JP5684235B2 - Nonaqueous electrolyte secondary battery mixture, nonaqueous electrolyte secondary battery electrode, and nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary battery mixture, nonaqueous electrolyte secondary battery electrode, and nonaqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP5684235B2 JP5684235B2 JP2012508179A JP2012508179A JP5684235B2 JP 5684235 B2 JP5684235 B2 JP 5684235B2 JP 2012508179 A JP2012508179 A JP 2012508179A JP 2012508179 A JP2012508179 A JP 2012508179A JP 5684235 B2 JP5684235 B2 JP 5684235B2
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte secondary
- nonaqueous electrolyte
- mixture
- polymer
- carboxyl group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims description 163
- 239000000203 mixture Substances 0.000 title claims description 147
- 229920000642 polymer Polymers 0.000 claims description 154
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 126
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 claims description 105
- 239000000178 monomer Substances 0.000 claims description 60
- 229920002125 Sokalan® Polymers 0.000 claims description 43
- 239000004584 polyacrylic acid Substances 0.000 claims description 42
- 239000007772 electrode material Substances 0.000 claims description 19
- 238000005227 gel permeation chromatography Methods 0.000 claims description 19
- 239000003960 organic solvent Substances 0.000 claims description 17
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 15
- 238000001035 drying Methods 0.000 claims description 15
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 14
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 12
- 239000002253 acid Substances 0.000 claims description 12
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 11
- 229920002845 Poly(methacrylic acid) Polymers 0.000 claims description 10
- 229920001577 copolymer Polymers 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 150000001735 carboxylic acids Chemical class 0.000 claims 7
- 239000011230 binding agent Substances 0.000 description 86
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 59
- 239000000243 solution Substances 0.000 description 57
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 35
- 238000000034 method Methods 0.000 description 33
- 239000002033 PVDF binder Substances 0.000 description 27
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 27
- 230000000052 comparative effect Effects 0.000 description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 17
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 14
- 239000000126 substance Substances 0.000 description 14
- 238000009826 distribution Methods 0.000 description 10
- 239000011149 active material Substances 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 238000006116 polymerization reaction Methods 0.000 description 9
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 8
- 229910052731 fluorine Inorganic materials 0.000 description 8
- 239000011737 fluorine Substances 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 238000010557 suspension polymerization reaction Methods 0.000 description 8
- 238000001179 sorption measurement Methods 0.000 description 7
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- 229910021383 artificial graphite Inorganic materials 0.000 description 6
- 238000007334 copolymerization reaction Methods 0.000 description 6
- -1 ethylene, propylene Chemical group 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000002835 absorbance Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 4
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 4
- 238000007720 emulsion polymerization reaction Methods 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 229920001519 homopolymer Polymers 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229920000609 methyl cellulose Polymers 0.000 description 4
- 239000001923 methylcellulose Substances 0.000 description 4
- 150000002978 peroxides Chemical class 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- BEQKKZICTDFVMG-UHFFFAOYSA-N 1,2,3,4,6-pentaoxepane-5,7-dione Chemical compound O=C1OOOOC(=O)O1 BEQKKZICTDFVMG-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 3
- 239000007900 aqueous suspension Substances 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 239000003480 eluent Substances 0.000 description 3
- NKHAVTQWNUWKEO-UHFFFAOYSA-N fumaric acid monomethyl ester Natural products COC(=O)C=CC(O)=O NKHAVTQWNUWKEO-UHFFFAOYSA-N 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000002931 mesocarbon microbead Substances 0.000 description 3
- NKHAVTQWNUWKEO-IHWYPQMZSA-N methyl hydrogen fumarate Chemical compound COC(=O)\C=C/C(O)=O NKHAVTQWNUWKEO-IHWYPQMZSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910021382 natural graphite Inorganic materials 0.000 description 3
- 230000000379 polymerizing effect Effects 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- BWJUFXUULUEGMA-UHFFFAOYSA-N propan-2-yl propan-2-yloxycarbonyloxy carbonate Chemical compound CC(C)OC(=O)OOC(=O)OC(C)C BWJUFXUULUEGMA-UHFFFAOYSA-N 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- BGMFJTUTJOZHHZ-ARJAWSKDSA-N (z)-4-methoxy-3-methyl-4-oxobut-2-enoic acid Chemical compound COC(=O)C(\C)=C/C(O)=O BGMFJTUTJOZHHZ-ARJAWSKDSA-N 0.000 description 2
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 2
- 229940018557 citraconic acid Drugs 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- HWQBUJSWKVPMFY-PLNGDYQASA-N (z)-4-ethoxy-3-methyl-4-oxobut-2-enoic acid Chemical compound CCOC(=O)C(\C)=C/C(O)=O HWQBUJSWKVPMFY-PLNGDYQASA-N 0.000 description 1
- BLTXWCKMNMYXEA-UHFFFAOYSA-N 1,1,2-trifluoro-2-(trifluoromethoxy)ethene Chemical compound FC(F)=C(F)OC(F)(F)F BLTXWCKMNMYXEA-UHFFFAOYSA-N 0.000 description 1
- AVQQQNCBBIEMEU-UHFFFAOYSA-N 1,1,3,3-tetramethylurea Chemical compound CN(C)C(=O)N(C)C AVQQQNCBBIEMEU-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- RPBWMJBZQXCSFW-UHFFFAOYSA-N 2-methylpropanoyl 2-methylpropaneperoxoate Chemical compound CC(C)C(=O)OOC(=O)C(C)C RPBWMJBZQXCSFW-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- XLYMOEINVGRTEX-ARJAWSKDSA-N Ethyl hydrogen fumarate Chemical compound CCOC(=O)\C=C/C(O)=O XLYMOEINVGRTEX-ARJAWSKDSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 229910013368 LiBr-NMP Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 239000012986 chain transfer agent Substances 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- XLYMOEINVGRTEX-UHFFFAOYSA-N fumaric acid monoethyl ester Natural products CCOC(=O)C=CC(O)=O XLYMOEINVGRTEX-UHFFFAOYSA-N 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000010559 graft polymerization reaction Methods 0.000 description 1
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920006112 polar polymer Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 229920001959 vinylidene polymer Polymers 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
- H01M4/623—Binders being polymers fluorinated polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、非水電解質二次電池用合剤、非水電解質二次電池用電極および非水電解質二次電池に関する。 The present invention relates to a mixture for a nonaqueous electrolyte secondary battery, an electrode for a nonaqueous electrolyte secondary battery, and a nonaqueous electrolyte secondary battery.
近年電子技術の発展はめざましく、各種の機器が小型化、軽量化されている。この電子機器の小型化、軽量化と相まって、その電源となる電池の小型化、軽量化が求められている。小さい容積および重量で大きなエネルギーを得ることが出来る電池として、リチウムを用いた非水電解質二次電池が、主として携帯電話やパーソナルコンピュータ、ビデオカムコーダなどの家庭で用いられる小型電子機器の電源として用いられている。 In recent years, the development of electronic technology has been remarkable, and various devices have been reduced in size and weight. Along with the reduction in size and weight of the electronic device, there is a demand for reduction in size and weight of the battery serving as the power source. Non-aqueous electrolyte secondary batteries using lithium are mainly used as power sources for small electronic devices used in homes such as mobile phones, personal computers, and video camcorders as batteries that can obtain large energy with a small volume and weight. ing.
非水電解質二次電池の電極には、結着剤(バインダー樹脂)として、ポリフッ化ビニリデン(PVDF)が主に使用されている。PVDFは優れた電気化学安定性、機械物性およびスラリー特性などを有している。しかしながら、PVDFは集電体である金属箔との接着性が弱い。そのため、カルボキシル基等の官能基をPVDF中に導入し、金属箔との接着性を改良する方法が提案されている(例えば、特許文献1〜5参照)。 Polyvinylidene fluoride (PVDF) is mainly used as a binder (binder resin) for electrodes of non-aqueous electrolyte secondary batteries. PVDF has excellent electrochemical stability, mechanical properties, slurry properties, and the like. However, PVDF has poor adhesion to a metal foil that is a current collector. For this reason, a method has been proposed in which a functional group such as a carboxyl group is introduced into PVDF to improve the adhesion to the metal foil (for example, see Patent Documents 1 to 5).
ところで、比表面積が大きい活物質を用いる場合、結着剤の添加量が少ない場合および電極を急速乾燥により製造した場合などに、PVDFは電極表面に偏在し易くなる。表面偏在の結果、集電体近傍の結着剤量が少なくなり、集電体との接着性が低下する。また、PVDFが表面偏在するとPVDF量が少ない箇所で活物質同士の結着力が低下する。よって、結着剤の偏在が起きる場合は、カルボキシル基等の官能基を導入したPVDFを使用しても、剥離強度が低い電極が得られる。 By the way, when using an active material with a large specific surface area, PVDF tends to be unevenly distributed on the electrode surface when the amount of binder added is small and when the electrode is produced by rapid drying. As a result of the uneven distribution of the surface, the amount of the binder in the vicinity of the current collector is reduced, and the adhesion to the current collector is reduced. Moreover, when PVDF is unevenly distributed on the surface, the binding force between the active materials is reduced at a location where the amount of PVDF is small. Therefore, when the binder is unevenly distributed, an electrode having a low peel strength can be obtained even when PVDF having a functional group such as a carboxyl group is used.
結着剤の偏在を抑制するために、様々な方法が提案されている。 Various methods have been proposed in order to suppress the uneven distribution of the binder.
乾燥条件を穏やかにすることにより、結着剤の表面への移動を抑制し、表面偏在を抑制する方法が提案されている(例えば、特許文献6、7参照)。しかしながら、該方法では乾燥条件を穏やかにする必要があるため、合剤の乾燥速度が低下し、電極の生産性が低下する。 There has been proposed a method of suppressing the uneven distribution of the surface by suppressing the movement of the binder to the surface by making the drying conditions gentle (see, for example, Patent Documents 6 and 7). However, in this method, since it is necessary to moderate the drying conditions, the drying speed of the mixture is lowered, and the productivity of the electrode is lowered.
結着剤の含有量が異なる合剤を用意し、基材(集電体)に近い方に、結着剤含有量の多い合剤が塗布されるように、同時に多層塗布することによって、結着剤の分布が均一な電極を作製する方法が提案されている(例えば、特許文献8参照)。しかしながら、この方法では、合剤を数種類準備する必要があり、電極作製の工程数が多くなり、生産性が低下する。さらに、多層塗布するには特殊な装置が必要となる。 By preparing a mixture with a different binder content and applying multiple layers at the same time so that a mixture with a higher binder content is applied closer to the substrate (current collector), A method for producing an electrode with a uniform distribution of an adhesive has been proposed (see, for example, Patent Document 8). However, in this method, it is necessary to prepare several kinds of mixtures, which increases the number of electrode manufacturing steps and decreases productivity. Furthermore, a special apparatus is required for multilayer coating.
電極を作製後、結着剤を溶解できる有機溶媒を電極群に注入し、加圧密着状態で熱処理することにより、結着剤を電極内で再溶解させ、結着剤の偏在を抑制する方法が提案されている(例えば、特許文献9、10参照)。しかしながら、この方法も電池を製造するための工程が増えるため、電池の生産性が低下する。 After producing the electrode, a method of suppressing the uneven distribution of the binder by injecting an organic solvent capable of dissolving the binder into the electrode group and re-dissolving the binder in the electrode by performing a heat treatment in a pressure contact state. Has been proposed (see, for example, Patent Documents 9 and 10). However, this method also increases the number of steps for manufacturing the battery, which reduces battery productivity.
ところで、PVDFおよびポリアクリル酸を結着剤として併用すると、集電体との接着性が向上することが知られている(例えば、特許文献11参照)。しかしながら、PVDFおよびポリアクリル酸を結着剤として併用した場合であっても、電極表面への結着剤の偏在は抑制できないため、集電体との接着性は充分ではなかった。 By the way, it is known that when PVDF and polyacrylic acid are used together as a binder, the adhesiveness with a current collector is improved (for example, see Patent Document 11). However, even when PVDF and polyacrylic acid are used in combination as a binder, the uneven distribution of the binder on the electrode surface cannot be suppressed, so that the adhesion to the current collector was not sufficient.
一方、ポリアクリル酸だけを結着剤に使用した電極が知られている(例えば、特許文献12および13参照)。結着剤としてポリアクリル酸のみを用いた場合には、分子量が高いほど、接着性が大きくなり、重量平均分子量が30万以上のポリアクリル酸を用いると、電池のサイクル耐久性が向上することが知られている。しかしながら、結着剤としてポリアクリル酸のみを用いた場合には、電極が固くなり、電池の製造工程において、電極の巻回時に電極が切れてしまう場合があり、電池の歩留まりが悪化する。 On the other hand, an electrode using only polyacrylic acid as a binder is known (for example, see Patent Documents 12 and 13). When only polyacrylic acid is used as the binder, the higher the molecular weight, the greater the adhesion, and the use of polyacrylic acid with a weight average molecular weight of 300,000 or more improves the cycle durability of the battery. It has been known. However, when only polyacrylic acid is used as the binder, the electrode becomes hard, and in the battery manufacturing process, the electrode may break when the electrode is wound, and the yield of the battery deteriorates.
また、官能基含有PVDFおよびカルボニル基を含有する有極性重合体を結着剤として併用すると、電池の内部短絡時の安全性が向上することが知られている(例えば、特許文献14参照)。特許文献14の実施例2では、カルボキシル基含有PVDFおよびポリアクリル酸を結着剤として併用することが記載されている。しかしながら、該実施例では、ポリアクリル酸として、分子量が非常に大きい架橋型のポリアクリル酸を用いており、得られる電極の剥離強度は充分ではなかった。 In addition, it is known that when a functional group-containing PVDF and a polar polymer containing a carbonyl group are used in combination as a binder, safety at the time of internal short-circuiting of the battery is improved (for example, see Patent Document 14). In Example 2 of Patent Document 14, it is described that carboxyl group-containing PVDF and polyacrylic acid are used in combination as a binder. However, in this example, cross-linked polyacrylic acid having a very large molecular weight was used as polyacrylic acid, and the peel strength of the obtained electrode was not sufficient.
