に循環する循環ガス流を発生させ、その循環ガス流に粉体を乗せて循環させると共に、筒体内の粉体に薬剤を噴霧することで粉体同士を凝集或いは粉体の表面をコーティングするものである(例えば、非特許文献1参照)。   Specifically, by placing a cylinder open at both ends in the center of the granulation container and generating an upward air flow inside the cylinder, the center, ceiling, and side of the granulation container In addition, a circulating gas flow that circulates in the order of the bottom part and the central part is generated, the powder is put on the circulating gas stream and circulated, and the medicine is sprayed onto the powder in the cylinder so that the powders are agglomerated or powdered. The surface of the body is coated (for example, see Non-Patent Document 1).

特許庁、”標準技術集”、農薬製剤技術(B−1−(4)被覆技術)、[online]、[平成19年12月7日検索]、インターネット[URL:http://www.jpo.go.jp/shiryou/index.htm]JPO, “Standard Technology Collection”, Agrochemical formulation technology (B-1- (4) coating technology), [online], [Searched on December 7, 2007], Internet [URL: http: //www.jpo .go.jp / shiryou / index.htm]

ところで、上述した従来の造粒装置は、造粒容器の底部が閉じており、所定の粒径以上に成長して循環ガス流から離脱した大径粒体が造粒容器の底部に溜まり、その結果、粒径のばらつきが大きくなるといった事態が起こり得た。   By the way, in the conventional granulation apparatus described above, the bottom of the granulation vessel is closed, and large-diameter particles that have grown beyond a predetermined particle size and separated from the circulating gas flow are accumulated at the bottom of the granulation vessel. As a result, a situation in which the variation in the particle size becomes large could occur.

本発明は、上記事情に鑑みてなされたもので、粒径の均等性を向上させることが可能な造粒装置の提供を目的とする。   This invention is made | formed in view of the said situation, and aims at provision of the granulation apparatus which can improve the uniformity of a particle size.

上記目的を達成するためになされた請求項1の発明に係る造粒装置は、循環する粉体にプラズマフレームを噴射する又は、熱、イオン又は霧状の吸着物質を付与することで粉体同士を付着又は、粉体の表面にて吸着物質の層を成長させて所定の粒径以上に成長した大径粒体を製造する造粒装置であって、容器の底部から筒体を起立させてその筒体の内部にコイル式又はスクリュー式のコンベアを回転可能に備え、容器の底部に溜まった粉体を筒体の下部に開口した粉体取入口から受け入れてコンベアにて上昇させ、筒体の上部側方に張り出した排出管の先端より容器の底部に向けて自由落下させ、その落下中の粉体にプラズマフレームを噴射する又は、熱、イオン又は霧状の吸着物質を付与するものにおいて、筒体が容器の底部を貫通して容器より下方に突出し、筒体の下端開口を開閉する開閉弁と、容器から下方に突出し筒体の下端部を側方から囲むカバー筒体とを備えたところに特徴を有する。なお、「造粒」には、粉体同士を凝集させて大径粒体を製造するものと、粉体の表面を吸着物質で被覆(コーティング)しその被覆層を成長させることで大径粒体を製造するものが含まれる。 In order to achieve the above object, the granulating apparatus according to the invention of claim 1 is configured such that a plasma flame is sprayed on circulating powder or heat, ions, or a mist-like adsorbent is applied to each other. the attachment or at the powder surface by growing a layer of adsorbent material to a granulator to produce a larger diameter body grown on predetermined particle size or less, by standing the cylindrical body from the bottom of the container A coil-type or screw-type conveyor is rotatably provided inside the cylinder, and the powder accumulated at the bottom of the container is received from the powder intake opening opened at the bottom of the cylinder and is raised by the conveyor. towards the bottom of the container from the front end of the upper side to the overhanging discharge pipe fall freely, or to inject plasma flame the powder in the fall, the heat in those which confer ionic or mist adsorbing material The cylinder passes through the bottom of the container Has more projecting downward, opening and closing valve for opening and closing the lower end opening of the cylindrical body, the said lower end portion of the protruding cylinder from the container downward was a cover cylinder body surrounding from the side. "Granulation" includes the production of large-diameter particles by agglomerating powders, and the formation of large-diameter particles by coating the surface of the powder with an adsorbent (coating) and growing the coating layer. Includes those that make the body.

請求項2の発明は、請求項1に記載の造粒装置において、カバー筒体の下端側を下方に向かうに従って先細りになったテーパー筒部にしたところに特徴を有する。 The invention according to claim 2 is characterized in that, in the granulating apparatus according to claim 1, the lower end side of the cover cylinder is formed as a tapered cylinder portion that tapers downward .

上記のように構成した本発明に係る造粒装置によれば、容器の底部に溜まった粉体は、コイル式又はスクリュー式のコンベアにより上昇し、排出管の先端より容器の底部に向けて自由落下することで、容器内を循環する。このように、コイル式又はスクリュー式コンベアにより粉体を上昇させるので大径体となったものでも容器内を循環させることが可能となり、従来よりも粒径の均等性を向上させることができる。 According to the granulation apparatus according to the present invention configured as described above, the powder accumulated at the bottom of the container rises by a coil-type or screw-type conveyor and freely moves from the tip of the discharge pipe toward the bottom of the container. By falling, it circulates in the container. Thus, since increasing the powder by a coil-type or screw conveyor it becomes possible also that a large diameter granules circulating within the container, it is possible to improve the uniformity of particle size than the conventional .

