JP5075249B2 - Powder and particle feeder - Google Patents

Powder and particle feeder Download PDF

Info

Publication number
JP5075249B2
JP5075249B2 JP2010281232A JP2010281232A JP5075249B2 JP 5075249 B2 JP5075249 B2 JP 5075249B2 JP 2010281232 A JP2010281232 A JP 2010281232A JP 2010281232 A JP2010281232 A JP 2010281232A JP 5075249 B2 JP5075249 B2 JP 5075249B2
Authority
JP
Japan
Prior art keywords
granular material
powder
container
wall
turning member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010281232A
Other languages
Japanese (ja)
Other versions
JP2011081013A (en
Inventor
富士夫 堀
Original Assignee
富士夫 堀
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士夫 堀 filed Critical 富士夫 堀
Priority to JP2010281232A priority Critical patent/JP5075249B2/en
Publication of JP2011081013A publication Critical patent/JP2011081013A/en
Application granted granted Critical
Publication of JP5075249B2 publication Critical patent/JP5075249B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Weight Measurement For Supplying Or Discharging Of Specified Amounts Of Material (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a powder and granular material metering system for preventing a failure by powder and granular material scattering without being stored in a powder and granular material vessel. <P>SOLUTION: In this powder and granular material metering system 100, a falling route of the powder and granular material between a metering bottle 99 and a powder and granular material supply device 90 is covered with a recovering hood 80, and the inside of the recovering hood 80 is sucked by the suction pump 85 while the powder and granular material is supplied from the powder and granular material supply device 90. Thus, even if a part of the powder and granular material discharged downward from the powder and granular material supply device 90 swerves from the falling route and remains in the recovering hood 80, the unnecessary powder and granular material can be sucked and removed from the inside of the recovering hood 80. This prevents the powder and granular material from falling on an electronic balance 60, its periphery, and the outer surface of the metering bottle 99, and can prevent a metering error or a failure of the electronic balance 60. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、粉粒体を下方に排出可能な粉粒体供給装置に関する。   The present invention relates to a granular material supply device capable of discharging a granular material downward.

従来、電子天秤に載置された粉粒体収容器に粉粒体を所定量ずつ量り取るシステムが知られている(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, a system is known in which a granular material is weighed by a predetermined amount in a granular material container placed on an electronic balance (see, for example, Patent Document 1).

特開2003−90756号公報([0009]、第1図)Japanese Unexamined Patent Publication No. 2003-90756 ([0009], FIG. 1)

ところで、このようなシステムでは、粉粒体収容器に対していかに安定して一定量ずつ粉粒体を供給するかが問題であり、新たな粉粒体供給装置の開発が求められていた。   By the way, in such a system, there is a problem of how to stably supply a certain amount of the granular material to the granular material container, and development of a new granular material supply device has been demanded.

本発明は、上記事情に鑑みてなされたもので、粉粒体を安定して一定量ずつ供給することが可能な粉粒体供給装置の提供を目的とする。   This invention is made | formed in view of the said situation, and aims at provision of the granular material supply apparatus which can supply a granular material stably each fixed amount.

上記目的を達成するためになされた請求項1の発明に係る粉粒体供給装置は、粉粒体を収容した円筒状の粉粒体供給容器と、粉粒体供給容器内の中心部に保持されて、粉粒体供給容器の内側面との間に環状空間を有すると共に、粉粒体供給容器の底壁に上方から対向配置された容器内天井壁と、粉粒体供給容器の底壁のうち容器内天井壁に覆われた部分の中心から垂下され、内側に粉粒体供給容器と連通した粉粒体排出孔を有した粉粒体排出筒と、粉粒体排出筒内に設けられ、粉粒体同士が付着してなる粉粒体アーチにより閉塞可能な複数の粉粒体通過孔を備えた閉塞壁と、粉粒体供給容器の底壁に設けられて、粉粒体排出孔の周囲を囲み、環状空間から容器内天井壁の下方に流下した粉粒体が、安息角を有した粉粒体山として堆積可能な粉粒体堆積面と、容器内天井壁と底壁との間に配置されて、粉粒体排出孔を中心にして回転駆動され、粉粒体山を崩しながら粉粒体を粉粒体排出孔へと案内する底面旋回部材と、粉粒体供給容器の上端部に設けられた上端壁と、上端壁に回転可能に軸支されると共に、容器内天井壁を貫通したパイプ状の第1回転駆動シャフトと、その第1回転駆動シャフトの内側に挿通されて下端部から第1回転駆動シャフトより下方に突出した第2回転駆動シャフトと、第1回転駆動シャフトと第2回転駆動シャフトとを別々に駆動することが可能な1対の駆動源とを備えた粉粒体供給装置において、底面旋回部材は、第1回転駆動シャフトの下端部に一体回転可能に固定された第1底面旋回部材と、第1底面旋回部材の下方に配置されて、第2回転駆動シャフトの下端部に一体回転可能に固定された第2底面旋回部材とからなり、第1底面旋回部材に形成されて粉粒体排出筒内に延び、粉粒体排出筒の閉塞壁の上方を旋回して粉粒体アーチに外力を付与し、粉粒体を粉粒体通過孔から閉塞壁の下方に強制落下させるための第1粉粒体アーチ粉砕アームと、第2底面旋回部材に形成されて粉粒体排出筒内に延び、粉粒体排出筒の閉塞壁の上方を、第1粉粒体アーチ粉砕アームの旋回領域の内側で旋回して粉粒体アーチに外力を付与し、粉粒体を粉粒体通過孔から閉塞壁の下方に強制落下させるための第2粉粒体アーチ粉砕アームとを備え、第2底面旋回部材を、第1底面旋回部材より薄肉にすると共に、第2粉粒体アーチ粉砕アームの下端部の旋回領域の面積を、第1粉粒体アーチ粉砕アームの下端部の旋回領域の面積よりも小さくなるように構成したところに特徴を有する。 The granular material supply apparatus according to the invention of claim 1 made to achieve the above object is a cylindrical granular material supply container containing the granular material, and is held at the center of the granular material supply container. And a ceiling wall in the container that has an annular space between the inner surface of the powder supply container and is opposed to the bottom wall of the powder supply container from above, and a bottom wall of the powder supply container A granular material discharge cylinder having a granular material discharge hole hanging from the center of the portion covered with the ceiling wall in the container and communicating with the granular material supply container inside, and provided in the granular material discharge cylinder The particulate discharge is provided on the closed wall having a plurality of granular material passage holes that can be closed by the granular material arch formed by adhering the granular materials and the bottom wall of the granular material supply container. Powder that surrounds the hole and flows down from the annular space to the bottom of the ceiling wall in the container can be accumulated as a pile of particles with an angle of repose It is arranged between the body accumulation surface and the ceiling wall and bottom wall in the container, and is driven to rotate around the powder discharge hole, and the powder is discharged to the powder discharge hole while breaking the powder pile. A bottom turning member for guiding the upper end wall, an upper end wall provided at the upper end of the powder supply container, and a pipe-like first rotation that is rotatably supported by the upper end wall and penetrates the ceiling wall in the container A drive shaft, a second rotation drive shaft that is inserted inside the first rotation drive shaft and protrudes downward from the first rotation drive shaft from the lower end portion, and the first rotation drive shaft and the second rotation drive shaft are separately provided. In the powder and granular material supply device including a pair of drive sources capable of being driven, the bottom surface turning member is a first bottom surface turning member fixed to the lower end portion of the first rotation drive shaft so as to be integrally rotatable. , Disposed below the first bottom pivot member, and the second rotational drive system. And a second bottom surface turning member fixed to the lower end of the shaft so as to be integrally rotatable. The second bottom surface turning member is formed on the first bottom surface turning member and extends into the granular material discharge cylinder. Formed on the first powder arch crushing arm and the second bottom surface swivel member for turning and applying external force to the powder arch and forcibly dropping the powder from the particle passage hole below the closed wall Is extended into the granular material discharge cylinder, and the upper part of the closed wall of the granular material discharge cylinder is swirled inside the swirl region of the first granular material arch crushing arm to give external force to the granular material arch, A second granule arch crushing arm for forcibly dropping the granule from the granule passage hole below the blocking wall, and making the second bottom surface turning member thinner than the first bottom surface turning member, The area of the swivel region at the lower end of the second granular arch crushing arm is defined as the lower end of the first granular arch crushing arm. It is characterized in that it is configured to be smaller than the area of the swivel region of the part .

請求項の発明は、請求項に記載の粉粒体供給装置において、容器内天井壁を、第1回転駆動シャフトに一体回転可能に固定したところに特徴を有する。 The invention according to claim 2 is characterized in that, in the powder / particle supply apparatus according to claim 1 , the ceiling wall in the container is fixed to the first rotation drive shaft so as to be integrally rotatable.

請求項の発明は、請求項又はに記載の粉粒体供給装置において、容器内天井壁を、円板状とし、粉粒体供給容器に固定されて、容器内天井壁の上面に堆積した粉粒体を環状空間に案内する上面待ち受けガイドを備えたところに特徴を有する。 The third aspect of the present invention is the powder or granular material supply device according to the first or second aspect , wherein the ceiling wall in the container is formed in a disc shape, and is fixed to the granular material supply container, on the upper surface of the ceiling wall in the container. It has a feature in that an upper surface standby guide for guiding the accumulated granular material to the annular space is provided.

請求項の発明は、請求項に記載の粉粒体供給装置において、容器内天井壁を、下方に向かうに従って拡径した円錐形状としたところに特徴を有する。 The invention according to claim 4 is characterized in that, in the powder and particle supply device according to claim 2 , the inside wall of the container has a conical shape whose diameter is increased downward.

請求項の発明は、請求項1乃至の何れかに記載の粉粒体供給装置において、粉粒体堆積面に突出又は陥没した状態に形成されて、粉粒体排出孔を中心にして渦巻き状に湾曲し、底面旋回部材に押されて粉粒体堆積面上を移動する粉粒体を粉粒体排出孔に案内する底面渦巻きガイドを備えたところに特徴を有する。 The invention of claim 5 is the powder supply device according to any one of claims 1 to 4 , wherein the powder supply device is formed in a state of projecting or sinking on the powder deposit surface, with the powder discharge hole as the center. It has a feature in that it is provided with a bottom spiral guide that is curved in a spiral shape and is guided by the bottom surface turning member to guide the granular material moving on the granular material deposition surface to the granular material discharge hole.

請求項の発明は、請求項に記載の粉粒体供給装置において、底面渦巻きガイドは、インボリュート曲線、対数渦巻き曲線、アルキメデス渦巻き曲線の何れかであるところに特徴を有する。 A sixth aspect of the invention is characterized in that, in the powder and granular material supply device according to the fifth aspect , the bottom spiral guide is any one of an involute curve, a logarithmic spiral curve, and an Archimedean spiral curve.

[請求項1の発明]
請求項1の発明によれば、粉粒体は、粉粒体供給容器内に保持された容器内天井壁と粉粒体供給容器の内側面との間の環状隙間から下方に流下して、粒体供給容器の底壁に堆積し、容器内天井壁と底壁との間で安息角を有した粉粒体山となる。この粉粒体山により、環状隙間が塞がれるから、通常は、粉粒体が粉粒体排出孔から排出されることはない。
[Invention of Claim 1]
According to the invention of claim 1, the granular material flows down from the annular gap between the inner wall of the container and the inner surface of the granular material supply container held in the granular material supply container, It accumulates on the bottom wall of the granular material supply container and becomes a granular particle pile having an angle of repose between the ceiling wall and the bottom wall in the container. Since the annular gap is blocked by the granular material pile, the granular material is not normally discharged from the granular material discharge hole.

そして、底面旋回部材を回転させると、底面旋回部材が粉粒体山を崩しながら粉粒体を粉粒体排出孔へと案内する。また、粉粒体山が崩されると直ぐに、環状隙間から粉粒体が供給されて新たな粉粒体山が形成されるから、底面旋回部材を旋回させている間だけ粉粒体を粉粒体排出筒内に落下させることができる。 And if a bottom turning member is rotated, a bottom turning member will guide a granular material to a granular material discharge | emission hole, breaking a granular material pile. In addition, as soon as the powder pile is broken, the powder is supplied from the annular gap to form a new powder pile, so that the powder is removed only while the bottom turning member is swung. It can be dropped into the body discharge cylinder.

