JP2007225348A - Method of detecting plurality of adjacent micro particles, and method of detecting examining substance using the same - Google Patents

Method of detecting plurality of adjacent micro particles, and method of detecting examining substance using the same Download PDF

Info

Publication number
JP2007225348A
JP2007225348A JP2006044490A JP2006044490A JP2007225348A JP 2007225348 A JP2007225348 A JP 2007225348A JP 2006044490 A JP2006044490 A JP 2006044490A JP 2006044490 A JP2006044490 A JP 2006044490A JP 2007225348 A JP2007225348 A JP 2007225348A
Authority
JP
Japan
Prior art keywords
fine particles
substance
polarization
polarized light
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006044490A
Other languages
Japanese (ja)
Inventor
Toshiharu Saiki
敏治 斎木
Masaru Sakai
優 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Original Assignee
Kanagawa Academy of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology filed Critical Kanagawa Academy of Science and Technology
Priority to JP2006044490A priority Critical patent/JP2007225348A/en
Publication of JP2007225348A publication Critical patent/JP2007225348A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of detecting an examining substance, which detects the examining substance highly sensitively compared with a known method, and a measuring method for a label used therefor. <P>SOLUTION: In this method of detecting the two or more of micro particles positioned adjacently, a linear polarization light is emitted to an examined sample containing the plurality of micro particles, so as to measure a polarization light component contained in a scattered light from the examined sample, and generated owing to the fact that the two or more of micro particles are positioned adjacently. In the method of detecting the examined substance, the examined substance is brought into contact with one or more kinds of selective coupling substances labelled with the micro particles and coupled selectively to the examining substance, so as to detect the two or more of adjacent micro particles by the coupling of the examining substance to the selective coupling substance. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、近接した複数の微粒子の検出方法及びそれを用いる被検物質の検出方法に関する。   The present invention relates to a method for detecting a plurality of adjacent fine particles and a method for detecting a test substance using the same.

従来、抗原抗体反応が可能な抗原又は抗体を高感度に測定する方法として、免疫測定法が広く用いられている。従来の免疫測定法では、被検物質(抗原又は抗体)と免疫反応する抗体又は抗原を標識し、免疫反応により被検物質と結合した抗体又は抗原に結合されている標識を測定することが広く行われている。標識としては、金微粒子(金コロイド)、蛍光色素、酵素、ビオチン、放射性物質等が用いられている。一方、被検物質が核酸である場合、該被検核酸と相補的な塩基配列を有する標識プローブを被検核酸と接触させ、被検核酸とハイブリダイズしたプローブの標識を測定することが広く行われている。   Conventionally, an immunoassay has been widely used as a method for measuring an antigen or antibody capable of antigen-antibody reaction with high sensitivity. In conventional immunoassay methods, it is widely used to label an antibody or antigen that immunoreacts with a test substance (antigen or antibody), and to measure the label bound to the antibody or antigen bound to the test substance by the immune reaction. Has been done. As the label, gold fine particles (gold colloid), fluorescent dyes, enzymes, biotin, radioactive substances and the like are used. On the other hand, when the test substance is a nucleic acid, a labeled probe having a base sequence complementary to the test nucleic acid is contacted with the test nucleic acid, and the label of the probe hybridized with the test nucleic acid is widely measured. It has been broken.

特開平9−5326号公報JP-A-9-5326

従来の免疫測定法や、プローブを用いた被検核酸の測定方法では、標識がある程度の量存在しないと標識を検出することができない。従来の測定方法よりもより少量の標識が検出できれば、検出の感度を向上させることができ、有利である。   In a conventional immunoassay method or a method for measuring a test nucleic acid using a probe, the label cannot be detected unless a certain amount of the label is present. If a smaller amount of label can be detected than in the conventional measurement method, the detection sensitivity can be improved, which is advantageous.

本発明の目的は、公知の方法よりも高感度の検出が可能な、被検物質の測定方法及びそれに用いられる標識の測定方法を提供することである。   An object of the present invention is to provide a method for measuring a test substance and a method for measuring a label used therein, which can be detected with higher sensitivity than known methods.

本願発明者らは、鋭意研究の結果、2個以上の微粒子が近接して位置すると、これに直線偏光を照射した場合、近接して位置する2個以上の微粒子に起因して偏光成分が生じることを利用して、近接する2個以上の微粒子を検出できることを見出した。そして、この近接する2個以上の微粒子の検出方法を利用して、被検試料中の被検物質を極めて高感度に検出できることに想到し、かつ、実験的に確認して本発明を完成した。   As a result of diligent research, the inventors of the present application find that when two or more fine particles are located close to each other, when linearly polarized light is irradiated to the two or more fine particles, a polarization component is generated due to the two or more fine particles located close to each other. By utilizing this fact, it was found that two or more adjacent fine particles can be detected. Then, using this method for detecting two or more adjacent fine particles, it was conceived that a test substance in a test sample can be detected with extremely high sensitivity, and experimentally confirmed to complete the present invention. .

すなわち、本発明は、複数個の微粒子を含む被検試料に、直線偏光を照射し、被検試料からの散乱光中に含まれる、2個以上の微粒子が近接して位置することに起因して生じる偏光成分を測定することを含む、近接して位置する2個以上の微粒子の検出方法を提供する。また、本発明は、被検物質に選択的に結合する、微粒子で標識した1種又は2種以上の選択結合物質を前記被検物質と接触させ、前記被検物質と前記選択結合物質との結合により近接した2個以上の微粒子を上記本発明の方法により検出することを含む、被検物質の検出方法を提供する。   That is, the present invention is caused by irradiating a test sample containing a plurality of microparticles with linearly polarized light, and two or more microparticles included in the scattered light from the test sample are located close to each other. And a method for detecting two or more fine particles located close to each other, comprising measuring a polarization component generated in the above. In addition, the present invention provides a method of contacting one or more selective binding substances labeled with fine particles, which selectively bind to a test substance, with the test substance, and the test substance and the selective binding substance. Provided is a method for detecting a test substance, which comprises detecting two or more fine particles that are closer to each other by the method of the present invention.

本発明により、近接する微粒子を極めて高感度に、すなわち、下記実施例に具体的に記載するように、わずか2個の微粒子を検出することが可能な方法が提供された。そして、この方法を利用して、核酸、抗原若しくは抗体、又はレセプター若しくはリガンドのような被検物質を極めて高感度に検出することが可能な方法が提供された。本発明の方法によれば、わずか1分子の被検物質を検出することが可能であり、公知の方法に比べて遥かに高感度に被検物質を検出することが可能である。   The present invention provides a method capable of detecting adjacent microparticles with very high sensitivity, ie, as few as two microparticles, as specifically described in the examples below. Then, by using this method, a method capable of detecting a test substance such as a nucleic acid, an antigen or an antibody, or a receptor or a ligand with extremely high sensitivity has been provided. According to the method of the present invention, it is possible to detect a test substance of only one molecule, and it is possible to detect a test substance with a much higher sensitivity than known methods.