本発明の第1施形態に係る造粒容器の側断面図Side sectional view of the granulation container according to the first embodiment of the present invention. 粉体供給装置の断面図Cross section of powder feeder 粉体供給装置の拡大断面図Expanded cross-sectional view of the powder feeder 容器内旋回部材の斜視図Perspective view of revolving member in container スクレーパの斜視図Scraper perspective view 上段の底壁の斜視図Perspective view of the top bottom wall 下段の底壁の断面斜視図Cross-sectional perspective view of bottom wall at the bottom 下段の底壁の断面図Cross section of bottom wall at the bottom 上段の底壁の斜視図Perspective view of the top bottom wall 下段の底壁の斜視図Perspective view of bottom wall at the bottom 変形例(1)に係る粉体供給装置の斜視図The perspective view of the powder supply apparatus which concerns on a modification (1)

[第1実施形態]
以下、図1〜図10に基づいて本発明の造粒装置470について説明する。図1に示すように、造粒装置470は、原料の粉体から所定の粒径以上の大径粒体を造粒する造粒容器460と、造粒容器460に原料の粉体を供給するための粉体供給装置20と、造粒容器460から排出された大径粒体の重量を計量するための図示しない計量器(具体的には、台秤)とに分けることができる。
[First Embodiment]
DESCRIPTION granulator 470 of the present invention will be described with reference to FIGS. 1 to 10. As shown in FIG. 1, granulator 470 supplies the granulation container 460 of granulating the larger diameter of the predetermined particle size or less from raw material powder, the raw material powder in the granulation vessel 460 Therefore, it can be divided into a powder supply device 20 for measuring the weight of the large-diameter particles discharged from the granulation container 460 (specifically, a scale) (not shown).

まず、粉体供給装置20について説明する。図2に示すように、粉体供給装置20は、原料の粉体を収容した粉体収容容器21を備えている。粉体収容容器21は、大径筒部22と小径筒部23と粉体排出筒部24とを備え、下方に向かうに従って縮径した構造になっている。大径筒部22の側壁の下端部と、小径筒部23の側壁の上端部との間は平板状の水平段差壁25によって接続されており、粉体排出筒部24は小径筒部23の外側に螺合固定されている。そして、粉体排出筒部24の下面開口から粉体が排出される。   First, the powder supply apparatus 20 will be described. As shown in FIG. 2, the powder supply apparatus 20 includes a powder container 21 that contains raw material powder. The powder container 21 includes a large-diameter cylindrical portion 22, a small-diameter cylindrical portion 23, and a powder discharge cylindrical portion 24, and has a structure that is reduced in diameter as it goes downward. The lower end portion of the side wall of the large diameter cylindrical portion 22 and the upper end portion of the side wall of the small diameter cylindrical portion 23 are connected by a flat horizontal step wall 25, and the powder discharge cylindrical portion 24 is connected to the small diameter cylindrical portion 23. Screwed to the outside. Then, the powder is discharged from the lower surface opening of the powder discharge cylinder portion 24.

粉体収容容器21(大径筒部22)の上端は開放しており、その上端外周面に螺合された上端キャップ26にて閉じられている。上端キャップ26の上面中央には、図示しない制御装置によって駆動制御されるモータ27が固定載置されている。モータ27に連結された回転軸27Aは、上端キャップ26を貫通して大径筒部22及び小径筒部23でその中心軸に沿って延びている。回転軸27Aは、中間部より下側が段付き状に細くなった六角柱状をなしており、その太軸部の下端部には容器内円盤28が一体回転可能に取り付けられている。   The upper end of the powder container 21 (large diameter cylindrical portion 22) is open, and is closed by an upper end cap 26 that is screwed to the outer peripheral surface of the upper end. A motor 27 that is driven and controlled by a control device (not shown) is fixedly placed at the center of the upper surface of the upper end cap 26. The rotary shaft 27A connected to the motor 27 extends through the upper end cap 26 along the central axis of the large diameter cylindrical portion 22 and the small diameter cylindrical portion 23. The rotating shaft 27A has a hexagonal columnar shape with a stepped lower side from the intermediate portion, and a container inner disk 28 is attached to the lower end portion of the thick shaft portion so as to be integrally rotatable.

容器内円盤28は、水平段差壁25の上面に重ねて配置され、その水平段差壁25のうち、小径筒部23の上面開口とその周囲を覆うように、大径筒部22内に遊嵌している。具体的には、容器内円盤28は大径筒部22の内径よりも小径でかつ、小径筒部23の内径よりも大径な平らな円板で構成されており、水平段差壁25の上面から上方に離して水平に取り付けられている。   The in-container disk 28 is disposed so as to overlap the upper surface of the horizontal step wall 25, and loosely fits in the large-diameter cylindrical portion 22 so as to cover the upper surface opening of the small-diameter cylindrical portion 23 and the periphery of the horizontal step wall 25. doing. Specifically, the container inner disk 28 is formed of a flat disk having a diameter smaller than the inner diameter of the large diameter cylindrical portion 22 and larger than the inner diameter of the small diameter cylindrical portion 23, and the upper surface of the horizontal step wall 25. It is mounted horizontally away from the top.