粉粒体排出筒に落下した粉粒体は、粉粒体同士が付着してなる粉粒体アーチによって粉粒体排出筒内の閉塞壁に形成された粉粒体排出孔を塞ぐ。そして、底面旋回部材が回転すると粉粒体アーチ粉砕アームが粉粒体排出筒内で回転し、粉粒体アーチに外力が付与されて粉粒体アーチを構成していた粉粒体を、粉粒体通過孔から下端壁の下方に強制落下させる。つまり、底面旋回部材を旋回させている間だけ粉粒体を粉粒体供給装置から下方に排出させることができる。   The granular material dropped on the granular material discharge cylinder closes the granular material discharge hole formed in the closed wall in the granular material discharge cylinder by the granular material arch formed by adhering the granular materials. Then, when the bottom turning member rotates, the powder arch crushing arm rotates in the powder discharge cylinder, and external force is applied to the powder arch to form the powder arch. Forcibly drop from the grain passage hole to the lower end wall. That is, the granular material can be discharged downward from the granular material supply device only while the bottom surface turning member is turned.

ここで、本発明によれば、底面旋回部材として、第1底面旋回部材と第2底面旋回部材とが上下に重ねて備えられ、それらが別々に駆動可能となっているので、回転させる底面旋回部材の数に応じて、粉粒体排出孔から排出される粉粒体の量を調節することができる。しかも、第2底面旋回部材を第1底面旋回部材より薄肉にしたので、第2底面旋回部材は、第1底面旋回部材より少量ずつ粉粒体を排出させることができる。 Here, according to the present invention, as the bottom surface turning member, the first bottom surface turning member and the second bottom surface turning member are provided so as to overlap each other, and they can be driven separately, so that the bottom surface turning to be rotated. Depending on the number of members, the amount of the granular material discharged from the granular material discharge hole can be adjusted. And since the 2nd bottom face turning member was made thinner than the 1st bottom face turning member, the 2nd bottom face turning member can discharge a granular material little by little from the 1st bottom face turning member.

また、粉粒体アーチ粉砕アームとして、第1底面旋回部材に形成された第1粉粒体アーチ粉砕アームと、第2底面旋回部材に形成されかつ第1粉粒体アーチ粉砕アームの旋回領域の内側で旋回する第2粉粒体アーチ粉砕アームとが備えられ、第2粉粒体アーチ粉砕アームの下端部の旋回領域の面積を第1粉粒体アーチ粉砕アームの下端部の旋回領域の面積より小さくしたので、第2粉粒体アーチ粉砕アームは、第1粉粒体アーチ粉砕アームより1回転当りの粉粒体通過孔から排出する粉粒体の量を少量にすることができる。Further, as the powder arch crushing arm, a first powder arch crushing arm formed on the first bottom turning member and a swivel region of the first powder arch crushing arm formed on the second bottom turning member. A second granule arch crushing arm that swirls inside, and the area of the swirl region at the lower end of the second granule arch crush arm is the area of the swirl region at the lower end of the first granule arch crush arm Since it was made smaller, the 2nd granular material arch crushing arm can make the quantity of the granular material discharged | emitted from the granular material passage hole per rotation smaller than the 1st granular material arch crushing arm.

例えば、比較的大量の粉粒体を量り取る場合には、第1底面旋回部材と第2底面旋回部材とを同時に旋回させることで大量の粉粒体を速やかに排出させ、比較的少量の粉粒体を量り取る場合には、第1底面旋回部材と第2底面旋回部材の何れか一方のみを旋回させることで過剰な供給を防止する。   For example, when weighing a relatively large amount of powder particles, the first bottom surface turning member and the second bottom surface turning member are simultaneously swirled to quickly discharge a large amount of powder particles, and a relatively small amount of powder material is discharged. When the particles are weighed, excessive supply is prevented by turning only one of the first bottom face turning member and the second bottom face turning member.

また、所定重量の粉粒体を量り取る場合に、所定重量まで程遠い段階では、第1底面旋回部材と第2底面旋回部材とを同時に旋回させて多くの粉粒体を供給し、所定重量に近づいたら、第1底面旋回部材を停止し第2底面旋回部材だけを旋回させて少量ずつ粉粒体を供給する。これにより、所定重量の粉粒体を正確かつ速やかに量り取ることができる。   Further, when measuring a predetermined weight of the granular material, at a stage far from the predetermined weight, the first bottom surface turning member and the second bottom surface turning member are simultaneously swirled to supply a large amount of the granular material. If it approaches, the 1st bottom face turning member will be stopped, only the 2nd bottom face turning member will be turned, and a granular material will be supplied little by little. Thereby, the granular material of predetermined weight can be measured accurately and rapidly.

また、本発明によれば、底面旋回部材を回転させる駆動源を、粉粒体供給容器の外部に配置することができる。   Moreover, according to this invention, the drive source which rotates a bottom turning member can be arrange | positioned outside a granular material supply container.

[請求項の発明]
請求項の発明によれば、容器内天井壁を第1回転駆動シャフトと一体回転可能としたことで、粉粒体の攪拌が可能となる。
[Invention of claim 2 ]
According to the second aspect of the present invention, the granular material can be agitated by allowing the ceiling wall in the container to rotate integrally with the first rotation drive shaft.

[請求項の発明]
請求項の発明によれば、回転駆動シャフトが回転して容器内天井壁が一体回転すると、容器内天井壁に載っている粉粒体が上面待ち受けガイドによって外縁側に案内され、環状隙間から下方に流下する。
[Invention of claim 3 ]
According to the invention of claim 3 , when the rotary drive shaft rotates and the ceiling wall in the container rotates integrally, the granular material placed on the ceiling wall in the container is guided to the outer edge side by the upper surface standby guide, and from the annular gap Flow down.

[請求項の発明]
請求項の発明によれば、粉粒体は円錐の斜面を滑って自重により環状隙間から下方に流下するから、容器内天井壁に載った粉粒体を環状隙間に向けて誘導するための部材を別途必要としない。
[Invention of claim 4 ]
According to the invention of claim 4 , the granular material slides down the slope of the cone and flows downward from the annular gap due to its own weight, so that the granular material placed on the ceiling wall in the container is guided toward the annular gap. There is no need for additional components.

[請求項5,6の発明]
粉粒体の流動性が低いと、底面旋回部材が回転しても粉粒体が誘導されないことがある。これに対し、請求項の発明によれば、底面旋回部材が粉粒体体積面上で回転して底面渦巻きガイドとすれ違う際に、それら底面旋回部材と底面渦巻きガイドとが協働して粉粒体を中心側に移動させるので、流動性の低い粉粒体でもスムーズに粉粒体排出孔に案内することができる。ここで、底面渦巻きガイドは、1つだけでもよいし複数設けてもよい。また、請求項の発明のように、底面渦巻きガイドは、インボリュート曲線、対数渦巻き曲線、アルキメデス渦巻き曲線の何れかにすると、より効果的である。
[Inventions of Claims 5 and 6 ]
If the flowability of the powder is low, the powder may not be induced even if the bottom turning member rotates. On the other hand, according to the fifth aspect of the present invention, when the bottom swirling member rotates on the powder volume surface and passes the bottom swirl guide, the bottom swirling member and the bottom swirl guide cooperate with each other. Since the granular material is moved to the center side, even a granular material having low fluidity can be smoothly guided to the granular material discharge hole. Here, only one or a plurality of bottom spiral guides may be provided. As in the sixth aspect of the invention, the bottom spiral guide is more effective when it is any one of an involute curve, a logarithmic spiral curve, and an Archimedes spiral curve.

本発明の第1実施形態に係る粉粒体計量システムの部分断面図The fragmentary sectional view of the granular material measuring system concerning a 1st embodiment of the present invention. 底壁上に粉粒体の堆積山が形成された状態の粉粒体ドラムの側断面図Side cross-sectional view of a granular drum with a pile of granular particles formed on the bottom wall 粉粒体ドラムの断面斜視図Cross-sectional perspective view of powder drum 粉粒体ドラムの平断面図Cross section of powder drum 容器ホルダの斜視図Perspective view of container holder 風防及び回収フードの断面図Cross section of windshield and collection hood 風防及び回収フードの斜視図Perspective view of windshield and collection hood クランプアームの平面図Top view of clamp arm 粉粒体供給装置の部分断面図Partial cross-sectional view of powder supply device 粉粒体排出筒の断面図Cross section of powder discharge cylinder (A)多孔板の斜視図、(B)その変形例の斜視図(A) Perspective view of a perforated plate, (B) Perspective view of a modification thereof (A)上側のスクレーパの斜視図、(B)下側のスクレーパの斜視図(A) Perspective view of upper scraper, (B) Perspective view of lower scraper 粉粒体ドラムの平断面図Cross section of powder drum (A)排出筒部の側断面図、(B)旋回脚部の旋回領域を示す図(A) Side sectional view of the discharge cylinder part, (B) A view showing a turning region of the turning leg part. 第2実施形態に係る粉粒体供給装置の断面斜視図Cross-sectional perspective view of a powder and granular material supply apparatus according to a second embodiment 他の実施形態(2)及び(3)に係る(A)底壁及びスクレーパの平面図、(B)その断面図、(C)その変形例の断面図(A) Plan view of bottom wall and scraper according to other embodiments (2) and (3), (B) Cross section, (C) Cross section of modification 他の実施形態(4)に係るスクレーパの斜視図A perspective view of a scraper according to another embodiment (4) 他の実施形態(5)に係る粉粒体排出筒の断面図Sectional drawing of the granular material discharge cylinder which concerns on other embodiment (5).

[第1実施形態]
以下、本発明に係る第1実施形態を、図1〜図14に基づいて説明する。
図1には、本発明の粉粒体供給装置90を備えた粉粒体計量システム100の全体が示されている。同図に示すように、粉粒体計量システム100は、粉粒体供給装置90の下方に電子天秤60を備えており、その電子天秤60上に載置された計量瓶99に、所定重量の粉粒体を量り取る構成となっている。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1-14.
FIG. 1 shows the whole of a granular material measuring system 100 provided with the granular material supply device 90 of the present invention. As shown in the figure, the granular material measuring system 100 includes an electronic balance 60 below the granular material supply device 90, and a weighing bottle 99 placed on the electronic balance 60 has a predetermined weight. It is the composition which measures a granular material.

まず、粉粒体供給装置90について説明する。粉粒体供給装置90は、粉粒体を収容した粉粒体ドラム10の下面から下方に粉粒体を排出する。   First, the granular material supply apparatus 90 will be described. The granular material supply device 90 discharges the granular material downward from the lower surface of the granular material drum 10 containing the granular material.

図2に示すように、粉粒体ドラム10は、下方に向かって段付き状に縮径した円筒構造をなしている。詳細には、下端有底の粉粒体供給容器11と、粉粒体供給容器11の底壁11Aの中心部から鉛直下方に向かって突出した粉粒体排出筒12とを備え、それらが連通している。そして、粉粒体供給容器11に収容された粉粒体は、粉粒体排出筒12の軸部を貫通した粉粒体排出孔12Aを通って下方(計量瓶99)に落下する As shown in FIG. 2, the powder drum 10 has a cylindrical structure with a diameter reduced stepwise toward the bottom. Specifically, it includes a powder supply container 11 having a bottom end and a powder discharge cylinder 12 projecting vertically downward from the center of the bottom wall 11A of the powder supply container 11, and these communicate with each other. doing. And the granular material accommodated in the granular material supply container 11 falls below (measuring bottle 99) through the granular material discharge hole 12A which penetrated the axial part of the granular material discharge cylinder 12. FIG .

