JP5681517B2 - Particle conductivity discrimination apparatus and particle conductivity discrimination method - Google Patents

Particle conductivity discrimination apparatus and particle conductivity discrimination method Download PDF

Info

Publication number
JP5681517B2
JP5681517B2 JP2011030139A JP2011030139A JP5681517B2 JP 5681517 B2 JP5681517 B2 JP 5681517B2 JP 2011030139 A JP2011030139 A JP 2011030139A JP 2011030139 A JP2011030139 A JP 2011030139A JP 5681517 B2 JP5681517 B2 JP 5681517B2
Authority
JP
Japan
Prior art keywords
scattered light
particle
degrees
forward scattered
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011030139A
Other languages
Japanese (ja)
Other versions
JP2012168057A (en
Inventor
裕司 川北
裕司 川北
佑輔 磯
佑輔 磯
祐志 岡見
祐志 岡見
坂本 数彦
数彦 坂本
永坂 茂之
茂之 永坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Air Technologies Co Ltd
Original Assignee
Shin Nippon Air Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Air Technologies Co Ltd filed Critical Shin Nippon Air Technologies Co Ltd
Priority to JP2011030139A priority Critical patent/JP5681517B2/en
Publication of JP2012168057A publication Critical patent/JP2012168057A/en
Application granted granted Critical
Publication of JP5681517B2 publication Critical patent/JP5681517B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、粒子導電性判別装置及び粒子導電性判別方法に関し、より詳細には、光学的手法を用いて粒子が導電性を有するか否かを判別する装置及びその判別方法に関する。   The present invention relates to a particle conductivity determining apparatus and a particle conductivity determining method, and more particularly to an apparatus for determining whether a particle has conductivity using an optical method and a method for determining the same.

近年、ノートパソコン用リチウムイオン蓄電池が発火する事故が発生している。この原因は、蓄電池の製造過程において、電池セルの内部に金属粒子などの導電性粒子が混入し、混入した導電性粒子が正極と負極を隔てるセパレータを貫通して内部短絡を引き起こし、発煙、発火事故に繋がるものと考えられている。   In recent years, there have been accidents in which lithium-ion batteries for notebook computers ignite. This is because, in the battery manufacturing process, conductive particles such as metal particles are mixed inside the battery cell, and the mixed conductive particles penetrate the separator separating the positive electrode and the negative electrode to cause an internal short circuit. It is thought to lead to an accident.

したがって、電池セル内部に導電性粒子が混入しないようにするために、製造工程において導電性粒子をモニタリングする技術が望まれる。   Therefore, in order to prevent the conductive particles from entering the battery cell, a technique for monitoring the conductive particles in the manufacturing process is desired.

一般に、浮遊する粒子を計測する方法には、光散乱方式のパーティクルカウンタが用いられることが多い。これは、レーザー光を測定対象のエアロゾルに照射し、当該エアロゾルに内在する粒子からの散乱光を検出し、内在する粒子数及び粒径を求めるものである(下記特許文献1参照)。   In general, a light scattering type particle counter is often used as a method for measuring floating particles. In this method, the aerosol to be measured is irradiated to the aerosol to be measured, the scattered light from the particles present in the aerosol is detected, and the number of particles and the particle size are obtained (see Patent Document 1 below).

特開昭62−108386号公報JP-A-62-108386

しかし、上記の方法により浮遊粒子数や粒径を求めることはできるものの、当該粒子が導電性を有するか否かを判別することはできなかった。   However, although the number of suspended particles and the particle diameter can be obtained by the above method, it has not been possible to determine whether or not the particles have conductivity.

従って、本発明の目的は、空間を浮遊する粒子が導電性を有するか否かを判別する方法及び装置を提供することにある。   Accordingly, an object of the present invention is to provide a method and apparatus for determining whether particles floating in a space have electrical conductivity.

上記課題を解決した本発明は次記のとおりである。
<請求項1記載の発明>
空間に浮遊する粒子が導電性を有するか否かを判別する方法であって、
レーザー光発生装置から出射したレーザー光を判別対象の前記浮遊粒子に照射し、
粒径パラメータα(α=πd/λ 。ここにd:粒径、λ:レーザー光の波長)が20以上の前記浮遊粒子における、
前記照射によって生じる前方散乱光及び後方散乱光を前方散乱光検出器及び後方散乱光検出器によって検出し、
レーザー光の入射線に対する粒子の散乱角が30度〜60度の範囲内および300度〜330度の範囲内の少なくとも一方の前記前方散乱光強度と、
120度〜150度の範囲内および210〜240度の範囲内の少なくとも一方の前記後方散乱光強度との比率に基づき前記浮遊粒子の導電性の有無を判別する、
ことを特徴とする粒子導電性判別方法。
The present invention that has solved the above problems is as follows.
<Invention of Claim 1>
A method for determining whether particles suspended in space have electrical conductivity,
Irradiate the floating particles to be discriminated with laser light emitted from a laser light generator,
In the floating particles having a particle size parameter α (α = πd / λ, where d: particle size, λ: wavelength of laser light) is 20 or more,
Forward scattered light and back scattered light generated by the irradiation are detected by a forward scattered light detector and a back scattered light detector,
At least one of the forward scattered light intensities within a range of 30 ° to 60 ° and a range of 300 ° to 330 ° of a particle scattering angle with respect to an incident line of laser light;
Determining the presence or absence of conductivity of the suspended particles based on the ratio of at least one of the backscattered light intensity within a range of 120 to 150 degrees and within a range of 210 to 240 degrees;
A method for determining particle conductivity.

(作用効果)
本発明者は、レーザー光を判別対象の浮遊粒子に照射し、その照射によって生じる前方散乱光及び後方散乱光を前方散乱光検出器及び後方散乱光検出器によって検出し、前記前方散乱光の強度と前記後方散乱光の強度の比率に基づき前記浮遊粒子の導電性の有無を判別できることを知見した。その結果、装置的に特別なものを用意する必要はなく、装置構成は簡素なもので足り、また、判別を高い精度で実行できる。
上記の散乱角の範囲内であると、散乱光の強度比率を明確に捉えることができ、粒子の導電性の有無を高い精度で判別することができる。
(Function and effect)
The present inventor irradiates floating particles to be discriminated with laser light, detects forward scattered light and back scattered light generated by the irradiation with a forward scattered light detector and a back scattered light detector, and detects the intensity of the forward scattered light. It was found that the presence or absence of conductivity of the suspended particles can be determined based on the ratio of the intensity of the backscattered light and the backscattered light. As a result, it is not necessary to prepare a special device, the device configuration is simple, and discrimination can be performed with high accuracy.
Within the above scattering angle range, the intensity ratio of scattered light can be clearly understood, and the presence or absence of conductivity of particles can be determined with high accuracy.

<請求項2記載の発明>
前記レーザー光発生装置はレーザービームを発生させる装置であり、
前記前方散乱光検出器はフォトダイオードまたは光電子増倍管であり、
前記後方散乱光検出器はフォトダイオードまたは光電子増倍管である請求項1に記載の粒子導電性判別方法。
<Invention of Claim 2>
The laser beam generator is a device that generates a laser beam,
The forward scattered light detector is a photodiode or a photomultiplier;
The particle conductivity determination method according to claim 1, wherein the backscattered light detector is a photodiode or a photomultiplier tube.

(作用効果)
個別粒子を捉える場合に有効である。
(Function and effect)
This is effective when capturing individual particles.

<請求項3記載の発明>
前記レーザー光発生装置はレーザーライトシートを発生させる装置であり、前記前方散乱光検出器及び前記後方散乱光検出器は撮像素子である請求項1に記載の粒子導電性判別方法。
<Invention of Claim 3>
The particle conductivity determination method according to claim 1, wherein the laser light generation device is a device that generates a laser light sheet, and the forward scattered light detector and the back scattered light detector are imaging elements.

(作用効果)
粒子を群で捉える場合や、分散分布などを把握するのに有効である。
(Function and effect)
This is effective for capturing particles as a group, and for grasping the dispersion distribution.

<請求項4記載の発明>
前記前方散乱光検出器および後方散乱光検出器の前面に偏光フィルタを設け、観測面に対して平行な偏光を検出する請求項1〜3のいずれか1項に記載の粒子導電性判別方法。
<Invention of Claim 4>
The particle conductivity determination method according to any one of claims 1 to 3, wherein a polarization filter is provided on a front surface of the forward scattered light detector and the back scattered light detector to detect polarized light parallel to the observation surface.