本発明は上記従来技術の有する課題を鑑みてされたものであり、非水電解質二次電池用電極および非水電解質二次電池を生産性よく製造することが可能であり、非水電解質二次電池用電極を製造した際に、合剤層における結着剤の偏在を抑制することが可能であり、かつ合剤層と、集電体との剥離強度に優れる、非水電解質二次電池用合剤を提供することを目的とする。また、該合剤を集電体に塗布・乾燥することにより得られる非水電解質二次電池用電極および該電極を有する非水電解質二次電池を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and can produce a non-aqueous electrolyte secondary battery electrode and a non-aqueous electrolyte secondary battery with high productivity. For non-aqueous electrolyte secondary batteries that can suppress the uneven distribution of the binder in the mixture layer and has excellent peel strength between the mixture layer and the current collector when the battery electrode is manufactured The purpose is to provide a mixture. Moreover, it aims at providing the electrode for nonaqueous electrolyte secondary batteries obtained by apply | coating and drying this mixture to a collector, and the nonaqueous electrolyte secondary battery which has this electrode.
本発明者らは上記課題を達成するために鋭意研究を重ねた結果、特定の不飽和カルボン酸重合体(A)およびカルボキシル基含有フッ化ビニリデン系重合体(B)を結着剤として併用して用いた、非水電解質二次電池用合剤は、上記課題を解決できることを見出し、本発明を完成させた。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have used a specific unsaturated carboxylic acid polymer (A) and a carboxyl group-containing vinylidene fluoride polymer (B) as a binder. The present invention was completed by finding that the mixture for non-aqueous electrolyte secondary batteries used in the above could solve the above problems.
すなわち、本発明の非水電解質二次電池用合剤は、ポリアクリル酸およびポリメタクリル酸から選択される少なくとも一種の不飽和カルボン酸重合体(A)、カルボキシル基含有フッ化ビニリデン系重合体(B)、電極活物質、および有機溶剤を含有し、前記不飽和カルボン酸重合体(A)のゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリエチレンオキサイド換算の重量平均分子量が、1,000〜150,000である。 That is, the mixture for non-aqueous electrolyte secondary batteries of the present invention comprises at least one unsaturated carboxylic acid polymer (A) selected from polyacrylic acid and polymethacrylic acid, a carboxyl group-containing vinylidene fluoride polymer ( B), containing an electrode active material and an organic solvent, the weight average molecular weight in terms of polyethylene oxide measured by gel permeation chromatography (GPC) of the unsaturated carboxylic acid polymer (A) is 1,000 to 150,000.
前記不飽和カルボン酸重合体(A)のゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリエチレンオキサイド換算の重量平均分子量が、1,000〜100,000であることが好ましい。 The weight average molecular weight in terms of polyethylene oxide measured by gel permeation chromatography (GPC) of the unsaturated carboxylic acid polymer (A) is preferably 1,000 to 100,000.
前記不飽和カルボン酸重合体(A)およびカルボキシル基含有フッ化ビニリデン系重合体(B)の合計100重量%あたり、不飽和カルボン酸重合体(A)が0.5〜15重量%であることが好ましく、0.8〜6重量%であることがより好ましい。 The unsaturated carboxylic acid polymer (A) is 0.5 to 15% by weight per 100% by weight in total of the unsaturated carboxylic acid polymer (A) and the carboxyl group-containing vinylidene fluoride polymer (B). Is preferable, and it is more preferable that it is 0.8 to 6 weight%.
前記電極活物質の比表面積が、1〜10m2/gであることが好ましく、2〜6m2/gであることがより好ましい。The specific surface area of the electrode active material is preferably from 1 to 10 m 2 / g, and more preferably 2 to 6 m 2 / g.
前記カルボキシル基含有フッ化ビニリデン系重合体(B)が、不飽和二塩基酸、不飽和二塩基酸モノエステル、アクリル酸およびメタクリル酸から選択される少なくとも一種のカルボキシル基含有モノマーと、フッ化ビニリデンとの共重合体であることが好ましい。 The carboxyl group-containing vinylidene fluoride polymer (B) is at least one carboxyl group-containing monomer selected from unsaturated dibasic acid, unsaturated dibasic acid monoester, acrylic acid and methacrylic acid, and vinylidene fluoride And a copolymer thereof.
本発明の非水電解質二次電池用電極は、前記非水電解質二次電池用合剤を、集電体に塗布・乾燥することにより得られる。 The electrode for nonaqueous electrolyte secondary batteries of the present invention can be obtained by applying and drying the mixture for nonaqueous electrolyte secondary batteries on a current collector.
前記非水電解質二次電池用電極は、前記非水電解質二次電池用合剤から形成される、厚さ20〜150μmの合剤層を有することが好ましい。 The electrode for a non-aqueous electrolyte secondary battery preferably has a mixture layer having a thickness of 20 to 150 μm formed from the mixture for the non-aqueous electrolyte secondary battery.
本発明の非水電解質二次電池は、前記非水電解質二次電池用電極を有する。 The non-aqueous electrolyte secondary battery of the present invention has the non-aqueous electrolyte secondary battery electrode.
本発明の非水電解質二次電池用合剤は、非水電解質二次電池用電極および非水電解質二次電池を生産性よく製造することが可能であり、非水電解質二次電池用電極を製造した際に、合剤層における結着剤の偏在を抑制することが可能であり、かつ合剤層と、集電体との剥離強度に優れる。また、本発明の非水電解質二次電池用電極および非水電解質二次電池は、該非水電解質二次電池用合剤を用いて製造されるため、生産性よく製造される。 The mixture for a non-aqueous electrolyte secondary battery of the present invention can produce a non-aqueous electrolyte secondary battery electrode and a non-aqueous electrolyte secondary battery with high productivity. When manufactured, the uneven distribution of the binder in the mixture layer can be suppressed, and the peel strength between the mixture layer and the current collector is excellent. Moreover, since the electrode for nonaqueous electrolyte secondary batteries and the nonaqueous electrolyte secondary battery of this invention are manufactured using this mixture for nonaqueous electrolyte secondary batteries, they are manufactured with high productivity.
次に本発明について具体的に説明する。 Next, the present invention will be specifically described.
本発明の非水電解質二次電池用合剤は、ポリアクリル酸およびポリメタクリル酸から選択される少なくとも一種の不飽和カルボン酸重合体(A)、カルボキシル基含有フッ化ビニリデン系重合体(B)、電極活物質、および有機溶剤を含有し、前記不飽和カルボン酸重合体(A)のゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリエチレンオキサイド換算の重量平均分子量が、1,000〜150,000である。本発明の合剤は、通常負極用の合剤、すなわち、負極合剤として用いる。 The mixture for a non-aqueous electrolyte secondary battery of the present invention comprises at least one unsaturated carboxylic acid polymer (A) selected from polyacrylic acid and polymethacrylic acid, and a carboxyl group-containing vinylidene fluoride polymer (B). , An electrode active material, and an organic solvent, the weight average molecular weight in terms of polyethylene oxide measured by gel permeation chromatography (GPC) of the unsaturated carboxylic acid polymer (A) is 1,000 to 150, 000. The mixture of the present invention is usually used as a negative electrode mixture, that is, a negative electrode mixture.
〔不飽和カルボン酸重合体(A)〕
本発明の非水電解質二次電池用合剤は、ポリアクリル酸およびポリメタクリル酸から選択される少なくとも一種の不飽和カルボン酸重合体(A)を含む。前記不飽和カルボン酸重合体(A)としては、ゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリエチレンオキサイド換算の重量平均分子量が、1,000〜150,000である重合体が用いられる。[Unsaturated carboxylic acid polymer (A)]
The mixture for nonaqueous electrolyte secondary batteries of the present invention contains at least one unsaturated carboxylic acid polymer (A) selected from polyacrylic acid and polymethacrylic acid. As said unsaturated carboxylic acid polymer (A), the polymer whose weight average molecular weight of polyethylene oxide conversion measured by a gel permeation chromatography (GPC) is 1,000-150,000 is used.
本発明の非水電解質二次電池に含まれる不飽和カルボン酸重合体(A)は、ポリアクリル酸であってもよく、ポリメタクリル酸であってもよく、ポリアクリル酸とポリメタクリル酸との混合物であってもよい。本発明に用いる不飽和カルボン酸重合体(A)は、1種単独でも2種以上を用いてもよい。不飽和カルボン酸重合体(A)としては、入手容易性の観点からポリアクリル酸が好ましい。 The unsaturated carboxylic acid polymer (A) contained in the nonaqueous electrolyte secondary battery of the present invention may be polyacrylic acid, polymethacrylic acid, or polyacrylic acid and polymethacrylic acid. It may be a mixture. The unsaturated carboxylic acid polymer (A) used in the present invention may be used alone or in combination of two or more. As the unsaturated carboxylic acid polymer (A), polyacrylic acid is preferable from the viewpoint of availability.
ポリアクリル酸としては、アクリル酸の単独重合体、アクリル酸と他のモノマーとの共重合体が挙げられる。ポリアクリル酸としては、重合体100重量%中に、アクリル酸由来の構成単位を、通常は60重量%以上、好ましくは75重量%以上、より好ましくは90重量%以上有する重合体を用いる。ポリアクリル酸としてはアクリル酸の単独重合体が好ましい。 Examples of polyacrylic acid include homopolymers of acrylic acid and copolymers of acrylic acid and other monomers. As the polyacrylic acid, a polymer having a structural unit derived from acrylic acid in an amount of usually 60% by weight or more, preferably 75% by weight or more, more preferably 90% by weight or more in 100% by weight of the polymer is used. As the polyacrylic acid, a homopolymer of acrylic acid is preferable.
アクリル酸以外の他のモノマーとしては、アクリル酸と共重合することが可能なモノマーを用いることができる。具体的には、他のモノマーとしては、メタクリル酸;エチレン、プロピレン、1−ブテン等のα‐オレフィン;アクリル酸メチル、アクリル酸エチル等のアクリル酸アルキルエステル;メタクリル酸メチル、メタクリル酸エチル等のメタクリル酸アルキルエステル;酢酸ビニル;スチレン等の芳香族ビニル化合物等が挙げられる。 As other monomers other than acrylic acid, monomers capable of copolymerizing with acrylic acid can be used. Specifically, other monomers include: methacrylic acid; α-olefins such as ethylene, propylene, and 1-butene; alkyl acrylates such as methyl acrylate and ethyl acrylate; methyl methacrylate and ethyl methacrylate Examples thereof include alkyl methacrylates; vinyl acetate; aromatic vinyl compounds such as styrene.
ポリメタクリル酸としては、メタクリル酸の単独重合体、メタクリル酸と他のモノマーとの共重合体が挙げられる。ポリメタクリル酸としては、重合体100重量%中に、メタクリル酸由来の構成単位を、通常は60重量%以上、好ましくは75重量%以上、より好ましくは90重量%以上有する重合体を用いる。ポリメタクリル酸としてはメタクリル酸の単独重合体が好ましい。 Examples of polymethacrylic acid include a homopolymer of methacrylic acid and a copolymer of methacrylic acid and other monomers. As polymethacrylic acid, a polymer having a structural unit derived from methacrylic acid in an amount of usually 60% by weight or more, preferably 75% by weight or more, more preferably 90% by weight or more in 100% by weight of the polymer is used. As the polymethacrylic acid, a homopolymer of methacrylic acid is preferable.
メタクリル酸以外の他のモノマーとしては、メタクリル酸と共重合することが可能なモノマーを用いることができる。具体的には、他のモノマーとしては、アクリル酸;エチレン、プロピレン、1−ブテン等のα‐オレフィン;アクリル酸メチル、アクリル酸エチル等のアクリル酸アルキルエステル;メタクリル酸メチル、メタクリル酸エチル等のメタクリル酸アルキルエステル;酢酸ビニル;スチレン等の芳香族ビニル化合物等が挙げられる。 As other monomers other than methacrylic acid, monomers capable of copolymerizing with methacrylic acid can be used. Specifically, other monomers include acrylic acid; α-olefins such as ethylene, propylene, and 1-butene; acrylic acid alkyl esters such as methyl acrylate and ethyl acrylate; methyl methacrylate, ethyl methacrylate, and the like. Examples thereof include alkyl methacrylates; vinyl acetate; aromatic vinyl compounds such as styrene.
本発明に用いる不飽和カルボン酸重合体(A)としては8×10-3〜1.4×10-2モル/gのカルボキシル基を含有することが好ましい。The unsaturated carboxylic acid polymer (A) used in the present invention preferably contains 8 × 10 −3 to 1.4 × 10 −2 mol / g of carboxyl groups.
本発明に用いる不飽和カルボン酸重合体(A)としては前述のように、ゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリエチレンオキサイド換算の重量平均分子量が、1,000〜150,000である重合体が用いられる。不飽和カルボン酸重合体(A)の重量平均分子量は1,000〜100,000であることが好ましい。重量平均分子量が1000未満の場合は、不飽和カルボン酸重合体(A)の耐電解液性が不充分である。一方で、分子量が150,000を超えると、不飽和カルボン酸重合体(A)とカルボキシル基含有フッ化ビニリデン系重合体(B)との相溶性が劣るため、剥離強度の向上は見られない。 As described above, the unsaturated carboxylic acid polymer (A) used in the present invention has a polyethylene oxide equivalent weight average molecular weight of 1,000 to 150,000 as measured by gel permeation chromatography (GPC). A polymer is used. The weight average molecular weight of the unsaturated carboxylic acid polymer (A) is preferably 1,000 to 100,000. When the weight average molecular weight is less than 1000, the electrolyte solution resistance of the unsaturated carboxylic acid polymer (A) is insufficient. On the other hand, when the molecular weight exceeds 150,000, the compatibility between the unsaturated carboxylic acid polymer (A) and the carboxyl group-containing vinylidene fluoride polymer (B) is inferior, and thus the peel strength is not improved. .
本発明に用いる不飽和カルボン酸重合体(A)としてはカルボキシル基の一部が中和されていても良い。 As an unsaturated carboxylic acid polymer (A) used for this invention, a part of carboxyl group may be neutralized.
本発明に用いる不飽和カルボン酸重合体(A)としては、市販品を用いてもよい。 A commercially available product may be used as the unsaturated carboxylic acid polymer (A) used in the present invention.
〔カルボキシル基含有フッ化ビニリデン系重合体(B)〕
本発明の非水電解質二次電池用合剤は、カルボキシル基含有フッ化ビニリデン系重合体(B)および前述の不飽和カルボン酸重合体(A)をバインダー樹脂(結着剤)として含む。[Carboxyl group-containing vinylidene fluoride polymer (B)]
The mixture for nonaqueous electrolyte secondary batteries of the present invention contains a carboxyl group-containing vinylidene fluoride polymer (B) and the aforementioned unsaturated carboxylic acid polymer (A) as a binder resin (binder).