図10に示すように、粉粒体供給装置91における粉粒体排出孔12Aの上下方向の中間位置には、多孔板30(本発明における「閉塞壁」に相当する)が装着されている。多孔板30は、図11(A)に示すように薄肉円板に複数の粉粒体通過孔30Aが貫通形成されたパンチングメタルである。粉粒体通過孔30Aは、多孔板30上に粉粒体が堆積して粉粒体山が形成されたときに、粉粒体同士が付着して形成された粉粒体アーチにより閉塞されると共に、その粉粒体アーチが崩れた状態で粉粒体が通過可能な大きさになっている。即ち、粉粒体通過孔30Aは粉粒体の粒径の数倍から十数倍の大きさになっている。また、粉粒体の性状等によって粉粒体通過孔30Aの最適な大きさは異なるため、粉粒体通過孔30Aの大きさが異なる複数種類の多孔板30が用意されており(図11(B)参照)、粉粒体計量システム100を使用する前に粉粒体に適した多孔板30を選んで取り替えることができるようになっている。なお、多孔板30は、織網やエキスバンドメタルを使用してもよい。 As shown in FIG. 10 , a perforated plate 30 (corresponding to a “blocking wall” in the present invention) is mounted at an intermediate position in the vertical direction of the granular material discharge hole 12 </ b> A in the granular material supply device 91. Perforated plate 30 is a punched metal plurality of granular material passage hole 30A is formed through the thin disk as shown in Figure 11 (A). The granular material passage hole 30 </ b> A is closed by a granular arch formed by adhering the granular materials when the granular materials are deposited on the porous plate 30 to form a granular pile. At the same time, the granular material arch is collapsed so that the granular material can pass through. In other words, the granular material passage hole 30A has a size several to ten times larger than the particle size of the granular material. Further, since the optimum size of the granular material passage hole 30A varies depending on the properties of the granular material and the like, a plurality of types of perforated plates 30 having different sizes of the granular material passage hole 30A are prepared ( FIG. 11 ( B)), the perforated plate 30 suitable for the granular material can be selected and replaced before the granular material measuring system 100 is used. The perforated plate 30 may use a woven mesh or an extended metal.

図10に示すように、多孔板30は、粉粒体排出筒12の内側に挿入嵌合された1対の保持筒31,31により、その外縁部を上下方向から挟んで保持されている。これら保持筒31,31を粉粒体排出筒12から抜け止めするために、粉粒体排出筒12の外側には抜け止めキャップ32が螺合されており、抜け止めキャップ32の底壁が保持筒31,31を下方から支持している。なお、抜け止めキャップ32の外周面には雄螺旋部32Aが形成されており、ここに、下端有底の閉塞キャップ33を螺合することで粉粒体排出孔12Aの下端開口を封止可能となっている。即ち、粉粒体ドラム10を、粉粒体の保存容器として使用可能となっている。 As shown in FIG. 10 , the perforated plate 30 is held by a pair of holding cylinders 31, 31 inserted and fitted inside the granular material discharge cylinder 12 with its outer edge portion sandwiched from above and below. In order to prevent the holding cylinders 31 from being detached from the granular material discharge cylinder 12, a retaining cap 32 is screwed onto the outside of the granular material discharge cylinder 12, and the bottom wall of the retention cap 32 is held. The cylinders 31, 31 are supported from below. A male spiral portion 32A is formed on the outer peripheral surface of the retaining cap 32, and the lower end opening of the granular material discharge hole 12A can be sealed by screwing a closed cap 33 with a bottom at the bottom. It has become. That is, the powder drum 10 can be used as a powder container.

粉粒体ドラム10の上端外周面には雄螺旋部10Aが形成されている。これに対し、粉粒体ドラム10を計量瓶99の上方位置にて保持するためのブラケット19(図1参照)には、保持キャップ13が一体に備えられており、この保持キャップ13に雄螺旋部10Aを螺合することで、粉粒体ドラム10の上端開口が閉鎖されかつ粉粒体ドラム10がブラケット19に保持される。つまり、粉粒体ドラム10はブラケット19に対して着脱可能となっている。なお、ブラケット19は、上下方向に伸縮可能であり、計量瓶99の高さに応じて粉粒体ドラム10の保持位置を上下に調節可能となっている。   A male spiral portion 10 </ b> A is formed on the outer peripheral surface of the upper end of the powder drum 10. On the other hand, a holding cap 13 is integrally provided on a bracket 19 (see FIG. 1) for holding the powder drum 10 at an upper position of the measuring bottle 99. The holding cap 13 is provided with a male spiral. By screwing the part 10 </ b> A, the upper end opening of the powder drum 10 is closed and the powder drum 10 is held by the bracket 19. That is, the granular material drum 10 can be attached to and detached from the bracket 19. The bracket 19 can be expanded and contracted in the vertical direction, and the holding position of the powder drum 10 can be adjusted up and down according to the height of the measuring bottle 99.

保持キャップ13の上端壁13Aには、図示しない投入口が形成されている。投入口は螺合キャップの上端壁13Aの中央からずれた位置に偏在して設けられており、この投入口から、粉粒体ドラム10内に粉粒体を供給可能となっている。   An input port (not shown) is formed in the upper end wall 13 </ b> A of the holding cap 13. The charging port is provided unevenly at a position shifted from the center of the upper end wall 13A of the screw cap, and the granular material can be supplied into the granular material drum 10 from the charging port.

図9に示すように、保持キャップ13の上端壁13Aの中央には、2つの供給モータ14,15が上下に重ねて備えられている。各供給モータ14,15の回転駆動シャフト14A,15Aは上端壁13Aを貫通して粉粒体ドラム10(詳細には、粉粒体供給容器11)内でその中心軸に沿って延びている。また、下側の供給モータ14の回転駆動シャフト14A(本発明の「第1回転駆動シャフト」に相当する)は両端開放のパイプ構造(具体的には、六角筒構造)となっており、上側の供給モータ15の回転駆動シャフト15A(本発明の「第2回転駆動シャフト」に相当する)が、回転駆動シャフト14Aの内側を貫通して下方に突出している。そして両回転駆動シャフト14A,15Aが相対回転可能となっている。 As shown in FIG. 9 , two supply motors 14, 15 are provided in the center of the upper end wall 13 </ b> A of the holding cap 13 so as to overlap each other. The rotational drive shafts 14A and 15A of the supply motors 14 and 15 extend through the upper end wall 13A along the central axis in the powder drum 10 (specifically, the powder supply container 11). Further, the rotation drive shaft 14A (corresponding to the “first rotation drive shaft” of the present invention) of the lower supply motor 14 has a pipe structure (specifically, a hexagonal cylinder structure) open at both ends. The rotation drive shaft 15A of the supply motor 15 (corresponding to the “second rotation drive shaft” of the present invention) protrudes downward through the inside of the rotation drive shaft 14A. And both rotation drive shaft 14A, 15A can be rotated relatively.

両回転駆動シャフト14A,15Aの下端部には、それぞれスクレーパ121,22が取り付けられている。これらスクレーパ121,22は、粉粒体供給容器11の底壁11A近傍に配置され、互いに平行な水平面内で回転する。   Scrapers 121 and 22 are attached to the lower ends of the rotary drive shafts 14A and 15A, respectively. These scrapers 121 and 22 are disposed in the vicinity of the bottom wall 11A of the granular material supply container 11, and rotate in horizontal planes parallel to each other.

図3に示すように、粉粒体供給容器11の内部には、容器内天井壁38及び上面待ち受けガイド39が備えられている。容器内天井壁38は、粉粒体供給容器11の内径よりも小径でかつ、粉粒体排出孔12Aの内径よりも大径な平らな円盤であり、スクレーパ121の上方に離して水平に取り付けられている(図2参照)。また、容器内天井壁38は、中心部に六角孔(図示せず)を備えて回転駆動シャフト14Aの外側に嵌合されており、スクレーパ121と一体回転する。そして、容器内天井壁38を取り付けて、保持キャップ13の投入口(図示せず)から粉粒体供給容器11内に粉粒体を投入すると、容器内天井壁38上に粉粒体が堆積する。 As shown in FIG. 3, the inside of the granular material supply container 11 is provided with an in-container ceiling wall 38 and an upper surface standby guide 39. The container inner ceiling wall 38 is a flat disk having a diameter smaller than the inner diameter of the granular material supply container 11 and larger than the inner diameter of the granular material discharge hole 12A, and is mounted horizontally above the scraper 121. (See FIG. 2). The container ceiling wall 38 has a hexagonal hole (not shown) at the center and is fitted to the outside of the rotary drive shaft 14A, and rotates integrally with the scraper 121 . Then, when the container ceiling wall 38 is attached and the powder is introduced into the powder supply container 11 from the inlet (not shown) of the holding cap 13, the powder is deposited on the container ceiling wall 38. To do.

一方、上面待ち受けガイド39は、容器内天井壁38が旋回することで、容器内天井壁38上の粉粒体を縁側に掻き出すために設けられている。上面待ち受けガイド39は、容器内天井壁38の上面に隣接して配置された水平板39Aと、水平板39Aの基端部から垂直上方に延びて保持キャップ13の上端壁13Aに固定された垂直板39Bとから構成される。   On the other hand, the upper surface standby guide 39 is provided in order to scrape the granular material on the ceiling wall 38 in the container to the edge side when the ceiling wall 38 in the container turns. The upper surface standby guide 39 includes a horizontal plate 39A disposed adjacent to the upper surface of the inner ceiling wall 38, and a vertical plate that extends vertically upward from the base end of the horizontal plate 39A and is fixed to the upper end wall 13A of the holding cap 13. The plate 39B is constituted.

そして、水平板39Aの平面を、供給モータ14の回転駆動シャフト14Aの側面に当接させて取り付けることで、容器内天井壁38の回転方向に対して水平板39Aが傾斜し、図4の点線矢印で示すように、容器内天井壁38上の粉粒体が、水平板39Aに案内されて容器内天井壁38の縁部に向けて押し出される。また、水平板39Aの基端部は、粉粒体供給容器11の内周面11Cに隣接する位置まで延びており、押し出された粉粒体を、容器内天井壁38の周縁部と内周面11Cとの間の環状隙間40から粉粒体供給容器11の底壁11A上に流下させる。さらに、上面待ち受けガイド39によって、粉粒体供給容器11内の粉粒体を撹拌して、粉粒体が固まったり、詰まったりすることを防ぐことができる。これにより、容器内天井壁38の上部の粉粒体を安定して底壁11A上に流下させることが可能となる。 Then, by attaching the flat surface of the horizontal plate 39A to the side surface of the rotational drive shaft 14A of the supply motor 14, the horizontal plate 39A is inclined with respect to the rotational direction of the inner ceiling wall 38, and the dotted line in FIG. As indicated by the arrows, the granular material on the in-container ceiling wall 38 is guided by the horizontal plate 39A and pushed out toward the edge of the in-container ceiling wall 38. Further, the base end portion of the horizontal plate 39A extends to a position adjacent to the inner peripheral surface 11C of the granular material supply container 11, and the extruded granular material is connected to the peripheral edge portion and inner peripheral surface of the container inner ceiling wall 38. It flows down on the bottom wall 11A of the granular material supply container 11 from the annular gap 40 between the surface 11C. Further, the upper surface standby guide 39 can agitate the granular material in the granular material supply container 11 to prevent the granular material from solidifying or clogging. Thereby, it becomes possible to make the granular material at the upper part of the ceiling wall 38 in the container flow stably onto the bottom wall 11A.