(作用効果)
観測面に対して垂直な偏光を検出する場合よりも、散乱光の強度比率を明確に捉えることができ、粒子の導電性の有無を高い精度で判別することができる。
(Function and effect)
Compared with the case where polarized light perpendicular to the observation surface is detected, the intensity ratio of scattered light can be clearly understood, and the presence or absence of conductivity of particles can be determined with high accuracy.

<請求項5記載の発明>
前記レーザー光発生装置の前面に偏光フィルタまたは偏光プリズムのいずれか一方と、λ/2波長板とから選択される少なくともいずれか一つを設け、観測面に対して平行な偏光を照射する請求項1〜4に記載の粒子導電性判別方法。
<Invention of Claim 5>
The at least one selected from a polarizing filter or a polarizing prism and a λ / 2 wavelength plate is provided on the front surface of the laser light generator, and the polarized light parallel to the observation surface is irradiated. The particle | grain conductivity discrimination method of 1-4.

(作用効果)
観測面に対して垂直な偏光を照射する場合よりも、散乱光の強度比率を明確に捉えることができ、粒子の導電性の有無を高い精度で判別することができる。
(Function and effect)
Compared with the case of irradiating polarized light perpendicular to the observation surface, the intensity ratio of scattered light can be clearly understood, and the presence or absence of conductivity of particles can be determined with high accuracy.

<請求項6記載の発明>
前記前方散乱光検出器および後方散乱光検出器の前面に受光角調整装置を設け、レーザー光の入射線に対する粒子の散乱角が、40〜50度および310〜320度の少なくとも一方の前方散乱光と、130〜140度および220〜230度の少なくとも一方の後方散乱光を検出する請求項1〜6のいずれか1項に記載の粒子導電性判別方法。
<Invention of Claim 6>
A light receiving angle adjusting device is provided in front of the forward scattered light detector and the back scattered light detector, and at least one of the forward scattered light having a particle scattering angle of 40 to 50 degrees and 310 to 320 degrees with respect to the incident line of the laser light. And at least one of the backscattered light of 130 to 140 degrees and 220 to 230 degrees is detected.

(作用効果)
請求項1の発明の場合よりも、散乱光の強度比率を明確に捉えることができ、粒子の導電性の有無を高い精度で判別することができる。
(Function and effect)
As compared with the case of the invention of claim 1, the intensity ratio of scattered light can be clearly understood, and the presence or absence of conductivity of particles can be determined with high accuracy.

<請求項7記載の発明>
前記前方散乱光検出器および後方散乱光検出器の前面に干渉フィルタを設ける請求項1〜6のいずれか1項に記載の粒子導電性判別方法。
<Invention of Claim 7>
The particle conductivity determination method according to any one of claims 1 to 6, wherein an interference filter is provided in front of the forward scattered light detector and the back scattered light detector.

(作用効果)
蛍光等の非弾性散乱光を除去できるため、干渉フィルタを設けない場合と比べて、粒子の導電性の有無の判別が容易になる。
(Function and effect)
Since inelastically scattered light such as fluorescence can be removed, it is easier to determine the presence or absence of electrical conductivity of the particles than when no interference filter is provided.

<請求項8記載の発明>
空間に浮遊する粒子が導電性を有するか否かを判別する装置であって、
判別対象の前記浮遊粒子にレーザー光を照射するレーザー光発生装置と、
粒径パラメータα(α=πd/λ 。ここにd:粒径、λ:レーザー光の波長)が20以上の前記浮遊粒子における、
前記照射によって生じる前方散乱光及び後方散乱光を検出する前方散乱光検出器及び後方散乱光検出器と、
レーザー光の入射線に対する粒子の散乱角が30度〜60度の範囲内および300度〜330度の範囲内の少なくとも一方の前記前方散乱光の強度と、
120度〜150度の範囲内および210〜240度の範囲内の少なくとも一方の前記後方散乱光の強度との比率に基づき前記浮遊粒子の導電性の有無を判別する手段と、
を有することを特徴とする粒子導電性判別装置。
<Invention of Claim 8>
An apparatus for determining whether particles floating in space have electrical conductivity,
A laser beam generator for irradiating the floating particles to be discriminated with a laser beam;
In the floating particles having a particle size parameter α (α = πd / λ, where d: particle size, λ: wavelength of laser light) is 20 or more,
A forward scattered light detector and a back scattered light detector for detecting forward scattered light and backward scattered light generated by the irradiation;
The intensity of at least one of the forward scattered light within a range of a particle scattering angle of 30 to 60 degrees and a range of 300 to 330 degrees with respect to an incident line of laser light;
Means for determining the presence or absence of conductivity of the suspended particles based on the ratio of the intensity of the backscattered light in at least one of the range of 120 to 150 degrees and the range of 210 to 240 degrees;
A particle conductivity discriminating apparatus characterized by comprising:

(作用効果)
請求項1の場合と同様の作用効果を奏する。
(Function and effect)
The same effects as in the case of claim 1 are achieved.

本発明の粒子導電性判別装置及び粒子導電性判別方法によれば、浮遊する粒子が導電性を有するか否かを判別することができる。   According to the particle conductivity determining apparatus and the particle conductivity determining method of the present invention, it is possible to determine whether or not floating particles have conductivity.

本発明に係る粒子導電性判別装置の平面図である。It is a top view of the particle conductivity discriminating device concerning the present invention. 本発明に係る粒子導電性判別装置の変形例である。It is a modification of the particle | grain electrical conductivity determination apparatus which concerns on this invention. 導電性を有さない浮遊粒子に光を照射した場合の散乱光を示した図である。It is the figure which showed the scattered light at the time of irradiating light to the floating particle which does not have electroconductivity. 導電性を有する浮遊粒子に光を照射した場合の散乱光を示した図である。It is the figure which showed the scattered light at the time of irradiating light to the floating particle | grains which have electroconductivity. 導電性を有する浮遊粒子に光を照射した場合の散乱光を示した図である。It is the figure which showed the scattered light at the time of irradiating light to the floating particle | grains which have electroconductivity. 前方散乱光強度と後方散乱光強度の強度比について表した図である。It is a figure showing about intensity ratio of forward scattered light intensity and back scattered light intensity. 浮遊粒子がガラスビーズの場合の実験結果を表した図である。It is a figure showing the experimental result in case airborne particles are glass beads. 浮遊粒子がNiの場合の実験結果を表した図である。It is a figure showing the experimental result in case airborne particles are Ni. 照射光としてレーザーライトシートを、散乱光検出器として撮像素子を用いた場合の図である。It is a figure at the time of using a laser light sheet as irradiation light, and using an image pick-up element as a scattered light detector. 前方散乱光強度と後方散乱光強度の強度比について他の例について表した図である。It is a figure showing about another example about intensity ratio of forward scattered light intensity and back scattered light intensity. 前方散乱光強度と後方散乱光強度の強度比について別の例について表した図である。It is a figure showing about another example about intensity ratio of forward scattered light intensity and back scattered light intensity.

以下、本発明の粒子導電性判別装置及び粒子導電性判別方法の好ましい実施形態について、図1〜図11を参照しながら説明する。   Hereinafter, a preferred embodiment of a particle conductivity determination device and a particle conductivity determination method of the present invention will be described with reference to FIGS.

図1は、本発明にかかる粒子導電性判別装置の平面図である。   FIG. 1 is a plan view of a particle conductivity discriminating apparatus according to the present invention.

粒子導電性判別装置は、レーザー光発生装置1と前方散乱光検出器3と後方散乱光検出器4とを含んでいる。
前記レーザー光発生装置1から、対象となる浮遊粒子2に対してレーザー光を照射すると、レーザー光が前記浮遊粒子2に当たり光が散乱する。
この光の散乱が観測面L上でどのように発生するかを、前方散乱光検出器3および後方散乱光検出器4によって検出する。より詳しくは、前記散乱光のうち前方へ散乱したものを前方散乱光検出器3によって検出する。後方へ散乱したものを後方散乱光検出器4によって検出する。
そして、前方散乱光の強度と後方散乱光の強度の比率に基づき浮遊粒子の導電性の有無を判別するものである。
The particle conductivity discriminating apparatus includes a laser light generator 1, a forward scattered light detector 3, and a backscattered light detector 4.
When laser light is irradiated from the laser light generator 1 to the target floating particles 2, the laser light hits the floating particles 2 and the light is scattered.
The forward scattered light detector 3 and the back scattered light detector 4 detect how this light scattering occurs on the observation surface L. More specifically, the forward scattered light detector 3 detects the scattered light scattered forward. What is scattered backward is detected by the backscattered light detector 4.
Then, the presence or absence of conductivity of the suspended particles is determined based on the ratio of the intensity of the forward scattered light and the intensity of the back scattered light.