本発明において、カルボキシル基含有フッ化ビニリデン系重合体(B)とは、重合体中にカルボキシル基を含有し、モノマーとして少なくともフッ化ビニリデンを用いて得られる重合体である。また、カルボキシル基含有フッ化ビニリデン系重合体(B)は、通常フッ化ビニリデンおよびカルボキシル基含有モノマーを用いて得られる重合体であり、さらに他のモノマーを用いてもよい。 In the present invention, the carboxyl group-containing vinylidene fluoride polymer (B) is a polymer containing a carboxyl group in a polymer and obtained using at least vinylidene fluoride as a monomer. The carboxyl group-containing vinylidene fluoride polymer (B) is a polymer that is usually obtained using vinylidene fluoride and a carboxyl group-containing monomer, and other monomers may be used.
また本発明に用いるカルボキシル基含有フッ化ビニリデン系重合体(B)は、1種単独でも2種以上を用いてもよい。 Moreover, the carboxyl group-containing vinylidene fluoride polymer (B) used in the present invention may be used alone or in combination of two or more.
カルボキシル基含有フッ化ビニリデン系重合体(B)は、該重合体100重量部あたり、フッ化ビニリデン由来の構成単位を通常は80重量部以上、好ましくは85重量部以上有する重合体である。 The carboxyl group-containing vinylidene fluoride polymer (B) is a polymer having usually 80 parts by weight or more, preferably 85 parts by weight or more of structural units derived from vinylidene fluoride per 100 parts by weight of the polymer.
本発明に用いる、カルボキシル基含有フッ化ビニリデン系重合体(B)は通常、(1)フッ化ビニリデンおよびカルボキシル基含有モノマー、必要に応じて他のモノマーを共重合する方法(以下、(1)の方法とも記す)、(2)フッ化ビニリデンを重合または、フッ化ビニリデンと他のモノマーとを共重合して得られた、フッ化ビニリデン系重合体と、カルボキシル基含有モノマーを重合または、カルボキシル基含有モノマーと他のモノマーとを共重合して得られた、カルボキシル基含有重合体とを用いて、フッ化ビニリデン系重合体にカルボキシル基含有重合体をグラフトする方法(以下、(2)の方法とも記す)、(3)フッ化ビニリデンを重合または、フッ化ビニリデンと他のモノマーとを共重合し、フッ化ビニリデン系重合体を得た後に、該フッ化ビニリデン系重合体を、アクリル酸等のカルボキシル基含有モノマーを用いてグラフト重合する方法(以下、(3)の方法とも記す)のいずれかの方法により製造される。 The carboxyl group-containing vinylidene fluoride polymer (B) used in the present invention is usually (1) a method of copolymerizing vinylidene fluoride and a carboxyl group-containing monomer and, if necessary, another monomer (hereinafter referred to as (1) And (2) polymerizing vinylidene fluoride or copolymerizing vinylidene fluoride and other monomers, polymerizing vinylidene fluoride polymer and carboxyl group-containing monomer, or carboxyl A method of grafting a carboxyl group-containing polymer onto a vinylidene fluoride polymer using a carboxyl group-containing polymer obtained by copolymerizing a group-containing monomer and another monomer (hereinafter referred to as (2) (3) Polymerization of vinylidene fluoride or copolymerization of vinylidene fluoride and other monomers to obtain a vinylidene fluoride polymer Later, the vinylidene fluoride-based polymer, a method of graft-polymerization using a carboxyl group-containing monomers such as acrylic acid is produced by any method (hereinafter, (3) referred to as method).
本発明に用いる、カルボキシル基含有フッ化ビニリデン系重合体(B)は、カルボキシル基を有するため、カルボキシル基を有さないポリフッ化ビニリデンと比べ、集電体との接着性が改善される。またカルボキシル基含有フッ化ビニリデン系重合体(B)は、カルボキシル基を有さないポリフッ化ビニリデンと同等の耐電解液性を有する。 Since the carboxyl group-containing vinylidene fluoride polymer (B) used in the present invention has a carboxyl group, the adhesion to the current collector is improved as compared with polyvinylidene fluoride not having a carboxyl group. The carboxyl group-containing vinylidene fluoride polymer (B) has an electrolytic solution resistance equivalent to that of polyvinylidene fluoride having no carboxyl group.
カルボキシル基含有フッ化ビニリデン系重合体(B)の製造方法としては、前記(1)〜(3)の方法の中でも、工程数、および生産コストの観点から、(1)の方法で製造することが好ましい。すなわち、カルボキシル基含有フッ化ビニリデン系重合体(B)は、フッ化ビニリデンと、カルボキシル基含有モノマーとの共重合体であることが好ましい。 As the method for producing the carboxyl group-containing vinylidene fluoride polymer (B), among the methods (1) to (3), the method (1) is used from the viewpoint of the number of steps and production cost. Is preferred. That is, the carboxyl group-containing vinylidene fluoride polymer (B) is preferably a copolymer of vinylidene fluoride and a carboxyl group-containing monomer.
本発明に用いるカルボキシル基含有フッ化ビニリデン系重合体(B)は、フッ化ビニリデンを、通常は80〜99.9重量部、好ましくは95〜99.7重量部、およびカルボキシル基含有モノマーを、通常は0.1〜20重量部、好ましくは0.3〜5重量部(但し、フッ化ビニリデンおよびカルボキシル基含有モノマーの合計を100重量部とする)共重合して得られるフッ化ビニリデン系重合体である。なお、前記カルボキシル基含有フッ化ビニリデン系重合体(B)としては、前記フッ化ビニリデンおよびカルボキシル基含有モノマーに加えて、さらに他のモノマーを共重合して得られる重合体であってもよい。なお、他のモノマーを用いる場合には、前記フッ化ビニリデンおよびカルボキシル基含有モノマーの合計を100重量部とすると、他のモノマーは通常0.1〜20重量部用いられる。 The carboxyl group-containing vinylidene fluoride polymer (B) used in the present invention contains vinylidene fluoride, usually 80 to 99.9 parts by weight, preferably 95 to 99.7 parts by weight, and a carboxyl group-containing monomer. Usually 0.1 to 20 parts by weight, preferably 0.3 to 5 parts by weight (provided that the total of vinylidene fluoride and carboxyl group-containing monomers is 100 parts by weight) copolymerized vinylidene fluoride-based weight It is a coalescence. The carboxyl group-containing vinylidene fluoride polymer (B) may be a polymer obtained by copolymerizing another monomer in addition to the vinylidene fluoride and the carboxyl group-containing monomer. In addition, when using another monomer, if the total of the said vinylidene fluoride and a carboxyl group containing monomer shall be 100 weight part, 0.1-20 weight part of other monomers are used normally.
前記カルボキシル基含有モノマーとしては、不飽和一塩基酸、不飽和二塩基酸、不飽和二塩基酸のモノエステル等が好ましい。 As the carboxyl group-containing monomer, unsaturated monobasic acid, unsaturated dibasic acid, monoester of unsaturated dibasic acid and the like are preferable.
前記不飽和一塩基酸としては、アクリル酸、メタクリル酸等が挙げられる。前記不飽和二塩基酸としては、マレイン酸、シトラコン酸等が挙げられる。また、前記不飽和二塩基酸のモノエステルとしては、炭素数5〜8のものが好ましく、例えばマレイン酸モノメチルエステル、マレイン酸モノエチルエステル、シトラコン酸モノメチルエステル、シトラコン酸モノエチルエステル等を挙げることができる。 Examples of the unsaturated monobasic acid include acrylic acid and methacrylic acid. Examples of the unsaturated dibasic acid include maleic acid and citraconic acid. The unsaturated dibasic acid monoester preferably has 5 to 8 carbon atoms, and examples thereof include maleic acid monomethyl ester, maleic acid monoethyl ester, citraconic acid monomethyl ester, and citraconic acid monoethyl ester. Can do.
中でも、カルボキシル基含有モノマーとしては、不飽和二塩基酸、不飽和二塩基酸モノエステル、アクリル酸およびメタクリル酸から選択される少なくとも一種のモノマーが好ましく、マレイン酸、シトラコン酸、マレイン酸モノメチルエステル、シトラコン酸モノメチルエステル、アクリル酸、メタクリル酸がより好ましい。 Among them, the carboxyl group-containing monomer is preferably at least one monomer selected from unsaturated dibasic acid, unsaturated dibasic acid monoester, acrylic acid and methacrylic acid, maleic acid, citraconic acid, maleic acid monomethyl ester, Citraconic acid monomethyl ester, acrylic acid and methacrylic acid are more preferred.
前記フッ化ビニリデンおよびカルボキシル基含有モノマーと共重合することが可能な他のモノマーとは、フッ化ビニリデンおよびカルボキシル基含有モノマー以外のモノマーを意味し、他のモノマーとしては、例えばフッ化ビニリデンと共重合可能なフッ素系単量体あるいはエチレン、プロピレン等の炭化水素系単量体が挙げられる。フッ化ビニリデンと共重合可能なフッ素系単量体としては、フッ化ビニル、トリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロメチルビニルエーテルに代表されるパーフルオロアルキルビニルエーテル等を挙げることができる。なお、前記他のモノマーは、1種単独で用いてもよく、2種以上を用いてもよい。 The other monomer that can be copolymerized with the vinylidene fluoride and the carboxyl group-containing monomer means a monomer other than the vinylidene fluoride and the carboxyl group-containing monomer, and examples of the other monomer include a copolymer with vinylidene fluoride. Examples thereof include polymerizable fluorine monomers and hydrocarbon monomers such as ethylene and propylene. Examples of the fluorine-based monomer copolymerizable with vinylidene fluoride include perfluoroalkyl vinyl ethers typified by vinyl fluoride, trifluoroethylene, tetrafluoroethylene, hexafluoropropylene, and perfluoromethyl vinyl ether. . In addition, the said other monomer may be used individually by 1 type, and may use 2 or more types.
また、(1)の方法としては、懸濁重合、乳化重合、溶液重合等の方法が採用できるが、後処理の容易さ等の点から水系の懸濁重合、乳化重合が好ましく、水系の懸濁重合が特に好ましい。 As the method (1), methods such as suspension polymerization, emulsion polymerization, and solution polymerization can be employed. From the viewpoint of ease of post-treatment, aqueous suspension polymerization and emulsion polymerization are preferred, and aqueous suspension is preferred. Turbid polymerization is particularly preferred.
水を分散媒とした懸濁重合においては、メチルセルロース、メトキシ化メチルセルロース、プロポキシ化メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ポリビニルアルコール、ポリエチレンオキシド、ゼラチン等の懸濁剤を、共重合に使用する全モノマー(フッ化ビニリデンおよび、カルボキシル基含有モノマー、必要に応じて共重合される他のモノマー)100重量部に対して0.005〜1.0重量部、好ましくは0.01〜0.4重量部の範囲で添加して使用する。 In suspension polymerization using water as a dispersion medium, all monomers used for the copolymerization of suspending agents such as methylcellulose, methoxylated methylcellulose, propoxylated methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, polyvinyl alcohol, polyethylene oxide, gelatin, etc. (Vinylidene fluoride and carboxyl group-containing monomer, other monomer copolymerized as necessary) 0.005 to 1.0 part by weight, preferably 0.01 to 0.4 part by weight based on 100 parts by weight Add in the range of.
重合開始剤としては、ジイソプロピルパーオキシジカーボネート、ジノルマルプロピルパーオキシジカーボネート、ジノルマルヘプタフルオロプロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、イソブチリルパーオキサイド、ジ(クロロフルオロアシル)パーオキサイド、ジ(パーフルオロアシル)パーオキサイド等が使用できる。その使用量は、共重合に使用する全モノマー(フッ化ビニリデンおよび、カルボキシル基含有モノマー、必要に応じて共重合される他のモノマー)を100重量部とすると、0.1〜5重量部、好ましくは0.3〜2重量部である。 As the polymerization initiator, diisopropyl peroxydicarbonate, dinormalpropyl peroxydicarbonate, dinormalheptafluoropropyl peroxydicarbonate, diisopropyl peroxydicarbonate, isobutyryl peroxide, di (chlorofluoroacyl) peroxide, Di (perfluoroacyl) peroxide and the like can be used. The amount used is 0.1 to 5 parts by weight, assuming that 100 parts by weight of all monomers used for copolymerization (vinylidene fluoride and carboxyl group-containing monomers, and other monomers copolymerized as necessary), Preferably it is 0.3-2 weight part.
また、酢酸エチル、酢酸メチル、炭酸ジエチル、アセトン、エタノール、n−プロパノール、アセトアルデヒド、プロピルアルデヒド、プロピオン酸エチル、四塩化炭素等の連鎖移動剤を添加して、得られるカルボキシル基含有フッ化ビニリデン系重合体(B)の重合度を調節することも可能である。その使用量は、通常は、共重合に使用する全モノマー(フッ化ビニリデンおよび、カルボキシル基含有モノマー、必要に応じて共重合される他のモノマー)を100重量部とすると、0.1〜5重量部、好ましくは0.5〜3重量部である。 In addition, a carboxyl group-containing vinylidene fluoride system obtained by adding a chain transfer agent such as ethyl acetate, methyl acetate, diethyl carbonate, acetone, ethanol, n-propanol, acetaldehyde, propyl aldehyde, ethyl propionate, carbon tetrachloride, etc. It is also possible to adjust the degree of polymerization of the polymer (B). The amount used is usually 0.1 to 5 when 100 parts by weight of all monomers used for copolymerization (vinylidene fluoride, carboxyl group-containing monomer, and other monomers copolymerized as necessary) are used. Part by weight, preferably 0.5 to 3 parts by weight.
また、共重合に使用する全モノマー(フッ化ビニリデンおよび、カルボキシル基含有モノマー、必要に応じて共重合される他のモノマー)の仕込量は、単量体の合計:水の重量比で通常は1:1〜1:10、好ましくは1:2〜1:5であり、重合は温度10〜80℃であり、重合時間は10〜100時間であり、重合時の圧力は通常加圧下で行われ、好ましくは2.0〜8.0MPa‐Gである。 The total amount of monomers used for copolymerization (vinylidene fluoride and carboxyl group-containing monomers, and other monomers copolymerized as necessary) is usually in the weight ratio of the total monomer: water. The ratio is 1: 1 to 1:10, preferably 1: 2 to 1: 5, the polymerization is performed at a temperature of 10 to 80 ° C., the polymerization time is 10 to 100 hours, and the pressure during the polymerization is usually performed under pressure. Preferably, it is 2.0 to 8.0 MPa-G.