図2に示すように、粉粒体供給容器11の底壁11Aに流下した粉粒体は、容器内天井壁38と底壁11Aとの間で粉流体の山を形成する。この粉粒体山の安息角α1は、粉粒体によって一定となり、粉粒体山が「堰」となって容器内天井壁38の上方から底壁11Aへ過剰な粉粒体が供給されないようにすることができる。即ち、容器内天井壁38の周縁部と粉粒体供給容器11の内周面11Cとの間にできる環状隙間40が粉粒体山で塞がれて粉粒体が排出されなくなるように、容器内天井壁38と粉粒体供給容器11の底壁11Aとを接近させて過剰な粉粒体が供給されないようにすることができる。なお、底壁11Aの上面は、本発明における「粉粒体堆積面」に相当する As shown in FIG. 2, the powder that has flowed down to the bottom wall 11 </ b> A of the powder supply container 11 forms a pile of powder fluid between the in-container ceiling wall 38 and the bottom wall 11 </ b> A. The angle of repose α1 of this granular material mountain is constant depending on the granular material, and the granular mountain becomes a “weir” so that excessive granular material is not supplied from the upper side of the inner ceiling wall 38 to the bottom wall 11A. Can be. That is, the annular gap 40 formed between the peripheral edge of the ceiling wall 38 in the container and the inner peripheral surface 11C of the powder supply container 11 is blocked by the powder pile, and the powder is not discharged. The ceiling wall 38 in the container and the bottom wall 11 </ b> A of the granular material supply container 11 can be brought close to each other so that excessive powder particles are not supplied. The upper surface of the bottom wall 11A corresponds to the “powder particle deposition surface” in the present invention .

図12(A)に示すように、上側のスクレーパ121は、円盤状の軸心プレート25から側方に片持ち梁状の集粉羽23(本発明の「第1底面旋回部材」に相当する)と散粉羽24とを延ばした構造になっている。軸心プレート25には六角孔25Aが形成されており、ここに回転駆動シャフト14Aの下端部が嵌合している。 As shown in FIG. 12 (A), the upper scraper 121 corresponds to the powder collecting blades 23 in the form of cantilever beams laterally from the disk-shaped shaft center plate 25 (the “first bottom surface turning member” of the present invention). ) And dust wings 24 are extended. A hexagonal hole 25A is formed in the shaft center plate 25, and a lower end portion of the rotational drive shaft 14A is fitted therein.

図13に示すように、集粉羽23は、回転方向(図13の実線矢印の方向)とは逆側に膨らむように複数の平板をつなげた屈曲構造をなす一方、散粉羽24は粉粒体ドラム10の径方向に向かって真っ直ぐ延びている。また、集粉羽23は、その先端が粉粒体供給容器11の内周面11Cと隣接する位置まで延び、散粉羽24は、それより短くなっている。 As shown in FIG. 13 , the powder collection blade 23 has a bent structure in which a plurality of flat plates are connected so as to swell on the opposite side to the rotation direction (the direction of the solid line arrow in FIG. 13 ), while the dust collection blade 24 is a powder particle. The body drum 10 extends straight in the radial direction. Further, the dust collection blade 23 extends to a position where the tip thereof is adjacent to the inner peripheral surface 11C of the granular material supply container 11, and the dust distribution blade 24 is shorter than that.

そして、集粉羽23に備えた粉粒体ガイド面23Aにより、底壁11A上の粉粒体を中心側に誘導して粉粒体排出筒12内に取り込むと共に、散粉羽24により、集粉羽23が取り込み過ぎた粉粒体を外側に移動して逃し、次に集粉羽23が通過したときに取り込み粉粒体供給容器11内の粉粒体圧を安定させ易くしている。また、集粉羽23と散粉羽24とが協働して粉粒体を撹拌して、粉粒体の塊を粉砕する効果も奏する。さらに、粉粒体が2種以上の粉粒体の混合物である場合には、この集積と分散の繰り返しによって2種の粉粒体の混合度合いを高めることができる。   Then, the powder particles on the bottom wall 11 </ b> A are guided to the center side by the powder material guide surface 23 </ b> A provided in the powder collection blades 23 and are taken into the powder particle discharge cylinder 12. The powder particles excessively taken in by the wings 23 are moved to the outside to escape, and when the powder collection wings 23 pass next, it is easy to stabilize the pressure of the powder particles in the taken-up powder material supply container 11. In addition, the dust collection blades 23 and the dust collection blades 24 cooperate to stir the powder particles, and also have an effect of crushing the lump of the powder particles. Furthermore, when the granular material is a mixture of two or more types of granular material, the degree of mixing of the two types of granular material can be increased by repeating this accumulation and dispersion.

ここで、集粉羽23の基端部には、補助ガイド壁20が一体に形成されている。補助ガイド壁20は、粉粒体ガイド面23Aによる粉粒体の誘導方向(図13の点線矢印の方向)に向かって徐々に下るように傾斜している。補助ガイド壁20は、粉粒体ガイド面23Aによって集粉羽23の基端部に移動してきた粉粒体を受け止めると共にその粉粒体を斜め下方に誘導し、粉粒体排出筒12内(粉粒体排出孔12A)に落下させる。 Here, the auxiliary guide wall 20 is integrally formed at the proximal end portion of the powder collection blade 23. The auxiliary guide wall 20 is inclined so as to gradually descend toward the guiding direction of the granular material by the granular material guide surface 23A (the direction of the dotted arrow in FIG. 13 ). The auxiliary guide wall 20 receives the granular material that has moved to the proximal end portion of the powder collection blade 23 by the granular material guide surface 23A and guides the granular material obliquely downward, and within the granular material discharge cylinder 12 ( It is dropped into the powder body discharge hole 12A).

一方、下側のスクレーパ22は、図12(B)に示すように、上側のスクレーパ121に比べて薄肉な平板状となっており、底壁11Aの上面に摺接しつつ回転する。スクレーパ22は、回転駆動シャフト15Aに固定された円盤状の軸心プレート26から側方に片持ち梁状の集粉羽27(本発明の「第2底面旋回部材」に相当する)を延ばした構造になっている。 On the other hand, as shown in FIG. 12B , the lower scraper 22 has a flat plate shape that is thinner than the upper scraper 121, and rotates while being in sliding contact with the upper surface of the bottom wall 11A. The scraper 22 has cantilever-shaped powder collection blades 27 (corresponding to the “second bottom surface turning member” of the present invention) extended laterally from a disk-shaped shaft center plate 26 fixed to the rotary drive shaft 15A. It has a structure.

集粉羽27は、軸方向から見た平面形状がスクレーパ121に備えた集粉羽23と同一形状であり、回転方向(図13の実線矢印の方向)とは逆側に膨らんだ屈曲構造をなしている。そして、スクレーパ22が回転すると、集粉羽27のうち回転方向の前方を向いた粉粒体ガイド面27Aにて粉粒体が底壁11Aの縁側から中心側に向けて誘導される。なお、各集粉羽23,27が1回転当たりに粉粒体排出筒12に誘導する粉粒体の量は、集粉羽23より集粉羽27の方が少ない。 The powder collection blade 27 has the same planar shape as the powder collection blade 23 provided in the scraper 121 in the axial direction, and has a bent structure that swells on the opposite side to the rotation direction (the direction of the solid line arrow in FIG. 13 ). There is no. When the scraper 22 rotates, the granular material is guided from the edge side of the bottom wall 11 </ b> A toward the center side by the granular material guide surface 27 </ b> A of the powder collection blades 27 facing forward in the rotation direction. It should be noted that the amount of powder particles that each powder collection blade 23, 27 guides to the powder discharge cylinder 12 per rotation is less for the powder collection blade 27 than for the powder collection blade 23.

図12(A)及び図12(B)に示すように、各スクレーパ121,22の軸心プレート25,26からは、鉛直下方に向かって旋回脚部28,29が突出しており、それらが図10に示すように、粉粒体排出筒12の内側(粉粒体排出孔12A)に挿入されている。 As shown in FIGS. 12 (A) and 12 (B), swiveling leg portions 28 and 29 protrude vertically downward from the shaft center plates 25 and 26 of the scrapers 121 and 22, respectively. As shown in FIG. 10, it is inserted inside the powder particle discharge cylinder 12 (the powder particle discharge hole 12A).

スクレーパ121に備えた旋回脚部28は、軸心プレート25の外縁部から垂下しており、下端部が回転中心に向かって直角に折れ曲がった略L字形状をなしている。旋回脚部28のうち垂直片28Aは、スクレーパ121の回転に伴って粉粒体排出孔12Aの内周面(詳細には、保持筒31の内周面)の近傍を旋回する(図14参照)。これにより、粉粒体排出孔12Aの内周面に静電気等により付着した粉粒体を掻き落とすことができる。 The swivel leg portion 28 provided in the scraper 121 is suspended from the outer edge portion of the shaft center plate 25, and has a substantially L shape with its lower end portion bent at a right angle toward the center of rotation. Of the swivel legs 28, the vertical piece 28A swirls in the vicinity of the inner peripheral surface of the granular material discharge hole 12A (specifically, the inner peripheral surface of the holding cylinder 31) as the scraper 121 rotates (see FIG. 14) . ). Thereby, the granular material adhering to the inner peripheral surface of the granular material discharge hole 12A due to static electricity or the like can be scraped off.

また、旋回脚部28の下端部の水平片28Bは、スクレーパ121の回転に伴い、多孔板30の上面近傍を旋回する。これにより、多孔板30の径方向の外寄り部分に形成された粉粒体アーチを崩して、粉粒体を粉粒体通過孔30Aから落下させることができる。   Further, the horizontal piece 28 </ b> B at the lower end of the swivel leg 28 swirls in the vicinity of the upper surface of the perforated plate 30 as the scraper 121 rotates. Thereby, the granular material arch formed in the radially outward portion of the porous plate 30 can be broken, and the granular material can be dropped from the granular material passage hole 30A.

一方、図12(B)に示すように、下側のスクレーパ22に備えられた旋回脚部29は、軸心プレート26の側方に張り出して設けられ、多孔板30の上面近傍まで延びている(図及び図10参照)。旋回脚部29は、スクレーパ22の回転に伴って、旋回脚部28の旋回領域の内側を旋回する(図14参照)。これにより、多孔板30の中央部分に形成された粉粒体アーチを崩して、粉粒体通過孔30Aから落とすことができる。つまり、2つの旋回脚部28,29により、多孔板30上に形成された粉粒体アーチのほとんどを崩せるようになっている。 On the other hand, as shown in FIG. 12 (B), the swivel leg portion 29 provided in the lower scraper 22 is provided so as to protrude to the side of the axial center plate 26 and extends to the vicinity of the upper surface of the perforated plate 30. (See FIGS. 9 and 10 ). The turning leg 29 turns inside the turning area of the turning leg 28 as the scraper 22 rotates (see FIG. 14 ). Thereby, the granular material arch formed in the center part of the perforated plate 30 can be broken and dropped from the granular material passage hole 30A. That is, most of the granular material arch formed on the porous plate 30 can be broken by the two swivel legs 28 and 29.

ここで、図14(B)に示すように、旋回脚部28の水平片28Bの旋回領域の面積は、旋回脚部29の下端部の旋回領域の面積より大きいので、1回転当たりに多孔板30を通過する粉粒体の量は、旋回脚部28、即ち、スクレーパ121の方が、旋回脚部29、即ち、スクレーパ22より多くなっている。なお、旋回脚部28が、本発明の「第1粉粒体アーチ粉砕アーム」に相当し、旋回脚部29が、本発明の「第2粉粒体アーチ粉砕アーム」に相当する。 Here, as shown in FIG. 14B , the area of the swivel region of the horizontal piece 28B of the swivel leg 28 is larger than the area of the swivel region at the lower end of the swivel leg 29. The amount of the granular material passing through 30 is larger in the swivel leg 28, that is, the scraper 121, than in the swivel leg 29, that is, the scraper 22. The swivel leg 28 corresponds to the “first powder arch crush arm” of the present invention, and the swivel leg 29 corresponds to the “second powder arch crush arm” of the present invention.

図15に示すように、粉粒体ドラム10における粉粒体供給容器11の内部には、容器内天井壁38及び上面待ち受けガイド39が備えられている。容器内天井壁38は、スクレーパ121の上方に水平に取り付けられている(図9参照)。また、容器内天井壁38は、回転駆動シャフト14Aの外側に嵌合されており、上側のスクレーパ121と一体回転する。 As shown in FIG. 15 , the inside of the granular material supply container 11 in the granular material drum 10 is provided with an in-container ceiling wall 38 and an upper surface standby guide 39. The in-container ceiling wall 38 is attached horizontally above the scraper 121 (see FIG. 9 ). Further, the container inner ceiling wall 38 is fitted to the outside of the rotational drive shaft 14 </ b> A and rotates integrally with the upper scraper 121.