ここで、観測面Lとは、(1)レーザー光発生装置1の出射口と浮遊粒子2を結んだ直線、(2)前方散乱光検出器3の受光口と浮遊粒子2を結んだ直線、(3)後方散乱光検出器4の受光口と浮遊粒子2を結んだ直線、の全てを含む面をいう。
また、前記レーザー光発生装置1のレーザー光出射口と前記浮遊粒子2を結んだ直線およびその延長線を縦方向基準線Yという。また、浮遊粒子2を通り、縦方向基準線Yに直角に交わる線を横方向基準線Xという。更に、前記横方向基準線Xを境として、Yプラス方向を前方といい、Yマイナス方向を後方という。なお、縦方向基準線Yと横方向基準線Xは、観測面L上にある。
また、浮遊粒子2と前方散乱光検出器3を結ぶ方向線、並びに後方散乱光検出器4を結ぶ方向線が、縦方向基準線Yとの間でなす角度を前方散乱角θ1及び後方散乱角θ2とする。
前方散乱光検出器は、フォトダイオードまたは光電子増倍管等からなり、フォトダイオードには、アバランシェフォトダイオードも含む。また、後方散乱光検出器も同様に、フォトダイオードまたは光電子増倍管等からなり、フォトダイオードには、アバランシェフォトダイオードも含む。
図1においては、前方散乱光検出器3および後方散乱光検出器4をXプラス方向に設けた例を示したが、本発明はこの例に限られない。具体的には、前方散乱光検出器3および後方散乱光検出器4をXマイナス方向に設けても良いし、前方散乱光検出器3および後方散乱光検出器4をそれぞれ複数設けても良い。
Here, the observation surface L is (1) a straight line connecting the emission port of the laser beam generator 1 and the suspended particles 2, (2) a straight line connecting the light receiving port of the forward scattered light detector 3 and the suspended particles 2, (3) A surface including all of the light receiving port of the backscattered light detector 4 and the straight line connecting the suspended particles 2.
A straight line connecting the laser beam exit of the laser beam generator 1 and the suspended particle 2 and its extension line are referred to as a longitudinal reference line Y. A line passing through the suspended particles 2 and intersecting the vertical reference line Y at a right angle is referred to as a horizontal reference line X. Further, with the horizontal reference line X as a boundary, the Y plus direction is referred to as the front, and the Y minus direction is referred to as the rear. The vertical reference line Y and the horizontal reference line X are on the observation plane L.
Further, the angle formed between the direction line connecting the suspended particle 2 and the forward scattered light detector 3 and the direction line connecting the back scattered light detector 4 with the longitudinal reference line Y is defined as the forward scattering angle θ1 and the back scattering angle. Let θ2.
The forward scattered light detector includes a photodiode or a photomultiplier tube, and the photodiode includes an avalanche photodiode. Similarly, the backscattered light detector includes a photodiode or a photomultiplier tube, and the photodiode includes an avalanche photodiode.
Although FIG. 1 shows an example in which the forward scattered light detector 3 and the back scattered light detector 4 are provided in the X plus direction, the present invention is not limited to this example. Specifically, the forward scattered light detector 3 and the back scattered light detector 4 may be provided in the X minus direction, or a plurality of the forward scattered light detector 3 and the back scattered light detector 4 may be provided.

図2は、本発明にかかる粒子導電性判別装置の変形例である。   FIG. 2 is a modification of the particle conductivity determination device according to the present invention.

前方散乱光検出器3および後方散乱光検出器4の少なくとも一方の検出器の前面に、偏光フィルタ5を設けた。偏光フィルタ5を設けることで、観測面Lに対して垂直な偏光のみ、または、観測面Lに対して平行な偏光のみを検出することができる。
本発明における粒子導電性判別方法においては、後述のように、観測面Lに対して平行な偏光を用いると、粒子の導電性の有無の判別が容易になるため、観測面Lに対して平行な偏光のみを検出する偏光フィルタ5を用いるのが好ましい。
しかし、本発明はこれに限定されず、観測面Lに対して垂直な偏光のみを検出する偏光フィルタ5を用いてもよい。
さらに、本発明における粒子導電性判別方法においては、後述のように、前方散乱角θ1が特定の範囲内にある前方散乱光、及び後方散乱角θ2が特定の範囲内にある後方散乱光を用いると、粒子の導電性の有無を高い精度で判別できるため、当該範囲の散乱光を検出するように、前方散乱光検出器3および後方散乱光検出器4の少なくとも一方の検出器の前面に受光角調整装置7を設けた。この受光角調整装置7としては、例えばアイリスが挙げられる。
その他、前方散乱光検出器3および後方散乱光検出器4の少なくとも一方の検出器の前面に、蛍光等の非弾性散乱光を除去するための干渉フィルタ8を設けても良い。
本発明においては、前記偏光フィルタ5、受光角調整装置7、干渉フィルタ8の全て備えるようにしても良いし、いずれかを選択して備えるようにしても良い。
さらに、前方散乱光検出器3および後方散乱光検出器4の少なくとも一方の検出器の前方に、コリメート用レンズ9を設けても良い。
また、前方散乱光検出器3および後方散乱光検出器4の少なくとも一方の検出器の前方に、集光用レンズ10を設けて、集光するようにしても良い。
偏光フィルタ5、受光角調整装置7、干渉フィルタ8、コリメート用レンズ9、集光用レンズ10の配置例については、後述の実験の説明で詳述する。
A polarizing filter 5 is provided in front of at least one of the forward scattered light detector 3 and the back scattered light detector 4. By providing the polarizing filter 5, only polarized light perpendicular to the observation plane L or only polarized light parallel to the observation plane L can be detected.
In the particle conductivity determination method according to the present invention, as described later, when polarized light parallel to the observation surface L is used, it becomes easy to determine whether the particles are conductive. It is preferable to use a polarizing filter 5 that detects only polarized light.
However, the present invention is not limited to this, and a polarizing filter 5 that detects only polarized light perpendicular to the observation plane L may be used.
Furthermore, in the particle conductivity determination method of the present invention, as described later, forward scattered light having a forward scattering angle θ1 within a specific range and backscattered light having a backscattering angle θ2 within a specific range are used. Since the presence / absence of conductivity of the particles can be determined with high accuracy, the light is received on the front surface of at least one of the forward scattered light detector 3 and the back scattered light detector 4 so as to detect scattered light in the range. An angle adjusting device 7 is provided. An example of the light receiving angle adjusting device 7 is an iris.
In addition, an interference filter 8 for removing inelastic scattered light such as fluorescence may be provided in front of at least one of the forward scattered light detector 3 and the back scattered light detector 4.
In the present invention, all of the polarizing filter 5, the light receiving angle adjusting device 7, and the interference filter 8 may be provided, or any one of them may be selected and provided.
Further, a collimating lens 9 may be provided in front of at least one of the forward scattered light detector 3 and the back scattered light detector 4.
Further, a condensing lens 10 may be provided in front of at least one of the forward scattered light detector 3 and the back scattered light detector 4 to collect light.
An example of the arrangement of the polarizing filter 5, the light reception angle adjusting device 7, the interference filter 8, the collimating lens 9, and the condensing lens 10 will be described in detail in the description of the experiment described later.

一方、レーザー光発生装置1から出射するレーザー光は偏光した状態であることが望ましい。
しかし、一部のレーザー光発生装置1から出射されるレーザー光は、様々な偏光成分を含むものや、偏光比が50:1程度の望ましくないものがある。そのため、そのようなレーザー光を望ましい偏光比のレーザー光にするために、図2に示したように、レーザー光発生装置の前面に偏光フィルタ5を用いるのが好ましい。また、図2には示していないが、偏光フィルタ5の代わりに偏光プリズムを用いてよい。なお、ここでいう望ましい偏光比とは、例えば10000:1等の、偏光の垂直成分または水平成分のどちらか一方の偏光成分を強く含み、その他の偏光成分が極めて弱い状態をいう。
また、レーザー光の偏光を観測面Lに対して平行または垂直にするために、図2に示すようにレーザー光発生装置1の前面にλ/2波長板6を設けるのが好ましい。
本発明においては、前記偏光フィルタ5または偏光プリズムのいずれかと、λ/2波長板6を設けるようにしても良いし、いずれかを選択して備えるようにしても良い。
On the other hand, the laser beam emitted from the laser beam generator 1 is preferably in a polarized state.
However, there are laser beams emitted from some laser beam generators 1 including various polarization components and undesirable ones having a polarization ratio of about 50: 1. Therefore, in order to convert such laser light into laser light having a desired polarization ratio, it is preferable to use a polarizing filter 5 on the front surface of the laser light generator as shown in FIG. Although not shown in FIG. 2, a polarizing prism may be used instead of the polarizing filter 5. Here, the desirable polarization ratio means a state in which one of the polarization components of the polarization, such as 10000: 1, is strong and the other polarization component is very weak.
In order to make the polarization of the laser light parallel or perpendicular to the observation plane L, it is preferable to provide a λ / 2 wavelength plate 6 on the front surface of the laser light generator 1 as shown in FIG.
In the present invention, either the polarizing filter 5 or the polarizing prism and the λ / 2 wavelength plate 6 may be provided, or one of them may be selected and provided.

ここで、レーザー光が浮遊粒子に当たり、散乱した光の強度である光散乱光強度Ijは、下式(1)〜(3)のように、レーザー光の波長λ、浮遊粒子から散乱光検出器までの距離R、散乱角θ、粒径パラメータα、粒子屈折率mの関数で表される。

Figure 0005681517
Figure 0005681517
Figure 0005681517
Here, the light scattered light intensity I j , which is the intensity of the scattered light when the laser light hits the suspended particles, is detected from the suspended particle by the wavelength λ of the laser light, as shown in the following formulas (1) to (3). It is expressed as a function of the distance R to the vessel, the scattering angle θ, the particle size parameter α, and the particle refractive index m.
Figure 0005681517
Figure 0005681517
Figure 0005681517

ここで、dは前記浮遊粒子の粒経を表す。また、j=1の場合は観測面Lに対して垂直な偏光を照射する場合を指し、j=2の場合は観測面Lに対して平行な偏光を照射する場合を指す。   Here, d represents the particle size of the suspended particles. Further, j = 1 indicates the case of irradiating polarized light perpendicular to the observation plane L, and j = 2 indicates the case of irradiating polarized light parallel to the observation plane L.

前記粒子屈折率mは、光散乱のパラメータの1つであり、上記の式(2)のように複素数で表される。粒子が非導電性の場合、屈折率の虚部n’はn’=0となり、導電性の場合、屈折率の虚部n’はn’=0とならない。
複素数の屈折率の虚部n’の前記特性を利用して、n’を変化させた場合の散乱光強度分布の変化を計算し、その結果を図3〜図5に表した。したがって以下に説明するように、逆に、本発明に従って、前方散乱光の強度と後方散乱光の強度の比率に基づき浮遊粒子の導電性の有無を判別することができるのである。
The particle refractive index m is one of light scattering parameters, and is represented by a complex number as in the above equation (2). When the particle is non-conductive, the imaginary part n ′ of the refractive index is n ′ = 0, and when it is conductive, the imaginary part n ′ of the refractive index is not n ′ = 0.
Using the above-mentioned characteristic of the imaginary part n ′ of the complex refractive index, the change in the scattered light intensity distribution when n ′ is changed is calculated, and the results are shown in FIGS. Therefore, on the contrary, according to the present invention, the presence or absence of conductivity of the suspended particles can be determined based on the ratio of the intensity of the forward scattered light and the intensity of the back scattered light.

図3は、粒子の屈折率m=1.5−0iの場合、つまり粒子に導電性がない場合において、粒径パラメータαを20とし、波長λを532nmとし、粒径dを3.4μmとして、散乱光強度の角度分布を算出した結果を示したものである。
また、図4は、粒子の屈折率m=1.5−1iの場合、つまり粒子に導電性がある場合において、粒径パラメータαを20とし、波長λを532nmとし、粒径dを3.4μmとして、散乱光強度の角度分布を算出した結果を示したものである。
また、図5は、粒子の屈折率m=1.5−0.1iの場合、つまり粒子に導電性がある場合において、粒径パラメータαを20とし、波長λを532nmとし、粒径dを3.4μmとして、散乱光強度の角度分布を算出した結果を示したものである。
散乱光強度としては上記の数1で示したij(j=1,2)を算出したものを示した。
図3〜図5においては、図1および図2に示した縦方向基準線Yが、図3〜図5の0度と180度を結んだ線に該当し、図1および図2に示した横方向基準線Xが、図3〜図5の90度と270度を結んだ線に該当する。また、レーザー光発生装置1は、図3〜図5の180度の位置にあり、そこから図3〜図5のグラフの中心に位置する浮遊粒子にレーザー光を照射し、発生した散乱光の強度の分布を示している。さらに、0〜90度及び270〜360度の散乱光の強度を前方散乱光強度といい、90〜270度の散乱光の強度を後方散乱光強度という。
なお、粒径パラメータαは照射光の波長に対する粒子の相対的な大きさを示しており、例えば、粒径パラメータα=10は、照射光の波長λがλ=532nmの場合に、約1.7μmの粒径を表す。また、図中の実線は観測面Lに対し平行な偏光を、破線は観測面Lに対し垂直な偏光を180度の方向から中央の浮遊粒子2に照射した場合に、照射光が浮遊粒子に当たって発生した散乱光が各方向にどのような強度で散乱されるかについて、散乱光の強度の分布を表したものである。
FIG. 3 shows that when the refractive index of the particle m = 1.5-0i, that is, when the particle is not conductive, the particle size parameter α is 20, the wavelength λ is 532 nm, and the particle size d is 3.4 μm. The results of calculating the angular distribution of scattered light intensity are shown.
4 shows that when the refractive index m of the particles is 1.5-1i, that is, when the particles are conductive, the particle size parameter α is 20, the wavelength λ is 532 nm, and the particle size d is 3. The result of calculating the angular distribution of the scattered light intensity as 4 μm is shown.
FIG. 5 shows that when the refractive index of the particle m = 1.5−0.1i, that is, when the particle is conductive, the particle size parameter α is 20, the wavelength λ is 532 nm, and the particle size d is The result of calculating the angular distribution of scattered light intensity as 3.4 μm is shown.
As the scattered light intensity, a value obtained by calculating i j (j = 1, 2) expressed by the above equation 1 is shown.
3 to 5, the vertical reference line Y shown in FIGS. 1 and 2 corresponds to the line connecting 0 degrees and 180 degrees in FIGS. 3 to 5, and is shown in FIGS. 1 and 2. The horizontal reference line X corresponds to a line connecting 90 degrees and 270 degrees in FIGS. Moreover, the laser beam generator 1 is located at a position of 180 degrees in FIGS. 3 to 5, and irradiates the suspended particles located at the center of the graphs in FIGS. The intensity distribution is shown. Furthermore, the intensity of scattered light at 0 to 90 degrees and 270 to 360 degrees is referred to as forward scattered light intensity, and the intensity of scattered light at 90 to 270 degrees is referred to as backscattered light intensity.
Note that the particle size parameter α indicates the relative size of the particles with respect to the wavelength of the irradiation light. For example, the particle size parameter α = 10 is about 1. when the wavelength λ of the irradiation light is λ = 532 nm. Represents a particle size of 7 μm. In addition, when the solid line in the figure irradiates the polarized light parallel to the observation plane L, and the broken line irradiates the polarized particle perpendicular to the observation plane L from the direction of 180 degrees to the central suspended particle 2, the irradiated light strikes the suspended particle. It shows the distribution of the intensity of the scattered light with respect to how much the generated scattered light is scattered in each direction.

図3においては、前方散乱光強度のうち30度〜60度の前方散乱光強度が、後方散乱光強度のうち120度〜150度の後方散乱光強度よりも非常に強いことがわかる。また、前方散乱光強度のうち300度〜330度の前方散乱光強度が、後方散乱光強度のうち210度〜240度の後方散乱光強度よりも非常に強いことがわかる。
特に、前方散乱光強度のうち40度〜50度の前方散乱光強度が、後方散乱光強度のうち130度〜140度の後方散乱光強度よりも顕著に強いことがわかる。また、前方散乱光強度のうち310度〜320度の前方散乱光強度が、後方散乱光強度のうち220度〜230度の後方散乱光強度よりも顕著に強いことがわかる。
In FIG. 3, it can be seen that the forward scattered light intensity of 30 to 60 degrees in the forward scattered light intensity is much stronger than the backward scattered light intensity of 120 to 150 degrees in the backward scattered light intensity. It can also be seen that the forward scattered light intensity of 300 to 330 degrees of the forward scattered light intensity is much stronger than the backward scattered light intensity of 210 to 240 degrees of the backward scattered light intensity.
In particular, it can be seen that the forward scattered light intensity of 40 to 50 degrees out of the forward scattered light intensity is significantly stronger than the back scattered light intensity of 130 to 140 degrees of the backward scattered light intensity. Further, it can be seen that the forward scattered light intensity of 310 to 320 degrees in the forward scattered light intensity is significantly stronger than the backward scattered light intensity of 220 to 230 degrees of the backward scattered light intensity.

また、図4においては、前方散乱光強度のうち30度〜60度の前方散乱光強度が、後方散乱光強度のうち120度〜150度の後方散乱光強度よりも弱いことがわかる。また、前方散乱光強度のうち300度〜330度の前方散乱光強度が、後方散乱光強度のうち210度〜240度の後方散乱光強度よりも弱いことがわかる。
特に、前方散乱光強度のうち40度〜50度の前方散乱光強度が、後方散乱光強度のうち130度〜140度の後方散乱光強度よりも顕著に弱いことがわかる。また、前方散乱光強度のうち310度〜320度の前方散乱光強度が、後方散乱光強度のうち220度〜230度の後方散乱光強度よりも顕著に弱いことがわかる。
Also, in FIG. 4, it can be seen that the forward scattered light intensity of 30 to 60 degrees out of the forward scattered light intensity is weaker than the backward scattered light intensity of 120 degrees to 150 degrees of the backward scattered light intensity. It can also be seen that the forward scattered light intensity of 300 to 330 degrees in the forward scattered light intensity is weaker than the backward scattered light intensity of 210 to 240 degrees of the backward scattered light intensity.
In particular, it can be seen that the forward scattered light intensity of 40 to 50 degrees out of the forward scattered light intensity is significantly weaker than the back scattered light intensity of 130 to 140 degrees of the backward scattered light intensity. Moreover, it turns out that the forward scattered light intensity of 310 degree | times -320 degree | times among the forward scattered light intensity | strength is remarkably weaker than the backward scattered light intensity | strength of 220 degree | times -230 degree | times among back scattered light intensity | strength.

また、図5において、前方散乱光強度のうち30度〜60度の前方散乱光強度が、後方散乱光強度のうち120度〜150度の後方散乱光強度と同程度であることがわかる。また、前方散乱光強度のうち300度〜330度の前方散乱光強度が、後方散乱光強度のうち210度〜240度の後方散乱光強度と同程度であることがわかる。
さらに、前方散乱光強度のうち40度〜50度の前方散乱光強度も、後方散乱光強度のうち130度〜140度の後方散乱光強度と同程度であることがわかる。また、前方散乱光強度のうち310度〜320度の前方散乱光強度も、後方散乱光強度のうち220度〜230度の後方散乱光強度と同程度であることがわかる。
Further, in FIG. 5, it can be seen that the forward scattered light intensity of 30 to 60 degrees in the forward scattered light intensity is comparable to the backward scattered light intensity of 120 degrees to 150 degrees of the backward scattered light intensity. It can also be seen that the forward scattered light intensity of 300 to 330 degrees of the forward scattered light intensity is comparable to the backward scattered light intensity of 210 to 240 degrees of the backward scattered light intensity.
Furthermore, it can be seen that the forward scattered light intensity of 40 to 50 degrees out of the forward scattered light intensity is comparable to the backward scattered light intensity of 130 degrees to 140 degrees of the backward scattered light intensity. It can also be seen that the forward scattered light intensity of 310 to 320 degrees of the forward scattered light intensity is comparable to the backward scattered light intensity of 220 to 230 degrees of the backward scattered light intensity.

なお、図3のm=1.5−0iの30度〜60度の前方散乱光強度は、図4のm=1.5−0.1iや図5のm=1.5−1iの30度〜60度の前方散乱光強度よりも強いこともわかる。また、図3のm=1.5−0iの300度〜330度の前方散乱光強度は、図4のm=1.5−0.1iや図5のm=1.5−1iの300度〜330度の前方散乱光強度よりも強いこともわかる。   The forward scattered light intensity from 30 degrees to 60 degrees in m = 1.5-0i in FIG. 3 is 30 in m = 1.5-0.1i in FIG. 4 and m = 1.5-1i in FIG. It can also be seen that it is stronger than the forward scattered light intensity of 60 degrees to 60 degrees. Further, the forward scattered light intensity of 300 to 330 degrees at m = 1.5-0i in FIG. 3 is 300 at m = 1.5-0.1i in FIG. 4 and m = 1.5-1i in FIG. It can also be seen that it is stronger than the forward scattered light intensity of .degree.

なお、本発明において、前方散乱光または後方散乱光の好適な検出角度範囲例を上述のように説明したが、その角度範囲内における一部の散乱光を強度比較基準として取り込む場合と、その角度範囲内における全部の散乱光を強度比較基準として取り込む場合との両形態を包含するものであることを付言しておく。   In the present invention, an example of a suitable detection angle range of forward scattered light or back scattered light has been described above. However, when a part of scattered light within the angular range is taken in as an intensity comparison reference, It should be added that both forms of capturing all scattered light within the range as an intensity comparison standard are included.

ここに、本発明者による他の多くの試行によれば、粒径パラメータαが1のときは、導電性粒子の散乱光強度および非導電性粒子の散乱光強度に顕著な違いが見られなかった。しかし、粒径パラメータαが10以上の場合は、観測面に対し平行な偏光を非導電性粒子に照射した際の強度分布に関し、0度〜90度及び270度〜360度の前方散乱光強度が、90度〜270度の後方散乱光強度よりも強い傾向がある。また、粒径パラメータαが10以上の場合は、観測面に対し平行な偏光を導電性粒子に照射した際の強度分布に関し、0度〜90度及び270度〜360度の前方散乱光強度が、90度〜270度の後方散乱光強度に対し同程度か弱い傾向にある。   Here, according to many other trials by the present inventors, when the particle size parameter α is 1, there is no significant difference between the scattered light intensity of the conductive particles and the scattered light intensity of the nonconductive particles. It was. However, when the particle size parameter α is 10 or more, the forward scattered light intensity of 0 to 90 degrees and 270 to 360 degrees is related to the intensity distribution when the non-conductive particles are irradiated with polarized light parallel to the observation surface. However, it tends to be stronger than the backscattered light intensity of 90 to 270 degrees. When the particle size parameter α is 10 or more, the forward scattered light intensity of 0 ° to 90 ° and 270 ° to 360 ° is related to the intensity distribution when the conductive particles are irradiated with polarized light parallel to the observation surface. , It tends to be the same or weak with respect to the backscattered light intensity of 90 to 270 degrees.

前記の図3〜図5においては、40度〜50度の散乱光と130度〜140度の散乱光に特に違いが見られるため、下式(4)に示す前方散乱光強度Ifと、下式(5)に示す後方散乱光強度Ibの比(If/Ib)を図6に示す。

Figure 0005681517
Figure 0005681517
In FIG. 3 to FIG. 5, since there is a particular difference between the scattered light of 40 to 50 degrees and the scattered light of 130 to 140 degrees, the forward scattered light intensity If shown in the following formula (4), FIG. 6 shows the ratio (I f / I b ) of the backscattered light intensity I b shown in the following formula (5).
Figure 0005681517
Figure 0005681517

図6によると、前記浮遊粒子2の粒経パラメータαが約20より大きい場合は、前記比(If/Ib)に違いが生じている。つまり、浮遊粒子2の粒子屈折率mが1.5−0iであり、当該浮遊粒子2が非導電性粒子である場合、粒径パラメータαが20以上では、前記比(If/Ib)が約7以上になっている。また、浮遊粒子2の粒子屈折率mが1.5−1iや1.5−0.1iであって、当該浮遊粒子2が導電性粒子である場合は、粒径パラメータαが20以上では、前記比(If/Ib)が約2以下になっている。
従って、前記浮遊粒子2の粒径パラメータαが約20よりも大きい粒子について、前記比(If/Ib)が約2〜7の間にある値を閾値として用いて、浮遊粒子の導電性の有無を判別できるか否かについて実験により検証した。
According to FIG. 6, when the particle size parameter α of the suspended particles 2 is larger than about 20, there is a difference in the ratio (I f / I b ). That is, when the particle refractive index m of the suspended particle 2 is 1.5-0i and the suspended particle 2 is a non-conductive particle, the ratio (I f / I b ) is larger when the particle size parameter α is 20 or more. Is about 7 or more. In addition, when the particle refractive index m of the floating particle 2 is 1.5-1i or 1.5-0.1i and the floating particle 2 is a conductive particle, when the particle size parameter α is 20 or more, The ratio (I f / I b ) is about 2 or less.
Therefore, for particles having a particle size parameter α greater than about 20 for the suspended particles 2, the value of the ratio (I f / I b ) between about 2 and 7 is used as a threshold value, and the conductivity of the suspended particles is measured. It was verified by experiment whether it was possible to determine the presence or absence.

当該実験は、図2に示したような粒子導電性判別装置を用いた。
具体的には、レーザー光発生装置1からレーザー光を浮遊粒子2に照射し、レーザー光が当該浮遊粒子2に当たって生じる前方散乱光および後方散乱光を前記前方散乱光検出器3および前記後方散乱光検出器4の前面に設置したコリメート用レンズ9で平行光とし、さらに前記前方散乱光検出器3および前記後方散乱光検出器4と前記コリメート用レンズ9の間に設置した集光用レンズ10で集光した上で、前記前方散乱光検出器3および前記後方散乱光検出器4であるフォトダイオードで検出した。
図3〜図5によると、観測面Lに対し平行な偏光を用いた場合、前方散乱光強度と後方散乱光強度に違いが見られたため、前記レーザー光発生装置1の前面に偏光プリズム及びλ/2波長板6を設け、観測面に対し平行な偏光のみを照射するようにした。
また、図3〜図5によると、観測面Lに対し平行な偏光を用いた場合、前方散乱光強度と後方散乱光強度に違いが見られたため、前記コリメート用レンズ9と前記集光用レンズ10の間に偏光フィルタ5を設け、観測面に対し平行な偏光のみを検出するようにした。
さらに、図3〜図5によると、前方散乱光および後方散乱光のうち、40度〜50度の範囲及び130度〜140度の範囲に顕著な違いが見られたため、当該範囲の散乱光を検出するように、前記各コリメート用レンズ9の前面に受光角調整装置7としてアイリスを設けた。
その他、前記コリメート用レンズ9と前記集光用レンズ10の間に、蛍光等の非弾性散乱光を除去するための干渉フィルタ8を設けた。
In this experiment, a particle conductivity discriminating apparatus as shown in FIG. 2 was used.
Specifically, the laser beam is emitted from the laser beam generator 1 to the floating particles 2, and the forward scattered light and the back scattered light generated when the laser beam strikes the floating particles 2 are converted into the forward scattered light detector 3 and the back scattered light. A collimating lens 9 installed in front of the detector 4 generates parallel light, and the forward scattered light detector 3 and the condensing lens 10 installed between the backscattered light detector 4 and the collimating lens 9. After condensing, the light was detected by a photodiode which is the forward scattered light detector 3 and the backward scattered light detector 4.
3 to 5, when polarized light parallel to the observation surface L is used, a difference is observed between the forward scattered light intensity and the back scattered light intensity. / 2 wavelength plate 6 is provided to irradiate only polarized light parallel to the observation surface.
3 to 5, when polarized light parallel to the observation surface L is used, a difference is seen between the forward scattered light intensity and the back scattered light intensity. Therefore, the collimating lens 9 and the condensing lens are used. A polarizing filter 5 is provided between 10 so as to detect only polarized light parallel to the observation surface.
Further, according to FIGS. 3 to 5, among the forward scattered light and the back scattered light, a remarkable difference was observed in the range of 40 to 50 degrees and the range of 130 to 140 degrees. In order to detect, an iris was provided as a light reception angle adjusting device 7 in front of each collimating lens 9.
In addition, an interference filter 8 for removing inelastic scattered light such as fluorescence is provided between the collimating lens 9 and the condensing lens 10.

前記実験の詳細について、以下に説明する。レーザーには波長532nm、出力2WのNd:YAGレーザーの2倍波を用いた。そして、レーザー光は計測ポイントにおいて観測面に対し平行な偏光となるように照射した。導電性の有無を測定する浮遊粒子2は、乾燥粉末状のものを空気搬送により計測ポイントに供給した。測定粒子としては、非導電性粒子として約30μmのガラスビーズGBL−30(日本粉体工業協会)を用いた。また、導電性粒子として約2〜10μmのNi(Duke Scientific)を用いた。   Details of the experiment will be described below. The laser used was a second harmonic of an Nd: YAG laser having a wavelength of 532 nm and an output of 2 W. The laser beam was irradiated so as to be polarized parallel to the observation surface at the measurement point. As the suspended particles 2 for measuring the presence or absence of conductivity, dry powder was supplied to the measurement point by air conveyance. As measurement particles, about 30 μm glass beads GBL-30 (Japan Powder Industry Association) were used as non-conductive particles. Moreover, about 2-10 micrometers Ni (Duke Scientific) was used as electroconductive particle.

実験結果を図7および図8に示す。各々のグラフは横軸を前方散乱光強度If、縦軸を後方散乱光強度Ibとしたものである。また、図中の実線は粒子の導電性の有無を判別するためにIf/Ibの閾値としてIf/Ib=2とした場合を示している。当該実線より右側にあれば浮遊粒子2は非導電性であり、左側にあれば浮遊粒子2は導電性であることを示している。図7のガラスビーズの場合は、概ねIf/Ib=2の線の右側に分布しており、非導電性であることを示している。また、図8のNiの場合は、概ねIf/Ib=2の線の左側に分布しており、導電性であることを示している。
この結果、各々の粒子の前方散乱光強度If、後方散乱光強度Ibを計測し、その比If/Ibに適切な閾値を設けることで、各々の浮遊粒子2が導電性を有するか否かを判別することができることが示された。
Experimental results are shown in FIGS. In each graph, the horizontal axis represents the forward scattered light intensity I f , and the vertical axis represents the back scattered light intensity I b . The solid line in the figure shows the case of a I f / I b = 2 as a threshold value I f / I b to determine the presence or absence of conductive particles. If it is on the right side of the solid line, the suspended particle 2 is non-conductive, and if it is on the left side, it indicates that the suspended particle 2 is electrically conductive. In the case of the glass beads in FIG. 7, the glass beads are generally distributed on the right side of the line of I f / I b = 2 and indicate non-conductivity. In the case of Ni in FIG. 8, it is distributed on the left side of the line of I f / I b = 2 in general, indicating that it is conductive.
As a result, the forward scattered light intensity I f and the back scattered light intensity I b of each particle are measured, and each floating particle 2 has conductivity by providing an appropriate threshold for the ratio I f / I b. It was shown that it can be determined whether or not.

上述例では、レーザー光発生装置1から発生する照射光としてレーザービームを、前方散乱光検出器3および後方散乱光検出器4としてフォトダイオードを用いて、点で計測を行う例を記載した。点で計測を行う当該例においては、フォトダイオード等の光センサーの他に、レンズを用いた集光光学系、検出器の前方に、特定の偏光のみ透過する偏光フィルタ、蛍光等の非弾性散乱光を除去するための干渉フィルタ、受光角を調整するための開口を設けても良い。   In the above-described example, an example is described in which measurement is performed at points using a laser beam as irradiation light generated from the laser light generator 1 and using photodiodes as the forward scattered light detector 3 and the back scattered light detector 4. In this example of measuring at a point, in addition to an optical sensor such as a photodiode, a condensing optical system using a lens, a polarizing filter that transmits only specific polarized light in front of a detector, and an inelastic scattering such as fluorescence An interference filter for removing light and an opening for adjusting the light receiving angle may be provided.

その他の例としては、図9に示したように、レーザー光発生装置1から発生する照射光として2次元のレーザーライトシートを、前方散乱光検出器3および後方散乱光検出器4として二次元の撮像素子を用いて、二次元で計測を行っても良い。この例においても、撮像管、CCD、CMOS等の撮像素子を用いたカメラとカメラ用レンズの他に、特定の偏光のみを透過する偏光フィルタ、蛍光等の非弾性散乱光を除去するための干渉フィルタ、受光角を調整するための開口を設けても良い。
また、レーザー光発生装置1の前方に偏光フィルタ5もしくは偏光プリズムのいずれかを設け、λ/2波長板6を設けるようにしてもよい。
さらに、カメラの設置方法がレーザーライトシートに対して直角ではなく、カメラのレーザーライトシートに対する角度やカメラレンズのF値によっては撮影領域の全てにピントが合わなくなることがある。そのため、カメラ用レンズにはチルト機構を有するものを用いても良い。
As another example, as shown in FIG. 9, a two-dimensional laser light sheet is used as irradiation light generated from the laser light generator 1, and a two-dimensional laser light detector 3 and a backscattered light detector 4 are two-dimensional. You may measure in two dimensions using an image sensor. Also in this example, in addition to a camera and a camera lens using an imaging device such as an imaging tube, a CCD, and a CMOS, a polarizing filter that transmits only specific polarized light, and interference for removing inelastically scattered light such as fluorescence. You may provide the filter and the opening for adjusting a light reception angle.
Further, either the polarizing filter 5 or the polarizing prism may be provided in front of the laser light generator 1 and the λ / 2 wavelength plate 6 may be provided.
Furthermore, the camera installation method is not perpendicular to the laser light sheet, and depending on the angle of the camera with respect to the laser light sheet and the F value of the camera lens, the entire photographing area may not be in focus. For this reason, a camera lens having a tilt mechanism may be used.

前記実験では、40度〜50度の範囲の前方散乱光と、130度〜140度の範囲の後方散乱光を検出して、その結果を分析した。
しかし、本発明は、当該範囲以外の散乱光を用いても、粒子の導電性を判別することができる。
In the experiment, forward scattered light in the range of 40 degrees to 50 degrees and back scattered light in the range of 130 degrees to 140 degrees were detected, and the results were analyzed.
However, according to the present invention, the conductivity of the particles can be determined using scattered light outside the range.

例えば、前記図3〜図5において、30度〜40度の前方散乱光と140度〜150度の後方散乱光にも違いが見られる。そのため、前記式(4)においてθf1=30[deg]、θf2=40[deg]とした前方散乱光強度Ifと、前記式(5)においてθb1=140[deg]、θb2=150[deg]とした後方散乱光強度Ibの比(If/Ib)を図10に示した。 For example, in FIGS. 3 to 5, there is a difference between forward scattered light of 30 to 40 degrees and backward scattered light of 140 to 150 degrees. Therefore, the forward scattered light intensity If if θ f1 = 30 [deg] and θ f2 = 40 [deg] in the equation (4), and θ b1 = 140 [deg] and θ b2 = in the equation (5). FIG. 10 shows the ratio (I f / I b ) of the backscattered light intensity I b at 150 [deg].

図10によると、前記浮遊粒子2の粒経パラメータαが約20より大きい場合は、前記比(If/Ib)に違いが生じている。つまり、浮遊粒子2の粒子屈折率mが1.5−0iであり、当該浮遊粒子2が非導電性粒子である場合、粒径パラメータαが20以上では、前記比(If/Ib)が約7以上になっている。また、浮遊粒子2の粒子屈折率mが1.5−1iや1.5−0.1iであって、当該浮遊粒子2が導電性粒子である場合は、粒径パラメータαが20以上では、前記比(If/Ib)が約6以下になっている。 According to FIG. 10, when the particle size parameter α of the suspended particles 2 is larger than about 20, there is a difference in the ratio (I f / I b ). That is, when the particle refractive index m of the suspended particle 2 is 1.5-0i and the suspended particle 2 is a non-conductive particle, the ratio (I f / I b ) is larger when the particle size parameter α is 20 or more. Is about 7 or more. In addition, when the particle refractive index m of the floating particle 2 is 1.5-1i or 1.5-0.1i and the floating particle 2 is a conductive particle, when the particle size parameter α is 20 or more, The ratio (I f / I b ) is about 6 or less.

また、前記図3〜図5において、50度〜60度の前方散乱光と120度〜130度の後方散乱光にも顕著な違いが見られる。そのため、前記式(4)においてθf1=50[deg]、θf2=60[deg]とした前方散乱光強度Ifと、前記式(5)においてθb1=120[deg]、θb2=130[deg]とした後方散乱光強度Ibの比(If/Ib)を図11に示した。 Further, in FIGS. 3 to 5, there is a significant difference between the forward scattered light of 50 to 60 degrees and the back scattered light of 120 to 130 degrees. Therefore, the forward scattered light intensity I f with θ f1 = 50 [deg] and θ f2 = 60 [deg] in the equation (4), and θ b1 = 120 [deg] and θ b2 = in the equation (5). The ratio (I f / I b ) of the backscattered light intensity I b at 130 [deg] is shown in FIG.

図11によると、前記浮遊粒子2の粒経パラメータαが約20より大きい場合は、前記比(If/Ib)に違いが生じている。つまり、浮遊粒子2の粒子屈折率mが1.5−0iであり、当該浮遊粒子2が非導電性粒子である場合、粒径パラメータαが20以上では、前記比(If/Ib)が約4以上になっている。また、浮遊粒子2の粒子屈折率mが1.5−1iや1.5−0.1iであって、当該浮遊粒子2が導電性粒子である場合は、粒径パラメータαが20以上では、前記比(If/Ib)が約1以下になっている。 According to FIG. 11, when the particle size parameter α of the suspended particles 2 is larger than about 20, there is a difference in the ratio (I f / I b ). That is, when the particle refractive index m of the suspended particle 2 is 1.5-0i and the suspended particle 2 is a non-conductive particle, the ratio (I f / I b ) is larger when the particle size parameter α is 20 or more. Is about 4 or more. In addition, when the particle refractive index m of the floating particle 2 is 1.5-1i or 1.5-0.1i and the floating particle 2 is a conductive particle, when the particle size parameter α is 20 or more, The ratio (I f / I b ) is about 1 or less.

従って、上記の範囲の散乱光を用いた場合も、前記比(If/Ib)に明確な違いが表れている。
従って、上記の範囲の前方散乱光強度If、後方散乱光強度Ibを計測し、その比If/Ibに適切な閾値を設けることで、各々の浮遊粒子2が導電性を有するか否かを判別することができる。
この場合の閾値としては、図6、図10、図11のようなグラフを用いて、導電性粒子と非導電性粒子で明確な違いが現れる前記比(If/Ib)の値を用いるのが好ましい。
Therefore, even when the scattered light in the above range is used, a clear difference appears in the ratio (I f / I b ).
Accordingly, by measuring the forward scattered light intensity I f and the back scattered light intensity I b in the above range and setting an appropriate threshold for the ratio I f / I b , whether each suspended particle 2 has conductivity. It can be determined whether or not.
As the threshold value in this case, the value of the ratio (I f / I b ) in which a clear difference appears between the conductive particles and the non-conductive particles is used using graphs such as FIG. 6, FIG. 10, and FIG. Is preferred.

1:レーザー光発生装置、2:浮遊粒子、3:前方散乱光検出器、4:後方散乱光検出器、5:偏光フィルタ、6:λ/2波長板、7:受光角調整装置、8:干渉フィルタ、9:コリメート用レンズ、10:集光用レンズ。
L:観測面
1: laser light generator, 2: suspended particles, 3: forward scattered light detector, 4: back scattered light detector, 5: polarizing filter, 6: λ / 2 wavelength plate, 7: acceptance angle adjusting device, 8: Interference filter, 9: collimating lens, 10: condenser lens.
L: Observation surface

Claims (8)

空間に浮遊する粒子が導電性を有するか否かを判別する方法であって、
レーザー光発生装置から出射したレーザー光を判別対象の前記浮遊粒子に照射し、
粒径パラメータα(α=πd/λ 。ここにd:粒径、λ:レーザー光の波長)が20以上の前記浮遊粒子における、
前記照射によって生じる前方散乱光及び後方散乱光を前方散乱光検出器及び後方散乱光検出器によって検出し、
レーザー光の入射線に対する粒子の散乱角が30度〜60度の範囲内および300度〜330度の範囲内の少なくとも一方の前記前方散乱光強度と、
120度〜150度の範囲内および210〜240度の範囲内の少なくとも一方の前記後方散乱光強度との比率に基づき前記浮遊粒子の導電性の有無を判別する、
ことを特徴とする粒子導電性判別方法。
A method for determining whether particles suspended in space have electrical conductivity,
Irradiate the floating particles to be discriminated with laser light emitted from a laser light generator,
In the floating particles having a particle size parameter α (α = πd / λ, where d: particle size, λ: wavelength of laser light) is 20 or more,
Forward scattered light and back scattered light generated by the irradiation are detected by a forward scattered light detector and a back scattered light detector,
At least one of the forward scattered light intensities within a range of 30 ° to 60 ° and a range of 300 ° to 330 ° of a particle scattering angle with respect to an incident line of laser light;
Determining the presence or absence of conductivity of the suspended particles based on the ratio of at least one of the backscattered light intensity within a range of 120 to 150 degrees and within a range of 210 to 240 degrees;
A method for determining particle conductivity.
前記レーザー光発生装置はレーザービームを発生させる装置であり、
前記前方散乱光検出器はフォトダイオードまたは光電子増倍管であり、
前記後方散乱光検出器はフォトダイオードまたは光電子増倍管である請求項1に記載の粒子導電性判別方法。
The laser beam generator is a device that generates a laser beam,
The forward scattered light detector is a photodiode or a photomultiplier;
The particle conductivity determination method according to claim 1, wherein the backscattered light detector is a photodiode or a photomultiplier tube.
前記レーザー光発生装置はレーザーライトシートを発生させる装置であり、前記前方散乱光検出器及び前記後方散乱光検出器は撮像素子である請求項1に記載の粒子導電性判別方法。   The particle conductivity determination method according to claim 1, wherein the laser light generation device is a device that generates a laser light sheet, and the forward scattered light detector and the back scattered light detector are imaging elements. 前記前方散乱光検出器および後方散乱光検出器の前面に偏光フィルタを設け、観測面に対して平行な偏光を検出する請求項1〜3のいずれか1項に記載の粒子導電性判別方法。   The particle conductivity determination method according to any one of claims 1 to 3, wherein a polarization filter is provided on a front surface of the forward scattered light detector and the back scattered light detector to detect polarized light parallel to the observation surface. 前記レーザー光発生装置の前面に偏光フィルタまたは偏光プリズムのいずれか一方と、λ/2波長板とから選択される少なくともいずれか一つを設け、観測面に対して平行な偏光を照射する請求項1〜4に記載の粒子導電性判別方法。   The at least one selected from a polarizing filter or a polarizing prism and a λ / 2 wavelength plate is provided on the front surface of the laser light generator, and the polarized light parallel to the observation surface is irradiated. The particle | grain conductivity discrimination method of 1-4. 前記前方散乱光検出器および後方散乱光検出器の前面に受光角調整装置を設け、レーザー光の入射線に対する粒子の散乱角が、40〜50度および310〜320度の少なくとも一方の前方散乱光と、130〜140度および220〜230度の少なくとも一方の後方散乱光を検出する請求項1〜5のいずれか1項に記載の粒子導電性判別方法。   A light receiving angle adjusting device is provided in front of the forward scattered light detector and the back scattered light detector, and at least one of the forward scattered light having a particle scattering angle of 40 to 50 degrees and 310 to 320 degrees with respect to the incident line of the laser light. And at least one of the backscattered light of 130 to 140 degrees and 220 to 230 degrees is detected. 前記前方散乱光検出器および後方散乱光検出器の前面に干渉フィルタを設ける請求項1〜6のいずれか1項に記載の粒子導電性判別方法。   The particle conductivity determination method according to any one of claims 1 to 6, wherein an interference filter is provided in front of the forward scattered light detector and the back scattered light detector. 空間に浮遊する粒子が導電性を有するか否かを判別する装置であって、
判別対象の前記浮遊粒子にレーザー光を照射するレーザー光発生装置と、
粒径パラメータα(α=πd/λ 。ここにd:粒径、λ:レーザー光の波長)が20以上の前記浮遊粒子における、
前記照射によって生じる前方散乱光及び後方散乱光を検出する前方散乱光検出器及び後方散乱光検出器と、
レーザー光の入射線に対する粒子の散乱角が30度〜60度の範囲内および300度〜330度の範囲内の少なくとも一方の前記前方散乱光の強度と、
120度〜150度の範囲内および210〜240度の範囲内の少なくとも一方の前記後方散乱光の強度との比率に基づき前記浮遊粒子の導電性の有無を判別する手段と、
を有することを特徴とする粒子導電性判別装置。
An apparatus for determining whether particles floating in space have electrical conductivity,
A laser beam generator for irradiating the floating particles to be discriminated with a laser beam;
In the floating particles having a particle size parameter α (α = πd / λ, where d: particle size, λ: wavelength of laser light) is 20 or more,
A forward scattered light detector and a back scattered light detector for detecting forward scattered light and backward scattered light generated by the irradiation;
The intensity of at least one of the forward scattered light within a range of a particle scattering angle of 30 to 60 degrees and a range of 300 to 330 degrees with respect to an incident line of laser light;
Means for determining the presence or absence of conductivity of the suspended particles based on the ratio of the intensity of the backscattered light in at least one of the range of 120 to 150 degrees and the range of 210 to 240 degrees;
A particle conductivity discriminating apparatus characterized by comprising:
JP2011030139A 2011-02-15 2011-02-15 Particle conductivity discrimination apparatus and particle conductivity discrimination method Active JP5681517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011030139A JP5681517B2 (en) 2011-02-15 2011-02-15 Particle conductivity discrimination apparatus and particle conductivity discrimination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011030139A JP5681517B2 (en) 2011-02-15 2011-02-15 Particle conductivity discrimination apparatus and particle conductivity discrimination method

Publications (2)

Publication Number Publication Date
JP2012168057A JP2012168057A (en) 2012-09-06
JP5681517B2 true JP5681517B2 (en) 2015-03-11

Family

ID=46972363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011030139A Active JP5681517B2 (en) 2011-02-15 2011-02-15 Particle conductivity discrimination apparatus and particle conductivity discrimination method

Country Status (1)

Country Link
JP (1) JP5681517B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10585031B2 (en) * 2017-02-27 2020-03-10 Becton, Dickinson And Company Light detection systems and methods for using thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614008B2 (en) * 1988-03-22 1994-02-23 キヤノン株式会社 Particle analyzer
US5061070A (en) * 1988-04-22 1991-10-29 International Business Machines Corporation Particulate inspection of fluids using interferometric light measurements
JP3011836B2 (en) * 1993-08-21 2000-02-21 日本カノマックス株式会社 Particle measurement device
JP3373327B2 (en) * 1995-04-24 2003-02-04 松下電器産業株式会社 Foreign matter inspection device
JP2000510582A (en) * 1996-04-25 2000-08-15 ゼニコン・サイエンシーズ・コーポレーション Analyte assays using particulate labeling
JP4512686B2 (en) * 2002-11-01 2010-07-28 株式会社テクノネットワーク四国 Method and apparatus for fractional collection of fine particles
JP2007225348A (en) * 2006-02-21 2007-09-06 Kanagawa Acad Of Sci & Technol Method of detecting plurality of adjacent micro particles, and method of detecting examining substance using the same

Also Published As

Publication number Publication date
JP2012168057A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
JP5615941B2 (en) Foreign object detection device and foreign object detection method
US9857287B2 (en) Particulate sensor device
JP6936229B2 (en) Particle characterization
JP5533055B2 (en) Optical measuring apparatus and optical measuring method
WO2009093017A1 (en) Fluid-borne particle detector
JPWO2014061368A1 (en) Fine particle measuring device
TWI729279B (en) Charged particle beam device
CN105890529B (en) The method for measuring filament diameter
JP2015531490A (en) Nanoparticle detection method
JP2020514762A5 (en)
MX2010002871A (en) Inspection method of honeycomb structure.
JP5662742B2 (en) Particle size measuring apparatus and particle size measuring method
CN104870932B (en) For measuring the equipment of container wall thickness
JP2009030988A (en) Particle counting apparatus
JP5681517B2 (en) Particle conductivity discrimination apparatus and particle conductivity discrimination method
CN102129755B (en) Photoelectric smoke detector based on forward scattering in small angle
US10663393B2 (en) Spectrum inspecting apparatus
JPH08128944A (en) Particle classifying equipment
CN109946329B (en) X-ray measuring device
CN204758758U (en) High pressure gold utensil corona detector
US10371641B2 (en) Method and apparatus for measuring inelastic scattering
KR20110029011A (en) Apparatus for detecting debris inside pouch type battery
JP4716055B2 (en) Laser diffraction / scattering particle size distribution analyzer
JP6129014B2 (en) Fluorescence detection apparatus and fluorescence detection method
US9261447B2 (en) Apparatus and method for monitoring particles in a stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150109

R150 Certificate of patent or registration of utility model

Ref document number: 5681517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150