上記の条件で水系の懸濁重合を行うことにより、容易にフッ化ビニリデンおよび、カルボキシル基含有モノマー、必要に応じて共重合される他のモノマーを共重合することができ、本発明に用いるカルボキシル基含有フッ化ビニリデン系重合体(B)を得ることができる。 By performing aqueous suspension polymerization under the above conditions, it is possible to easily copolymerize vinylidene fluoride, a carboxyl group-containing monomer, and other monomers copolymerized as necessary. A group-containing vinylidene fluoride polymer (B) can be obtained.
また、前記(2)の方法によりカルボキシル基含有フッ化ビニリデン系重合体(B)を製造する場合には例えば以下の方法で行うことができる。 Moreover, when manufacturing a carboxyl group containing vinylidene fluoride polymer (B) by the method of said (2), it can carry out with the following method, for example.
(2)の方法によりカルボキシル基含有フッ化ビニリデン系重合体(B)を製造する場合には、まずフッ化ビニリデンを重合またはフッ化ビニリデンと他のモノマーとを共重合することにより、フッ化ビニリデン系重合体を得る。該重合または共重合は通常懸濁重合あるいは乳化重合により行われる。また、前記フッ化ビニリデン系重合体とは別に、カルボキシル基含有モノマーを重合または、カルボキシル基含有モノマーと他のモノマーとを共重合することによりカルボキシル基含有重合体を得る。該カルボキシル基含有重合体は通常、乳化重合あるいは懸濁重合により得られる。さらに上記フッ化ビニリデン系重合体およびカルボキシル基含有重合体を用いて、フッ化ビニリデン系重合体にカルボキシル基含有重合体をグラフトすることにより、カルボキシル基含有フッ化ビニリデン系重合体(B)を得ることができる。該グラフトは、過酸化物を用いて行ってもよく、放射線を用いて行ってもよいが、好ましくはフッ化ビニリデン系重合体およびカルボキシル基含有重合体の混合物を過酸化物の存在下で加熱処理することにより行われる。 In the case of producing the carboxyl group-containing vinylidene fluoride polymer (B) by the method (2), first, vinylidene fluoride is polymerized or vinylidene fluoride is copolymerized with other monomers to obtain vinylidene fluoride. A polymer is obtained. The polymerization or copolymerization is usually performed by suspension polymerization or emulsion polymerization. In addition to the vinylidene fluoride polymer, a carboxyl group-containing polymer is obtained by polymerizing a carboxyl group-containing monomer or copolymerizing a carboxyl group-containing monomer and another monomer. The carboxyl group-containing polymer is usually obtained by emulsion polymerization or suspension polymerization. Further, the carboxyl group-containing vinylidene fluoride polymer (B) is obtained by grafting the carboxyl group-containing polymer onto the vinylidene fluoride polymer using the vinylidene fluoride polymer and the carboxyl group-containing polymer. be able to. The grafting may be performed using a peroxide or may be performed using radiation. Preferably, a mixture of a vinylidene fluoride polymer and a carboxyl group-containing polymer is heated in the presence of a peroxide. It is done by processing.
本発明に用いるカルボキシル基含有フッ化ビニリデン系重合体(B)は、インヘレント粘度(樹脂4gを1リットルのN,N−ジメチルホルムアミドに溶解させた溶液の30℃における対数粘度。以下、同様)が0.5〜5.0dl/gの範囲内の値であることが好ましく、1.1〜4.0dl/gの範囲内の値であることがより好ましい。上記範囲内の粘度であれば、非水電解質二次電池用合剤に好適に用いることができる。 The carboxyl group-containing vinylidene fluoride polymer (B) used in the present invention has an inherent viscosity (logarithmic viscosity at 30 ° C. of a solution obtained by dissolving 4 g of resin in 1 liter of N, N-dimethylformamide. The same applies hereinafter). A value in the range of 0.5 to 5.0 dl / g is preferable, and a value in the range of 1.1 to 4.0 dl / g is more preferable. If it is a viscosity within the said range, it can use suitably for the mixture for nonaqueous electrolyte secondary batteries.
インヘレント粘度ηiの算出は、カルボキシル基含有フッ化ビニリデン系重合体(B)80mgを20mlのN,N-ジメチルホルムアミドに溶解して、30℃の恒温槽内でウベローテ粘度計を用いて次式により行うことができる。The inherent viscosity η i is calculated by dissolving 80 mg of the carboxyl group-containing vinylidene fluoride polymer (B) in 20 ml of N, N-dimethylformamide and using an Ubbelote viscometer in a constant temperature bath at 30 ° C. Can be performed.
ηi=(1/C)・ln(η/η0)
ここでηは重合体溶液の粘度、η0は溶媒のN,N−ジメチルホルムアミド単独の粘度、Cは0.4g/dlである。η i = (1 / C) · ln (η / η 0 )
Here, η is the viscosity of the polymer solution, η 0 is the viscosity of N, N-dimethylformamide alone as the solvent, and C is 0.4 g / dl.
また、カルボキシル基含有フッ化ビニリデン系重合体(B)は、GPCで測定されるポリスチレン換算の重量平均分子量が、通常は5万〜200万の範囲であり、好ましくは20万〜150万の範囲である。 The carboxyl group-containing vinylidene fluoride polymer (B) has a polystyrene-equivalent weight average molecular weight measured by GPC in the range of usually 50,000 to 2,000,000, preferably in the range of 200,000 to 1,500,000. It is.
また、カルボキシル基含有フッ化ビニリデン系重合体(B)は、赤外線吸収スペクトルを測定した際の下記式(1)で表される吸光度比(IR)が、0.1〜5.0の範囲であることが好ましく、0.3〜2.5であることがより好ましい。IRが0.1未満の場合は、集電体との接着性が不充分となる場合がある。一方で、IRが5.0を超えると、得られる重合体の耐電解液性が低下する傾向がある。なお、該重合体の赤外線吸収スペクトルの測定は、該重合体に熱プレスを施すことにより製造したフィルムについて、赤外線吸収スペクトルを測定することにより行われる。The carboxyl group-containing vinylidene fluoride polymer (B) has an absorbance ratio (I R ) represented by the following formula (1) when an infrared absorption spectrum is measured, in the range of 0.1 to 5.0. It is preferable that it is 0.3-2.5. If I R is less than 0.1, there is a case where adhesion between the current collector becomes insufficient. On the other hand, if I R exceeds 5.0, electrolyte resistance of the resulting polymer tends to decrease. In addition, the measurement of the infrared absorption spectrum of this polymer is performed by measuring an infrared absorption spectrum about the film manufactured by hot-pressing this polymer.
IR=I1650-1800/I3000-3100 ・・・(1)
上記式(1)において、I1650-1800は1650〜1800cm-1の範囲に検出されるカルボニル基由来の吸光度であり、I3000-3100は3000〜3100cm-1の範囲に検出されるCH構造由来の吸光度である。IRはカルボキシル基含有フッ化ビニリデン系重合体(B)中のカルボニル基の存在量を示す尺度となり、結果的にカルボキシル基の存在量を示す尺度となる。I R = I 1650-1800 / I 3000-3100 (1)
In the above formula (1), I 1650-1800 is the absorbance derived from the carbonyl group detected in the range of 1650-1800 cm −1 , and I 3000-3100 is derived from the CH structure detected in the range of 3000-3100 cm −1. Absorbance. I R becomes a measure of the abundance of the carbonyl group in the carboxyl group-containing vinylidene fluoride-based polymer (B), a measure of the abundance of the resulting carboxyl group.
〔電極活物質〕
本発明の非水電解質二次電池用合剤は、電極活物質を含む。電極活物質としては、特に限定は無く、従来公知の負極用の電極活物質を用いることができ、具体例としては、炭素材料、金属・合金材料、金属酸化物などが挙げられるが、中でも炭素材料が好ましい。[Electrode active material]
The mixture for nonaqueous electrolyte secondary batteries of the present invention contains an electrode active material. The electrode active material is not particularly limited, and conventionally known electrode active materials for negative electrodes can be used, and specific examples include carbon materials, metal / alloy materials, metal oxides, etc. Material is preferred.
前記炭素材料としては、人造黒鉛、天然黒鉛、難黒鉛化炭素、易黒鉛化炭素などが用いられる。また、前記炭素材料は、1種単独で用いても、2種以上を用いてもよい。 As the carbon material, artificial graphite, natural graphite, non-graphitizable carbon, graphitizable carbon and the like are used. Moreover, the said carbon material may be used individually by 1 type, or may use 2 or more types.
このような炭素材料を使用すると、電池のエネルギー密度を高くすることができる。 When such a carbon material is used, the energy density of the battery can be increased.
前記人造黒鉛としては、例えば、有機材料を炭素化しさらに高温で熱処理を行い、粉砕・分級することにより得られる。人造黒鉛としては、MAGシリーズ(日立化成工業製)、MCMB(大阪ガス製)等が用いられる。 The artificial graphite can be obtained, for example, by carbonizing an organic material, heat-treating it at a high temperature, pulverizing and classifying it. As the artificial graphite, MAG series (manufactured by Hitachi Chemical Co., Ltd.), MCMB (manufactured by Osaka Gas) and the like are used.
前記電極活物質の比表面積は、1〜10m2/gであることが好ましく、2〜6m2/gであることがより好ましい。比表面積が1m2/g未満の場合は、従来の結着剤を用いた場合であっても、結着剤の偏在は起こりにくいため、本発明の効果は小さい。比表面積が10m2/gを超えると、電解液の分解量が増加し、初期の不可逆容量が増えるため好ましくない。The specific surface area of the electrode active material is preferably 1 to 10 m 2 / g, and more preferably 2 to 6 m 2 / g. When the specific surface area is less than 1 m 2 / g, even when a conventional binder is used, the uneven distribution of the binder is unlikely to occur, so the effect of the present invention is small. If the specific surface area exceeds 10 m 2 / g, the amount of decomposition of the electrolytic solution increases and the initial irreversible capacity increases, which is not preferable.
なお、電極活物資の比表面積は、窒素吸着法により求めることができる。 In addition, the specific surface area of an electrode active material can be calculated | required by the nitrogen adsorption method.
〔有機溶剤〕
本発明の非水電解質二次電池用合剤は、有機溶剤を含有する。有機溶剤としては前記不飽和カルボン酸重合体(A)およびカルボキシル基含有フッ化ビニリデン系重合体(B)を溶解する作用を有するものが用いられ、好ましくは極性を有する溶剤が用いられる。有機溶剤の具体例としては、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスフォアミド、ジオキサン、テトラヒドロフラン、テトラメチルウレア、トリエチルホスフェイト、トリメチルホスフェイトなどが挙げられ、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシドが好ましい。また、有機溶剤は1種単独でも、2種以上を混合してもよい。〔Organic solvent〕
The mixture for nonaqueous electrolyte secondary batteries of the present invention contains an organic solvent. As the organic solvent, those having an action of dissolving the unsaturated carboxylic acid polymer (A) and the carboxyl group-containing vinylidene fluoride polymer (B) are used, and a solvent having polarity is preferably used. Specific examples of the organic solvent include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoamide, dioxane, tetrahydrofuran, tetramethylurea, and triethyl phosphate. And N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, and dimethyl sulfoxide are preferable. Moreover, the organic solvent may be used alone or in combination of two or more.
本発明の非水電解質二次電池用合剤は、前記不飽和カルボン酸重合体(A)、カルボキシル基含有フッ化ビニリデン系重合体(B)、電極活物質、および有機溶剤を含有する。 The mixture for nonaqueous electrolyte secondary batteries of the present invention contains the unsaturated carboxylic acid polymer (A), the carboxyl group-containing vinylidene fluoride polymer (B), an electrode active material, and an organic solvent.
本発明の非水電解質二次電池用合剤は、不飽和カルボン酸重合体(A)およびカルボキシル基含有フッ化ビニリデン系重合体(B)を含むが、不飽和カルボン酸重合体(A)およびカルボキシル基含有フッ化ビニリデン系重合体(B)の合計100重量%あたり、不飽和カルボン酸重合体(A)が0.5〜15重量%であることが好ましく、0.8〜6重量%であることがより好ましい。また、バインダー樹脂(不飽和カルボン酸重合体(A)およびカルボキシル基含有フッ化ビニリデン系重合体(B))と、電極活物質との合計100重量部あたり、バインダー樹脂は0.5〜15重量部であることが好ましく、1〜10重量部であることがより好ましく、活物質は85〜99.5重量部であることが好ましく、90〜99重量部であることがより好ましい。また、バインダー樹脂(不飽和カルボン酸重合体(A)およびカルボキシル基含有フッ化ビニリデン系重合体(B))と、電極活物質との合計を100重量部とすると、有機溶剤は20〜300重量部であることが好ましく、50〜200重量部であることがより好ましい。 The mixture for a non-aqueous electrolyte secondary battery of the present invention includes an unsaturated carboxylic acid polymer (A) and a carboxyl group-containing vinylidene fluoride polymer (B), but the unsaturated carboxylic acid polymer (A) and It is preferable that the unsaturated carboxylic acid polymer (A) is 0.5 to 15% by weight per 100% by weight in total of the carboxyl group-containing vinylidene fluoride polymer (B), and 0.8 to 6% by weight. More preferably. In addition, the binder resin is 0.5 to 15 weights per 100 parts by weight in total of the binder resin (unsaturated carboxylic acid polymer (A) and carboxyl group-containing vinylidene fluoride polymer (B)) and the electrode active material. The active material is preferably 85 to 99.5 parts by weight, and more preferably 90 to 99 parts by weight. When the total of the binder resin (unsaturated carboxylic acid polymer (A) and carboxyl group-containing vinylidene fluoride polymer (B)) and the electrode active material is 100 parts by weight, the organic solvent is 20 to 300 weights. Parts, preferably 50 to 200 parts by weight.