この容器内円盤28上に堆積した粉体を、容器内円盤28の周縁部と大径筒部22の側壁との間の環状隙間に掻き出すために、大径筒部22の内側には上面待ち受けガイド29が設けられている。図2に示すように上面待ち受けガイド29は、L字状に屈曲した板状をなしている。上面待ち受けガイド29の水平板29Aは、容器内円盤28の上面に隣接配置され、水平板29Aの基端部から垂直上方に延びた垂直板29Bが上端キャップ26に固定されている。   In order to scrape the powder deposited on the inner disc 28 into an annular gap between the peripheral edge of the inner disc 28 and the side wall of the large diameter cylinder portion 22, an inner surface is placed on the inner surface of the large diameter cylinder portion 22. A guide 29 is provided. As shown in FIG. 2, the upper surface standby guide 29 has a plate shape bent in an L shape. The horizontal plate 29A of the upper surface standby guide 29 is disposed adjacent to the upper surface of the in-container disk 28, and a vertical plate 29B extending vertically upward from the base end portion of the horizontal plate 29A is fixed to the upper end cap 26.

そして、水平板29Aの先端側の平面を回転軸27Aの側面に当接させて取り付けることで、容器内円盤28の回転方向に対して水平板29Aが傾斜し、容器内円盤28の回転時に、容器内円盤28上の粉体が水平板29Aに堰き止められて容器内円盤28の外縁部に向けて案内される。また、水平板29Aの基端部は、容器内円盤28の外縁部より外側位置まで延びているので、水平板29Aに案内された粉体を水平段差壁25の外縁部、即ち、水平段差壁25の上面のうち容器内円盤28の外縁部に沿って設けられた環状堆積部25Aへと流下させる。さらに、上面待ち受けガイド29が粉体収容容器21内の粉体を撹拌するので、大径筒部22内で粉体が固化することを防ぐことができる。これにより、容器内円盤28上の粉体を安定して環状堆積部25Aへと流下させることが可能となる。   Then, by attaching the flat surface on the front end side of the horizontal plate 29A to the side surface of the rotation shaft 27A, the horizontal plate 29A is inclined with respect to the rotation direction of the inner disc 28, and when the inner disc 28 is rotated, The powder on the container inner disk 28 is blocked by the horizontal plate 29A and guided toward the outer edge of the container inner disk 28. Further, since the base end portion of the horizontal plate 29A extends to a position outside the outer edge portion of the inner disc 28, the powder guided by the horizontal plate 29A is transferred to the outer edge portion of the horizontal step wall 25, that is, the horizontal step wall. It is made to flow down to the annular deposition part 25A provided along the outer edge part of the container inner disk 28 among the upper surfaces of 25. Furthermore, since the upper surface standby guide 29 agitates the powder in the powder container 21, it is possible to prevent the powder from solidifying in the large diameter cylindrical portion 22. As a result, the powder on the in-container disk 28 can stably flow down to the annular deposition portion 25A.

上面待ち受けガイド29によって環状堆積部25Aへと流下した粉体は、容器内円盤28と水平段差壁25との間で所定の安息角を有した粉体の山を形成する。この粉体の山の安息角は、粉体の種類によって一定となり、容器内円盤28から水平段差壁25へと過剰な粉体が供給されないようにすることができる。即ち、容器内円盤28と水平段差壁25の上面との間で粉体を堰き止めて、小径筒部23に粉体が崩れ込まないようにすることができる。   The powder that has flowed down to the annular deposition portion 25A by the upper surface standby guide 29 forms a powder pile having a predetermined angle of repose between the inner disk 28 and the horizontal step wall 25. The angle of repose of the peak of the powder is constant depending on the type of powder, and it is possible to prevent excessive powder from being supplied from the inner disk 28 to the horizontal step wall 25. That is, the powder can be dammed between the inner disk 28 and the upper surface of the horizontal step wall 25 so that the powder does not collapse into the small diameter cylindrical portion 23.

環状堆積部25Aに堆積した粉体の山は、その山裾部分が大径筒部22内で回転する容器内旋回部材30によって削り取られて小径筒部23へと送り込まれる。容器内旋回部材30は、回転軸27Aに固定されており、図4に示すように回転軸27Aが貫通した軸心プレート31から側方に片持ち梁状の集粉羽32と散粉羽33とが延びている。これら集粉羽32と散粉羽33とが水平段差壁25の上面に摺接しつつ水平面内で回転する(図3参照)。   The crest of the powder deposited on the annular depositing portion 25 </ b> A is scraped off by the in-container turning member 30 rotating in the large-diameter cylindrical portion 22 and sent to the small-diameter cylindrical portion 23. The in-container turning member 30 is fixed to the rotating shaft 27A. As shown in FIG. 4, the cantilever-shaped powder collecting blades 32 and the dusting blades 33 are formed laterally from the axial center plate 31 through which the rotating shaft 27A passes. Is extended. These dust collection wings 32 and dust wings 33 rotate in a horizontal plane while being in sliding contact with the upper surface of the horizontal step wall 25 (see FIG. 3).

集粉羽32は、容器内旋回部材30の回転方向(図4の矢印の方向)とは逆側に膨らむように複数の平板をつなげた屈曲構造をなす一方、散粉羽33は、容器内旋回部材30の回転方向に対して傾斜した状態で軸心プレート31から大径筒部22の側壁に向かって真っ直ぐ延びている。また、図示されていないが、集粉羽32は、その先端が大径筒部22の側壁と隣接した位置まで延びており、散粉羽33はそれより短くなっている。   The powder collection blade 32 has a bent structure in which a plurality of flat plates are connected so as to swell in the opposite direction to the rotation direction of the in-container revolving member 30 (the direction of the arrow in FIG. 4), while the dust distribution blade 33 is in the revolving state in the container. It extends straight from the axial center plate 31 toward the side wall of the large-diameter cylindrical portion 22 in a state inclined with respect to the rotation direction of the member 30. Although not shown, the dust collection blade 32 extends to a position where the tip thereof is adjacent to the side wall of the large diameter cylindrical portion 22, and the dust collection blade 33 is shorter than that.