本発明の方法に用いる微粒子としては、金、白金、銀、銅、鉛、スズ、ニッケル、鉄、亜鉛、アルミニウム等の金属;ケイ素、ゲルマニウム等の半導体;ガリウム、インジウム、カドミウム、ケイ素、亜鉛等を含む化合物半導体;ポリスチレンやラテックス等のポリマー等の光学的に不透明な材料から成る微粒子を用いることができる。これらのうち、近接する微粒子に起因する偏光成分が大きくなることから金属微粒子が好ましい。金属微粒子の中でも、金微粒子は、容易にチオール(-SH)を結合することができ、さらに、このチオール基を利用して所望のタンパク質や核酸等の生体分子に結合することができ、また化学的に安定であるので好ましい。また、金微粒子は、免疫測定の分野では金コロイドとして広く用いられており種々の粒径の金微粒子がチオール基を結合した形態で市販されているので、種々の市販品を利用することができ、この点でも有利である。   Fine particles used in the method of the present invention include metals such as gold, platinum, silver, copper, lead, tin, nickel, iron, zinc, and aluminum; semiconductors such as silicon and germanium; gallium, indium, cadmium, silicon, and zinc Compound semiconductors containing: fine particles made of optically opaque materials such as polymers such as polystyrene and latex can be used. Among these, metal fine particles are preferable because the polarization component due to the adjacent fine particles becomes large. Among metal microparticles, gold microparticles can easily bind thiol (-SH), and can also bind to biomolecules such as desired proteins and nucleic acids using this thiol group. It is preferable because it is stable. In addition, gold microparticles are widely used as gold colloids in the field of immunoassay, and gold microparticles with various particle sizes are commercially available in a form in which thiol groups are bonded, so that various commercially available products can be used. This is also advantageous.

本発明の方法に用いる微粒子の大きさは、特に限定されないが、直径(球状以外の場合には長径)が10nm〜400nm程度(ただし測定波長よりも小さい)の微粒子が好ましく、さらには、直径20nm〜200nm程度のものが好ましい。微粒子の形状は好ましくは球状である。上記したサイズの球状の金微粒子は、上記の通り、「金コロイド」と呼ばれ、免疫測定法において標識として汎用されており、種々のものが市販されている。本発明において、このような市販の金コロイドを微粒子として用いることができる。   The size of the fine particles used in the method of the present invention is not particularly limited, but fine particles having a diameter (longer diameter other than spherical) of about 10 nm to 400 nm (but smaller than the measurement wavelength) are preferable, and further, a diameter of 20 nm Those of about ~ 200 nm are preferred. The shape of the fine particles is preferably spherical. As described above, the spherical gold fine particles of the size described above are called “gold colloid” and are widely used as labels in immunoassays, and various types are commercially available. In the present invention, such a commercially available gold colloid can be used as fine particles.

上記の通り、本願発明者らは、被検試料中に2個以上の微粒子が近接して位置すると、被検試料に直線偏光を照射した場合、近接して位置する2個以上の微粒子(以下、便宜的に「近接微粒子」と呼ぶ)に起因して、散乱光中に偏光成分が生じる現象を利用して、近接微粒子を、単独で存在する微粒子と区別して検出することが可能であることに想到した。本発明は、この原理を利用した、近接微粒子の検出方法を提供する。すなわち、微粒子が単独で存在する場合、これに直線偏光を照射すると散乱光は常に照射偏光と同じ偏光を持つのに対し、2個の微粒子が近接して位置していると微粒子ペアからの散乱光は、照射偏光に関係なく、常に微粒子ペアの配置(並んだ向き)に平行な偏光を持っている。本発明の方法では、この微粒子ペアに起因して生じる偏光を測定する。微粒子が3個以上近接して位置する場合も、2個の微粒子の組合せと考えられるので、3個以上の近接微粒子に起因して照射偏光の偏光面とは異なる角度の偏光面を有する偏光が生じるのでこれを測定する。   As described above, when the two or more fine particles are located close to each other in the test sample, the inventors of the present application have two or more fine particles (hereinafter referred to as “close”) when the test sample is irradiated with linearly polarized light. For the sake of convenience, this phenomenon is referred to as “proximity microparticles”), and it is possible to detect the proximity microparticles separately from the microparticles that exist alone by utilizing the phenomenon that a polarization component is generated in the scattered light. I came up with it. The present invention provides a method for detecting adjacent fine particles using this principle. In other words, when a single particle is present, when it is irradiated with linearly polarized light, the scattered light always has the same polarization as the irradiated polarized light, whereas when two particles are located close to each other, scattering from the particle pair The light always has a polarization parallel to the arrangement (alignment direction) of the fine particle pairs regardless of the irradiation polarization. In the method of the present invention, polarized light caused by the fine particle pair is measured. When three or more fine particles are located close to each other, it is considered as a combination of two fine particles. Therefore, polarized light having a polarization plane with an angle different from the polarization plane of irradiated polarized light due to the three or more adjacent fine particles. Measure this as it occurs.

近接微粒子に起因する偏光は、照射偏光と、測定側で検出する散乱光の偏光の角度関係について、2つ以上の違った角度の条件で観察を行なって比較することにより検出することができる。例えば、照射偏光と偏光面の角度がずれていない偏光を測定し、照射偏光の偏光面を回転させて、測定側はそのまま検光子(偏光板)を固定して測定することにより測定することができる。あるいは、逆に、照射偏光の偏光面を固定して、検出する散乱光の偏光を回転させても、被検試料の偏光特性を得ることは可能である。   The polarized light caused by the adjacent fine particles can be detected by observing and comparing the angle relationship between the irradiated polarized light and the polarized light of the scattered light detected on the measurement side under two or more different angle conditions. For example, it is possible to measure by measuring the polarized light whose polarization plane and the polarization plane are not shifted from each other, rotating the polarization plane of the polarized polarized light, and measuring with the analyzer (polarizing plate) fixed as it is on the measurement side. it can. Or, conversely, it is possible to obtain the polarization characteristics of the test sample by fixing the plane of polarization of the irradiated polarized light and rotating the polarization of the scattered light to be detected.