上記範囲内で各成分を含有すると、本発明の非水電解質二次電池用合剤を用いて、非水電解質二次電池用電極を生産性よく製造することが可能であり、非水電解質二次電池用電極を製造した際に、合剤層における結着剤の偏在を充分に抑制することが可能であり、かつ合剤層と、集電体との剥離強度に優れる。 When each component is contained within the above range, it is possible to produce a nonaqueous electrolyte secondary battery electrode with high productivity using the nonaqueous electrolyte secondary battery mixture of the present invention. When the secondary battery electrode is produced, the uneven distribution of the binder in the mixture layer can be sufficiently suppressed, and the peel strength between the mixture layer and the current collector is excellent.
また、本発明の非水電解質二次電池用合剤は、前記不飽和カルボン酸重合体(A)、カルボキシル基含有フッ化ビニリデン系重合体(B)、電極活物質、および有機溶剤以外の他の成分を含有していてもよい。他の成分としては、カーボンブラックなどの導電助剤やポリビニルピロリドンなどの顔料分散剤等を含んでいてもよい。前記他の成分としては、前記不飽和カルボン酸重合体(A)およびカルボキシル基含有フッ化ビニリデン系重合体(B)以外の他の重合体を含んでいてもよい。前記他の重合体としては、例えばポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル共重合体等のフッ化ビニリデン系重合体が挙げられる。本発明の非水電解質二次電池用合剤に、他の重合体が含まれる場合には、通常前記不飽和カルボン酸重合体(A)およびカルボキシル基含有フッ化ビニリデン系重合体(B)の合計100重量部に対して25重量部以下の量で含まれる。 The mixture for a non-aqueous electrolyte secondary battery of the present invention is other than the unsaturated carboxylic acid polymer (A), the carboxyl group-containing vinylidene fluoride polymer (B), the electrode active material, and the organic solvent. The component may be contained. As other components, a conductive aid such as carbon black, a pigment dispersant such as polyvinylpyrrolidone, and the like may be included. As said other component, polymers other than the said unsaturated carboxylic acid polymer (A) and a carboxyl group-containing vinylidene fluoride polymer (B) may be included. Examples of the other polymer include fluorides such as polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, and vinylidene fluoride-perfluoromethyl vinyl ether copolymer. Examples include vinylidene polymers. When the non-aqueous electrolyte secondary battery mixture of the present invention contains other polymers, the unsaturated carboxylic acid polymer (A) and the carboxyl group-containing vinylidene fluoride polymer (B) are usually used. It is contained in an amount of 25 parts by weight or less with respect to a total of 100 parts by weight.
本発明の非水電解質二次電池用合剤の、E型粘度計を用いて、25℃、せん断速度2s-1で測定を行った際の粘度は、通常2000〜50000mPa・sであり、好ましくは5000〜30000mPa・sである。The viscosity of the mixture for a nonaqueous electrolyte secondary battery of the present invention when measured at 25 ° C. and a shear rate of 2 s −1 using an E-type viscometer is usually 2000 to 50000 mPa · s, preferably Is 5000 to 30000 mPa · s.
本発明の非水電解質二次電池用合剤の製造方法としては、前記不飽和カルボン酸重合体(A)、カルボキシル基含有フッ化ビニリデン系重合体(B)、電極活物質、および有機溶剤を均一なスラリーとなるように混合すればよく、混合する際の順序は特に限定されないが、例えば前記不飽和カルボン酸重合体(A)、およびカルボキシル基含有フッ化ビニリデン系重合体(B)を、有機溶剤の一部に溶解し、バインダー溶液を得て、該バインダー溶液に電極活物質および残りの有機溶剤を添加し、攪拌混合し、非水電解質二次電池用合剤を得る方法、前記不飽和カルボン酸重合体(A)、カルボキシル基含有フッ化ビニリデン系重合体(B)をそれぞれ有機溶剤の一部に溶解し、2つのバインダー溶液を得て、該2つのバインダー溶液をブレンドし、ブレンドしたバインダー溶液に電極活物質および残りの有機溶剤を添加し、攪拌混合し、非水電解質二次電池用合剤を得る方法が挙げられる。 The method for producing the mixture for a non-aqueous electrolyte secondary battery of the present invention includes the unsaturated carboxylic acid polymer (A), the carboxyl group-containing vinylidene fluoride polymer (B), the electrode active material, and the organic solvent. What is necessary is just to mix so that it may become a uniform slurry, and the order at the time of mixing is not specifically limited, For example, the said unsaturated carboxylic acid polymer (A) and a carboxyl group-containing vinylidene fluoride polymer (B), Dissolving in a part of the organic solvent to obtain a binder solution, adding the electrode active material and the remaining organic solvent to the binder solution, mixing by stirring, and obtaining a mixture for a non-aqueous electrolyte secondary battery, Each of the saturated carboxylic acid polymer (A) and the carboxyl group-containing vinylidene fluoride polymer (B) is dissolved in a part of an organic solvent to obtain two binder solutions, and the two binder solutions are blended. And de was added blended binder solution in the electrode active material and the remaining organic solvent, stirring and mixing, a method may be mentioned of obtaining a nonaqueous electrolyte secondary battery mixture.
〔非水電解質二次電池用電極〕
本発明の非水電解質二次電池用電極は、前記非水電解質二次電池用合剤を、集電体に塗布・乾燥することにより得られ、集電体と、非水電解質二次電池用合剤から形成される層とを有する。本発明の非水電解質二次電池用電極は通常は、負極として用いる。[Electrode for non-aqueous electrolyte secondary battery]
The electrode for a non-aqueous electrolyte secondary battery of the present invention is obtained by applying and drying the mixture for a non-aqueous electrolyte secondary battery on a current collector, and the current collector and for the non-aqueous electrolyte secondary battery And a layer formed from a mixture. The electrode for a nonaqueous electrolyte secondary battery of the present invention is usually used as a negative electrode.
なお、本発明において、非水電解質二次電池用合剤を集電体に塗布・乾燥することにより形成される、非水電解質二次電池用合剤から形成される層を、合剤層と記す。 In the present invention, a layer formed from a mixture for a nonaqueous electrolyte secondary battery, which is formed by applying and drying a mixture for a nonaqueous electrolyte secondary battery on a current collector, a mixture layer I write.
本発明に用いる集電体としては、例えば銅が挙げられ、その形状としては例えば金属箔や金属網等が挙げられる。集電体としては、銅箔が好ましい。 Examples of the current collector used in the present invention include copper, and examples of the shape thereof include a metal foil and a metal net. As the current collector, a copper foil is preferable.
集電体の厚さは、通常は5〜100μmであり、好ましくは5〜20μmである。 The thickness of the current collector is usually 5 to 100 μm, preferably 5 to 20 μm.
また、合剤層の厚さは、通常は20〜250μmであり、好ましくは20〜150μmである。 Moreover, the thickness of a mixture layer is 20-250 micrometers normally, Preferably it is 20-150 micrometers.
本発明の非水電解質二次電池用電極を製造する際には、前記非水電解質二次電池用合剤を前記集電体の少なくとも一面、好ましくは両面に塗布を行う。塗布する際の方法としては特に限定は無く、バーコーター、ダイコーター、コンマコーターで塗布する等の方法が挙げられる。 When manufacturing the electrode for nonaqueous electrolyte secondary batteries of the present invention, the mixture for nonaqueous electrolyte secondary batteries is applied to at least one surface, preferably both surfaces of the current collector. The method for coating is not particularly limited, and examples thereof include a method using a bar coater, a die coater, or a comma coater.
また、塗布した後に行われる乾燥としては、通常50〜150℃の温度で1〜300分行われる。また、乾燥の際の圧力は特に限定はないが、通常は、大気圧下または減圧下で行われる。 Moreover, as drying performed after apply | coating, it is normally performed for 1 to 300 minutes at the temperature of 50-150 degreeC. Moreover, the pressure at the time of drying is not particularly limited, but it is usually carried out under atmospheric pressure or reduced pressure.
さらに、乾燥を行ったのちに、熱処理が行われてもよい。熱処理を行う場合には、通常100〜250℃の温度で1〜300分行われる。なお、熱処理の温度は前記乾燥と重複するが、これらの工程は、別個の工程であってもよく、連続的に行われる工程であってもよい。 Further, heat treatment may be performed after drying. When performing heat processing, it is normally performed for 1 to 300 minutes at the temperature of 100-250 degreeC. In addition, although the temperature of heat processing overlaps with the said drying, these processes may be a separate process and the process performed continuously.
また、さらにプレス処理を行ってもよい。プレス処理を行う場合には、通常1〜200MP‐Gで行われる。プレス処理を行うと電極密度を向上できるため好ましい。 Further, press processing may be performed. When performing a press process, it is normally performed by 1-200MP-G. It is preferable to perform the press treatment because the electrode density can be improved.
以上の方法で、本発明の非水電解質二次電池用電極を製造することができる。なお、非水電解質二次電池用電極の層構成としては、非水電解質二次電池用合剤を集電体の一面に塗布した場合には、合剤層/集電体の二層構成であり、非水電解質二次電池用合剤を集電体の両面に塗布した場合には、合剤層/集電体/合剤層の三層構成である。 By the above method, the electrode for nonaqueous electrolyte secondary batteries of this invention can be manufactured. In addition, as a layer structure of the electrode for nonaqueous electrolyte secondary batteries, when the mixture for nonaqueous electrolyte secondary batteries is applied to one surface of the current collector, the layer structure of the mixture layer / current collector is Yes, when the mixture for a non-aqueous electrolyte secondary battery is applied on both sides of the current collector, it has a three-layer structure of a mixture layer / current collector / mixture layer.
本発明の非水電解質二次電池用電極は、前記非水電解質二次電池用合剤を用いることにより、集電体と合剤層との剥離強度に優れるため、プレス、スリット、捲回などの工程で電極に亀裂や剥離が生じにくく、生産性の向上に繋がるために好ましい。 The electrode for a non-aqueous electrolyte secondary battery of the present invention is excellent in peel strength between the current collector and the mixture layer by using the mixture for a non-aqueous electrolyte secondary battery, so that press, slit, winding, etc. In this process, cracks and peeling are unlikely to occur in the electrode, which is preferable because it leads to an improvement in productivity.
本発明の非水電解質二次電池用電極は、前述のように集電体と合剤層との剥離強度に優れるが、具体的には、集電体と合剤層との剥離強度は、JIS K6854に準拠して、180°剥離試験により測定を行った際に通常は0.5〜20gf/mmであり、好ましくは1〜10gf/mmである。 The electrode for a non-aqueous electrolyte secondary battery of the present invention is excellent in the peel strength between the current collector and the mixture layer as described above. Specifically, the peel strength between the current collector and the mixture layer is According to JIS K6854, it is usually 0.5 to 20 gf / mm, preferably 1 to 10 gf / mm, when measured by a 180 ° peel test.
本発明の非水電解質二次電池用電極は、前記非水電解質二次電池用合剤から形成される合剤層を有しており、該合剤層は、結着剤の偏在が抑制されている。そのために集電体と合剤層との剥離強度に優れる。 The electrode for a non-aqueous electrolyte secondary battery of the present invention has a mixture layer formed from the mixture for the non-aqueous electrolyte secondary battery, and the mixture layer suppresses uneven distribution of the binder. ing. Therefore, the peel strength between the current collector and the mixture layer is excellent.
〔非水電解質二次電池〕
本発明の非水電解質二次電池は、前記非水電解質二次電池用電極を有することを特徴とする。[Nonaqueous electrolyte secondary battery]
The non-aqueous electrolyte secondary battery of the present invention is characterized by having the non-aqueous electrolyte secondary battery electrode.
本発明の非水電解質二次電池としては、前記非水電解質二次電池用電極を有していること以外は特に限定は無い。非水電解質二次電池としては、前記非水電解質二次電池用電極を通常は負極として有し、負極以外の部位、例えば正極、セパレータ等は従来公知のものを用いることができる。 The nonaqueous electrolyte secondary battery of the present invention is not particularly limited except that the nonaqueous electrolyte secondary battery has the electrode for nonaqueous electrolyte secondary batteries. As the nonaqueous electrolyte secondary battery, the electrode for a nonaqueous electrolyte secondary battery is usually used as a negative electrode, and conventionally known ones other than the negative electrode, such as a positive electrode and a separator, can be used.
次に本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。 EXAMPLES Next, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited by these.
[製造例1](カルボキシル基含有フッ化ビニリデン系重合体(1)の製造)
内容量2リットルのオートクレーブに、イオン交換水1040g、メチルセルロース0.8g、ジイソプロピルパーオキシジカーボネート3.0g、フッ化ビニリデン396gおよびマレイン酸モノメチルエステル4.0gを仕込み、28℃で45時間懸濁重合をおこなった。この間の最高圧力は4.1MPaに達した。重合完了後、重合体スラリーを脱水、水洗した。その後、80℃で20時間乾燥をおこない、粉末状のカルボキシル基含有フッ化ビニリデン系重合体(1)(重合体(1))を得た。重合体(1)の重量平均分子量は50万であり、インヘレント粘度は1.7dl/gであり、IR(=I1650-1800/I3000-3100)(なお、カルボニル基由来の吸光度は1750cm-1に観察され、CH構造由来の吸光度は3025cm-1に観察された)は0.5であった。[Production Example 1] (Production of carboxyl group-containing vinylidene fluoride polymer (1))
An autoclave with an internal volume of 2 liters was charged with 1040 g of ion-exchanged water, 0.8 g of methylcellulose, 3.0 g of diisopropyl peroxydicarbonate, 396 g of vinylidene fluoride and 4.0 g of maleic acid monomethyl ester, and suspension polymerization at 28 ° C. for 45 hours. I did it. The maximum pressure during this period reached 4.1 MPa. After completion of the polymerization, the polymer slurry was dehydrated and washed with water. Then, it dried at 80 degreeC for 20 hours, and obtained the powdery carboxyl group containing vinylidene fluoride polymer (1) (polymer (1)). The weight average molecular weight of the polymer (1) is 500,000, the inherent viscosity is 1.7 dl / g, and I R (= I 1650-1800 / I 3000-3100 ) ( note that the absorbance derived from the carbonyl group is 1750 cm). -1 and the absorbance derived from the CH structure was observed at 3025 cm -1 ).