そして、集粉羽32によって、環状堆積部25Aに堆積した粉体を中心側に誘導して小径筒部23へと送り込むと共に、散粉羽33により、集粉羽32が取り込み過ぎた粉体を外側に移動して逃し、次に集粉羽32が通過したときに小径筒部23内に取り込み、小径筒部23内の粉体にかかる圧力を安定させ易くしている。また、集粉羽32と散粉羽33とが協働して粉体を撹拌して、環状堆積部25Aにおける粉体の塊を粉砕する効果も奏する。   Then, the powder accumulated on the annular accumulation portion 25A is guided to the center side by the powder collection blade 32 and fed to the small-diameter cylindrical portion 23, and the powder collected by the powder collection blade 32 by the dust blade 33 is removed to the outside. When the powder collection blade 32 passes next, it is taken into the small diameter cylindrical portion 23 and the pressure applied to the powder in the small diameter cylindrical portion 23 is easily stabilized. In addition, the powder collecting blade 32 and the dust blade 33 cooperate to stir the powder, and the powder lump in the annular deposition portion 25A is also pulverized.

図4に示すように、容器内旋回部材30の軸心プレート31のうち集粉羽32の付け根部分には、軸心プレート31から斜めに切り起こされた補助ガイド壁34が形成されている。補助ガイド壁34は、集粉羽32による粉体の誘導方向に向かって徐々に下るように傾斜している。そして、集粉羽32に誘導されてその基端部に達した粉体は、補助ガイド壁34によって小径筒部23へと強制的に落とされる。   As shown in FIG. 4, an auxiliary guide wall 34 that is obliquely cut and raised from the shaft center plate 31 is formed at the base portion of the powder collection blade 32 of the shaft center plate 31 of the in-container turning member 30. The auxiliary guide wall 34 is inclined so as to gradually go down in the powder guiding direction by the powder collection blades 32. Then, the powder guided to the powder collection blade 32 and reaching the base end portion thereof is forcibly dropped to the small diameter cylindrical portion 23 by the auxiliary guide wall 34.

容器内旋回部材30には、軸心プレート31から下方に向かって延びた複数の旋回脚部35,36が一体に設けられている。図3に示すように、これら旋回脚部35,36は何れも小径筒部23内に配置され、そこで旋回可能となっている。   The in-container turning member 30 is integrally provided with a plurality of turning legs 35 and 36 extending downward from the shaft center plate 31. As shown in FIG. 3, these swinging leg portions 35 and 36 are both disposed in the small diameter cylindrical portion 23 and can turn there.

第1の旋回脚部35は、軸心プレート31のうち散粉羽33の付け根部分と、集粉羽32の付け根部分とにそれぞれ対をなして設けられている。第1の旋回脚部35は、帯板状をなしており、下方に向かうに従って容器内旋回部材30の旋回方向の後方へ向かうように斜めに(詳細には、鉛直方向に対して約30度傾いて)延びている。   The first swivel legs 35 are provided in pairs on the root portion of the dust wings 33 and the root portion of the dust collection wings 32 of the shaft plate 31. The first swivel leg 35 has a band plate shape, and is slanted toward the rear of the swivel direction of the swivel member 30 in the container as it goes downward (specifically, about 30 degrees with respect to the vertical direction). Inclined and extended.

第2の旋回脚部36は、軸心プレート31のうち散粉羽33の付け根部分から垂下しており、第1の旋回脚部35とほぼ同じ幅の帯板状をなしている。   The second swivel leg portion 36 hangs down from the base portion of the dust wing 33 of the axial center plate 31, and has a band plate shape having substantially the same width as the first swivel leg portion 35.

これら両旋回脚部35,36が小径筒部23内を旋回することにより、小径筒部23内での粉体の固化や凝集が防止されている。   These swivel legs 35 and 36 swirl within the small-diameter cylindrical portion 23, so that powder solidification and aggregation within the small-diameter cylindrical portion 23 are prevented.

図3に示すように、粉体収容容器21のうち、第1及び第2の旋回脚部35,36の下端部より下方には、1対の底壁37,38が上下2段にして設けられている。   As shown in FIG. 3, a pair of bottom walls 37 and 38 are provided in two upper and lower stages below the lower ends of the first and second swivel legs 35 and 36 in the powder container 21. It has been.