より具体的には、上記本発明の方法は、例えば、前記被検試料に第1の直線偏光を照射し、被検試料からの散乱光の偏光を測定し、次いで、前記第1の直線偏光とは偏光面の角度が異なる第2の直線偏光を前記被検試料に照射し、被検試料からの散乱光中の偏光を測定することにより行なうことができる。これは、例えば、次のようにして行なうことができる。先ず、He-Neレーザのような、直線偏光を発する光源を用い、被検試料に直線偏光を全反射条件で照射(エバネッセント照射)し、その散乱光を倒立顕微鏡でCCDカメラを用いて撮影する。次に、前記第1の直線偏光とは偏光面の角度が異なる第2の直線偏光を前記被検試料に照射し、被検試料からの散乱光中の偏光を測定する。この場合、光源と被検試料の間に、1/2波長板を配置し、1/2波長板を通過した偏光を照射することにより、偏光面の角度を任意に変更することができる。なお、第1の直線偏光と第2の直線偏光の偏光面の角度の差は、特に限定されないが、鋭角側の角度で10度〜90度が好ましく、さらに30度〜90度が好ましい。   More specifically, in the method of the present invention, for example, the test sample is irradiated with the first linearly polarized light, the polarization of the scattered light from the test sample is measured, and then the first linearly polarized light is measured. Can be performed by irradiating the test sample with the second linearly polarized light having different polarization plane angles, and measuring the polarization in the scattered light from the test sample. This can be done, for example, as follows. First, using a light source that emits linearly polarized light such as a He-Ne laser, the sample is irradiated with linearly polarized light under total reflection conditions (evanescent irradiation), and the scattered light is imaged with an inverted microscope using a CCD camera. . Next, the test sample is irradiated with second linearly polarized light having a polarization plane angle different from that of the first linearly polarized light, and the polarized light in the scattered light from the test sample is measured. In this case, the angle of the polarization plane can be arbitrarily changed by arranging a half-wave plate between the light source and the test sample and irradiating the polarized light that has passed through the half-wave plate. The difference in angle between the planes of polarization of the first linearly polarized light and the second linearly polarized light is not particularly limited, but it is preferably 10 ° to 90 °, more preferably 30 ° to 90 °, on the acute angle side.

上記の方法は、例えば、倒立顕微鏡を用いた、図1に示す光学測定系を用いて行なうことができる。図1中、10は光源であるHe-Neレーザ、12は1/2波長板、14は集光レンズ、16はダブプリズム、18は被検試料、20は対物レンズ、22は検光子(偏光板)、24は集光レンズ、26はCCDカメラである。He-Neレーザからの直線偏光を、2枚のミラーで反射させて1/2波長板12に導き、さらに集光レンズを介してダブプリズム16の側面に導く。ダブプリズム16の下面に被検試料18を置き、ダブプリズム16を介して全反射条件で直線偏光を被検試料18に照射する。被検試料18からの散乱光を倒立顕微鏡の対物レンズ20に導き、検光子(偏光板)22を介して、ミラーで反射させた後集光レンズ24に導き、像をCCDカメラで撮影する。なお、図1中、破線で囲んだ部分が倒立顕微鏡である。次に、1/2波長板12の角度を変えることにより直線偏光の偏光面の角度を変化させ、上記と同様にして被検試料18に照射し、その散乱光中の偏光を測定する。なお、「偏光を測定」することには、CCDカメラによる撮像、CCDカメラによる像の観察、CCDカメラを用いずに偏光検出器で偏光を測定すること、CCDカメラを用いずに光強度を測定すること、CCDカメラを用いずに直接肉眼で観察すること等が包含される。   Said method can be performed using the optical measuring system shown in FIG. 1 which used the inverted microscope, for example. In FIG. 1, 10 is a He-Ne laser as a light source, 12 is a half-wave plate, 14 is a condenser lens, 16 is a Dove prism, 18 is a sample to be tested, 20 is an objective lens, and 22 is an analyzer (polarized light). Plate), 24 is a condenser lens, and 26 is a CCD camera. The linearly polarized light from the He-Ne laser is reflected by the two mirrors and guided to the half-wave plate 12 and further guided to the side surface of the Dove prism 16 through the condenser lens. A test sample 18 is placed on the lower surface of the Dove prism 16, and the test sample 18 is irradiated with linearly polarized light through the Dove prism 16 under total reflection conditions. Scattered light from the test sample 18 is guided to the objective lens 20 of the inverted microscope, reflected by a mirror via an analyzer (polarizing plate) 22 and then guided to a condenser lens 24, and an image is taken with a CCD camera. In FIG. 1, the portion surrounded by a broken line is an inverted microscope. Next, the angle of the plane of polarization of linearly polarized light is changed by changing the angle of the half-wave plate 12, and the sample 18 is irradiated in the same manner as described above, and the polarized light in the scattered light is measured. Note that “polarization measurement” includes imaging with a CCD camera, observing an image with a CCD camera, measuring polarization with a polarization detector without using a CCD camera, and measuring light intensity without using a CCD camera. And direct observation with the naked eye without using a CCD camera.

上記方法で撮像すると、微粒子が単独で存在する場合、第1の直線偏光照射時と第2の直線偏光照射時で同じ像が得られる。一方、近接微粒子の場合には、近接微粒子により偏光成分が生じるので、第1の直線偏光照射時と第2の直線偏光照射時で像が異なる。例えば、第1の直線偏光照射時には像が見えるが、第2の直線偏光照射時には像が見えない場合や、その逆のことが起きる。従って、第1の直線偏光照射時と第2の直線偏光照射時で像が異なる、すなわち、見えたり見えなくなったり、あるいは、濃く見えたり薄く見えたりする場合には、その粒子は近接微粒子である。ある粒子の像の観察は、上記方法において、CCDカメラ26による像を観察しながら、1/2波長板12の向きを連続的に変化させることにより、被検試料18に照射される偏光の偏光面の連続的に回転することによっても行なうことができ、この場合には、像の見え方の変化を連続的に観察できるのでより容易に近接微粒子を特定することができる。   When the image is picked up by the above method, the same image is obtained when the first linearly polarized light is irradiated and when the second linearly polarized light is irradiated when the fine particles are present alone. On the other hand, in the case of the proximity fine particles, a polarization component is generated by the proximity fine particles, so that the image is different between the first linearly polarized light irradiation and the second linearly polarized light irradiation. For example, an image can be seen when the first linearly polarized light is irradiated, but no image can be seen when the second linearly polarized light is irradiated, and vice versa. Therefore, when the images are different between the first linearly polarized light irradiation and the second linearly polarized light irradiation, that is, when they are visible or invisible, or appear dark or thin, the particles are adjacent fine particles. . The observation of an image of a certain particle is performed by changing the direction of the half-wave plate 12 continuously while observing the image by the CCD camera 26 in the above method, thereby polarizing the polarized light irradiated on the sample 18 to be examined. This can also be done by continuously rotating the surface. In this case, since the change in the appearance of the image can be observed continuously, the adjacent fine particles can be identified more easily.