以上が、粉粒体供給装置91の構成に関する説明であって、以下、粉粒体供給装置91の動作について説明する。   The above is description regarding the structure of the powder supply apparatus 91, and operation | movement of the powder supply apparatus 91 is demonstrated below.

粉粒体投入孔から粉粒体ドラム10内に粉粒体を投入すると、粉粒体は、一旦、容器内天井壁38の上に堆積する。そして、供給モータ14を駆動すると、容器内天井壁38が回転し、上面待ち受けガイド39によって、容器内天井壁38上の粉粒体が縁部に向けて誘導され、容器内天井壁38の縁部と粉粒体供給容器11の内周面11Cとの間の環状隙間40から底壁11A上に流入する。   When a granular material is introduced into the granular material drum 10 from the granular material introduction hole, the granular material is temporarily deposited on the ceiling wall 38 in the container. When the supply motor 14 is driven, the container inner ceiling wall 38 rotates, and the upper surface standby guide 39 guides the granular material on the container inner ceiling wall 38 toward the edge. Flows into the bottom wall 11 </ b> A from the annular gap 40 between the portion and the inner peripheral surface 11 </ b> C of the granular material supply container 11.

この粉粒体は、容器内天井壁38と底壁11Aとの間で粉流体の所定の安息角α1の粉粒体山を形成するので、底壁11Aに流入した粉粒体がそのまま流動して粉粒体排出孔12Aから排出されることはない(図2参照)。 Since this granular material forms a granular particle pile having a predetermined angle of repose α1 of the powder fluid between the ceiling wall 38 and the bottom wall 11A of the container, the granular material flowing into the bottom wall 11A flows as it is. Thus, the particles are not discharged from the particulate discharge hole 12A (see FIG. 2 ).

供給モータ14,15の駆動によりスクレーパ121,22が回転すると、各集粉羽23,27が粉流体山を崩しつつ粉粒体を底壁11Aの縁側から中心に誘導して粉粒体排出筒12に取り込む(図13参照。図13にはスクレーパ121のみが示されている)。 When the scrapers 121 and 22 are rotated by driving the supply motors 14 and 15, the powder collection blades 23 and 27 guide the powder particles from the edge side of the bottom wall 11 </ b> A to the center while destroying the powder fluid piles. incorporated 12 (only the scraper 121 is shown in Figure 13 reference. Figure 13).

また、粉粒体山が削り取られると、直ぐに、環状隙間40から粉粒体が流入し、容器内天井壁38と底壁11Aとの間に新たな粉粒体山が形成される。   In addition, as soon as the powder pile is scraped off, the powder flows in from the annular gap 40, and a new powder pile is formed between the in-container ceiling wall 38 and the bottom wall 11A.

各スクレーパ121,22によって、粉粒体排出筒12に取り込まれた粉粒体は、多孔板30上に堆積して粉粒体山を形成し、粉粒体同士が付着した粉粒体アーチによって粉粒体通過孔30Aを塞ぐ。この粉粒体アーチは、スクレーパ121,22と共に粉粒体排出孔12Aの内側で旋回する旋回脚部28,29から外力を受けて崩され、少量ずつ粉粒体通過孔30Aを通過する。さらに、粉粒体排出孔12Aの内周面に静電気等により付着した粉粒体は、スクレーパ121と共に粉粒体排出孔12Aの内周面の近傍を旋回する旋回脚部28によって掻き落とされる。   The granular material taken into the granular material discharge cylinder 12 by the scrapers 121 and 22 is deposited on the porous plate 30 to form a granular particle crest, and the granular material arch in which the granular materials adhere to each other. The granular material passage hole 30A is closed. This granular material arch is collapsed by receiving external force from the swivel legs 28 and 29 that rotate inside the granular material discharge hole 12A together with the scrapers 121 and 22, and passes through the granular material passage hole 30A little by little. Further, the granular material adhering to the inner peripheral surface of the granular material discharge hole 12 </ b> A due to static electricity or the like is scraped off by the swivel leg 28 that rotates around the inner peripheral surface of the granular material discharge hole 12 </ b> A together with the scraper 121.

さて、上述の如く粉粒体供給装置90から下方に排出された粉粒体を、計量瓶99で確実に受けるために、粉粒体計量システム100における電子天秤60の秤量皿61には、図1に示すように容器ホルダ62が固定載置されている。図5に示すように、容器ホルダ62は、粉粒体計量システム100の一側方(図1の右方向)に開放したU字壁63を備えており、粉粒体計量システム100の一側方から計量瓶99を水平移動することで挿抜可能となっている。そして、U字壁63の奥に計量瓶99の下部を嵌合させることで、計量瓶99を粉粒体排出孔12Aの鉛直下方に位置決めして、粉粒体供給装置90から真下に落下する粉粒体を受容することが可能となっている。 In order to reliably receive the powder discharged downward from the powder supply device 90 as described above with the measurement bottle 99, the weighing pan 61 of the electronic balance 60 in the powder measurement system 100 is provided with a figure. As shown in FIG. 1, a container holder 62 is fixedly placed. As shown in FIG. 5 , the container holder 62 includes a U-shaped wall 63 opened to one side (right direction in FIG. 1) of the granular material measuring system 100, and one side of the granular material measuring system 100. The measuring bottle 99 can be inserted and removed by moving horizontally from the side. Then, by fitting the lower part of the measuring bottle 99 in the back of the U-shaped wall 63, the measuring bottle 99 is positioned vertically below the granular material discharge hole 12A and falls directly below the granular material supply device 90. It is possible to accept the powder.

図1に示すように、電子天秤60の上面には、箱形の風防70が設置されている。図6に示すように、風防70は、秤量皿61の全体を覆った扁平な下段風防ケース71と、下段風防ケース71の天板71Aに固定載置されて、電子天秤60に載置された計量瓶99の側方及び上方を覆う上段風防ケース72とから構成されている。 As shown in FIG. 1, a box-shaped windshield 70 is installed on the upper surface of the electronic balance 60. As shown in FIG. 6 , the windshield 70 is fixedly placed on a flat lower windshield case 71 covering the entire weighing pan 61 and a top plate 71 </ b> A of the lower windshield case 71 and placed on the electronic balance 60. It is comprised from the upper stage windshield case 72 which covers the side and upper direction of the measurement bottle 99. FIG.

下段風防ケース71の天板71Aのうち秤量皿61の真上部分にはホルダ挿通口73が貫通形成されており、秤量皿61に固定載置された容器ホルダ62が、ホルダ挿通口73から上段風防ケース72内に突出している。   A holder insertion port 73 is formed through the top plate 71 </ b> A of the lower windshield case 71 directly above the weighing pan 61, and the container holder 62 fixedly placed on the weighing pan 61 extends from the holder insertion port 73 to the upper stage. Projecting into the windshield case 72.

上段風防ケース72は、容器ホルダ62に載置された計量瓶99を収容可能となっており、その天板72Bが計量瓶99の上面から僅かに離して隣接配置されている。天板72Bのうち、容器ホルダ62に載置された計量瓶99の上面開口との対向位置でかつ粉粒体ドラム10における粉粒体排出筒12(粉粒体排出孔12A)の真下位置には、粉粒体供給装置90から排出された粉粒体が通過する円形の天板開口72Aが貫通形成されている。また、上段風防ケース72のうち、電子天秤60に載置された計量瓶99の側方を囲む容器包囲壁72Cには、計量瓶99を出し入れするための容器搬入口74が形成されている。容器搬入口74は、横長の長方形状をなしており、粉粒体計量システム100の一側方(図1の右方向)に開放している。   The upper windshield case 72 can accommodate the measuring bottle 99 placed on the container holder 62, and the top plate 72 </ b> B is arranged adjacent to the upper surface of the measuring bottle 99 slightly apart. In the top plate 72B, at a position facing the upper surface opening of the measuring bottle 99 placed on the container holder 62 and at a position directly below the powder discharge cylinder 12 (powder discharge hole 12A) in the powder drum 10. Is formed with a circular top plate opening 72A through which the powder discharged from the powder supply device 90 passes. In addition, a container carry-in port 74 for taking in and out the measuring bottle 99 is formed in a container surrounding wall 72 </ b> C surrounding the side of the measuring bottle 99 placed on the electronic balance 60 in the upper windshield case 72. The container carry-in port 74 has a horizontally long rectangular shape and is open to one side (right direction in FIG. 1) of the granular material measuring system 100.

図7に示すように、容器搬入口74は開閉板75によって閉鎖可能となっている。開閉板75は容器搬入口74より横長の長方形板状をなしており、開閉板75の下辺からは粉粒体計量システム100の正面側に向かって台盤76が張り出している。その台盤76の上面から起立した垂直壁77には、計量瓶99を把持するためのクランプアーム78が取り付けられている。クランプアーム78は、例えば、金属製の線材を曲げ加工した1対の可撓アーム78A,78Aの基端部を垂直壁77の両面に溶接してなり、図7に示すように垂直壁77から水平方向に延びている。開閉板75には、横長のアーム挿通孔75A(図7参照)が貫通形成され、そこに各可撓アーム78A,78Aが挿通されている。また、図8に示すように、両可撓アーム78A,78Aの先端部は計量瓶99の側面形状に合わせて半円弧状に湾曲しており、常には、それら先端部間が開くように付勢されている。そして、クランプアーム78のうち、開閉板75より基端側部分を握ることで、両可撓アーム78A,78Aの先端部間が閉じて計量瓶99を挟持可能となっている。なお、クランプアーム78は手で操作するものに限定せず、図示しない駆動装置によって自動開閉する構成としてもよい。 As shown in FIG. 7 , the container carry-in port 74 can be closed by an opening / closing plate 75. The open / close plate 75 has a horizontally-long rectangular plate shape from the container carry-in port 74, and a base plate 76 projects from the lower side of the open / close plate 75 toward the front side of the granular material measuring system 100. A clamp arm 78 for gripping the measuring bottle 99 is attached to the vertical wall 77 rising from the upper surface of the platform 76. The clamp arm 78 is formed by, for example, welding a base end portion of a pair of flexible arms 78A and 78A formed by bending a metal wire to both surfaces of the vertical wall 77. As shown in FIG. It extends in the horizontal direction. A horizontally long arm insertion hole 75A (see FIG. 7 ) is formed through the opening / closing plate 75, and the flexible arms 78A and 78A are inserted therethrough. Further, as shown in FIG. 8 , the distal ends of both flexible arms 78A, 78A are curved in a semicircular arc shape in accordance with the side surface shape of the measuring bottle 99, and are always attached so that the distal ends thereof are opened. It is energized. Then, by grasping the proximal end portion of the clamp arm 78 with respect to the opening / closing plate 75, the distal ends of the flexible arms 78A and 78A are closed so that the measuring bottle 99 can be clamped. The clamp arm 78 is not limited to the one operated by hand, and may be configured to automatically open and close by a driving device (not shown).

クランプアーム78で計量瓶99を把持して、そのクランプアーム78を上段風防ケース72の容器搬入口74に向けて前進(図8における上方に移動)させると、垂直壁77及び台盤76を介してクランプアーム78と一体になった開閉板75も容器搬入口74に向かって前進する。そして、クランプアーム78の先端部で把持した計量瓶99が、U字壁63の奥部に当接して位置決めされたときに、開閉板75が容器搬入口74の周縁部に当接して容器搬入口74が閉鎖される。これにより、上段風防ケース72内が無風状態にされる。 When the weighing bottle 99 is gripped by the clamp arm 78 and the clamp arm 78 is moved forward (moved upward in FIG. 8 ) toward the container entrance 74 of the upper draft shield case 72, it passes through the vertical wall 77 and the base plate 76. Thus, the opening / closing plate 75 integrated with the clamp arm 78 also moves forward toward the container carry-in port 74. When the measuring bottle 99 gripped by the tip of the clamp arm 78 is positioned in contact with the back of the U-shaped wall 63, the open / close plate 75 contacts the peripheral edge of the container carry-in port 74 to carry in the container. The mouth 74 is closed. Thereby, the inside of the upper windshield case 72 is brought into a windless state.