図6に示すように、上段の底壁37は、薄肉円板に複数の粉体通過孔37Aが貫通形成された構造をなす。これら粉体通過孔37Aは、大径筒部22から小径筒部23へと送り込まれた粉体同士が付着(架橋)して形成されたアーチにより閉塞されると共に、その粉体アーチが崩れた状態で粉体が通過可能な大きさになっている。具体的には、上段の底壁37に取り付けられた超音波振動子37Bの振動によってアーチが破壊され、粉体が下段の底壁38へと落下するように構成されている。なお、本実施形態において、上段の底壁37は、粉体通過孔37Aの大きさやその数及び配置を異ならせた複数種類のものが用意されており(例えば、図9参照)、粉体の粒径等に応じて適宜選択して取り付けることが可能となっている。   As shown in FIG. 6, the upper bottom wall 37 has a structure in which a plurality of powder passage holes 37 </ b> A are formed through a thin disk. These powder passage holes 37A are closed by an arch formed by adhering (crosslinking) the powders fed from the large diameter cylindrical portion 22 to the small diameter cylindrical portion 23, and the powder arch collapsed. The size is such that the powder can pass through. Specifically, the arch is destroyed by the vibration of the ultrasonic vibrator 37B attached to the upper bottom wall 37, and the powder falls to the lower bottom wall 38. In the present embodiment, the bottom wall 37 in the upper stage is prepared in a plurality of types in which the size, number and arrangement of the powder passage holes 37A are different (for example, see FIG. 9). It is possible to select and attach appropriately according to the particle size and the like.

一方、下段の底壁38は、中心部に1つだけ粉体通過孔38Aが形成されている。図7に示すように粉体通過孔38Aは、下方に向かって縮径したすり鉢状をなし、図8に示すように、最も小径な部分の孔径が、粉体P1の平均粒径の数倍程度となっている。これにより、極微少量ずつ(例えば、1〜3粒ずつ)粉体を排出可能となっている。ここで、下段の底壁38には超音波振動子38Bが取り付けられており、万が一、粉体通過孔38Aが詰まった場合には、超音波振動子38Bの振動によって粉体を強制落下させて、詰まりを解消することが可能となっている。なお、下段の底壁38としては、図10に示すように、粉体の平均粒径の数倍程度の粉体通過孔38Aを、上段の底壁37の粉体通過孔37Aの数より多く備えたものも用意されており、適宜選択して取り付けることが可能となっている。   On the other hand, the bottom wall 38 of the lower stage is formed with only one powder passage hole 38A at the center. As shown in FIG. 7, the powder passage hole 38A has a mortar shape with a diameter reduced downward, and as shown in FIG. 8, the smallest diameter hole diameter is several times the average particle diameter of the powder P1. It is about. As a result, the powder can be discharged in a very small amount (for example, 1 to 3 particles). Here, the ultrasonic vibrator 38B is attached to the bottom wall 38 of the lower stage. If the powder passage hole 38A is clogged, the powder is forcibly dropped by the vibration of the ultrasonic vibrator 38B. It is possible to eliminate clogging. As shown in FIG. 10, the bottom wall 38 in the lower stage has more powder passage holes 38 </ b> A that are several times the average particle diameter of the powder than the number of powder passage holes 37 </ b> A in the upper bottom wall 37. The thing provided is also prepared and can be appropriately selected and attached.

図3に示すように、各底壁37,38は、粉体排出筒部24の側面に開放したスリット24A,24Aから挿抜可能となっている、上段の底壁37は、その周縁部が小径筒部23の下端部と粉体排出筒部24の内周段差面との間で挟まれており、下段の底壁38は、その周縁部が粉体排出筒部24の内周面に形成された溝部に係合している。なお、底壁37,38を板厚方向から挟んで密着した1対のOリングによって、各スリット24A,24Aと各底壁37,38との間の隙間からの粉体の漏出が防止されている。   As shown in FIG. 3, the bottom walls 37 and 38 can be inserted / removed through slits 24 </ b> A and 24 </ b> A opened to the side surface of the powder discharge cylinder portion 24, and the peripheral edge portion of the upper bottom wall 37 has a small diameter. It is sandwiched between the lower end portion of the cylindrical portion 23 and the inner peripheral step surface of the powder discharge cylindrical portion 24, and the bottom wall 38 of the lower stage is formed on the inner peripheral surface of the powder discharge cylindrical portion 24. Is engaged with the groove. In addition, the leakage of powder from the gaps between the slits 24A, 24A and the bottom walls 37, 38 is prevented by a pair of O-rings that are in close contact with the bottom walls 37, 38 from the thickness direction. Yes.

図3に示すように、下段の底壁38の上面には、スクレーパ40が備えられている。スクレーパ40は、上段の底壁37を貫通した回転軸27A(細軸部)の下端部に着脱可能に固定されている。スクレーパ40は、図5に示すように回転軸27Aの外側に嵌合する円柱部41と、その円柱部41の下面から片持ち梁状に張り出した帯板部42とから構成されており、帯板部42は回転方向の後方に向かって膨らむように湾曲している。スクレーパ40は、下段の底壁38の上面に摺接しつつ旋回し、上段のスクリーン37を通過して下段の底壁38に落下した粉体を、その中心部へと掻き集めて、粉体通過孔38Aから、粉体供給装置20の下方へと落下させる構成となっている。以上が粉体供給装置20の説明である。なお、念のために述べておくが、「粉体」とは、「固体粒子の集合体」のことであり、「固体粒子」には、1次粒子、2次粒子及び凝集粒子が含まれる。さらに、固体粒子の大きさとしては、所謂「ナノ粒子」レベルのものも含まれる。   As shown in FIG. 3, a scraper 40 is provided on the upper surface of the lower bottom wall 38. The scraper 40 is detachably fixed to a lower end portion of a rotating shaft 27A (thin shaft portion) that penetrates the upper bottom wall 37. As shown in FIG. 5, the scraper 40 includes a cylindrical portion 41 that fits outside the rotating shaft 27 </ b> A, and a strip plate portion 42 that protrudes in a cantilevered manner from the lower surface of the cylindrical portion 41. The plate portion 42 is curved so as to swell toward the rear in the rotational direction. The scraper 40 turns while being in sliding contact with the upper surface of the bottom wall 38 of the lower stage, scrapes the powder that has passed through the upper screen 37 and dropped onto the bottom wall 38 of the lower stage, and gathers it to the center thereof, thereby passing through the powder passage hole. It is configured to drop from 38 </ b> A downward to the powder supply device 20. The above is the description of the powder supply apparatus 20. It should be noted that “powders” are “aggregates of solid particles”, and “solid particles” include primary particles, secondary particles, and aggregated particles. . Further, the size of the solid particles includes a so-called “nanoparticle” level.