[製造例2](ポリフッ化ビニリデンの製造)
内容量2リットルのオートクレーブに、イオン交換水1075g、メチルセルロース0.4g、ジノルマルプロピルパーオキシジカーボネート2.5g、酢酸エチル5g、フッ化ビニリデン420gを仕込み、25℃で14時間懸濁重合をおこなった。この間の最高圧力は4.0MPaに達した。重合完了後、重合体スラリーを脱水、水洗した。その後、80℃で20時間乾燥をおこない、粉末状のポリフッ化ビニリデン(PVDF)を得た。PVDFの重量平均分子量は50万であり、インヘレント粘度は1.7dl/gであった。[Production Example 2] (Production of polyvinylidene fluoride)
An autoclave with an internal volume of 2 liters was charged with 1075 g of ion-exchanged water, 0.4 g of methylcellulose, 2.5 g of dinormalpropyl peroxydicarbonate, 5 g of ethyl acetate, and 420 g of vinylidene fluoride, and subjected to suspension polymerization at 25 ° C. for 14 hours. It was. The maximum pressure during this period reached 4.0 MPa. After completion of the polymerization, the polymer slurry was dehydrated and washed with water. Then, it dried at 80 degreeC for 20 hours, and obtained the powdery polyvinylidene fluoride (PVDF). PVDF had a weight average molecular weight of 500,000 and an inherent viscosity of 1.7 dl / g.
[カルボキシル基含有フッ化ビニリデン系重合体(1)およびポリフッ化ビニリデンの重量平均分子量の測定]
カルボキシル基含有フッ化ビニリデン系重合体(1)およびポリフッ化ビニリデンのポリスチレン換算の重量平均分子量はゲルパーミエーションクロマトグラフィー(GPC)により測定した。[Measurement of weight average molecular weight of carboxyl group-containing vinylidene fluoride polymer (1) and polyvinylidene fluoride]
The weight average molecular weight in terms of polystyrene of the carboxyl group-containing vinylidene fluoride polymer (1) and polyvinylidene fluoride was measured by gel permeation chromatography (GPC).
測定は、分離カラムには、Shodex KD−806M(昭和電工株式会社製)を用い、検出器には、日本分光株式会社製RI−930(示差屈折率検出器)を用い、溶離液の流速1mL/min、カラム温度40℃の条件で行った。 For the measurement, Shodex KD-806M (Showa Denko Co., Ltd.) is used for the separation column, RI-930 (differential refractive index detector) manufactured by JASCO Corporation is used for the detector, and the flow rate of the eluent is 1 mL. / Min and column temperature of 40 ° C.
なお、測定では、溶離液として濃度10mMのLiBr―NMP溶液を用い、検量線用の標準ポリマーとしては、TSK standard POLY(STYRENE)(標準ポリスチレン)(東ソー株式会社製)を用いた。 In the measurement, a LiBr-NMP solution having a concentration of 10 mM was used as the eluent, and TSK standard POLY (STYRENE) (standard polystyrene) (manufactured by Tosoh Corporation) was used as the standard polymer for the calibration curve.
[ポリアクリル酸の重量平均分子量の測定]
実施例、比較例で用いたポリアクリル酸のポリエチレンオキサイド換算の重量平均分子量はゲルパーミエーションクロマトグラフィー(GPC)により測定した。[Measurement of weight average molecular weight of polyacrylic acid]
The weight average molecular weight in terms of polyethylene oxide of the polyacrylic acid used in Examples and Comparative Examples was measured by gel permeation chromatography (GPC).
測定は、分離カラムには、Shodex Asahipak GF-7M HQ(昭和電工株式会社製)を用い、検出器には、株式会社島津製作所製RID−6A(示差屈折率検出器)を用い、溶離液の流速0.6mL/min、カラム温度40℃の条件で行った。 For the measurement, Shodex Asahipak GF-7M HQ (manufactured by Showa Denko KK) is used as a separation column, and RID-6A (differential refractive index detector) manufactured by Shimadzu Corporation is used as a detector. The measurement was performed under conditions of a flow rate of 0.6 mL / min and a column temperature of 40 ° C.
なお、測定では、溶離液としてNa2HPO4/CH3CN=90/10(重量比)を用い、検量線用の標準ポリマーとしては、TSK standard POLY(ETHYLENE OXIDE)(標準ポリエチレンオキサイド)(東ソー株式会社製)を用いた。In the measurement, Na 2 HPO 4 / CH 3 CN = 90/10 (weight ratio) was used as the eluent, and TSK standard POLY (ETHYLENE OXIDE) (standard polyethylene oxide) (Tosoh Corporation) was used as the standard polymer for the calibration curve. Used).
[活物質の比表面積測定]
活物質の比表面積は、窒素吸着法によって測定した。[Specific surface area measurement of active material]
The specific surface area of the active material was measured by a nitrogen adsorption method.
BETの式から誘導された近似式:Vm=1/(v(1−x))を用いて液体窒素温度における、窒素吸着による1点法(相対圧力x=0.3)によりVmを求め、次式により試料(活物質)の比表面積を計算した。 Using an approximate expression derived from the BET equation: Vm = 1 / (v (1-x)), Vm is determined by a one-point method (relative pressure x = 0.3) by nitrogen adsorption at liquid nitrogen temperature, The specific surface area of the sample (active material) was calculated by the following formula.
比表面積[m2/g]=4.35×Vm
ここで、Vmは試料表面に単分子層を形成するに必要な吸着量(cm3/g)、vは実測される吸着量(cm3/g)、xは相対圧力である。Specific surface area [m 2 /g]=4.35×Vm
Here, Vm is an adsorption amount (cm 3 / g) necessary for forming a monomolecular layer on the sample surface, v is an actually measured adsorption amount (cm 3 / g), and x is a relative pressure.
具体的には、MICROMETRITICS社製「Flow Sorb II2300」を用いて、以下のようにして液体窒素温度における活物質への窒素の吸着量(v)を測定した。活物質を試料管に充填し、窒素ガスを20モル%濃度で含有するヘリウムガスを流しながら、試料管を−196℃に冷却し、活物質に窒素を吸着させる。次に試験管を室温に戻す。このとき試料から脱離してくる窒素量を熱伝導度型検出器で測定し、吸着量(v)とした。 Specifically, using a “Flow Sorb II2300” manufactured by MICROMETRITICS, the adsorption amount (v) of nitrogen to the active material at the liquid nitrogen temperature was measured as follows. The active material is filled in the sample tube, and while flowing a helium gas containing nitrogen gas at a concentration of 20 mol%, the sample tube is cooled to −196 ° C. to adsorb nitrogen to the active material. The test tube is then returned to room temperature. At this time, the amount of nitrogen desorbed from the sample was measured with a thermal conductivity detector, and was defined as the adsorption amount (v).
〔実施例1〕
(非水電解質二次電池用合剤の調製)
カルボキシル基含有フッ化ビニリデン系重合体(1)9.9gと、重量平均分子量5,000のポリアクリル酸(和光純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)0.1gを、N−メチル−2−ピロリドン90gに溶解し、10重量%のバインダー溶液(1)を得た。得られたバインダー溶液(1)8g、人造黒鉛(日立化成工業製、MAG、平均粒径20μm、比表面積4.2m2/g)9.2g、および合剤粘度調整用のN−メチル−2−ピロリドン5.8gを攪拌混合し、非水電解質二次電池用合剤(1)を得た。非水電解質二次電池用合剤(1)の粘度は12000mPa・sであった。[Example 1]
(Preparation of non-aqueous electrolyte secondary battery mixture)
9.9 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 × 10 −2 mol / g) 0.1 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (1). 8 g of the obtained binder solution (1), artificial graphite (manufactured by Hitachi Chemical Co., Ltd., MAG, average particle size 20 μm, specific surface area 4.2 m 2 / g) 9.2 g, and N-methyl-2 for adjusting the mixture viscosity -Pyrrolidone 5.8g was stirred and mixed, and the mixture for nonaqueous electrolyte secondary batteries (1) was obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (1) was 12000 mPa · s.
(電極の作製)
乾燥後の目付量が150g/m2になるように、スペーサーおよびバーコーターを使用して得られた非水電解質二次電池用合剤(1)を、集電体である厚さ10μmの銅箔上に塗布した。窒素雰囲気中、110℃で乾燥後、130℃で熱処理をおこなった。つづいて、40MPaでプレスをおこない、非水電解質二次電池用合剤(1)から形成される合剤層の嵩密度が1.6g/cm3の非水電解質二次電池用電極(1)を得た。合剤層の厚さを、電極の厚みから集電体の厚みを差し引くことにより算出した。(Production of electrodes)
A non-aqueous electrolyte secondary battery mixture (1) obtained by using a spacer and a bar coater so as to have a basis weight after drying of 150 g / m 2 was used as a current collector of copper having a thickness of 10 μm. It was applied on the foil. After drying at 110 ° C. in a nitrogen atmosphere, heat treatment was performed at 130 ° C. Subsequently, pressing is performed at 40 MPa, and the electrode layer for nonaqueous electrolyte secondary battery (1) having a bulk density of 1.6 g / cm 3 of the mixture layer formed from the mixture for nonaqueous electrolyte secondary battery (1). Got. The thickness of the mixture layer was calculated by subtracting the thickness of the current collector from the thickness of the electrode.
〔比較例1〕
カルボキシル基含有フッ化ビニリデン系重合体(1)10.0gを、N−メチル−2−ピロリドン90gに溶解し、10重量%のバインダー溶液(c1)を得た。該バインダー溶液(c1)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(c1)および非水電解質二次電池用電極(c1)を得た。非水電解質二次電池用合剤(c1)の粘度は12000mPa・sであった。[Comparative Example 1]
10.0 g of carboxyl group-containing vinylidene fluoride polymer (1) was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (c1). Except having used this binder solution (c1), it carried out similarly to Example 1 and obtained the mixture for nonaqueous electrolyte secondary batteries (c1) and the electrode for nonaqueous electrolyte secondary batteries (c1). The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c1) was 12000 mPa · s.
〔実施例2〕
カルボキシル基含有フッ化ビニリデン系重合体(1)9.75gと、重量平均分子量5,000のポリアクリル酸(和光純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)0.25gを、N−メチル−2−ピロリドン90gに溶解し、10重量%のバインダー溶液(2)を得た。該バインダー溶液(2)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(2)および非水電解質二次電池用電極(2)を得た。非水電解質二次電池用合剤(2)の粘度は11800mPa・sであった。[Example 2]
9.75 g of a carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 × 10 −2 mol / g) 0.25 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (2). Except having used this binder solution (2), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (2) and the electrode for nonaqueous electrolyte secondary batteries (2) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (2) was 11800 mPa · s.
〔実施例3〕
カルボキシル基含有フッ化ビニリデン系重合体(1)9.5gと、重量平均分子量5,000のポリアクリル酸(和光純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)0.5gを、N−メチル−2−ピロリドン90gに溶解し、10重量%のバインダー溶液(3)を得た。該バインダー溶液(3)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(3)および非水電解質二次電池用電極(3)を得た。非水電解質二次電池用合剤(3)の粘度は11500mPa・sであった。Example 3
9.5 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 × 10 −2 mol / g) 0.5 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (3). Except having used this binder solution (3), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (3) and the electrode for nonaqueous electrolyte secondary batteries (3) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (3) was 11500 mPa · s.
〔実施例4〕
カルボキシル基含有フッ化ビニリデン系重合体(1)9.0gと、重量平均分子量5,000のポリアクリル酸(和光純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)1.0gを、N−メチル−2−ピロリドン90gに溶解し、10重量%のバインダー溶液(4)を得た。該バインダー溶液(4)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(4)および非水電解質二次電池用電極(4)を得た。非水電解質二次電池用合剤(4)の粘度は11500mPa・sであった。Example 4
9.0 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 × 10 −2 mol / g) 1.0 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (4). Except having used this binder solution (4), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (4) and the electrode for nonaqueous electrolyte secondary batteries (4) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (4) was 11500 mPa · s.
〔実施例5〕
カルボキシル基含有フッ化ビニリデン系重合体(1)8.7gと、重量平均分子量5,000のポリアクリル酸(和光純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)1.3gを、N−メチル−2−ピロリドン90gに溶解し、10重量%のバインダー溶液(5)を得た。該バインダー溶液(5)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(5)および非水電解質二次電池用電極(5)を得た。非水電解質二次電池用合剤(5)の粘度は11000mPa・sであった。Example 5
8.7 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 × 10 −2 mol / g) 1.3 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (5). Except having used this binder solution (5), it carried out similarly to Example 1 and obtained the mixture (5) for nonaqueous electrolyte secondary batteries, and the electrode (5) for nonaqueous electrolyte secondary batteries. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (5) was 11000 mPa · s.
〔比較例2〕
PVDF10.0gを、N−メチル−2−ピロリドン90gに溶解し、10重量%のバインダー溶液(c2)を得た。該バインダー溶液(c2)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(c2)および非水電解質二次電池用電極(c2)を得た。非水電解質二次電池用合剤(c2)の粘度は12500mPa・sであった。[Comparative Example 2]
10.0 g of PVDF was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (c2). Except having used this binder solution (c2), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (c2) and the electrode for nonaqueous electrolyte secondary batteries (c2) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c2) was 12500 mPa · s.
〔比較例3〕
PVDF9.9gと、重量平均分子量5,000のポリアクリル酸(和光純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)0.1gを、N−メチル−2−ピロリドン90gに溶解し、10重量%のバインダー溶液(c3)を得た。該バインダー溶液(c3)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(c3)および非水電解質二次電池用電極(c3)を得た。非水電解質二次電池用合剤(c3)の粘度は12500mPa・sであった。[Comparative Example 3]
9.9 g of PVDF and 0.1 g of polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 × 10 −2 mol / g) were added to N-methyl-2-pyrrolidone. Dissolved in 90 g, a 10% by weight binder solution (c3) was obtained. Except having used this binder solution (c3), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (c3) and the electrode for nonaqueous electrolyte secondary batteries (c3) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c3) was 12500 mPa · s.
〔比較例4〕
PVDF9.75gと、重量平均分子量5,000のポリアクリル酸(和光純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)0.25gを、N−メチル−2−ピロリドン90gに溶解し、10重量%のバインダー溶液(c4)を得た。該バインダー溶液(c4)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(c4)および非水電解質二次電池用電極(c4)を得た。非水電解質二次電池用合剤(c4)の粘度は12000mPa・sであった。[Comparative Example 4]
9.75 g of PVDF and 0.25 g of polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 × 10 −2 mol / g) were added to N-methyl-2-pyrrolidone. Dissolved in 90 g, a 10 wt% binder solution (c4) was obtained. Except having used this binder solution (c4), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (c4) and the electrode for nonaqueous electrolyte secondary batteries (c4) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c4) was 12000 mPa · s.