近接微粒子に起因する偏光成分は、上記散乱光中の偏光をバランス型の偏光検出器により検出することによっても検出することができる。ここで、「バランス検出法」とは、信号光を2つの互いに直交する直線偏光成分に分けて測定し、基準となる信号光において2つの偏光成分の光強度が同じになるように信号光発生後に波長板等で偏光面の角度を調節しておき、被検試料の観察点によって変化する信号光の偏光の変化だけを測定する方法である。この方法によれば、信号光の偏光の変化だけを高い精度で検出することができるので好ましい。なお、バランス検出法自体は光学分野において周知である。   The polarized light component caused by the adjacent fine particles can also be detected by detecting the polarized light in the scattered light with a balanced polarization detector. Here, the “balance detection method” means that signal light is measured by dividing it into two linearly polarized components orthogonal to each other, and the signal light is generated so that the light intensity of the two polarized components is the same in the reference signal light. In this method, the angle of the polarization plane is adjusted later with a wave plate or the like, and only the change in the polarization of the signal light that changes depending on the observation point of the test sample is measured. This method is preferable because only the change in polarization of the signal light can be detected with high accuracy. The balance detection method itself is well known in the optical field.

バランス検出法は、例えば図2に示す光学測定系を用いて行なうことができる。図2中、図1と同じ構成要素には同じ参照番号を付してある。参照番号10はHe-Neレーザ、28はビームエキスパンダ、12は1/2波長板、29はビームスプリッタ、20は対物レンズ、18は被検試料、30はステージスキャナ、24は集光レンズ、26はCCDカメラ、32は第2の1/2波長板、34はアナライザー、36はバランス検出器である。なお、図2に示す光学測定系では、図1に示す光学測定系と同様な、CCDカメラによる撮像が可能なようにCCDカメラ26及び集光レンズ24も配置されているが、バランス検出法のためにはこれらは不要である。   The balance detection method can be performed using, for example, an optical measurement system shown in FIG. In FIG. 2, the same components as those in FIG. 1 are denoted by the same reference numerals. Reference numeral 10 is a He-Ne laser, 28 is a beam expander, 12 is a half-wave plate, 29 is a beam splitter, 20 is an objective lens, 18 is a sample to be tested, 30 is a stage scanner, 24 is a condenser lens, 26 is a CCD camera, 32 is a second half-wave plate, 34 is an analyzer, and 36 is a balance detector. In the optical measurement system shown in FIG. 2, the CCD camera 26 and the condensing lens 24 are also arranged so as to be able to pick up images with the CCD camera, as in the optical measurement system shown in FIG. These are not necessary for this purpose.

図2に示す光学測定系を用いる場合、He-Neレーザ10からの直線偏光をビームエキスパンダ28でビームの直径を広げ(そのままではビーム系が細いので対物レンズの開口数を十分生かせない場合があるため)、広げた照射光を1/2波長板12及びビームスプリッタ29と通してから倒立顕微鏡内に入れ、対物レンズ20を通して被検試料18表面に集光する。被検試料18からの散乱光は、照射と同じ対物レンズ20を使って集光し、ビームスプリッタ29で偏光検出系へ取り出す。バランス型の偏光検出系では、アナライザー34直前の1/2波長板32で信号光の偏光を約45度ずらして、アナライザー34で縦偏光と横偏光の2つに分け、それぞれの光強度を測定し、最後に測定した2つの光強度信号の差を記録する。始めに、ある信号光において縦偏光と横偏光の光強度差が0になるように1/2波長板32を調整しておく。このようにすれば、その後は信号光の偏光の変化だけを高い精度で検出することができる。なお、照射光を対物レンズ20で絞って被検試料18に照射する、図2に示す配置では、一度に照射できる領域は被検試料18面上の1点のみである。そこで、ピエゾを内蔵したステージスキャナ30等を用いて被検試料18を走査することが可能なように構成することが好ましい。このようなステージスキャナ30により、数十〜数百μm四方の広い領域が観察可能になる。   When the optical measurement system shown in FIG. 2 is used, the beam diameter of the linearly polarized light from the He-Ne laser 10 is expanded by the beam expander 28 (if the beam system is thin as it is, the numerical aperture of the objective lens may not be fully utilized. For this reason, the spread irradiation light passes through the half-wave plate 12 and the beam splitter 29, enters the inverted microscope, and is focused on the surface of the sample 18 through the objective lens 20. Scattered light from the test sample 18 is collected using the same objective lens 20 as that used for irradiation, and taken out to the polarization detection system by the beam splitter 29. In the balanced type polarization detection system, the polarization of the signal light is shifted by about 45 degrees with the half-wave plate 32 immediately before the analyzer 34, and the analyzer 34 divides the polarization into two of the longitudinal polarization and the lateral polarization, and measures the light intensity of each. Then, the difference between the two last measured light intensity signals is recorded. First, the half-wave plate 32 is adjusted so that the difference in light intensity between longitudinally polarized light and laterally polarized light becomes zero in a certain signal light. In this way, only the change in the polarization of the signal light can be detected with high accuracy thereafter. In the arrangement shown in FIG. 2 in which the irradiated light is focused by the objective lens 20 and irradiated to the test sample 18, only one point on the surface of the test sample 18 can be irradiated at a time. Therefore, it is preferable that the test sample 18 be configured to be scanned using a stage scanner 30 or the like with a built-in piezo. Such a stage scanner 30 makes it possible to observe a wide area of several tens to several hundreds μm square.

なお、本発明の方法により、検出可能な2個以上の微粒子は、粒子間の空間の距離(最短距離)が10nm以下又は微粒子の半径以下程度であり、互いに接触して位置する場合(粒子間の空間の距離は0)も検出可能である。従って、本発明の方法において、「近接して位置する」とは粒子間の空間の距離(最短距離)が10nm以下又は微粒子の半径以下程度のいずれか大きい方以下の場合を意味し、接触して位置する場合も包含される。   When two or more fine particles that can be detected by the method of the present invention have a space distance (shortest distance) between the particles of 10 nm or less or less than the radius of the fine particles and are positioned in contact with each other (between particles) It is possible to detect a distance of 0). Therefore, in the method of the present invention, “closely located” means that the space distance (shortest distance) between particles is 10 nm or less or less than the radius of the fine particle, whichever is greater, which is less than the larger one. Are also included.

後述する実施例において具体的に記載するように、本発明の方法によれば、近接するわずか2個の微粒子を検出することが可能であり、当然ながら、3個以上の微粒子が近接している場合も検出可能である。近接微粒子の数の上限は特にないが、2個から10個程度の近接微粒子を測定する場合に、極めて高感度な本発明の検出方法の威力が発揮される。   As specifically described in the examples described later, according to the method of the present invention, it is possible to detect only two adjacent fine particles, and naturally, three or more fine particles are close to each other. Cases can also be detected. The upper limit of the number of adjacent fine particles is not particularly limited, but the power of the detection method of the present invention with extremely high sensitivity is exhibited when measuring about 2 to 10 adjacent fine particles.

上記した本発明の近接微粒子の検出方法を利用して、所望の被検物質を極めて高感度に検出することが可能になる。すなわち、本発明は、上記の通り、被検物質に選択的に結合する、微粒子で標識した1種又は2種以上の選択結合物質を前記被検物質と接触させ、前記被検物質と前記選択結合物質との結合により近接した2個以上の微粒子を上記本発明の方法により検出することを含む、被検物質の検出方法をも提供する。   It is possible to detect a desired test substance with extremely high sensitivity by using the above-described method for detecting a close particle of the present invention. That is, as described above, in the present invention, one or more selective binding substances labeled with fine particles that selectively bind to a test substance are brought into contact with the test substance, and the test substance and the selection are contacted. There is also provided a method for detecting a test substance, which comprises detecting two or more microparticles closer to the binding substance by the method of the present invention.

ここで、被検物質は、これと選択的に結合する物質が存在する物質であり、一本鎖核酸、抗原及び抗体、並びにレセプター及びリガンド等である。すなわち、被検物質が一本鎖核酸の場合、該一本鎖核酸の少なくとも一部領域、好ましくは10塩基程度以上のサイズの領域に相補的な又はほぼ相補的な塩基配列を有する一本鎖核酸が選択結合物質に該当する。被検物質が抗原の場合、該抗原と抗原抗体反応する抗体又はその抗原結合性断片(Fab断片、F(ab')2断片等)が選択結合物質に該当する。被検物質が抗体の場合、該抗体と抗原抗体反応する抗原が選択結合物質に該当する。被検物質がレセプターの場合、該レセプターに特異的に結合するリガンドが選択結合物質に該当し、逆に、リガンドが被検物質の場合、該リガンドと特異的に結合するレセプターが選択結合物質に該当する。なお、被検物質と選択結合物質の組合せはこれらに限定されるものではなく、選択的に結合するいかなる物質のペアであってもよい。 Here, the test substance is a substance in which a substance that selectively binds to this substance exists, and includes single-stranded nucleic acids, antigens and antibodies, receptors and ligands, and the like. That is, when the test substance is a single-stranded nucleic acid, the single-stranded nucleic acid has a base sequence complementary or nearly complementary to at least a partial region of the single-stranded nucleic acid, preferably a region having a size of about 10 bases or more. Nucleic acids correspond to selective binding substances. When the test substance is an antigen, an antibody or an antigen-binding fragment thereof (Fab fragment, F (ab ′) 2 fragment, etc.) that reacts with the antigen with an antigen corresponds to the selective binding substance. When the test substance is an antibody, an antigen that reacts with the antibody by an antigen antibody corresponds to a selective binding substance. When the test substance is a receptor, the ligand that specifically binds to the receptor corresponds to the selective binding substance. Conversely, when the ligand is the test substance, the receptor that specifically binds to the ligand becomes the selective binding substance. Applicable. The combination of the test substance and the selective binding substance is not limited to these, and any pair of substances that selectively bind may be used.

上記したように本発明の近接微粒子の検出方法によれば、わずか2個の近接微粒子を検出することが可能である。このため、被検物質の単一の分子に、選択結合物質の分子が2個以上結合する場合、単一の分子に結合した2個以上の選択結合物質を検出することが可能であり、ひいては被検物質の単一の分子を検出することが可能であり、極めて高感度な被検物質の検出が可能になる。もっとも、被検物質の複数の分子が近接して存在する場合には、被検物質の単一の分子に結合できる選択結合物質の分子数が1つであっても、標識微粒子同士が近接して位置することになるので、上記した本発明の方法により近接微粒子、ひいては被検物質を測定することが可能である。   As described above, according to the proximity particle detection method of the present invention, it is possible to detect only 2 proximity particles. For this reason, when two or more molecules of the selective binding substance bind to a single molecule of the test substance, it is possible to detect two or more selective binding substances bound to the single molecule. It is possible to detect a single molecule of the test substance, and it is possible to detect the test substance with extremely high sensitivity. However, when a plurality of molecules of the test substance exist in close proximity, even if the number of molecules of the selective binding substance that can bind to a single molecule of the test substance is one, the labeled fine particles are close to each other. Therefore, it is possible to measure the adjacent fine particles and consequently the test substance by the method of the present invention described above.

用いる選択結合物質は、1種でも2種以上でもよい。被検物質の単一分子に2個以上の選択結合物質を結合させる場合、被検物質の分子中の異なる領域にそれぞれ選択的に結合する2種以上の選択結合物質を用いることが通常好ましい。例えば、被検物質が一本鎖核酸である場合、被検物質分子中の第1の領域と相補的な塩基配列を有する第1の微粒子標識一本鎖核酸と、被検物質分子中の第2の領域と相補的な塩基配列を有する第2の微粒子標識一本鎖核酸とを被検一本鎖核酸と結合させ、第1及び第2の微粒子標識一本鎖核酸の微粒子を検出することにより、1分子の被検一本鎖核酸を検出することができる。同様に、被検物質が、露出した複数のエピトープを有する抗原タンパク質分子である場合、被検抗原タンパク質分子上の第1のエピトープに特異的に結合する第1の微粒子標識モノクローナル抗体と、被検抗原タンパク質分子上の第2のエピトープに特異的に結合する第2の微粒子標識モノクローナル抗体とを被検抗原タンパク質と結合させ、第1及び第2の微粒子標識モノクローナル抗体の微粒子を検出することにより、1分子の被検抗原タンパク質を検出することができる。なお、1分子の被検物質に複数の選択結合物質分子が結合する場合、選択結合物質の分子は上記の通り2種以上の分子である場合が多いが、例えば、被検物質が、同一のサブユニットが複数結合して構成されているような場合には、1種類の複数個の選択結合物質分子が、被検物質の単一の分子に結合することも可能である。   One or two or more selective binding substances may be used. When two or more selective binding substances are bound to a single molecule of the test substance, it is usually preferable to use two or more selective binding substances that selectively bind to different regions in the molecule of the test substance. For example, when the test substance is a single-stranded nucleic acid, a first microparticle-labeled single-stranded nucleic acid having a base sequence complementary to the first region in the test substance molecule, and the first in the test substance molecule A second particulate labeled single-stranded nucleic acid having a base sequence complementary to the region 2 is bound to a test single-stranded nucleic acid, and the first and second particulate labeled single-stranded nucleic acids are detected. Thus, one molecule of test single-stranded nucleic acid can be detected. Similarly, when the test substance is an antigen protein molecule having a plurality of exposed epitopes, a first microparticle-labeled monoclonal antibody that specifically binds to the first epitope on the test antigen protein molecule, Binding a second particulate labeled monoclonal antibody that specifically binds to a second epitope on the antigen protein molecule to a test antigen protein and detecting the particulates of the first and second particulate labeled monoclonal antibodies, One molecule of the test antigen protein can be detected. In addition, when a plurality of selectively binding substance molecules bind to one molecule of the test substance, the molecules of the selective binding substance are often two or more kinds of molecules as described above. In the case where a plurality of subunits are combined, one type of a plurality of selective binding substance molecules can bind to a single molecule of the test substance.

金微粒子による被検物質の標識は、免疫測定法の分野において常用されている周知の方法により行なうことができ、例えば、自己組織化単分子膜(SAM:Self-Assembled Monolayer)と呼ばれる、金に対してチオール基(-SH)を持つ分子が単分子膜を作る方法により行なうことができる。   The test substance can be labeled with gold fine particles by a well-known method commonly used in the field of immunoassay. For example, gold is called self-assembled monolayer (SAM). On the other hand, it can be performed by a method in which a molecule having a thiol group (-SH) forms a monomolecular film.

被検物質と選択結合物質との結合反応自体は、常法により行なうことができる。すなわち、例えば、被検物質が一本鎖核酸の場合、被検物質と選択結合物質との結合反応自体は、例えば、サザンブロット法やDNAアレイを用いた遺伝子の検出等のような、標識核酸プローブによる一本鎖核酸の周知の検出方法と同様に行なうことができる。また、被検物質と選択結合物質とが免疫反応する場合には、被検物質と選択結合物質との結合反応自体は、通常の免疫測定法と同様にして行なうことができる。   The binding reaction between the test substance and the selective binding substance itself can be performed by a conventional method. That is, for example, when the test substance is a single-stranded nucleic acid, the binding reaction between the test substance and the selective binding substance itself is a labeled nucleic acid such as, for example, Southern blotting or gene detection using a DNA array. The detection can be performed in the same manner as a well-known method for detecting a single-stranded nucleic acid using a probe. When the test substance and the selective binding substance undergo an immunoreaction, the binding reaction between the test substance and the selective binding substance itself can be performed in the same manner as in a normal immunoassay method.

結合反応後、上記した本発明の方法により近接微粒子を検出することにより、被検物質を検出することができる。本発明の方法によれば、上記の通り、2個の近接微粒子を検出することができるので、換言すれば、1分子の被検物質を検出することができ、極めて高感度な検出が可能である。   After the binding reaction, the test substance can be detected by detecting the adjacent fine particles by the method of the present invention described above. According to the method of the present invention, two adjacent fine particles can be detected as described above. In other words, one molecule of a test substance can be detected, and extremely sensitive detection is possible. is there.

以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.

近接金微粒子の検出(その1)
市販の、平均粒径(直径)100nmの金微粒子を水に約59億個/mLの濃度で懸濁した金微粒子懸濁液を、カバーガラス上のスピンコートし、乾燥させたものを被検試料として用いた。
Detection of close gold particles (part 1)
A commercially available gold fine particle suspension in which gold fine particles having an average particle diameter (diameter) of 100 nm are suspended in water at a concentration of about 5.9 billion particles / mL is spin-coated on a cover glass and dried to be examined. Used as a sample.

図1に示す、上記した光学測定系を用いて測定を行った。カバーガラス18の裏面から、ダブプリズム16を介して全反射照明し、散乱光を対物レンズ20で集光してCCDカメラ26で観察した。   Measurement was performed using the above-described optical measurement system shown in FIG. From the back surface of the cover glass 18, total reflection illumination was performed via the Dove prism 16, and the scattered light was condensed by the objective lens 20 and observed by the CCD camera 26.

偏光面の角度が30度異なる直線偏光を照射した場合の結果を図3の(a)及び(b)にそれぞれに示す。図3中の(a)と(b)で見え方の異なる輝点を電子顕微鏡で観察した結果を図4の(a)に示す。図4(a)に示すように、偏光面の角度が異なる直線偏光を照射した場合に見え方の異なる輝点は、2個の金微粒子が接触しているものであることがわかった。一方、図3の(a)と(b)で同様に見える輝点は、電子顕微鏡観察すると、図4の(b)に示すように単一の金微粒子から成っていることがわかった。従って、上記方法により、偏光面の角度が異なる直線偏光を照射した場合に見え方の異なる輝点を検出することにより、近接金微粒子を検出できることが明らかになった。   3A and 3B show the results when the linearly polarized light whose polarization plane angle is different by 30 degrees is irradiated. FIG. 4 (a) shows the result of observing the bright spots having different appearances in (a) and (b) in FIG. 3 with an electron microscope. As shown in FIG. 4 (a), it was found that a bright spot having a different appearance when irradiated with linearly polarized light having different angles of polarization plane is in contact with two gold fine particles. On the other hand, the bright spots that look the same in FIGS. 3 (a) and 3 (b) were observed with an electron microscope and were found to consist of a single gold fine particle as shown in FIG. 4 (b). Accordingly, it has been clarified that the method described above can detect adjacent gold fine particles by detecting bright spots that are different in appearance when irradiated with linearly polarized light having different polarization plane angles.

近接金微粒子の検出(その2)
実施例1で作製した被検試料を、図2に示す、上記した光学測定系を用いてバランス検出法により測定を行った。照射偏光としては、偏光面の角度が90度異なる2種類の直線偏光を用いた。
Detection of close gold particles (part 2)
The test sample prepared in Example 1 was measured by a balance detection method using the above-described optical measurement system shown in FIG. As the irradiation polarized light, two types of linearly polarized light having different polarization plane angles of 90 degrees were used.

結果を図5の(a)及び(b)に示す。図5の(a)及び(b)中、丸印で囲んだ輝点のように、見え方が顕著に違うものが観察され、金微粒子ペアだけが高いコントラストで判別できることが示された。   The results are shown in (a) and (b) of FIG. In (a) and (b) of FIG. 5, a remarkably different appearance such as a bright spot surrounded by a circle is observed, indicating that only a gold fine particle pair can be discriminated with high contrast.

被検DNAの検出
1.金微粒子標識オリゴヌクレオチドプローブの作製
化学合成した、atgctcaactct(配列番号1)の塩基配列を有するオリゴヌクレオチドAの5'末端に、イオウ(-S-)を介して実施例1で用いたのと同じ平均粒径100nmの金微粒子を結合した。この結合方法は、具体的には次のようにして行なった。5'末端にチオール(-SH)修飾されたOD計測値が0.02の濃度のオリゴヌクレオチドAを用意し、平均粒径100nmの金微粒子を約59億個/mLの濃度で懸濁した金微粒子懸濁液と混合し、室温で16時間反応させて結合させた。同様にして、化学合成した、taggacttacgc(配列番号2)の塩基配列を有するオリゴヌクレオチドBの5'末端に、イオウ(-S-)を介して実施例1で用いたのと同じ平均粒径100nmの金微粒子を結合した。これらの金微粒子標識オリゴヌクレオチドプローブを、それぞれ水溶液A及び水溶液Bとした。一方、化学合成したtacgagttgagaatcctgaatgcg(配列番号3)の塩基配列を有する被検一本鎖DNAを10nmol/mLの濃度で水に溶解して水溶液Cを調製した。なお、オリゴヌクレオチドA及びオリゴヌクレオチドBは、図6に示すように、被検一本鎖DNAの異なる領域にそれぞれ相補的な塩基配列を有しており、同時に被検一本鎖DNAにハイブリダイズすることが可能である。
Detection of test DNA Preparation of gold microparticle-labeled oligonucleotide probe The same as that used in Example 1 via sulfur (-S-) at the 5 'end of a chemically synthesized oligonucleotide A having the base sequence of atgctcaactct (SEQ ID NO: 1) Gold fine particles having an average particle diameter of 100 nm were bonded. Specifically, this bonding method was performed as follows. Prepared oligonucleotide A with a thiol (-SH) modified OD concentration of 0.02 at the 5 'end and suspended gold fine particles with an average particle size of 100 nm at a concentration of about 5.9 billion particles / mL. It was mixed with the turbid solution and reacted at room temperature for 16 hours to bind. Similarly, the same average particle diameter of 100 nm as that used in Example 1 via sulfur (-S-) is attached to the 5 'end of oligonucleotide B having the base sequence of taggacttacgc (SEQ ID NO: 2) synthesized chemically. Of gold fine particles. These gold fine particle labeled oligonucleotide probes were designated as an aqueous solution A and an aqueous solution B, respectively. On the other hand, an aqueous solution C was prepared by dissolving a test single-stranded DNA having a base sequence of chemically synthesized tacgagttgagaatcctgaatgcg (SEQ ID NO: 3) in water at a concentration of 10 nmol / mL. As shown in FIG. 6, oligonucleotide A and oligonucleotide B have complementary base sequences in different regions of the test single-stranded DNA, and simultaneously hybridize to the test single-stranded DNA. Is possible.

2. 被検一本鎖DNAの検出
水溶液Aと水溶液Bの等量混合物、又は水溶液A、水溶液B及び水溶液Cの混合物(水溶液A:B:C=50:50:1(v/v))を、60℃で5分間おいてから2時間かけて30℃まで下げることでインキュベートした後、2枚のカバーガラスの間に満たした被検試料を実施例1と同様にして図1に示す上記した光学測定系を用いて測定した。ただし、照射光としては、偏光面の角度を連続的に変化させながら測定した。
2. Detection of test single-stranded DNA A mixture of equal amounts of Aqueous solution A and Aqueous solution B, or Aqueous solution A, Aqueous solution B and Aqueous solution C (Aqueous solution A: B: C = 50: 50: 1 (v / v)) After incubating at 60 ° C. for 5 minutes and then lowering to 30 ° C. over 2 hours, the test sample filled between the two cover glasses was shown in FIG. It measured using the measuring system. However, the irradiation light was measured while continuously changing the angle of the polarization plane.

結果を図7に示す。図7の(a)と(b)それぞれ、照射光の偏光を連続的に変化させて測定した時の、ある偏光におけるCCDカメラによる約50μm四方の領域の観察像と、その観察像の中から適当に選んだ輝点(1)(○の中に1)から(3)(○の中に3)の明るさの偏光依存性を示している。図7(a)に示すように水溶液Aと水溶液Bの2液だけを混合した溶液の偏光観察では照射偏光に依存した見え方の違いは見られなかったが、図7(b)のように被検一本鎖DNAを含む水溶液Cをさらに加えた場合には照射偏光に依存して見え方がそれぞれ異なることが確認でき、金微粒子ペアの高感度偏光観察によって被検一本鎖DNAの検出が可能であることが示された。   The results are shown in FIG. Each of (a) and (b) in FIG. 7 shows an observation image of a region of about 50 μm square by a CCD camera in a certain polarization when measured by continuously changing the polarization of the irradiation light, and the observation image. Appropriately selected bright spots (1) (1 in the circle) to (3) (3 in the circle) show the polarization dependence of the brightness. As shown in FIG. 7 (a), in the polarization observation of the solution obtained by mixing only the two solutions of the aqueous solution A and the aqueous solution B, the difference in appearance depending on the irradiation polarization was not observed, but as shown in FIG. 7 (b). When the aqueous solution C containing the test single-stranded DNA is further added, it can be confirmed that the appearance differs depending on the irradiation polarized light, and detection of the test single-stranded DNA by highly sensitive polarization observation of a gold fine particle pair. Was shown to be possible.

本発明の近接微粒子の測定方法を実施するための光学測定系の1例を模式的に示す図である。It is a figure which shows typically an example of the optical measuring system for enforcing the measuring method of the proximity microparticles of this invention. 本発明の近接微粒子のバランス検出方による測定方法を実施するための光学測定系の1例を模式的に示す図である。It is a figure which shows typically an example of the optical measuring system for enforcing the measuring method by the balance detection method of the proximity particle of this invention. 本発明の実施例において得られた、偏光面の角度が異なる2種類の直線偏光を金微粒子試料に照射した場合に得られたCCDカメラによる撮像写真である。It is the picked-up photograph by the CCD camera obtained when the gold fine particle sample was irradiated with two types of linearly polarized light with different angles of polarization planes obtained in the examples of the present invention. 本発明の実施例において得られた、偏光面の角度が異なる2種類の直線偏光を金微粒子試料に照射した場合に見え方の異なる輝点の電子顕微鏡写真(a)又は見え方が同じ輝点の電子顕微鏡写真(b)である。Electron micrographs (a) of bright spots that differ in appearance when the gold fine particle sample is irradiated with two types of linearly polarized light with different angles of polarization planes, or bright spots that have the same appearance. This is an electron micrograph (b). 本発明の実施例において得られた、バランス検出法による金微粒子の観察結果を示す写真である。It is a photograph which shows the observation result of the gold fine particle by the balance detection method obtained in the Example of this invention. 本発明の実施例において用いた、被検一本鎖DNA(i)と2種類の金微粒子標識オリゴヌクレオチドプローブ(ii)及び(iii)の塩基配列並びにそれらの位置関係を示す図である。It is a figure which shows the base sequence of test single strand DNA (i) and two types of gold microparticle label | marker oligonucleotide probes (ii) and (iii) used in the Example of this invention, and those positional relationships. 本発明の実施例において得られた、被検一本鎖DNAの観察結果を示す写真を、散乱光強度の偏光依存性を示す図と共に示す図である。It is a figure which shows the photograph which shows the observation result of the test single strand DNA obtained in the Example of this invention with the figure which shows the polarization dependence of scattered light intensity | strength.

符号の説明Explanation of symbols

10 He-Neレーザ
12 1/2波長板
14 集光レンズ
16 ダブプリズム
18 被検試料
20 対物レンズ
22 検光子(偏光板)
24 集光レンズ
26 CCDカメラ
28 ビームエキスパンダ
29 ビームスプリッタ
30 ステージスキャナ
32 第2の1/2波長板
34 アナライザー
36 バランス検出器
10 He-Ne laser 12 1/2 wavelength plate 14 Condensing lens 16 Dove prism 18 Test sample 20 Objective lens 22 Analyzer (polarizing plate)
24 Condensing lens 26 CCD camera 28 Beam expander 29 Beam splitter 30 Stage scanner 32 Second half-wave plate 34 Analyzer 36 Balance detector

Claims (9)

複数個の微粒子を含む被検試料に、直線偏光を照射し、被検試料からの散乱光中に含まれる、2個以上の微粒子が近接して位置することに起因して生じる偏光成分を測定することを含む、近接して位置する2個以上の微粒子の検出方法。   A test sample containing a plurality of fine particles is irradiated with linearly polarized light, and the polarization component generated due to the proximity of two or more fine particles contained in the scattered light from the test sample is measured. And a method for detecting two or more fine particles located in close proximity. 前記微粒子が金属微粒子である請求項1記載の方法。   The method according to claim 1, wherein the fine particles are metal fine particles. 前記金属微粒子が金微粒子である請求項2記載の方法。   The method according to claim 2, wherein the metal fine particles are gold fine particles. 前記被検試料に第1の直線偏光を照射し、被検試料からの散乱光の偏光を測定し、次いで、前記第1の直線偏光とは偏光面の角度が異なる第2の直線偏光を前記被検試料に照射し、被検試料からの散乱光の偏光を測定することを含む請求項1ないし3のいずれか1項に記載の方法。   The test sample is irradiated with a first linearly polarized light, the polarization of scattered light from the test sample is measured, and then the second linearly polarized light having a polarization plane angle different from that of the first linearly polarized light is The method according to any one of claims 1 to 3, comprising irradiating the test sample and measuring the polarization of the scattered light from the test sample. 前記被検試料に照射する前記直線偏光の偏光面を連続的に回転させ、前記散乱光の偏光を連続的に測定することを含む請求項1ないし3のいずれか1項に記載の方法。   The method according to any one of claims 1 to 3, comprising continuously rotating a polarization plane of the linearly polarized light applied to the test sample and continuously measuring the polarization of the scattered light. 前記散乱光の偏光をバランス検出法により検出する請求項1ないし3のいずれか1項に記載の方法。   The method according to claim 1, wherein polarization of the scattered light is detected by a balance detection method. 被検物質に選択的に結合する、微粒子で標識した1種又は2種以上の選択結合物質を前記被検物質と接触させ、前記被検物質と前記選択結合物質との結合により近接した2個以上の微粒子を請求項1ないし6のいずれか1項に記載の方法により検出することを含む、被検物質の検出方法。   Two or more selective binding substances labeled with fine particles, which selectively bind to the test substance, are brought into contact with the test substance, and two closer to each other by the binding between the test substance and the selective binding substance A method for detecting a test substance, comprising detecting the above fine particles by the method according to any one of claims 1 to 6. 前記被検物質の単一の分子に、前記選択結合物質の分子が2個以上結合する請求項7記載の方法。   The method according to claim 7, wherein two or more molecules of the selective binding substance are bound to a single molecule of the test substance. 前記被検物質が、一本鎖核酸、抗原若しくは抗体、又はレセプター若しくはリガンドである請求項7又は8記載の方法。

The method according to claim 7 or 8, wherein the test substance is a single-stranded nucleic acid, an antigen or an antibody, or a receptor or a ligand.

JP2006044490A 2006-02-21 2006-02-21 Method of detecting plurality of adjacent micro particles, and method of detecting examining substance using the same Pending JP2007225348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006044490A JP2007225348A (en) 2006-02-21 2006-02-21 Method of detecting plurality of adjacent micro particles, and method of detecting examining substance using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006044490A JP2007225348A (en) 2006-02-21 2006-02-21 Method of detecting plurality of adjacent micro particles, and method of detecting examining substance using the same

Publications (1)

Publication Number Publication Date
JP2007225348A true JP2007225348A (en) 2007-09-06

Family

ID=38547315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006044490A Pending JP2007225348A (en) 2006-02-21 2006-02-21 Method of detecting plurality of adjacent micro particles, and method of detecting examining substance using the same

Country Status (1)

Country Link
JP (1) JP2007225348A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103485A (en) * 2007-10-22 2009-05-14 Fujifilm Corp Sensing device
JP2012168057A (en) * 2011-02-15 2012-09-06 Shin Nippon Air Technol Co Ltd Particles conductivity determination device and particles conductivity determination method
JP2015096869A (en) * 2010-06-30 2015-05-21 ルミネックス コーポレーション Apparatus, system, and method for increasing measurement accuracy in particle imaging device
US10859483B2 (en) 2018-08-07 2020-12-08 Canon Kabushiki Kaisha Automatic analysis apparatus, automatic analysis method, and storage medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103485A (en) * 2007-10-22 2009-05-14 Fujifilm Corp Sensing device
JP2015096869A (en) * 2010-06-30 2015-05-21 ルミネックス コーポレーション Apparatus, system, and method for increasing measurement accuracy in particle imaging device
JP2012168057A (en) * 2011-02-15 2012-09-06 Shin Nippon Air Technol Co Ltd Particles conductivity determination device and particles conductivity determination method
US10859483B2 (en) 2018-08-07 2020-12-08 Canon Kabushiki Kaisha Automatic analysis apparatus, automatic analysis method, and storage medium

Similar Documents

Publication Publication Date Title
CN108431575B (en) Dual image based biometric imaging apparatus and techniques
JP4247770B2 (en) Analyte assays using particulate labels
US6159749A (en) Highly sensitive bead-based multi-analyte assay system using optical tweezers
JP6495382B2 (en) Spatial resolution ligand-receptor binding assay
US20060192955A1 (en) Imaging platform for nanoparticle detection applied to spr biomolecular interaction analysis
JP4381752B2 (en) Optical quantification method and optical quantification apparatus
JP2009236921A (en) Analyte assay using particulate label
US6861251B2 (en) Translucent solid matrix assay device for microarray analysis
JP2008102117A (en) Surface plasmon enhanced fluorescence sensor and fluorescence detecting method
JP4885019B2 (en) Surface plasmon enhanced fluorescence sensor
JP2010019553A (en) Specific bonding riaction detecting method of molecule by monomolecular fluorometric analysis
JP5428322B2 (en) Assay method using plasmon excitation sensor
CN112074740A (en) Imaging assay
US20120258553A1 (en) Analyte measurement apparatus and method
JP5810195B1 (en) Ultraviolet-excited fluorescent particles, detection method using the same, image display method, image display screen, and image display apparatus
JP6810055B2 (en) How to reuse test probes and reagents in immunoassay
JP2007225348A (en) Method of detecting plurality of adjacent micro particles, and method of detecting examining substance using the same
Daneshvar et al. Detection of biomolecules in the near-infrared spectral region via a fiber-optic immunosensor
JP2008157923A (en) Chemically sensing device and method
EP4083610A1 (en) Biomolecular inspection chip for fluorescence detection
JP5205293B2 (en) Antibody-immobilized substrate, and method and use of the antibody-immobilized substrate
CN1823085A (en) Method and equipment for recognizing molecular compounds
JP2009168803A (en) Method of detecting target substance
JPWO2003081243A1 (en) Fluorescence polarization method, kit used therefor, and biosensor
Tirri et al. Effect of polystyrene microsphere surface to fluorescence lifetime under two-photon excitation