また、計量瓶99を上段風防ケース72から取り出すために、計量瓶99をクランプアーム78で把持してクランプアーム78を容器搬入口74から後退(図8における下方に移動)させると、開閉板75が容器搬入口74から一側方に離れて、容器搬入口74が開放される。このように、クランプアーム78による上段風防ケース72内への計量瓶99の出し入れと、開閉板75による容器搬入口74の開閉とを一動作で行うことが可能となっている。 Further, in order to take out the measuring bottle 99 from the upper draft shield case 72, when the measuring bottle 99 is gripped by the clamp arm 78 and the clamp arm 78 is retracted (moved downward in FIG. 8 ) from the container carry-in port 74, the opening / closing plate 75 is provided. Is separated from the container carrying-in port 74 to one side, and the container carrying-in port 74 is opened. In this way, the weighing bottle 99 can be taken in and out of the upper draft shield case 72 by the clamp arm 78 and the container carry-in port 74 can be opened and closed by the opening and closing plate 75 in one operation.

なお、図1における符号102は、静電気除去器(具体的には、イオナイザ)である。静電気除去器102は、例えば、上段風防ケース72の内部における電荷及び電位を測定して、相殺(中和)する電荷及び電位のイオンを上段風防ケース72内に照射し、上段風防ケース72内の粉粒体や計量瓶99の静電気を除去する。これにより、電子天秤60の誤作動(例えば、表示のふらつき)を防止し、電子天秤60を安定させることができる。なお、静電気除去器102は、粉粒体の計量中(粉粒体供給装置90が粉粒体を排出している最中)でもイオンを照射することができる。   Note that reference numeral 102 in FIG. 1 denotes a static eliminator (specifically, an ionizer). The static eliminator 102, for example, measures the charge and potential inside the upper windshield case 72 and irradiates ions in the upper windshield case 72 with charges and potential ions that are offset (neutralized). Remove static electricity from the powder and the measuring bottle 99. Thereby, malfunction (for example, display fluctuation) of electronic balance 60 can be prevented, and electronic balance 60 can be stabilized. The static eliminator 102 can irradiate the ions even during measurement of the powder particles (while the powder particle supply device 90 is discharging the powder particles).

ところで、粉粒体供給装置90(詳細には、粉粒体ドラム10)と計量瓶99とが接触していると、計量値に誤差が生じるので、粉粒体供給装置90と計量瓶99とは上下方向に互いに離しておく必要がある(図6参照)。そのため、比重の軽い粉粒体や分散度の高い粉粒体を粉粒体ドラム10から下方の計量瓶99に向けて排出した場合には、排出された粉粒体の一部が真下に落下せずに側方に飛散することがある。 By the way, if the granular material supply device 90 (specifically, the granular material drum 10) and the measuring bottle 99 are in contact with each other, an error occurs in the measured value. Must be separated from each other in the vertical direction (see FIG. 6 ). Therefore, when a granular material with a light specific gravity or a highly dispersed granular material is discharged from the granular material drum 10 toward the measuring bottle 99 below, a part of the discharged granular material falls directly below. May scatter to the side without.

これに対し、本実施形態の粉粒体計量システム100では、上段風防ケース72の天板72B上に回収フード80が固定載置されている。そして、回収フード80と、上段風防ケース72の天板72Bとによって、粉粒体ドラム10における粉粒体排出筒12の下端部と天板72Bの天板開口72Aとの間における粉粒体の落下経路が覆われており、粉粒体の落下経路から側方に逸れて飛散した粉粒体が、回収フード80内の外に漏れ出さないようになっている。そして、回収フード80内の粉粒体は、吸引ポンプ85によって回収フード80内から吸引除去可能となっている。   On the other hand, in the granular material measuring system 100 of this embodiment, the collection hood 80 is fixedly placed on the top plate 72B of the upper windshield case 72. And by the collection | recovery hood 80 and the top plate 72B of the upper stage windshield case 72, the granular material of the granular material between the lower end part of the granular material discharge cylinder 12 in the granular material drum 10 and the top plate opening 72A of the top plate 72B is obtained. The falling path is covered, and the granular material that has been scattered from the falling path of the granular material to the side is prevented from leaking out of the collection hood 80. The powder particles in the collection hood 80 can be sucked and removed from the collection hood 80 by the suction pump 85.

具体的には、回収フード80の天板80Aの中央には、円孔81が貫通形成され、粉粒体ドラム10における粉粒体排出筒12の下端部が挿入されている。回収フード80の天板80A及び側壁80Bの所定位置には、複数の空気取入口82が形成されている。さらに、側壁80Bには、空気取入口82とは別に不要粉粒体吸引口83が形成され、その不要粉粒体吸引口83の周縁部から側方に突出した接続筒部84に吸引ポンプ85(図1参照)が接続可能となっている。   Specifically, a circular hole 81 is formed through the center of the top plate 80 </ b> A of the collection hood 80, and the lower end portion of the powder discharge cylinder 12 in the powder drum 10 is inserted. A plurality of air intakes 82 are formed at predetermined positions on the top plate 80 </ b> A and the side wall 80 </ b> B of the collection hood 80. Further, an unnecessary powder and granular material suction port 83 is formed in the side wall 80B separately from the air intake port 82, and a suction pump 85 is connected to the connecting tube portion 84 projecting laterally from the peripheral edge of the unnecessary powder and granular material suction port 83. (See FIG. 1) can be connected.

本実施形態の構成に関する説明は以上である。次に、本実施形態の作用効果について説明する。所定重量、例えば10mgの粉粒体を計量瓶99に量り取る場合には、以下のように操作する。まず、クランプアーム78の基端部を握って計量瓶99をクランプアーム78の先端部で把持し、その状態で上段風防ケース72の容器搬入口74に向けてクランプアーム78を前進させて風防70内に計量瓶99を挿入する。このとき、台盤76が下段風防ケース71の天板71A上をスライドして、開閉板75も容器搬入口74に向かって接近する。計量瓶99が容器ホルダ62におけるU字壁63の奥部に突き当たると、計量瓶99が粉粒体排出孔12Aの鉛直下方に配置されると共に、開閉板75によって容器搬入口74が塞がれて上段風防ケース72が閉鎖される。そして、クランプアーム78から手を放して計量瓶99を容器ホルダ62に保持させたら、電子天秤60の操作部(図示せず)を操作して風袋引きを行う(表示をゼロにする)。   This completes the description of the configuration of the present embodiment. Next, the effect of this embodiment is demonstrated. When measuring a predetermined weight, for example, 10 mg of powder particles into the measuring bottle 99, the following operation is performed. First, the measuring bottle 99 is gripped by the distal end portion of the clamp arm 78 by grasping the proximal end portion of the clamp arm 78, and in this state, the clamp arm 78 is moved forward toward the container carry-in port 74 of the upper windshield case 72. The measuring bottle 99 is inserted into the inside. At this time, the base plate 76 slides on the top plate 71 </ b> A of the lower windshield case 71, and the opening / closing plate 75 approaches the container carry-in port 74. When the measuring bottle 99 hits the inner part of the U-shaped wall 63 in the container holder 62, the measuring bottle 99 is arranged vertically below the granular material discharge hole 12A, and the container carry-in port 74 is blocked by the opening / closing plate 75. The upper windshield case 72 is closed. After releasing the hand from the clamp arm 78 and holding the measuring bottle 99 on the container holder 62, the operation unit (not shown) of the electronic balance 60 is operated to perform taring (the display is set to zero).

次いで、電子天秤60の計量値を確認しながら供給モータ14,15を回転させて粉粒体を供給する。即ち、計量値が10mgの手前になる(例えば、9mg)までは、2つのスクレーパ121,22、即ち、2つの旋回脚部28,29を同一速度で回転させることで、多孔板30上に形成された粉粒体アーチをほとんど全部崩して比較的多量の粉粒体を排出させ、速やかに9mg以上の粉粒体を量り取る。次いで、計量値が10mgとなる手前、即ち、計量値が9mg以上になったら、一方の供給モータ14の回転を止め、他方の供給モータ15のみ回転させる。即ち、旋回脚部28の旋回を停止し、旋回脚部29のみを多孔板30上で旋回させる。これにより、多孔板30の中央部に形成された粉粒体アーチのみが崩されて、少量ずつ粉粒体が供給され、計量値を徐々に10mgに近づけることができる。そして、計量値が10mgになったときに供給モータ15の回転を止める。これにより、10mgの粉粒体を正確かつ速やかに量り取ることができる。なお、電子天秤60の計量値を図示しない制御装置にフィードバックして、供給モータ14,15の回転を自動でオンオフしたり回転速度を調節するようにしてもよい Next, while confirming the measurement value of the electronic balance 60, the supply motors 14 and 15 are rotated to supply powder particles. That is, the two scrapers 121 and 22, that is, the two swivel legs 28 and 29 are rotated on the perforated plate 30 until the measured value reaches 10 mg (for example, 9 mg). The formed powder arch is almost completely destroyed to discharge a relatively large amount of the powder, and 9 mg or more of the powder is quickly measured. Next, before the measured value reaches 10 mg, that is, when the measured value becomes 9 mg or more, the rotation of one supply motor 14 is stopped and only the other supply motor 15 is rotated. That is, the turning of the turning leg portion 28 is stopped, and only the turning leg portion 29 is turned on the perforated plate 30. Thereby, only the granular material arch formed in the center part of the perforated plate 30 is destroyed, and the granular material is supplied little by little, and the measured value can be gradually brought closer to 10 mg. Then, when the measured value reaches 10 mg, the rotation of the supply motor 15 is stopped. Thereby, 10 mg of a granular material can be measured accurately and rapidly. The measurement value of the electronic balance 60 may be fed back to a control device (not shown) to automatically turn on / off the supply motors 14 and 15 and adjust the rotation speed .

さて、粉粒体供給装置90から粉粒体を落下させると、殆どの粉粒体は垂直に落下して、上段風防ケース72の天板開口72Aを通過し計量瓶99に収容されるが、一部の粉粒体は、気流等の影響で垂直に落下せずに側方に逸れ、計量瓶99に入らないことがある。この粉粒体は、回収フード80の外部に漏れ出すことなく、回収フード80の内側で浮遊するか或いは、天板72B上に落下する。そして、本実施形態では、回収フード80内の粉粒体を即座に除去するために、粉粒体供給装置90からの粉粒体の供給中に吸引ポンプ85を作動させる。すると、回収フード80内に浮遊或いは天板72Bに落下している不要な粉粒体が吸引されて回収フード80の外部に除去される。このとき、回収フード80内を移動する粉粒体が、電子天秤60の計量値に影響することはない。   Now, when dropping powder from the powder supply device 90, most of the powder falls vertically, passes through the top opening 72A of the upper windshield case 72, and is accommodated in the measuring bottle 99. Some of the granular materials may not be dropped vertically due to the influence of an air current or the like and may be displaced to the side, and may not enter the measuring bottle 99. This granular material does not leak to the outside of the collection hood 80, but floats inside the collection hood 80 or falls on the top plate 72B. In this embodiment, the suction pump 85 is operated during the supply of the granular material from the granular material supply device 90 in order to immediately remove the granular material in the collection hood 80. Then, unnecessary powder particles floating in the collection hood 80 or falling on the top plate 72 </ b> B are sucked and removed to the outside of the collection hood 80. At this time, the granular material moving in the collection hood 80 does not affect the measurement value of the electronic balance 60.

このように本実施形態の粉粒体計量システム100によれば、計量瓶99と粉粒体供給装置90との間の粉粒体の落下経路を回収フード80で覆い、粉粒体供給装置90から粉粒体が供給されている最中に回収フード80内を吸引ポンプ85にて吸引する。これにより、粉粒体供給装置90から下方に排出された粉粒体の一部が、落下経路から逸れて回収フード80内に残留しても、その不要な粉粒体を回収フード80内から吸引除去することができる。これにより、電子天秤60やその周囲及び計量瓶99の外面に粉粒体が降りかかることを防ぎ、計量誤差や電子天秤60の故障を防止することができる。また、毒劇物に分類される粉粒体を量り取る場合でも、計量瓶99を安全に取り扱うことができる。   Thus, according to the granular material measuring system 100 of the present embodiment, the dropping path of the granular material between the measuring bottle 99 and the granular material supplying device 90 is covered with the collection hood 80, and the granular material supplying device 90 is covered. The suction hood 80 sucks the inside of the collection hood 80 while the powder and granular materials are being supplied. Thereby, even if a part of the powder discharged downward from the powder supply device 90 deviates from the dropping path and remains in the collection hood 80, the unnecessary powder is removed from the collection hood 80. Can be removed by suction. Thereby, it can prevent that a granular material falls on the electronic balance 60, its circumference | surroundings, and the outer surface of the measurement bottle 99, and can prevent a measurement error and the failure of the electronic balance 60. Moreover, even when measuring the granular material classified into poisonous and deleterious substances, the measuring bottle 99 can be handled safely.

また、粉粒体供給装置90から粉粒体を供給している最中(即ち、計量中)に回収フード80内を吸引して、回収フード80内で浮遊している粉粒体を除去しているから、計量終了後、直ぐに、次の計量を開始することができる。よって、粉粒体の計量と回収フード80内の吸引とを別々に行った場合に比較して、複数の計量瓶99に粉粒体に量り取る作業を効率よく行うことができる。   Further, the powder hood 80 is sucked in the collection hood 80 while the powder and granules are being supplied from the powder supply device 90 (that is, during measurement), and the particles floating in the collection hood 80 are removed. Therefore, the next measurement can be started immediately after the measurement is completed. Therefore, compared with the case where the measurement of the powder and the suction in the collection hood 80 are performed separately, the work of weighing the powder into the plurality of measurement bottles 99 can be performed efficiently.

また、回収フード80と、計量瓶99を収容した上段風防ケース72との間が計量瓶99の上方で天板72Bによって仕切られているから、回収フード80内を吸引することに伴う上段風防ケース72内の気流の変動を抑えることができる。これにより、粉粒体の排出中に回収フード80内を吸引した場合に、気流の変動による計量誤差が生じることを防ぐことができる。   Moreover, since the collection | recovery hood 80 and the upper stage windshield case 72 which accommodated the measurement bottle 99 are partitioned by the top plate 72B above the measurement bottle 99, the upper stage windshield case accompanying the suction | inhalation inside the collection hood 80 The fluctuation of the airflow in 72 can be suppressed. Thereby, when the inside of the collection | recovery hood 80 is attracted | sucked during discharge of a granular material, it can prevent that the measurement error by the fluctuation | variation of an airflow arises.

さらに、回収フード80には空気取入口82が形成され、吸引時には、回収フード80の外部から空気が取り込まれるので、風防70(上段風防ケース72)内に計量瓶99を収容したまま吸引を行った場合に、計量瓶99に収容された粉粒体が放出することを防ぐことができる。   Further, an air intake 82 is formed in the collection hood 80, and since air is taken in from the outside of the collection hood 80 during suction, suction is performed while the measuring bottle 99 is housed in the windshield 70 (upper windshield case 72). In this case, it is possible to prevent the powder particles accommodated in the measuring bottle 99 from being released.

[第実施形態]
図15には、本発明の第実施形態が示されている。この第実施形態は、粉粒体供給装置92の構成が、上記第1実施形態とは異なる。
[ Second Embodiment]
FIG. 15 shows a second embodiment of the present invention. This 2nd Embodiment differs in the structure of the granular material supply apparatus 92 from the said 1st Embodiment.

粉粒体ドラム10の内側に備えた容器内天井壁138は、下方に向かって拡径しかつ、下端縁と粉粒体供給容器11の内周面11Cとの間に環状隙間40が形成された円錐筒状をなしている。そして、保持キャップ13の上端壁13Aに備えた図示しない粉粒体投入孔から投入された粉粒体は、容器内天井壁138の斜面を自重で滑って流下し(図15参照)、環状隙間40から底壁11Aに流入する。そして、底壁11Aに流入した粉粒体は、容器内天井壁138と底壁11Aとの間で安息角α1を有した粉粒体山を形成する。その他の構成については上記第1実施形態と同じであるため、同じ構成については、同一符号を付し、重複する説明は省略する。 The container inner ceiling wall 138 provided on the inner side of the powder drum 10 is expanded in diameter downward, and an annular gap 40 is formed between the lower end edge and the inner peripheral surface 11C of the powder supply container 11. It has a conical cylindrical shape. And the granular material thrown in from the granular material throwing hole which is not shown in the upper end wall 13A of the holding cap 13 slides down on the slope of the ceiling wall 138 in the container under its own weight (see FIG. 15 ), and the annular gap 40 flows into the bottom wall 11A. And the granular material which flowed into 11 A of bottom walls forms the granular material peak which has the angle of repose α1 between the ceiling wall 138 in a container, and 11 A of bottom walls. Since other configurations are the same as those in the first embodiment, the same reference numerals are given to the same configurations, and duplicate descriptions are omitted.

[他の実施形態]
本発明は、前記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
[Other Embodiments]
The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various other than the following can be made without departing from the scope of the invention. It can be changed and implemented.

(1)電子天秤60から発する熱による電子天秤60の誤作動(表示のふらつき)を防止するために、下段風防ケース71の内側の温度を安定させるための空調装置やファンを備えてもよい。また、粉粒体計量システム100を恒温室に設置した場合のように、外気の温度変化が無い環境であれば、風の影響を受けない程度の通気孔を下段風防ケース71に設けてもよい。   (1) In order to prevent malfunction (display fluctuation) of the electronic balance 60 due to heat generated from the electronic balance 60, an air conditioner or a fan for stabilizing the temperature inside the lower windshield case 71 may be provided. Further, in the environment where there is no change in the temperature of the outside air as in the case where the powder particle measuring system 100 is installed in a temperature-controlled room, the lower windshield case 71 may be provided with a vent hole that is not affected by the wind. .

(2)上記第2実施形態において、スクレーパ121,22における集粉羽23,27は屈曲構造をなしていたが、図16(A)に示すように、回転方向(図16(A)における時計回り方向)と逆方向に向かって膨らむように丸みを帯びて湾曲していてもよい。 (2) In the second embodiment, the current powder wings 23 and 27 in the scraper 121,22 had no bent structure, as shown in FIG. 16 (A), clockwise in the direction of rotation (FIG. 16 (A) It may be rounded and curved so as to swell in the direction opposite to the rotation direction.

(3)また、図16(A)及び同図(B)に示すように、粉粒体供給容器11の底壁11Aの上面に、スクレーパ121,22の回転方向に向かって膨らむように丸みを帯びて湾曲した渦巻き曲線(対数渦巻き曲線、アルキメデス渦巻き曲線)状或いはインボリュート曲線状の溝111を放射状に複数設けてもよい。これにより、集粉羽23,27と溝111とが協働して粉粒体を効率よく粉粒体排出孔12Aに向けて誘導する。なお、図16(C)のように、溝111の代わりに突条112を設けても同様の効果が得られる。これら溝111及び突条112は、本発明に係る「底面渦巻きガイド」に相当する。また、渦巻き曲線或いはインボリュート曲線の一部を直線に置き換えた形状としてもよい。 (3) Also, as shown in FIGS. 16A and 16B, the upper surface of the bottom wall 11A of the powder supply container 11 is rounded so as to swell in the rotational direction of the scrapers 121 and 22. A plurality of spirally curved grooves 111 (logarithmic spiral curves, Archimedean spiral curves) or involute curved grooves 111 may be provided. Thereby, the powder collection feathers 23 and 27 and the groove | channel 111 cooperate, and guide a granular material toward 12 A of granular material discharge holes efficiently. Note that, as shown in FIG. 16C , the same effect can be obtained by providing the protrusion 112 in place of the groove 111. These grooves 111 and ridges 112 correspond to the “bottom spiral guide” according to the present invention. Alternatively, a part of the spiral curve or involute curve may be replaced with a straight line.

(4)図17(A)に示すように、第実施形態における上側のスクレーパ121から散粉羽24を排除した構造にしてもよい。また、図17(B)に示すように、下側のスクレーパ22に散粉羽110を設けた構造にしてもよい。 (4) As shown to FIG. 17 (A), you may make it the structure which excluded the dust blade 24 from the upper scraper 121 in 1st Embodiment. Further, as shown in FIG. 17B , a structure in which dust wings 110 are provided on the lower scraper 22 may be adopted.

(5)上記第実施形態において、粉粒体排出孔12Aにおける多孔板30の位置は、図18に示すように粉粒体排出孔12Aの下端寄り位置に配置してもよい。そして、多孔板30を粉粒体排出孔12Aの下端寄り位置に配置した場合には、上記第実施形態における旋回脚部28,29を鉛直下方に延長すればよい。 (5) In the said 1st Embodiment, you may arrange | position the position of the porous plate 30 in 12 A of granular material discharge holes in the position near the lower end of 12 A of granular material discharge holes , as shown in FIG. Then, when the perforated plate 30 is disposed near the lower end of the granular material discharge hole 12A, the swivel legs 28 and 29 in the first embodiment may be extended vertically downward.

(6)回収フード80は、粉粒体ドラム10における粉粒体排出筒12の下端部のみを収容していたが、粉粒体供給装置の全体或いは、粉粒体ドラム10の全体を収容していてもよい。 (6) The collection hood 80 accommodates only the lower end portion of the granular material discharge cylinder 12 in the granular material drum 10, but accommodates the entire granular material supply device or the entire granular material drum 10. It may be.

(7)例えば、ガス中に粉粒体を供給して所定濃度の粉塵を生成する場合には、粉塵濃度を計測し、その粉塵濃度から検量線等によって粉粒体供給装置から排出された粉粒体の重量を求めてもよい。 (7) For example, when supplying a granular material into gas to generate dust of a predetermined concentration, the dust concentration is measured, and the powder discharged from the granular material supply device from the dust concentration by a calibration curve or the like You may obtain | require the weight of a granule.

(8)上記実施形態では、計量瓶99を電子天秤60上に載置して、計量瓶99に収容された粉粒体の重量を計測していたが、粉粒体を収容した粉粒体供給装置全体の重量を常時計量して、粉粒体の排出に伴う粉粒体供給装置の重量の減少量を計量瓶99に収容された粉粒体の重量として計測してもよい。このようにすれば、計量瓶99を取り替える毎に風袋引きを行う手間が省け、複数の計量瓶99に効率よく粉粒体を量り取ることができる。 (8) In the above embodiment, the weighing bottle 99 is placed on the electronic balance 60, and the weight of the powder contained in the measurement bottle 99 is measured. The weight of the entire supply device may be constantly measured, and the decrease in the weight of the powder supply device accompanying the discharge of the powder may be measured as the weight of the powder contained in the measurement bottle 99. In this way, it is possible to save the trouble of taring each time the measuring bottle 99 is replaced, and it is possible to efficiently weigh powder particles into the plurality of measuring bottles 99.

11 粉粒体供給容器
11A 底壁
12 粉粒体排出筒
12A 粉粒体排出孔
13A 上端壁
14A 回転駆動シャフト(第1回転駆動シャフト)
15A 回転駆動シャフト(第2回転駆動シャフト)
23 集粉羽(第1底面旋回部材)
27 集粉羽(第2底面旋回部材)
28 旋回脚部(第1粉粒体アーチ粉砕アーム)
29 旋回脚部(第2粉粒体アーチ粉砕アーム)
30 多孔板(閉塞壁)
30A 粉粒体通過孔
38 容器内天井壁
39 上面待ち受けガイド
40 環状隙間
60 電子天秤
62 容器ホルダ
72 上段風防ケース
72A 天板開口
72B 天板
72C 容器包囲壁
74 容器搬入口
75 開閉板
75A アーム挿通孔
78A,78A 可撓アーム
80 回収フード
82 空気取入口
83 不要粉粒体吸引口
85 吸引ポンプ
90,92 粉粒体供給装置
99 計量瓶
100 粉粒体計量システム
102 静電気除去器
111 溝(底面渦巻きガイド)
112 突条(底面渦巻きガイド)
138 容器内天井壁
DESCRIPTION OF SYMBOLS 11 Powder supply container 11A Bottom wall 12 Powder discharge cylinder 12A Powder discharge hole 13A Upper end wall 14A Rotation drive shaft (1st rotation drive shaft)
15A rotary drive shaft (second rotary drive shaft)
23 Powder collection feather (first bottom turning member)
27 Flour collection blade (second bottom turning member)
28 Rotating leg (first granule arch crushing arm)
29 Rotating leg (second powder arch crushing arm)
30 perforated plate (blocking wall)
30A granular material passage hole 38 ceiling wall in container 39 upper surface standby guide 40 annular gap 60 electronic balance 62 container holder 72 upper windshield case 72A top plate opening 72B top plate 72C container surrounding wall 74 container carry-in port 75 opening / closing plate 75A arm insertion hole 78A, 78A Flexible arm 80 Recovery hood 82 Air intake 83 Unnecessary powder suction port 85 Suction pump 90 , 92 Powder supply device 99 Measuring bottle 100 Powder measurement system 102 Static eliminator 111 Groove (bottom spiral guide) )
112 ridge (bottom spiral guide)
138 Ceiling wall in container

Claims (6)

粉粒体を収容可能な円筒状の粉粒体供給容器と、
前記粉粒体供給容器内の中心部に保持されて、前記粉粒体供給容器の内側面との間に環状空間を有すると共に、前記粉粒体供給容器の底壁に上方から対向配置された容器内天井壁と、
前記粉粒体供給容器の底壁のうち前記容器内天井壁に覆われた部分の中心から垂下され、内側に前記粉粒体供給容器と連通した粉粒体排出孔を有した粉粒体排出筒と、
前記粉粒体排出筒内に設けられ、前記粉粒体同士が付着してなる粉粒体アーチにより閉塞可能な複数の粉粒体通過孔を備えた閉塞壁と、
前記粉粒体供給容器の底壁に設けられて、前記粉粒体排出孔の周囲を囲み、前記環状空間から前記容器内天井壁の下方に流下した前記粉粒体が、安息角を有した粉粒体山として堆積可能な粉粒体堆積面と、
前記容器内天井壁と前記底壁との間に配置されて、前記粉粒体排出孔を中心にして回転駆動され、前記粉粒体山を崩しながら前記粉粒体を前記粉粒体排出孔へと案内する底面旋回部材と、
前記粉粒体供給容器の上端部に設けられた上端壁と、
前記上端壁に回転可能に軸支されると共に、前記容器内天井壁を貫通したパイプ状の第1回転駆動シャフトと、その第1回転駆動シャフトの内側に挿通されて下端部から前記第1回転駆動シャフトより下方に突出した第2回転駆動シャフトと、
前記第1回転駆動シャフトと前記第2回転駆動シャフトとを別々に駆動することが可能な1対の駆動源とを備えた粉粒体供給装置において、
前記底面旋回部材は、前記第1回転駆動シャフトの下端部に一体回転可能に固定された第1底面旋回部材と、前記第1底面旋回部材の下方に配置されて、前記第2回転駆動シャフトの下端部に一体回転可能に固定された第2底面旋回部材とからなり、
前記第1底面旋回部材に形成されて前記粉粒体排出筒内に延び、前記粉粒体排出筒の前記閉塞壁の上方を旋回して前記粉粒体アーチに外力を付与し、前記粉粒体を前記粉粒体通過孔から前記閉塞壁の下方に強制落下させるための第1粉粒体アーチ粉砕アームと、
前記第2底面旋回部材に形成されて前記粉粒体排出筒内に延び、前記粉粒体排出筒の前記閉塞壁の上方を、前記第1粉粒体アーチ粉砕アームの旋回領域の内側で旋回して前記粉粒体アーチに外力を付与し、前記粉粒体を前記粉粒体通過孔から前記閉塞壁の下方に強制落下させるための第2粉粒体アーチ粉砕アームとを備え、
前記第2底面旋回部材を、前記第1底面旋回部材より薄肉にすると共に、前記第2粉粒体アーチ粉砕アームの下端部の旋回領域の面積を、前記第1粉粒体アーチ粉砕アームの下端部の旋回領域の面積よりも小さくなるように構成したことを特徴とする粉粒体供給装置。
A cylindrical powder supply container capable of accommodating the powder;
While being held at the center of the powder supply container and having an annular space between the inner surface of the powder supply container and being opposed to the bottom wall of the powder supply container from above A ceiling wall in the container;
Particulate discharge with a part discharge hole that is suspended from the center of the bottom wall of the part supply container and covered with the ceiling wall in the part and communicated with the part supply container inside A tube,
A closed wall provided with a plurality of granular material passage holes which are provided in the granular material discharge cylinder and can be closed by a granular material arch formed by adhering the granular materials;
The granular material provided on the bottom wall of the granular material supply container, surrounding the periphery of the granular material discharge hole, and flowing down from the annular space below the ceiling wall in the container has an angle of repose. A powder accumulation surface that can be accumulated as a powder pile;
It is arranged between the container inner ceiling wall and the bottom wall, and is rotationally driven around the powder particle discharge hole, and the powder particle discharge hole while breaking the powder pile. A bottom pivot member that guides to
An upper end wall provided at an upper end portion of the powder and granular material supply container;
A pipe-shaped first rotation drive shaft that is rotatably supported by the upper end wall and penetrates the ceiling wall in the container, and is inserted into the first rotation drive shaft and is inserted into the first rotation drive shaft from the lower end. A second rotational drive shaft projecting downward from the rotational drive shaft;
In the granular material supply apparatus comprising a pair of drive sources capable of separately driving the first rotation drive shaft and the second rotation drive shaft,
The bottom surface turning member is disposed below the first bottom surface turning member and fixed to the lower end portion of the first rotation driving shaft, and is disposed below the first bottom turning member. A second bottom turning member fixed to the lower end so as to be integrally rotatable,
Formed in the first bottom turning member and extending into the powder discharge cylinder, swiveling above the blocking wall of the powder discharge pipe to apply an external force to the powder arch, and A first granule arch crushing arm for forcibly dropping a body from the granule passage hole below the closed wall;
It is formed on the second bottom turning member and extends into the powder discharge cylinder, and turns above the blocking wall of the powder discharge cylinder inside the turning area of the first powder arch crushing arm. And applying an external force to the granule arch, and comprising a second granule arch crushing arm for forcibly dropping the granule from the granule passage hole below the blocking wall,
The second bottom surface turning member is made thinner than the first bottom surface turning member, and the area of the turning region at the lower end of the second powder arch crushing arm is set to the lower end of the first powder arch crushing arm. The granular material supply apparatus characterized by being comprised so that it might become smaller than the area of the turning area | region of a part .
前記容器内天井壁を、前記第1回転駆動シャフトに一体回転可能に固定したことを特徴とする請求項1に記載の粉粒体供給装置。 The granular material supply apparatus according to claim 1, wherein the ceiling wall in the container is fixed to the first rotation drive shaft so as to be integrally rotatable . 前記容器内天井壁を、円板状とし、
前記粉粒体供給容器に固定されて、前記容器内天井壁の上面に堆積した粉粒体を前記環状空間に案内する上面待ち受けガイドを備えたことを特徴とする請求項1又は2に記載の粉粒体供給装置。
The container ceiling wall is a disk,
It is fixed to the powder or granular material supply container, according to the deposited granular material on the top surface of the container top wall to claim 1 or 2, characterized in that it comprises an upper standby guide for guiding the annular space Powder body supply device.
前記容器内天井壁を、下方に向かうに従って拡径した円錐形状としたことを特徴とする請求項2に記載の粉粒体供給装置。 The granular material supply apparatus according to claim 2, wherein the ceiling wall in the container has a conical shape whose diameter is increased downward . 前記粉粒体堆積面に突出又は陥没した状態に形成されて、前記粉粒体排出孔を中心にして渦巻き状に湾曲し、前記底面旋回部材に押されて前記粉粒体堆積面上を移動する粉粒体を前記粉粒体排出孔に案内する底面渦巻きガイドを備えたことを特徴とする請求項1乃至4の何れかに記載の粉粒体供給装置。 Formed in a state of projecting or sinking on the granular material deposition surface, curved in a spiral shape around the granular material discharge hole, and pushed on the bottom surface turning member to move on the granular material deposition surface The powder body supply apparatus according to any one of claims 1 to 4 , further comprising a bottom spiral guide that guides the powder body to be moved to the powder body discharge hole . 前記底面渦巻きガイドは、インボリュート曲線、対数渦巻き曲線、アルキメデス渦巻き曲線の何れかであることを特徴とする請求項5に記載の粉粒体供給装置。 6. The granular material supply apparatus according to claim 5 , wherein the bottom spiral guide is one of an involute curve, a logarithmic spiral curve, and an Archimedes spiral curve .
JP2010281232A 2010-12-17 2010-12-17 Powder and particle feeder Active JP5075249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010281232A JP5075249B2 (en) 2010-12-17 2010-12-17 Powder and particle feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010281232A JP5075249B2 (en) 2010-12-17 2010-12-17 Powder and particle feeder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007158331A Division JP4820779B2 (en) 2007-06-15 2007-06-15 Granule measurement system

Publications (2)

Publication Number Publication Date
JP2011081013A JP2011081013A (en) 2011-04-21
JP5075249B2 true JP5075249B2 (en) 2012-11-21

Family

ID=44075166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010281232A Active JP5075249B2 (en) 2010-12-17 2010-12-17 Powder and particle feeder

Country Status (1)

Country Link
JP (1) JP5075249B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181842A (en) * 2012-03-01 2013-09-12 Noritake Co Ltd Powder measuring and filling apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113387047B (en) * 2021-05-24 2022-07-29 浙江跨跃印刷有限公司 Anti-pollution beverage packaging bag

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351219A (en) * 1986-08-19 1988-03-04 Ebara Corp Silo delivery device
JPH0343642U (en) * 1989-09-06 1991-04-24
JPH07318402A (en) * 1994-05-26 1995-12-08 Kamachiyou Seiko Kk Device for supplying fixed quantity of powder material
JPH0952629A (en) * 1995-08-16 1997-02-25 Fuiider Giken:Kk Discharging device for powder/grain material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181842A (en) * 2012-03-01 2013-09-12 Noritake Co Ltd Powder measuring and filling apparatus

Also Published As

Publication number Publication date
JP2011081013A (en) 2011-04-21

Similar Documents

Publication Publication Date Title
JP4820779B2 (en) Granule measurement system
JP5983849B2 (en) Automatic sampling apparatus and automatic sampling method for fly ash
JP5075249B2 (en) Powder and particle feeder
JP5010381B2 (en) Powder supply device and powder measurement device
JP2005289379A (en) Powder filling apparatus and its operating method
JP5265896B2 (en) Powder and particle feeder
JP4049388B1 (en) Powder supply device and powder measurement device
ZA200603143B (en) An improved rotary sample collector
JP5302521B2 (en) Powder and particle feeder
JP7246705B2 (en) Sprinkling device and catalyst filling device
JP5684770B2 (en) Granulator
JP5171802B2 (en) Granulator
CN111424277B (en) Laser cladding powder feeder
JP5584528B2 (en) Powder and granular discharger
JP2008074562A (en) Screw feeder
WO2008056514A1 (en) Particulate supply device and particulate measuring device
JP2010094675A5 (en)
CN102285501B (en) Tangential injection continuous micro-feeding device
JP3073449B2 (en) Powder storage device
AU2003240163B2 (en) Densifying of a bulk particulate material
JP2021081195A (en) Powder and granular material quantification feeding device
CN220641066U (en) Medicine distributing spoon
CN217006595U (en) Dust generating device
WO2016093019A1 (en) Automatic fly ash sampling device and automatic fly ash sampling method
AU2004308157B2 (en) An improved rotary sample collector

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120824

R150 Certificate of patent or registration of utility model

Ref document number: 5075249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250