〔比較例5〕
PVDF9.5gと、重量平均分子量5,000のポリアクリル酸(和光純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)0.5gを、N−メチル−2−ピロリドン90gに溶解し、10重量%のバインダー溶液(c5)を得た。該バインダー溶液(c5)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(c5)および非水電解質二次電池用電極(c5)を得た。非水電解質二次電池用合剤(c5)の粘度は11800mPa・sであった。[Comparative Example 5]
9.5 g of PVDF and 0.5 g of polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 × 10 −2 mol / g) are mixed with N-methyl-2-pyrrolidone. Dissolved in 90 g, a 10 wt% binder solution (c5) was obtained. Except having used this binder solution (c5), it carried out similarly to Example 1 and obtained the mixture for nonaqueous electrolyte secondary batteries (c5) and the electrode for nonaqueous electrolyte secondary batteries (c5). The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c5) was 11800 mPa · s.
〔比較例6〕
PVDF9.0gと、重量平均分子量5,000のポリアクリル酸(和光純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)1.0gを、N−メチル−2−ピロリドン90gに溶解し、10重量%のバインダー溶液(c6)を得た。該バインダー溶液(c6)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(c6)および非水電解質二次電池用電極(c6)を得た。非水電解質二次電池用合剤(c6)の粘度は11500mPa・sであった。[Comparative Example 6]
9.0 g of PVDF and 1.0 g of polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 × 10 −2 mol / g) were added to N-methyl-2-pyrrolidone. Dissolved in 90 g, a 10% by weight binder solution (c6) was obtained. Except having used this binder solution (c6), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (c6) and the electrode for nonaqueous electrolyte secondary batteries (c6) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c6) was 11500 mPa · s.
〔比較例7〕
カルボキシル基含有フッ化ビニリデン系重合体(1)9.75gと、架橋型ポリアクリル酸(商品名「AQUPEC HV−501」、住友精化社製、カルボキシル基量:1.3×10-2モル/g)0.25gを、N−メチル−2−ピロリドン90gに溶解し、10重量%のバインダー溶液(c7)を得た。該バインダー溶液(c7)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(c7)および非水電解質二次電池用電極(c7)を得た。非水電解質二次電池用合剤(c7)の粘度は13000mPa・sであった。[Comparative Example 7]
9.75 g of carboxyl group-containing vinylidene fluoride polymer (1) and cross-linked polyacrylic acid (trade name “AQUPEC HV-501”, manufactured by Sumitomo Seika Co., Ltd., carboxyl group amount: 1.3 × 10 −2 mol) / G) 0.25 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (c7). Except having used this binder solution (c7), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (c7) and the electrode for nonaqueous electrolyte secondary batteries (c7) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c7) was 13000 mPa · s.
〔比較例8〕
カルボキシル基含有フッ化ビニリデン系重合体(1)9.5gと、架橋型ポリアクリル酸(商品名「AQUPEC HV−501」、住友精化社製、カルボキシル基量:1.3×10-2モル/g)0.5gを、N−メチル−2−ピロリドン90gに溶解し、10重量%のバインダー溶液(c8)を得た。該バインダー溶液(c8)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(c8)および非水電解質二次電池用電極(c8)を得た。非水電解質二次電池用合剤(c8)の粘度は13500mPa・sであった。[Comparative Example 8]
9.5 g of carboxyl group-containing vinylidene fluoride polymer (1) and cross-linked polyacrylic acid (trade name “AQUPEC HV-501”, manufactured by Sumitomo Seika Co., Ltd., carboxyl group amount: 1.3 × 10 −2 mol) / G) 0.5 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (c8). Except having used this binder solution (c8), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (c8) and the electrode for nonaqueous electrolyte secondary batteries (c8) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c8) was 13500 mPa · s.
〔比較例9〕
カルボキシル基含有フッ化ビニリデン系重合体(1)9.2gと、架橋型ポリアクリル酸(商品名「AQUPEC HV−501」、住友精化社製、カルボキシル基量:1.3×10-2モル/g)0.8gを、N−メチル−2−ピロリドン90gに溶解し、10重量%のバインダー溶液(c9)を得た。該バインダー溶液(c9)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(c9)および非水電解質二次電池用電極(c9)を得た。非水電解質二次電池用合剤(c9)の粘度は14000mPa・sであった。[Comparative Example 9]
9.2 g of carboxyl group-containing vinylidene fluoride polymer (1) and cross-linked polyacrylic acid (trade name “AQUPEC HV-501”, manufactured by Sumitomo Seika Co., Ltd., carboxyl group amount: 1.3 × 10 −2 mol) / G) 0.8 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (c9). Except having used this binder solution (c9), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (c9) and the electrode for nonaqueous electrolyte secondary batteries (c9) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c9) was 14000 mPa · s.
〔実施例6〕
カルボキシル基含有フッ化ビニリデン系重合体(1)9.5gと、重量平均分子量15,000のポリアクリル酸(商品名「ジュリマーAC−10P」、日本純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)0.5gを、N−メチル−2−ピロリドン90gに溶解し、10重量%のバインダー溶液(6)を得た。該バインダー溶液(6)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(6)および非水電解質二次電池用電極(6)を得た。非水電解質二次電池用合剤(6)の粘度は12000mPa・sであった。Example 6
9.5 g of a carboxyl group-containing vinylidene fluoride polymer (1) and a polyacrylic acid having a weight average molecular weight of 15,000 (trade name “Julimer AC-10P”, manufactured by Nippon Pure Chemical Co., Ltd., carboxyl group amount: 1. 4 × 10 −2 mol / g) 0.5 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (6). Except having used this binder solution (6), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (6) and the electrode for nonaqueous electrolyte secondary batteries (6) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (6) was 12000 mPa · s.
〔実施例7〕
カルボキシル基含有フッ化ビニリデン系重合体(1)9.5gと、重量平均分子量25,000のポリアクリル酸(和光純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)0.5gを、N−メチル−2−ピロリドン90gに溶解し、10重量%のバインダー溶液(7)を得た。該バインダー溶液(7)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(7)および非水電解質二次電池用電極(7)を得た。非水電解質二次電池用合剤(7)の粘度は12300mPa・sであった。Example 7
9.5 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 25,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 × 10 −2 mol / g) 0.5 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (7). Except having used this binder solution (7), it carried out similarly to Example 1 and obtained the mixture (7) for nonaqueous electrolyte secondary batteries, and the electrode (7) for nonaqueous electrolyte secondary batteries. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (7) was 12300 mPa · s.
〔実施例8〕
カルボキシル基含有フッ化ビニリデン系重合体(1)9.5gと、重量平均分子量73,000のポリアクリル酸(商品名「ジュリマーAC−10LP」、日本純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)0.5gを、N−メチル−2−ピロリドン90gに溶解し、10重量%のバインダー溶液(8)を得た。該バインダー溶液(8)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(8)および非水電解質二次電池用電極(8)を得た。非水電解質二次電池用合剤(8)の粘度は12500mPa・sであった。Example 8
9.5 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 73,000 (trade name “Julimer AC-10LP”, manufactured by Nippon Pure Chemical Co., Ltd., carboxyl group amount: 1. 4 × 10 −2 mol / g) (0.5 g) was dissolved in N-methyl-2-pyrrolidone (90 g) to obtain a 10 wt% binder solution (8). Except having used this binder solution (8), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (8) and the electrode for nonaqueous electrolyte secondary batteries (8) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (8) was 12500 mPa · s.
〔比較例10〕
カルボキシル基含有フッ化ビニリデン系重合体(1)9.5gと、重量平均分子量250,000のポリアクリル酸(和光純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)0.5gを、N−メチル−2−ピロリドン90gに溶解し、10重量%のバインダー溶液(c10)を得た。該バインダー溶液(c10)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(c10)および非水電解質二次電池用電極(c10)を得た。非水電解質二次電池用合剤(c10)の粘度は13000mPa・sであった。[Comparative Example 10]
9.5 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 250,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 × 10 −2 mol / g) 0.5 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (c10). Except having used this binder solution (c10), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (c10) and the electrode for nonaqueous electrolyte secondary batteries (c10) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c10) was 13000 mPa · s.
〔比較例11〕
カルボキシル基含有フッ化ビニリデン系重合体(1)9.5gと、重量平均分子量800,000のポリアクリル酸(商品名「アクアリック」、日本触媒株式会社製、カルボキシル基量:1.4×10-2モル/g)0.5gを、N−メチル−2−ピロリドン90gに溶解し、10重量%のバインダー溶液(c11)を得た。該バインダー溶液(c11)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(c11)および非水電解質二次電池用電極(c11)を得た。非水電解質二次電池用合剤(c11)の粘度は13000mPa・sであった。[Comparative Example 11]
9.5 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 800,000 (trade name “AQUALIC”, manufactured by Nippon Shokubai Co., Ltd., carboxyl group amount: 1.4 × 10 -2 mol / g) was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10% by weight binder solution (c11). Except having used this binder solution (c11), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (c11) and the electrode for nonaqueous electrolyte secondary batteries (c11) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c11) was 13000 mPa · s.
〔比較例12〕
重量平均分子量5,000のポリアクリル酸(和光純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)10.0gを、N−メチル−2−ピロリドン90gに溶解し、10重量%のバインダー溶液(c12)を得た。該バインダー溶液(c12)を用いたのと、合剤粘度調整用のN−メチル−2−ピロリドンを3gに変更した以外は実施例1と同様に行い、非水電解質二次電池用合剤(c12)および非水電解質二次電池用電極(c12)を得た。非水電解質二次電池用合剤(c12)の粘度は8500mPa・sであった。[Comparative Example 12]
10.0 g of polyacrylic acid having a weight average molecular weight of 5,000 (Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 × 10 −2 mol / g) was dissolved in 90 g of N-methyl-2-pyrrolidone, A 10% by weight binder solution (c12) was obtained. The same procedure as in Example 1 was carried out except that the binder solution (c12) was used and that the N-methyl-2-pyrrolidone for adjusting the mixture viscosity was changed to 3 g, and a mixture for a nonaqueous electrolyte secondary battery ( c12) and a non-aqueous electrolyte secondary battery electrode (c12) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c12) was 8500 mPa · s.
〔比較例13〕
カルボキシル基含有フッ化ビニリデン系重合体(1)10.0gを、N−メチル−2−ピロリドン90gに溶解し、10重量%のバインダー溶液(c13)を得た。得られたバインダー溶液(c13)4g、人造黒鉛(大阪ガス製、MCMB、平均粒径6.5μm、比表面積2.9m2/g)9.6g、および合剤粘度調整用のN−メチル−2−ピロリドン7.0gを攪拌混合し、非水電解質二次電池用合剤(c13)を得た。[Comparative Example 13]
10.0 g of the carboxyl group-containing vinylidene fluoride polymer (1) was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (c13). 4 g of the obtained binder solution (c13), artificial graphite (manufactured by Osaka Gas, MCMB, average particle diameter 6.5 μm, specific surface area 2.9 m 2 / g) 9.6 g, and N-methyl- for adjusting the mixture viscosity 7.0 g of 2-pyrrolidone was stirred and mixed to obtain a nonaqueous electrolyte secondary battery mixture (c13).
該非水電解質二次電池用合剤(c13)を用いた以外は実施例1と同様に行い、非水電解質二次電池用電極(c13)を得た。非水電解質二次電池用合剤(c13)の粘度は13500mPa・sであった。 A nonaqueous electrolyte secondary battery electrode (c13) was obtained in the same manner as in Example 1 except that the nonaqueous electrolyte secondary battery mixture (c13) was used. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c13) was 13500 mPa · s.
〔実施例9〕
カルボキシル基含有フッ化ビニリデン系重合体(1)9.5gと、重量平均分子量5,000のポリアクリル酸(和光純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)0.5gを、N−メチル−2−ピロリドン90gに溶解し、10重量%のバインダー溶液(9)を得た。得られたバインダー溶液(9)4g、人造黒鉛(大阪ガス株式会社製、MCMB、平均粒径6.5μm、比表面積2.9m2/g)9.6g、および合剤粘度調整用のN−メチル−2−ピロリドン7.0gを攪拌混合し、非水電解質二次電池用合剤(9)を得た。非水電解質二次電池用合剤(9)の粘度は13000mPa・sであった。Example 9
9.5 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 × 10 −2 mol / g) 0.5 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (9). 4 g of the obtained binder solution (9), artificial graphite (manufactured by Osaka Gas Co., Ltd., MCMB, average particle size 6.5 μm, specific surface area 2.9 m 2 / g), 9.6 g, and N— 7.0 g of methyl-2-pyrrolidone was stirred and mixed to obtain a nonaqueous electrolyte secondary battery mixture (9). The viscosity of the mixture for nonaqueous electrolyte secondary batteries (9) was 13000 mPa · s.
該非水電解質二次電池用合剤(9)を用いた以外は実施例1と同様に行い、非水電解質二次電池用電極(9)を得た。 Except having used this mixture for nonaqueous electrolyte secondary batteries (9), it carried out similarly to Example 1 and obtained the electrode (9) for nonaqueous electrolyte secondary batteries.
〔比較例14〕
カルボキシル基含有フッ化ビニリデン系重合体(1)10.0gを、N−メチル−2−ピロリドン90gに溶解し、10重量%のバインダー溶液(c14)を得た。得られたバインダー溶液(c14)8g、球状天然黒鉛(中国産、平均粒径24μm、比表面積5.4m2/g)9.2g、および合剤粘度調整用のN−メチル−2−ピロリドン5.8gを攪拌混合し、非水電解質二次電池用合剤(c14)を得た。非水電解質二次電池用合剤(c14)の粘度は13000mPa・sであった。[Comparative Example 14]
10.0 g of the carboxyl group-containing vinylidene fluoride polymer (1) was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (c14). 8 g of the obtained binder solution (c14), 9.2 g of spherical natural graphite (produced in China, average particle size 24 μm, specific surface area 5.4 m 2 / g), and N-methyl-2-pyrrolidone 5 for adjusting the mixture viscosity .8 g was mixed with stirring to obtain a nonaqueous electrolyte secondary battery mixture (c14). The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c14) was 13000 mPa · s.
該非水電解質二次電池用合剤(c14)を用いた以外は実施例1と同様に行い、非水電解質二次電池用電極(c14)を得た。 A nonaqueous electrolyte secondary battery electrode (c14) was obtained in the same manner as in Example 1 except that the nonaqueous electrolyte secondary battery mixture (c14) was used.