ここで、上述した粉体供給装置20は、図1に示すように、吊り下げ部材を介して台秤48から吊り下げられており、粉体供給装置20からの粉体の排出量は、粉体供給装置20の全体の重量減少量として計測され、図示しない制御装置に出力されている。   Here, as shown in FIG. 1, the above-described powder supply device 20 is suspended from the platform balance 48 via a suspension member, and the amount of powder discharged from the powder supply device 20 is the powder. The total weight reduction amount of the supply device 20 is measured and output to a control device (not shown).

さて、本実施形態の造粒装置470は、コイル式コンベアやスクリュー式コンベア等の粉体搬送装置によって、粉体を造粒容器460の下端部から上端部まで押し上げ、上端部から下方に自重で落下させることで、循環流動させる。具体的には、図1に示すように、垂直方向に延びたコンベアチューブ461(本発明の「筒体」に相当する)が造粒容器460内に配置され、コンベアチューブ461の下端部が造粒容器460の下端部から下方に突出すると共に、その下方に突出したコンベアチューブ461の下端開口461Aが開閉弁462によって開閉可能となっている。また、コンベアチューブ461のうち、造粒容器460の下端部には、造粒容器460の内部に開放した粉体取入口463が貫通形成されると共に、コンベアチューブ461の上端部には、斜め下方に向かって延びた分岐管464が一体に設けられている。そして、コンベアチューブ461の内部には、モータ465により回転駆動されるコイル466が設けられている。 Now, the granulating apparatus 470 of this embodiment pushes up powder from the lower end part of the granulation container 460 to the upper end part by a powder conveying apparatus such as a coil type conveyor or a screw type conveyor, and under its own weight from the upper end part. by dropping, Ru circulated flow. Specifically, as shown in FIG. 1 , a conveyor tube 461 (corresponding to the “tubular body” of the present invention) extending in the vertical direction is disposed in the granulation container 460, and the lower end portion of the conveyor tube 461 is formed. The lower end opening 461A of the conveyor tube 461 protruding downward from the lower end portion of the grain container 460 can be opened and closed by an opening / closing valve 462. Further, among the conveyor tubes 461, a powder intake port 463 that opens to the inside of the granulation vessel 460 is formed through the lower end portion of the granulation vessel 460, and obliquely downward at the upper end portion of the conveyor tube 461. A branch pipe 464 extending toward is integrally provided. A coil 466 that is rotationally driven by a motor 465 is provided inside the conveyor tube 461.

また、造粒容器470から下方に突出しコンベアチューブ461の下端部を側方から囲むカバー筒体467を備え、そのカバー筒体467の下端側が下方に向かうに従って先細りになったテーパー筒部468になっている。Moreover, it is provided with a cover cylinder 467 that protrudes downward from the granulation vessel 470 and surrounds the lower end of the conveyor tube 461 from the side, and becomes a tapered cylinder 468 that tapers as the lower end of the cover cylinder 467 goes downward. ing.

コンベアチューブ461の下端開口461Aを開閉弁462によって閉塞した状態で、予め造粒容器460に粉体を所定量供給し、粉体の供給を停止した状態でコイル466を回転させると、造粒容器460の底部に溜まった粉体は、粉体取入口463からコンベアチューブ461内に流入し、コイル466によって垂直上方に搬送される。コンベアチューブ461の上端部に達すると、粉体は分岐管464(本発明の「排出管」に相当する)を通って斜め下方に排出される。そして、分岐管464から排出された粉体に、プラズマトーチ70にて発生したプラズマフレームF2が照射される。   When a predetermined amount of powder is supplied to the granulation container 460 in advance with the lower end opening 461A of the conveyor tube 461 closed by the opening / closing valve 462, and the supply of the powder is stopped, the coil 466 is rotated. The powder accumulated at the bottom of 460 flows into the conveyor tube 461 from the powder inlet 463 and is conveyed vertically upward by the coil 466. When the upper end of the conveyor tube 461 is reached, the powder is discharged obliquely downward through a branch pipe 464 (corresponding to the “discharge pipe” of the present invention). The powder discharged from the branch pipe 464 is irradiated with the plasma flame F <b> 2 generated by the plasma torch 70.

所定時間に亘ってこのような循環流動が行われて大径粒体が生成したら、コイル466の回転を停止し、開閉弁462を開放する。すると、造粒容器460内の大径粒体が、粉体取入口463を経由してコンベアチューブ461の下端開口461Aから回収容器へと排出される。なお、コイル466を、有軸又は無軸のスクリューにしてもよい。また、プラズマトーチ70に替えてイオナイザ220を設けてもよい。
[他の実施形態]
When such a circulating flow is performed for a predetermined time to generate large-diameter particles, the rotation of the coil 466 is stopped and the on-off valve 462 is opened. Then, the large-diameter granule in the granulation container 460 is discharged from the lower end opening 461A of the conveyor tube 461 to the collection container via the powder inlet 463. The coil 466 may be a shafted or non-axial screw. Further, an ionizer 220 may be provided in place of the plasma torch 70.
[Other Embodiments]

本発明は、前記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。   The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various other than the following can be made without departing from the scope of the invention. It can be changed and implemented.

)粉体供給装置は、上記実施形態の構造に限定するものではなく、その他の公知な粉体供給装置でもよい。また、上記実施形態の粉体供給装置20において、粉体排出筒部24に替えて、図11に示すL形パイプ360を接続し、そのL形パイプ360の途中に設けたバイブレータ361によってL形パイプ360を振動(低周波振動又は超音波振動)させることで、粉体を微少量ずつ排出するようにしてもよい。また、L形パイプ360の先端に断面V字状の樋部362を設けることで、粉体を一列に整列させて極微少量ずつ(1粒ずつ)排出可能な構成としてもよい。 ( 1 ) The powder supply device is not limited to the structure of the above embodiment, and may be other known powder supply devices. Further, in the powder supply device 20 of the above-described embodiment, an L-shaped pipe 360 shown in FIG. 11 is connected instead of the powder discharge cylinder portion 24, and an L-shape is provided by a vibrator 361 provided in the middle of the L-shaped pipe 360. By oscillating the pipe 360 (low frequency vibration or ultrasonic vibration), the powder may be discharged little by little. Further, by providing a flange portion 362 having a V-shaped cross section at the tip of the L-shaped pipe 360, the powder may be arranged in a line and discharged in a very small amount (one by one).

)粉体を原料としてナノ粒子を合成し、それを造粒容器470に供給してもよい。具体的には、粉体供給装置20から落下した粉体をプラズマフレームに通過させてナノ粒子を合成すればよい。 ( 2 ) Nanoparticles may be synthesized using powder as a raw material and supplied to the granulation vessel 470 . Specifically, the nanoparticles dropped from the powder supply device 20 may be passed through a plasma flame to synthesize nanoparticles.

)また、所謂「気相合成法」によってナノ粒子を合成し、それを本発明に係る「粉体」として造粒容器470に供給してもよい。具体的には、粉体供給装置20の替わりにナノ粒子の原料となる原料ガスの供給源を設け、原料ガスをプラズマフレームを通過させることで、ナノ粒子を合成すればよい。さらに、粉体が懸濁したサスペンジョン、スラリー又は粉体原料物質が溶解した溶液、又は有機物原料物質及び有機化合物原料物質が溶解した溶液を、微小な液滴にしてその微小な液滴をプラズマフレームの熱で乾燥又は、イオン化させて粉体(ナノ粒子)を製造し、これをそのまま造粒容器470に供給し循環させてもよい。 ( 3 ) Alternatively, nanoparticles may be synthesized by a so-called “gas phase synthesis method” and supplied to the granulation vessel 470 as “powder” according to the present invention. Specifically, instead of the powder supply device 20, a source gas supply source that is a raw material for the nanoparticles is provided, and the raw material gas is passed through the plasma flame to synthesize the nanoparticles. Furthermore, a suspension in which powder is suspended, a slurry or a solution in which a powder raw material is dissolved, or a solution in which an organic material raw material and an organic compound raw material are dissolved are made into fine droplets, and the fine droplets are converted into a plasma flame. The powder (nanoparticles) may be produced by drying or ionization with heat, and the powder may be supplied to the granulation vessel 470 and circulated as it is.

)粉体供給装置20は、台秤48によって重量が計量されていたが、粉体の材質特性並びに造粒・コーティング生成物の目的によっては、予め作成しておいた検量線によって計量を行ってもよい。 ( 4 ) The weight of the powder supply device 20 is measured by the platform balance 48. However, depending on the material characteristics of the powder and the purpose of the granulation / coating product, the powder supply device 20 is measured using a calibration curve prepared in advance. May be.

20 粉体供給装置
63A ガス排出孔
70 プラズマトーチ
460 造粒容器(容器)
461 コンベアチューブ(筒体)
462 開閉弁
463 粉体取入口
464 分岐管(排出管)
466 コイル
467 カバー筒体
468 テーパー筒部
20 Powder supply device 63A Gas discharge hole 70 Plasma torch
460 Granulation container (container)
461 Conveyor tube (cylinder)
462 On-off valve 463 Powder inlet
464 Branch pipe (discharge pipe)
466 coil
467 Cover cylinder
468 Tapered tube

Claims (2)

循環する粉体にプラズマフレームを噴射する又は、熱、イオン又は霧状の吸着物質を付与することで前記粉体同士を付着又は、前記粉体の表面にて前記吸着物質の層を成長させて所定の粒径以上に成長した大径粒体を製造する造粒装置であって
容器の底部から筒体を起立させてその筒体の内部にコイル式又はスクリュー式のコンベアを回転可能に備え、前記容器の底部に溜まった粉体を前記筒体の下部に開口した粉体取入口から受け入れて前記コンベアにて上昇させ、前記筒体の上部側方に張り出した排出管の先端より前記容器の底部に向けて自由落下させ、その落下中の前記粉体に前記プラズマフレームを噴射する又は、前記熱、前記イオン又は前記霧状の吸着物質を付与するものにおいて、
前記筒体が前記容器の底部を貫通して前記容器より下方に突出し、
前記筒体の下端開口を開閉する開閉弁と、
前記容器から下方に突出し前記筒体の下端部を側方から囲むカバー筒体とを備えたことを特徴とする造粒装置。
By spraying a plasma flame on the circulating powder, or by applying heat, ions or mist-like adsorbents, the powders are attached to each other, or a layer of the adsorbents is grown on the surface of the powder. A granulating apparatus for producing large-diameter particles grown to a predetermined particle size or more ,
A cylindrical body is erected from the bottom of the container, and a coil-type or screw-type conveyor is rotatably provided inside the cylindrical body, and the powder collected in the bottom of the cylindrical body is opened at the bottom of the cylindrical body. Received from the entrance, lifted by the conveyor, dropped freely from the tip of the discharge pipe protruding to the upper side of the cylinder toward the bottom of the container, and sprayed the plasma flame onto the powder that was falling Or in applying the heat, the ions or the mist-like adsorbent ,
The cylindrical body penetrates the bottom of the container and projects downward from the container;
An on-off valve for opening and closing a lower end opening of the cylindrical body;
A granulation apparatus comprising: a cover cylinder projecting downward from the container and surrounding a lower end portion of the cylinder from the side .
前記カバー筒体の下端側を下方に向かうに従って先細りになったテーパー筒部にしたことを特徴とする請求項1に記載の造粒装置。 2. The granulating apparatus according to claim 1, wherein the lower end side of the cover cylindrical body is a tapered cylindrical portion that tapers downward .
JP2012242458A 2012-11-02 2012-11-02 Granulator Active JP5684770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012242458A JP5684770B2 (en) 2012-11-02 2012-11-02 Granulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012242458A JP5684770B2 (en) 2012-11-02 2012-11-02 Granulator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009290419A Division JP5171802B2 (en) 2009-12-22 2009-12-22 Granulator

Publications (2)

Publication Number Publication Date
JP2013046911A JP2013046911A (en) 2013-03-07
JP5684770B2 true JP5684770B2 (en) 2015-03-18

Family

ID=48010247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012242458A Active JP5684770B2 (en) 2012-11-02 2012-11-02 Granulator

Country Status (1)

Country Link
JP (1) JP5684770B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7551411B2 (en) 2020-09-15 2024-09-17 キヤノン株式会社 Thermal sphering device and toner manufacturing method
CN115301155B (en) * 2022-09-05 2023-09-15 湖北人缘堂医药生物工程有限公司 Preparation method and device of instant particles
CN115837247B (en) * 2022-11-18 2023-09-12 无锡市现代喷雾干燥设备有限公司 Microcapsule spraying granulation equipment
CN116212729B (en) * 2023-05-08 2023-07-25 江苏道金智能制造科技股份有限公司 New energy powder batching data online tracking and adjusting device and working method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322860A (en) * 1976-08-16 1978-03-02 Ishikawajima Harima Heavy Ind Co Ltd Dry process denitration apparatus
JP2597096B2 (en) * 1987-06-27 1997-04-02 月島機械株式会社 Granulator with plasma spouted fluidized bed
JPH06145991A (en) * 1992-11-06 1994-05-27 Canon Inc Cvd treatment using plasma and cvd apparatus
JP4036675B2 (en) * 2002-05-08 2008-01-23 ホソカワミクロン株式会社 Granulated product manufacturing method and apparatus
JP4454037B2 (en) * 2007-12-28 2010-04-21 富士夫 堀 Granulator

Also Published As

Publication number Publication date
JP2013046911A (en) 2013-03-07

Similar Documents

Publication Publication Date Title
JP5684770B2 (en) Granulator
JP5853260B1 (en) Cutting weighing device
WO2010001571A1 (en) Table feeder
JP6359446B2 (en) Powder processing equipment
JP4454037B2 (en) Granulator
JP5171802B2 (en) Granulator
JP4010625B2 (en) Fine powder production system
KR20180025919A (en) Condensation prevention device in discharge chute and powder supply device using the same
JP2008115013A (en) Powder and granular material feeder and powder and granular material metering apparatus
JP2010094675A5 (en)
CN206569625U (en) A kind of powder feeder for being used to convey fine powder
JP5968295B2 (en) Powder and particle feeder
RU2465044C1 (en) Fertilisers pelletiser
JP2012162298A (en) Instrument for measuring and subdividing powder and method of measuring and subdividing powder
JP5075249B2 (en) Powder and particle feeder
JP2008114989A (en) Powder and granular material feeder and powder and granular material metering apparatus
CN205379863U (en) Be applied to ceramic powder&#39;s continuous type granulator
WO2012127616A1 (en) Method and device for supplying cohesive powder used for cigarette filter
JP2011033269A (en) Spray dryer and method of manufacturing granule
CN105944632B (en) A kind of Powder aerosol generator for preventing lazy flow medicine from luming
CN108338011A (en) A kind of in-flow drum sieve cleaning plant for particulate crop harvest
KR20140122260A (en) Method and system for generating sulfur seeds in a moving liquid
US10272452B2 (en) Mechanical gravimetric disk dispenser
JP2009096572A (en) Distribution device and distribution method
JP4820799B2 (en) Container rotating granulator and granulation system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141210

R150 Certificate of patent or registration of utility model

Ref document number: 5684770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250