〔実施例10〕
カルボキシル基含有フッ化ビニリデン系重合体(1)9.5gと、重量平均分子量5,000のポリアクリル酸(和光純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)0.5gを、N−メチル−2−ピロリドン90gに溶解し、10重量%のバインダー溶液(10)を得た。得られたバインダー溶液(10)8g、球状天然黒鉛(中国産、平均粒径24μm、比表面積5.4m2/g)9.2g、および合剤粘度調整用のN−メチル−2−ピロリドン5.8gを攪拌混合し、非水電解質二次電池用合剤(10)を得た。非水電解質二次電池用合剤(10)の粘度は13000mPa・sであった。Example 10
9.5 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 × 10 −2 mol / g) 0.5 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (10). 8 g of the obtained binder solution (10), 9.2 g of spherical natural graphite (produced in China, average particle size 24 μm, specific surface area 5.4 m 2 / g), and N-methyl-2-pyrrolidone 5 for adjusting the mixture viscosity .8 g was mixed by stirring to obtain a nonaqueous electrolyte secondary battery mixture (10). The viscosity of the mixture for nonaqueous electrolyte secondary batteries (10) was 13000 mPa · s.
該非水電解質二次電池用合剤(10)を用いた以外は実施例1と同様に行い、非水電解質二次電池用電極(10)を得た。 Except having used this mixture for nonaqueous electrolyte secondary batteries (10), it carried out similarly to Example 1 and obtained the electrode (10) for nonaqueous electrolyte secondary batteries.
<電極の評価>
〔剥離強度〕
実施例および比較例で得られた電極を試料とし、合剤層と集電体との剥離強度をJISK6854に準拠して180°剥離試験により測定した。<Evaluation of electrode>
[Peel strength]
Using the electrodes obtained in Examples and Comparative Examples as samples, the peel strength between the mixture layer and the current collector was measured by a 180 ° peel test in accordance with JISK6854.
〔フッ素強度〕
(電極表面のフッ素強度)
実施例および比較例で得られた電極を、40mm角に切断し、蛍光X線測定装置(Shimadzu製、蛍光X線装置、XRF-1700)を使用して、40kV、60mA、照射直径30mmの条件で、合剤層側における電極表面のフッ素強度を測定した。[Fluorine strength]
(Fluorine strength on electrode surface)
The electrodes obtained in Examples and Comparative Examples were cut into 40 mm square, and using a fluorescent X-ray measuring device (manufactured by Shimadzu, fluorescent X-ray device, XRF-1700), conditions of 40 kV, 60 mA, irradiation diameter 30 mm Then, the fluorine intensity of the electrode surface on the mixture layer side was measured.
(合剤層の剥離面および、集電体の剥離面のフッ素強度)
実施例および比較例で得られた電極を、40mm角に切断し、合剤層側の電極表面にダンプロン(登録商標)テープ(NO375)(日東電工CSシステム社製)を貼り付けた。(Fluorine strength of the release surface of the mixture layer and the release surface of the current collector)
The electrodes obtained in Examples and Comparative Examples were cut into 40 mm squares, and Damplon (registered trademark) tape (NO375) (manufactured by Nitto Denko CS System Co., Ltd.) was attached to the electrode surface on the mixture layer side.
ゲージ圧を7MPaに設定し、ダンプロンテープが貼り付けられた電極に、20秒間プレスをおこない、その後、合剤層を集電体から剥がした。集電体が剥がされた合剤層の、集電体との剥離面、および合剤層が剥がされた集電体の、合剤層との剥離面について、前記電極表面のフッ素強度と同様の方法で、フッ素強度を測定した。 The gauge pressure was set to 7 MPa, the electrode on which the damplon tape was attached was pressed for 20 seconds, and then the mixture layer was peeled from the current collector. Similar to the fluorine strength of the electrode surface, the release surface of the mixture layer from which the current collector has been peeled off and the release surface of the current collector from which the mixture layer has been peeled off from the mixture layer. The fluorine intensity was measured by this method.
なお、集電体が剥がされた合剤層の、集電体との剥離面を、「合剤層の剥離面」とも記し、合剤層が剥がされた集電体の、合剤層との剥離面を、「集電体の剥離面」とも記す。 In addition, the release surface of the mixture layer from which the current collector has been peeled off is also referred to as the “release surface of the mixture layer”, and the current collector layer from which the mixture layer has been peeled off This peeling surface is also referred to as a “current collector peeling surface”.
実施例、比較例で用いたバインダー溶液および非水電解質二次電池用合剤の組成、得られた電極の合剤層の厚さ、電極の評価結果を表1、2に示す。 Tables 1 and 2 show the compositions of the binder solution and the non-aqueous electrolyte secondary battery mixture used in Examples and Comparative Examples, the thickness of the obtained electrode mixture layer, and the electrode evaluation results.
Claims (10)
前記不飽和カルボン酸重合体(A)のゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリエチレンオキサイド換算の重量平均分子量が、1,000〜150,000であり、
前記ポリアクリル酸が、重合体100重量%中にアクリル酸由来の構成単位を60重量%以上有する重合体であり、
前記ポリメタクリル酸が、重合体100重量%中にメタクリル酸由来の構成単位を60重量%以上有する重合体である非水電解質二次電池用合剤。 Containing at least one unsaturated carboxylic acid polymer (A) selected from polyacrylic acid and polymethacrylic acid, a carboxyl group-containing vinylidene fluoride polymer (B), an electrode active material, and an organic solvent,
The weight average molecular weight of polyethylene oxide conversion as measured by gel permeation chromatography (GPC) of the unsaturated carboxylic acid polymer (A) is, Ri 1,000 to 150,000 der,
The polyacrylic acid is a polymer having 60% by weight or more of a structural unit derived from acrylic acid in 100% by weight of the polymer,
The polymethacrylic acid polymer der Ru nonaqueous electrolyte mix for a secondary battery having the structural unit 60 wt% or more from methacrylic acid in the polymer 100 wt%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012508179A JP5684235B2 (en) | 2010-03-30 | 2011-03-08 | Nonaqueous electrolyte secondary battery mixture, nonaqueous electrolyte secondary battery electrode, and nonaqueous electrolyte secondary battery |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010077694 | 2010-03-30 | ||
JP2010077694 | 2010-03-30 | ||
PCT/JP2011/055337 WO2011122261A1 (en) | 2010-03-30 | 2011-03-08 | Mixture for non-aqueous electrolyte secondary battery, electrode for same, and non-aqueous electrolyte secondary battery |
JP2012508179A JP5684235B2 (en) | 2010-03-30 | 2011-03-08 | Nonaqueous electrolyte secondary battery mixture, nonaqueous electrolyte secondary battery electrode, and nonaqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2011122261A1 JPWO2011122261A1 (en) | 2013-07-08 |
JP5684235B2 true JP5684235B2 (en) | 2015-03-11 |
Family
ID=44711987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012508179A Expired - Fee Related JP5684235B2 (en) | 2010-03-30 | 2011-03-08 | Nonaqueous electrolyte secondary battery mixture, nonaqueous electrolyte secondary battery electrode, and nonaqueous electrolyte secondary battery |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5684235B2 (en) |
KR (1) | KR101464841B1 (en) |
CN (1) | CN102725889B (en) |
TW (1) | TWI436522B (en) |
WO (1) | WO2011122261A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180366733A1 (en) | 2015-12-10 | 2018-12-20 | Kaneka Corporation | Nonaqueous electrolyte secondary battery |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6010309B2 (en) * | 2012-02-29 | 2016-10-19 | 積水化学工業株式会社 | Lithium ion secondary battery |
KR102142441B1 (en) * | 2012-08-10 | 2020-08-07 | 제온 코포레이션 | Slurry composition for lithium-ion secondary cell negative electrode |
JP6220342B2 (en) * | 2012-10-26 | 2017-10-25 | 和光純薬工業株式会社 | Lithium battery binder, electrode preparation composition and electrode |
JP2016076292A (en) * | 2013-01-11 | 2016-05-12 | 日立マクセル株式会社 | Nonaqueous electrolyte secondary battery |
JP6070537B2 (en) * | 2013-12-27 | 2017-02-01 | トヨタ自動車株式会社 | Method for producing negative electrode for lithium ion battery |
WO2016038682A1 (en) * | 2014-09-09 | 2016-03-17 | 株式会社 東芝 | Nonaqueous electrolyte battery and battery pack |
JP2018529206A (en) * | 2015-09-29 | 2018-10-04 | エー123 システムズ エルエルシーA123 Systems LLC | High capacity anode electrode with mixed binder for energy storage device |
FR3044012B1 (en) * | 2015-11-24 | 2019-04-05 | Arkema France | BINDER FOR ATTACHING MATERIAL CONTAINING VINYLIDENE POLYFLUORIDE TO A METAL - ELECTRODE FOR LITHIUM ION BATTERY |
US10985374B2 (en) * | 2016-03-24 | 2021-04-20 | Zeon Corporation | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, non-aqueous secondary battery electrode, and non-aqueous secondary battery |
JP7009048B2 (en) * | 2016-06-15 | 2022-01-25 | 東洋インキScホールディングス株式会社 | Conductive composition, current collector with base layer for power storage device, electrode for power storage device, and power storage device |
JP7083690B2 (en) | 2018-04-26 | 2022-06-13 | 株式会社クレハ | particle |
JP7019508B2 (en) * | 2018-05-15 | 2022-02-15 | 株式会社クレハ | Electrode mixture, method for manufacturing electrode mixture, electrode structure, method for manufacturing electrode structure and secondary battery |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1145720A (en) * | 1997-07-25 | 1999-02-16 | Hitachi Maxell Ltd | Lithium secondary battery |
JP2003268053A (en) * | 2002-03-13 | 2003-09-25 | Hitachi Chem Co Ltd | Binder resin for battery and electrode and battery comprising the same |
JP2003317722A (en) * | 2002-04-26 | 2003-11-07 | Kureha Chem Ind Co Ltd | Binder composition for nonaqueous secondary battery electrode, electrode mix composition, electrode and secondary battery |
JP2004281055A (en) * | 2003-01-23 | 2004-10-07 | Hitachi Chem Co Ltd | Binder resin composition for battery, mix slurry, electrode and battery using resin containing carboxyl group |
JP2006054096A (en) * | 2004-08-11 | 2006-02-23 | Mitsubishi Chemicals Corp | Slurry for electrode of lithium secondary battery and manufacturing method of electrode for lithium secondary battery |
-
2011
- 2011-03-08 KR KR1020127018065A patent/KR101464841B1/en not_active IP Right Cessation
- 2011-03-08 JP JP2012508179A patent/JP5684235B2/en not_active Expired - Fee Related
- 2011-03-08 CN CN201180005985.1A patent/CN102725889B/en not_active Expired - Fee Related
- 2011-03-08 WO PCT/JP2011/055337 patent/WO2011122261A1/en active Application Filing
- 2011-03-16 TW TW100108954A patent/TWI436522B/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1145720A (en) * | 1997-07-25 | 1999-02-16 | Hitachi Maxell Ltd | Lithium secondary battery |
JP2003268053A (en) * | 2002-03-13 | 2003-09-25 | Hitachi Chem Co Ltd | Binder resin for battery and electrode and battery comprising the same |
JP2003317722A (en) * | 2002-04-26 | 2003-11-07 | Kureha Chem Ind Co Ltd | Binder composition for nonaqueous secondary battery electrode, electrode mix composition, electrode and secondary battery |
JP2004281055A (en) * | 2003-01-23 | 2004-10-07 | Hitachi Chem Co Ltd | Binder resin composition for battery, mix slurry, electrode and battery using resin containing carboxyl group |
JP2006054096A (en) * | 2004-08-11 | 2006-02-23 | Mitsubishi Chemicals Corp | Slurry for electrode of lithium secondary battery and manufacturing method of electrode for lithium secondary battery |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180366733A1 (en) | 2015-12-10 | 2018-12-20 | Kaneka Corporation | Nonaqueous electrolyte secondary battery |
US10790512B2 (en) | 2015-12-10 | 2020-09-29 | Kaneka Corporation | Nonaqueous electrolyte secondary battery |
Also Published As
Publication number | Publication date |
---|---|
KR101464841B1 (en) | 2014-11-25 |
WO2011122261A1 (en) | 2011-10-06 |
KR20120104322A (en) | 2012-09-20 |
JPWO2011122261A1 (en) | 2013-07-08 |
CN102725889A (en) | 2012-10-10 |
TW201140924A (en) | 2011-11-16 |
TWI436522B (en) | 2014-05-01 |
CN102725889B (en) | 2015-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5684235B2 (en) | Nonaqueous electrolyte secondary battery mixture, nonaqueous electrolyte secondary battery electrode, and nonaqueous electrolyte secondary battery | |
JP5877791B2 (en) | Non-aqueous electrolyte secondary battery negative electrode mixture, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery | |
JP5797206B2 (en) | Vinylidene fluoride copolymer and use of the copolymer | |
JP5626791B2 (en) | Non-aqueous electrolyte secondary battery negative electrode mixture, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery | |
WO2019087652A1 (en) | Binder for secondary battery, electrode mixture for secondary battery, electrode for secondary battery and secondary battery | |
KR102325232B1 (en) | Binder composition, electrode mixture, electrode and non-aqueous electrolyte secondary battery | |
JP6891346B2 (en) | Adhesive composition, separator structure, electrode structure, non-aqueous electrolyte secondary battery and its manufacturing method | |
TW200410439A (en) | Binder composition for electrode of nonaqueous electrolyte battery, and use thereof | |
CN109075344B (en) | Binder composition, electrode mixture, electrode, nonaqueous electrolyte secondary battery, and method for producing binder composition | |
JPWO2016167294A1 (en) | Electrode structure and manufacturing method thereof | |
JP5697660B2 (en) | Non-aqueous electrolyte secondary battery negative electrode mixture, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery | |
JP7062476B2 (en) | Binder composition, electrode mixture raw material, electrode mixture, electrode, non-aqueous electrolyte secondary battery and method for manufacturing electrode mixture | |
JP5548131B2 (en) | Non-aqueous electrolyte secondary battery negative electrode mixture, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery | |
JP5400058B2 (en) | Non-aqueous electrolyte secondary battery negative electrode mixture, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141007 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141205 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150114 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5684235 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |