JP5678863B2 - Secondary battery, secondary battery temperature control device and vehicle - Google Patents

Secondary battery, secondary battery temperature control device and vehicle Download PDF

Info

Publication number
JP5678863B2
JP5678863B2 JP2011230142A JP2011230142A JP5678863B2 JP 5678863 B2 JP5678863 B2 JP 5678863B2 JP 2011230142 A JP2011230142 A JP 2011230142A JP 2011230142 A JP2011230142 A JP 2011230142A JP 5678863 B2 JP5678863 B2 JP 5678863B2
Authority
JP
Japan
Prior art keywords
temperature
row
cell
conductive member
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011230142A
Other languages
Japanese (ja)
Other versions
JP2013089511A (en
Inventor
貴久 杉本
貴久 杉本
木下 恭一
恭一 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2011230142A priority Critical patent/JP5678863B2/en
Publication of JP2013089511A publication Critical patent/JP2013089511A/en
Application granted granted Critical
Publication of JP5678863B2 publication Critical patent/JP5678863B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、二次電池、二次電池の温調装置および車両に関するものである。   The present invention relates to a secondary battery, a temperature control device for a secondary battery, and a vehicle.

特許文献1において蓄電装置の冷却構造が開示されており、複数の蓄電素子を積層した蓄電モジュールと、蓄電素子間に形成される第1の冷媒通路と、蓄電モジュールの外部に設けられ、蓄電モジュールの外面のうち蓄電素子の端子が位置する側の第1の外面に沿って形成される第2の冷媒通路と、を有する。   Patent Document 1 discloses a cooling structure for a power storage device, in which a power storage module in which a plurality of power storage elements are stacked, a first refrigerant passage formed between the power storage elements, and a power storage module provided outside the power storage module. And a second refrigerant passage formed along the first outer surface on the side where the terminals of the storage element are located.

特開2009−252473号公報JP 2009-252473 A

ところで、効率よく温調するとともに、よりコンパクトな構造という観点から改良が望まれている。
本発明の目的は、省スペース化を図るとともに効率的な温調を実現することができる二次電池、二次電池の温調装置および車両を提供することにある。
By the way, improvement is desired from the viewpoint of efficient temperature control and a more compact structure.
An object of the present invention is to provide a secondary battery, a secondary battery temperature control device, and a vehicle that can achieve space-saving and efficient temperature control.

請求項1に記載の発明では、複数の電池セルを並設して構成した電池モジュールと、前記電池セルの隣接方向に沿って延び、前記電池セルから突出する端子に連結されかつ隣接する前記電池セルの前記端子同士を電気的に接続する第1列セル間接続用導電部材群および第2列セル間接続用導電部材群と、前記第1列セル間接続用導電部材群の周囲を囲む態様でかつ前記第1列セル間接続用導電部材群の延設方向に配置される第1の流路形成部材と、前記第2列セル間接続用導電部材群の周囲を囲む態様でかつ前記第2列セル間接続用導電部材群の延設方向に配置される第2の流路形成部材と、を有し、前記第1列セル間接続用導電部材群および前記第2列セル間接続用導電部材群は、前記電池セルの並設される方向にそれぞれ対応して並設され、前記第1列セル間接続用導電部材群は1以上の第1列セル間接続用導電部材を有し、前記第2列セル間接続用導電部材群は1以上の第2列セル間接続用導電部材を有し、前記第1の流路形成部材および前記第2の流路形成部材は、温調用流体が通過可能であることを要旨とする。   In the invention according to claim 1, the battery module configured by arranging a plurality of battery cells, and the battery connected to and adjacent to a terminal extending along an adjacent direction of the battery cell and protruding from the battery cell A first row inter-cell connecting conductive member group and a second row inter-cell connecting conductive member group that electrically connect the terminals of the cells, and an aspect surrounding the first row inter-cell connecting conductive member group And a first flow path forming member arranged in the extending direction of the first row-cell connecting conductive member group, and an aspect surrounding the second row-cell connecting conductive member group A second flow path forming member disposed in the extending direction of the conductive member group for connecting two-row cells, and for connecting the first row-cell connecting conductive member group and the second row-cell connecting member Conductive member groups are juxtaposed corresponding to the direction in which the battery cells are juxtaposed. The first row cell connection conductive member group includes one or more first row cell connection conductive members, and the second row cell connection conductive member group includes one or more second row cell connection. The first flow path forming member and the second flow path forming member have an electrical conductive member, and the gist thereof is that a temperature adjusting fluid can pass therethrough.

なお、電気的に接続するとは端子同士を直列接続する場合および並列接続する場合の両方を指す。
請求項1に記載の発明によれば、第1列セル間接続用導電部材群および第2列セル間接続用導電部材群は、電池セルの隣接方向に沿って延び、電池セルから突出する端子に連結されかつ隣接する電池セルの端子同士を電気的に接続している。第1列セル間接続用導電部材群および第2列セル間接続用導電部材群は、電池セルの並設される方向にそれぞれ対応して並設され、第1列セル間接続用導電部材群は1以上の第1列セル間接続用導電部材を有し、第2列セル間接続用導電部材群は1以上の第2列セル間接続用導電部材を有している。第1の流路形成部材は、第1列セル間接続用導電部材群の周囲を囲む態様でかつ第1列セル間接続用導電部材群の延設方向に配置されている。第2の流路形成部材は、第2列セル間接続用導電部材群の周囲を囲む態様でかつ第2列セル間接続用導電部材群の延設方向に配置されている。そして、第1の流路形成部材および第2の流路形成部材には温調用流体が通過する。この温調用流体により第1列セル間接続用導電部材が温調され、第1列セル間接続用導電部材の温調により電池セルの端子を通して電池セルが温調される。また、温調用流体により第2列セル間接続用導電部材が温調され、第2列セル間接続用導電部材の温調により電池セルの端子を通して電池セルが温調される。
Note that the term “electrically connected” refers to both the case where terminals are connected in series and the case where they are connected in parallel.
According to the first aspect of the present invention, the first row inter-cell connecting conductive member group and the second row inter-cell connecting conductive member group extend along the adjacent direction of the battery cell and project from the battery cell. And terminals of adjacent battery cells are electrically connected to each other. The first row inter-cell connecting conductive member group and the second row inter-cell connecting conductive member group are juxtaposed corresponding to the direction in which the battery cells are juxtaposed, and the first row inter-cell connecting conductive member group. Has one or more first row cell connecting conductive members, and the second row cell connecting conductive member group has one or more second row cell connecting conductive members. The first flow path forming member is disposed in the extending direction of the first row-cell connecting conductive member group so as to surround the first row-cell connecting conductive member group. The second flow path forming member is disposed in the extending direction of the second row inter-cell connecting conductive member group so as to surround the second row inter-cell connecting conductive member group. The temperature adjusting fluid passes through the first flow path forming member and the second flow path forming member. The temperature adjusting fluid adjusts the temperature of the first row cell connecting conductive member, and the temperature of the first row cell connecting conductive member adjusts the temperature of the battery cell through the terminal of the battery cell. Further, the second row inter-cell connecting conductive member is temperature-controlled by the temperature adjusting fluid, and the temperature of the second row inter-cell connecting conductive member is adjusted through the terminals of the battery cells.

このようにして、第1列セル間接続用導電部材に対しては第1の流路形成部材を、また、第2列セル間接続用導電部材に対しては第2の流路形成部材を配する構成とすることにより省スペース化を図ることができる。さらに、第1の流路形成部材を用いて第1列セル間接続用導電部材を、また、第2の流路形成部材を用いて第2列セル間接続用導電部材を、それぞれ集中的に温調でき、効率的な温調を実現することができる。   In this way, the first flow path forming member is provided for the first row inter-cell connecting conductive member, and the second flow path forming member is provided for the second row inter-cell connecting conductive member. Space-saving can be achieved by adopting the arrangement. Further, the first flow path forming member is used to concentrate the first row cell connecting conductive member, and the second flow path forming member is used to concentrate the second row cell connecting conductive member. Temperature can be controlled and efficient temperature control can be realized.

請求項2に記載の発明では、請求項1に記載の二次電池において、前記第1列セル間接続用導電部材および前記第2列セル間接続用導電部材は、複数であり、前記第1の流路形成部材、前記第2の流路形成部材および前記温調用流体は、電気絶縁性を有することを要旨とする。   According to a second aspect of the present invention, in the secondary battery according to the first aspect, the first inter-row cell connecting conductive member and the second inter-row cell connecting conductive member include a plurality of the first row inter-cell connecting conductive members. The flow path forming member, the second flow path forming member, and the temperature adjusting fluid have electrical insulation.

請求項2に記載の発明によれば、第1列セル間接続用導電部材および第2列セル間接続用導電部材が、複数であっても、第1の流路形成部材、第2の流路形成部材および温調用流体は、電気絶縁性を有するので、セル間接続用導電部材間がショートすることがない。   According to the second aspect of the present invention, even if there are a plurality of first row cell connecting conductive members and second row cell connecting conductive members, the first flow path forming member and the second flow connecting member are provided. Since the path forming member and the temperature adjusting fluid have electrical insulation properties, there is no short circuit between the inter-cell connecting conductive members.

請求項3に記載の発明では、請求項1または2に記載の二次電池と、前記電池セルの温度を検出する温度検出手段と、前記第1の流路形成部材の内部を通過させる前記温調用流体である第1温調用流体および前記第2の流路形成部材の内部を通過させる前記温調用流体である第2温調用流体の温度を調整するための流体温度調整手段と、前記温度検出手段により検出した前記電池セルの温度に基づいて前記流体温度調整手段を制御して、前記第1温調用流体および前記第2温調用流体の温度を制御する制御手段と、を備えたことを要旨とする。   According to a third aspect of the present invention, the secondary battery according to the first or second aspect, temperature detecting means for detecting the temperature of the battery cell, and the temperature passing through the inside of the first flow path forming member. Fluid temperature adjusting means for adjusting the temperature of the first temperature adjusting fluid that is the adjusting fluid and the temperature of the second temperature adjusting fluid that is the temperature adjusting fluid that passes through the inside of the second flow path forming member, and the temperature detection And a control means for controlling the temperature of the first temperature adjusting fluid and the second temperature adjusting fluid by controlling the fluid temperature adjusting means based on the temperature of the battery cell detected by the means. And

請求項3に記載の発明によれば、温度検出手段により電池セルの温度が検出され、流体温度調整手段により第1の流路形成部材の内部を通過させる温調用流体である第1温調用流体および第2の流路形成部材の内部を通過させる温調用流体である第2温調用流体の温度を調整することができ、制御手段により、温度検出手段により検出した電池セルの温度に基づいて流体温度調整手段が制御されて第1温調用流体および第2温調用流体の温度が制御される。これにより、最適な温調を実行することができる。   According to the third aspect of the present invention, the temperature detecting unit detects the temperature of the battery cell, and the fluid temperature adjusting unit allows the first temperature adjusting fluid to pass through the inside of the first flow path forming member. And the temperature of the second temperature adjusting fluid, which is a temperature adjusting fluid that passes through the inside of the second flow path forming member, can be adjusted by the control means based on the temperature of the battery cell detected by the temperature detecting means. The temperature adjusting means is controlled to control the temperatures of the first temperature adjusting fluid and the second temperature adjusting fluid. Thereby, optimal temperature control can be performed.

請求項4に記載のように、請求項1または2に記載の二次電池を搭載してなる車両とすることができる。
請求項5に記載のように、請求項3に記載の二次電池の温調装置を搭載してなる車両とすることができる。
According to a fourth aspect of the present invention, a vehicle can be provided in which the secondary battery according to the first or second aspect is mounted.
As described in claim 5, the vehicle can be provided with the secondary battery temperature control device according to claim 3.

本発明によれば、省スペース化を図るとともに効率的な温調を実現することができる。   According to the present invention, space saving and efficient temperature control can be realized.

(a)は実施形態におけるリチウムイオン二次電池の概略平面図、(b)はリチウムイオン二次電池の概略右側面図、(c)は(a)のA−A線での概略縦断面図。(A) is a schematic top view of the lithium ion secondary battery in embodiment, (b) is a schematic right view of a lithium ion secondary battery, (c) is a schematic longitudinal cross-sectional view in the AA line of (a). . リチウムイオン二次電池の概略一部拡大断面図。1 is a schematic partially enlarged cross-sectional view of a lithium ion secondary battery. 温調ダクトを取り外した状態でのリチウムイオン二次電池の概略平面図、(b)は温調ダクトを取り外した状態でのリチウムイオン二次電池の概略右側面図、(c)は(a)のA−A線での概略縦断面図。A schematic plan view of the lithium ion secondary battery with the temperature control duct removed, (b) is a schematic right side view of the lithium ion secondary battery with the temperature control duct removed, and (c) is (a). The schematic longitudinal cross-sectional view in an AA line. 電気回路図。Electrical circuit diagram. 実施形態における二次電池の温調装置の全体構成図。The whole block diagram of the temperature control apparatus of the secondary battery in embodiment. (a)は別例のリチウムイオン二次電池の概略平面図、(b)はリチウムイオン二次電池の概略右側面図、(c)は(a)のA−A線での概略縦断面図。(A) is a schematic plan view of another example of a lithium ion secondary battery, (b) is a schematic right side view of the lithium ion secondary battery, and (c) is a schematic longitudinal sectional view taken along line AA of (a). . 温調ダクトを取り外した状態でのリチウムイオン二次電池の概略平面図、(b)は温調ダクトを取り外した状態でのリチウムイオン二次電池の概略右側面図、(c)は(a)のA−A線での概略縦断面図。A schematic plan view of the lithium ion secondary battery with the temperature control duct removed, (b) is a schematic right side view of the lithium ion secondary battery with the temperature control duct removed, and (c) is (a). The schematic longitudinal cross-sectional view in an AA line. 電気回路図。Electrical circuit diagram. 別例のリチウムイオン二次電池の概略一部拡大断面図。FIG. 6 is a schematic partially enlarged cross-sectional view of another example of a lithium ion secondary battery. 別例のリチウムイオン二次電池の概略平面図、(b)はリチウムイオン二次電池の概略右側面図、(c)は(a)のA−A線での概略縦断面図。The schematic plan view of the lithium ion secondary battery of another example, (b) is a schematic right view of a lithium ion secondary battery, (c) is a schematic longitudinal cross-sectional view in the AA line of (a).

以下、本発明を、リチウムイオン二次電池に具体化した一実施形態を図1〜図5に従って説明する。
なお、図面において、水平面を、直交するX,Y方向で規定するとともに、上下方向をZ方向で規定している。
Hereinafter, an embodiment in which the present invention is embodied in a lithium ion secondary battery will be described with reference to FIGS.
In the drawings, the horizontal plane is defined by the orthogonal X and Y directions, and the vertical direction is defined by the Z direction.

図1,3に示すように、リチウムイオン二次電池10は、電池モジュールMbと、第1列セル間接続用導電部材群Gr1(バスバー61,63,65,67)と、第2列セル間接続用導電部材群Gr2(バスバー60,62,64,66)と、第1の温調ダクト30と、第2の温調ダクト40とを有している。第1の流路形成部材としての第1の温調ダクト30および第2の流路形成部材としての第2の温調ダクト40は樹脂製であり、その内部には温調用流体としての空気が流れる。   As shown in FIGS. 1 and 3, the lithium ion secondary battery 10 includes a battery module Mb, a first row-cell connecting conductive member group Gr1 (bus bars 61, 63, 65, 67), and a second row cell. The connecting conductive member group Gr2 (bus bars 60, 62, 64, 66), the first temperature control duct 30, and the second temperature control duct 40 are provided. The first temperature control duct 30 as the first flow path forming member and the second temperature control duct 40 as the second flow path forming member are made of resin, and air as a temperature control fluid is contained therein. Flowing.

図3において、電池モジュールMbは、複数の電池セルC1〜C9を並設して構成されている。各電池セルC1〜C9は角型電池セルであり、電池セルC1〜C9の本体部20が薄い四角箱型をなしている。本体部20は、電槽(缶)の内部においてプレート状の正極とプレート状の負極をセパレータで巻き込んで構成されている。電池セルC1〜C9の本体部20はY方向において並設して配置され、隣接する電池セルの本体部20は側面が接触する状態で固定されている。   In FIG. 3, the battery module Mb is configured by arranging a plurality of battery cells C1 to C9 in parallel. Each of the battery cells C1 to C9 is a rectangular battery cell, and the main body 20 of the battery cells C1 to C9 is a thin square box. The main body 20 is configured by winding a plate-like positive electrode and a plate-like negative electrode with a separator inside a battery case (can). The main body portions 20 of the battery cells C1 to C9 are arranged side by side in the Y direction, and the main body portions 20 of adjacent battery cells are fixed in a state where the side surfaces are in contact with each other.

各電池セルC1〜C9は、本体部20の上面には正極用の端子21と負極用の端子22が上方に突出している。両端子21,22は、雌ねじの端子である。図3において、電池セルC1は、本体部20において左側に正極用の端子21が配置され、右側に負極用の端子22が配置されている。電池セルC2は、本体部20において左側に負極用の端子22が配置され、右側に正極用の端子21が配置されている。   In each of the battery cells C <b> 1 to C <b> 9, a positive terminal 21 and a negative terminal 22 protrude upward from the upper surface of the main body 20. Both terminals 21 and 22 are female screw terminals. In FIG. 3, the battery cell C <b> 1 has a positive terminal 21 disposed on the left side and a negative terminal 22 disposed on the right side of the main body 20. The battery cell C <b> 2 has a negative electrode terminal 22 arranged on the left side and a positive electrode terminal 21 arranged on the right side in the main body 20.

以下、電池セルC3は本体部20の左側に正極用の端子21が右側に負極用の端子22が、電池セルC4は本体部20の左側に負極用の端子22が右側に正極用の端子21が、電池セルC5は本体部20の左側に正極用の端子21が右側に負極用の端子22が配置されている。電池セルC6は本体部20の左側に負極用の端子22が右側に正極用の端子21が、電池セルC7は本体部20の左側に正極用の端子21が右側に負極用の端子22が、電池セルC8は本体部20の左側に負極用の端子22が右側に正極用の端子21が、電池セルC9は本体部20の左側に正極用の端子21が右側に負極用の端子22が配置されている。   Hereinafter, the battery cell C3 has a positive electrode terminal 21 on the left side of the main body portion 20 and a negative electrode terminal 22 on the right side, and the battery cell C4 has a negative electrode terminal 22 on the left side of the main body portion 20 and a positive electrode terminal 21 on the right side. However, the battery cell C5 has a positive terminal 21 on the left side of the main body 20 and a negative terminal 22 on the right side. Battery cell C6 has negative electrode terminal 22 on the left side of main body 20 and positive electrode terminal 21 on the right side, and battery cell C7 has positive electrode terminal 21 on the left side of main body part 20 and negative electrode terminal 22 on the right side. Battery cell C8 has negative electrode terminal 22 on the left side of main body 20 and positive electrode terminal 21 on the right side, and battery cell C9 has positive electrode terminal 21 on the left side of main body part 20 and negative electrode terminal 22 on the right side. Has been.

電池セルC1〜C9は、本体部20の上面において台座50(図2参照)が端子21,22を貫通する状態で配置されている。
バスバー60はY方向に延びている。バスバー60は隣接する電池セルC1,C2の端子21,22に締結されている。即ち、バスバー60の一端側において電池セルC1の端子21がバスバー60を貫通するとともにバスバー60の上側からナット51が螺入され、ナット51によりバスバー60が電池セルC1の端子21に締結されている。バスバー60の他端側において電池セルC2の端子22がバスバー60を貫通するとともにバスバー60の上側からナット51が螺入され、ナット51によりバスバー60が電池セルC2の端子22に締結されている。
The battery cells C <b> 1 to C <b> 9 are arranged in a state where the pedestal 50 (see FIG. 2) penetrates the terminals 21 and 22 on the upper surface of the main body 20.
The bus bar 60 extends in the Y direction. The bus bar 60 is fastened to the terminals 21 and 22 of the adjacent battery cells C1 and C2. That is, the terminal 21 of the battery cell C1 passes through the bus bar 60 on one end side of the bus bar 60 and the nut 51 is screwed from the upper side of the bus bar 60, and the bus bar 60 is fastened to the terminal 21 of the battery cell C1 by the nut 51. . The terminal 22 of the battery cell C2 penetrates the bus bar 60 on the other end side of the bus bar 60, and a nut 51 is screwed in from the upper side of the bus bar 60. The bus bar 60 is fastened to the terminal 22 of the battery cell C2 by the nut 51.

バスバー61はY方向に延びている。バスバー61は隣接する電池セルC2,C3の端子21,22に締結されている。即ち、バスバー61の一端側において電池セルC2の端子21がバスバー61を貫通するとともにバスバー61の上側からナット51が螺入され、ナット51によりバスバー61が電池セルC2の端子21に締結されている。バスバー61の他端側において電池セルC3の端子22がバスバー61を貫通するとともにバスバー61の上側からナット51が螺入され、ナット51によりバスバー61が電池セルC3の端子22に締結されている。   The bus bar 61 extends in the Y direction. The bus bar 61 is fastened to the terminals 21 and 22 of the adjacent battery cells C2 and C3. That is, the terminal 21 of the battery cell C2 passes through the bus bar 61 on one end side of the bus bar 61 and the nut 51 is screwed from the upper side of the bus bar 61, and the bus bar 61 is fastened to the terminal 21 of the battery cell C2 by the nut 51. . The terminal 22 of the battery cell C3 penetrates the bus bar 61 on the other end side of the bus bar 61, and a nut 51 is screwed from the upper side of the bus bar 61. The bus bar 61 is fastened to the terminal 22 of the battery cell C3 by the nut 51.

以下同様に、バスバー62はY方向に延び、隣接する電池セルC3,C4の端子21,22に締結されている。バスバー63はY方向に延び、隣接する電池セルC4,C5の端子21,22に締結されている。バスバー64はY方向に延び、隣接する電池セルC5,C6の端子21,22に締結されている。バスバー65はY方向に延び、隣接する電池セルC6,C7の端子21,22に締結されている。バスバー66はY方向に延び、隣接する電池セルC7,C8の端子21,22に締結されている。バスバー67はY方向に延び、隣接する電池セルC8,C9の端子21,22に締結されている。   Similarly, the bus bar 62 extends in the Y direction and is fastened to the terminals 21 and 22 of the adjacent battery cells C3 and C4. The bus bar 63 extends in the Y direction and is fastened to the terminals 21 and 22 of the adjacent battery cells C4 and C5. The bus bar 64 extends in the Y direction and is fastened to terminals 21 and 22 of adjacent battery cells C5 and C6. The bus bar 65 extends in the Y direction and is fastened to the terminals 21 and 22 of the adjacent battery cells C6 and C7. The bus bar 66 extends in the Y direction and is fastened to the terminals 21 and 22 of the adjacent battery cells C7 and C8. The bus bar 67 extends in the Y direction and is fastened to the terminals 21 and 22 of the adjacent battery cells C8 and C9.

このようにして、バスバー60,61,62,63,64,65,66,67により電池セル同士を電気的に接続して、図4に示すごとく、各電池セルC1〜C9が直列接続されている。   In this way, the battery cells are electrically connected by the bus bars 60, 61, 62, 63, 64, 65, 66, and 67, and the battery cells C1 to C9 are connected in series as shown in FIG. Yes.

ここで、バスバー61,63,65,67は一直線上に並んで設けられているとともに、バスバー60,62,64,66は一直線上に並んで設けられており、複数のバスバー60〜67はX方向に離間して2列に配置されている。即ち、2列のセル間接続用導電部材のうちの第1列セル間接続用導電部材としてのバスバー61,63,65,67は、電池セルの隣接方向(Y方向)に沿って延び、電池セルから突出する端子21,22に連結されて隣接する電池セルの端子21,22同士を電気的に接続している。このようにして、第1列セル間接続用導電部材群Gr1は、1以上の第1列セル間接続用導電部材としてのバスバー61,63,65,67を有している。第1列セル間接続用導電部材群Gr1は、電池セルの隣接方向に沿って延び、電池セルから突出する端子に連結されかつ隣接する電池セルの端子同士を電気的に接続する。   Here, the bus bars 61, 63, 65, and 67 are arranged in a straight line, the bus bars 60, 62, 64, and 66 are arranged in a straight line, and the plurality of bus bars 60 to 67 are X They are arranged in two rows apart in the direction. That is, the bus bars 61, 63, 65, 67 as the first row inter-cell connecting conductive members among the two rows of inter-cell connecting conductive members extend along the adjacent direction (Y direction) of the battery cells. The terminals 21 and 22 of the adjacent battery cells are electrically connected to each other by being connected to the terminals 21 and 22 protruding from the cell. In this way, the first row-cell connecting conductive member group Gr1 has one or more bus bars 61, 63, 65, 67 as first row-cell connecting conductive members. The first row inter-cell connecting conductive member group Gr1 extends along the adjacent direction of the battery cells, is connected to the terminals protruding from the battery cells, and electrically connects the terminals of the adjacent battery cells.

また、2列のセル間接続用導電部材のうちの第2列セル間接続用導電部材としてのバスバー60,62,64,66は、電池セルの隣接方向(Y方向)に沿って延び、電池セルから突出する端子21,22に連結されて隣接する電池セルの端子21,22同士を電気的に接続している。このようにして、第2列セル間接続用導電部材群Gr2は、1以上の第2列セル間接続用導電部材としてのバスバー60,62,64,66を有している。第2列セル間接続用導電部材群Gr2は、電池セルの隣接方向に沿って延び、電池セルから突出する端子に連結されかつ隣接する電池セルの端子同士を電気的に接続する。第1列セル間接続用導電部材群Gr1および第2列セル間接続用導電部材群Gr2は、電池セルの並設される方向にそれぞれ対応して並設されている。   Of the two rows of inter-cell connecting conductive members, the bus bars 60, 62, 64, 66 as the second row inter-cell connecting conductive members extend along the adjacent direction (Y direction) of the battery cells. The terminals 21 and 22 of the adjacent battery cells are electrically connected to each other by being connected to the terminals 21 and 22 protruding from the cell. In this way, the second row cell connecting conductive member group Gr2 has one or more bus bars 60, 62, 64, 66 as second row cell connecting conductive members. The second row inter-cell connecting conductive member group Gr2 extends along the adjacent direction of the battery cells, is connected to the terminals protruding from the battery cells, and electrically connects the terminals of the adjacent battery cells. The first row-cell connecting conductive member group Gr1 and the second row-cell connecting conductive member group Gr2 are arranged in parallel corresponding to the direction in which the battery cells are arranged in parallel.

図1,2に示すように、第1の温調ダクト30はY方向に延びている。第1の温調ダクト30は、一直線上に並んだバスバー61,63,65,67を覆っている。詳しくは、第1の温調ダクト30は、断面が四角枠状をなし、下面の中央部が開口している。第1の温調ダクト30の下面は電池セルの本体部20の上面と接着されている。この第1の温調ダクト30の内部には温調用流体としての空気が通過する。このように、第1の流路形成部材としての第1の温調ダクト30は、第1列セル間接続用導電部材としてのバスバー61,63,65,67の延設方向に延び、バスバー61,63,65,67の周囲を囲み、内部に温調用流体としての空気が通過する。即ち、第1の流路形成部材としての第1の温調ダクト30は、第1列セル間接続用導電部材群Gr1の周囲を囲む態様でかつ第1列セル間接続用導電部材群Gr1の延設方向に配置され、温調用流体が通過可能である。   As shown in FIGS. 1 and 2, the first temperature control duct 30 extends in the Y direction. The first temperature control duct 30 covers the bus bars 61, 63, 65, 67 arranged in a straight line. Specifically, the first temperature control duct 30 has a rectangular frame shape in cross section, and the center portion of the lower surface is opened. The lower surface of the first temperature control duct 30 is bonded to the upper surface of the main body 20 of the battery cell. Air as a temperature adjusting fluid passes through the inside of the first temperature adjusting duct 30. Thus, the first temperature control duct 30 as the first flow path forming member extends in the extending direction of the bus bars 61, 63, 65, 67 as the first row cell connecting conductive members, and the bus bar 61 , 63, 65, 67, and air as a temperature adjusting fluid passes through the inside. That is, the first temperature control duct 30 as the first flow path forming member has a form surrounding the first row cell connecting conductive member group Gr1 and the first row cell connecting conductive member group Gr1. It arrange | positions in the extending direction and the fluid for temperature control can pass through.

同様に、第2の温調ダクト40はY方向に延びている。第2の温調ダクト40は、一直線上に並んだバスバー60,62,64,66を覆っている。詳しくは、第2の温調ダクト40は、断面が四角枠状をなし、下面の中央部が開口している。第2の温調ダクト40の下面は電池セルの本体部20の上面と接着されている。この第2の温調ダクト40の内部には温調用流体としての空気が通過する。このように、第2の流路形成部材としての第2の温調ダクト40は、第2列セル間接続用導電部材としてのバスバー60,62,64,66の延設方向に延び、バスバー60,62,64,66の周囲を囲み、内部に温調用流体としての空気が通過する。即ち、第2の流路形成部材としての第2の温調ダクト40は、第2列セル間接続用導電部材群Gr2の周囲を囲む態様でかつ第2列セル間接続用導電部材群Gr2の延設方向に配置され、温調用流体が通過可能である。   Similarly, the second temperature control duct 40 extends in the Y direction. The second temperature control duct 40 covers the bus bars 60, 62, 64, 66 arranged in a straight line. Specifically, the second temperature control duct 40 has a rectangular frame shape in cross section, and the center portion of the lower surface is opened. The lower surface of the second temperature control duct 40 is bonded to the upper surface of the main body 20 of the battery cell. Air as a temperature adjusting fluid passes through the inside of the second temperature adjusting duct 40. Thus, the second temperature control duct 40 as the second flow path forming member extends in the extending direction of the bus bars 60, 62, 64, 66 as the second row inter-cell connection conductive member, and the bus bar 60 , 62, 64, 66 are surrounded, and air as a temperature adjusting fluid passes through the inside. That is, the second temperature control duct 40 as the second flow path forming member has a form surrounding the second row cell connecting conductive member group Gr2 and the second row cell connecting conductive member group Gr2. It arrange | positions in the extending direction and the fluid for temperature control can pass through.

図5に示すように、二次電池の温調装置69は、リチウムイオン二次電池10と、ファン70と、空気温度調整装置71と、コントローラ72と、温度センサ73を備えている。   As shown in FIG. 5, the secondary battery temperature adjustment device 69 includes a lithium ion secondary battery 10, a fan 70, an air temperature adjustment device 71, a controller 72, and a temperature sensor 73.

空気循環系として、ファン70と空気温度調整装置71とがダクトで接続され、空気温度調整装置71と第1の温調ダクト30、および、空気温度調整装置71と第2の温調ダクト40とがダクトで接続され、第1の温調ダクト30とファン70、および、第2の温調ダクト40とファン70とがダクトで接続されている。   As an air circulation system, a fan 70 and an air temperature adjusting device 71 are connected by a duct, and the air temperature adjusting device 71 and the first temperature adjusting duct 30, and the air temperature adjusting device 71 and the second temperature adjusting duct 40 are connected. Are connected by a duct, and the first temperature control duct 30 and the fan 70, and the second temperature control duct 40 and the fan 70 are connected by a duct.

ファン70はコントローラ72により駆動される。ファン70の駆動に伴い空気を、空気温度調整装置71を通して温調ダクト30,40に供給することができる。温調ダクト30,40を通過した空気はファン70に戻されるようになっている。   The fan 70 is driven by the controller 72. As the fan 70 is driven, air can be supplied to the temperature control ducts 30 and 40 through the air temperature adjusting device 71. The air that has passed through the temperature control ducts 30 and 40 is returned to the fan 70.

空気温度調整装置71の内部にはペルチェモジュール71aが配置されている。ペルチェモジュール71aは、ペルチェ素子と、ペルチェ素子と熱的に結合した熱交換部材からなる。そして、空気温度調整装置71を通過する空気が、ペルチェモジュール71aの熱交換部材と熱交換される。詳しくは、ペルチェモジュール71aのペルチェ素子に対し第1の通電方向に電流を流すことにより熱交換部材が吸熱部材となって空気を冷却することができる。また、ペルチェ素子に対し第1の通電方向とは逆の第2の通電方向に電流を流すことにより熱交換部材が発熱部材となって空気を加熱することができる。   A Peltier module 71 a is arranged inside the air temperature adjusting device 71. The Peltier module 71a includes a Peltier element and a heat exchange member that is thermally coupled to the Peltier element. And the air which passes the air temperature adjustment apparatus 71 is heat-exchanged with the heat exchange member of the Peltier module 71a. Specifically, when a current flows in the first energization direction with respect to the Peltier element of the Peltier module 71a, the heat exchange member becomes a heat absorption member, and air can be cooled. In addition, when a current is supplied to the Peltier element in a second energization direction opposite to the first energization direction, the heat exchange member becomes a heat generating member and heats the air.

電池セルの本体部20には温度センサ73が取り付けられており、温度センサ73により電池セルの本体部20の温度が検出される。コントローラ72は温度センサ73による電池セルの本体部20の温度を取り込んで、電池セルの本体部20の温度に基づいてペルチェモジュール71aのペルチェ素子の通電電流の向きとその大きさを制御する。   A temperature sensor 73 is attached to the battery cell body 20, and the temperature sensor 73 detects the temperature of the battery cell body 20. The controller 72 takes in the temperature of the battery cell main body 20 by the temperature sensor 73 and controls the direction and magnitude of the energization current of the Peltier element of the Peltier module 71 a based on the temperature of the battery cell main body 20.

本実施形態の二次電池の温調装置69(リチウムイオン二次電池10)は、車両(自動車)に搭載される。リチウムイオン二次電池10にはインバータ等を介して走行モータが接続され、リチウムイオン二次電池10の電力により走行モータを駆動させることができるようになっている。また、リチウムイオン二次電池10には充電器に接続され、充電器によりリチウムイオン二次電池10を充電することができるようになっている。   The secondary battery temperature control device 69 (lithium ion secondary battery 10) of the present embodiment is mounted on a vehicle (automobile). A travel motor is connected to the lithium ion secondary battery 10 via an inverter or the like so that the travel motor can be driven by the power of the lithium ion secondary battery 10. The lithium ion secondary battery 10 is connected to a charger, and the lithium ion secondary battery 10 can be charged by the charger.

次に、このように構成したリチウムイオン二次電池10の作用を説明する。
高負荷となると電池温度が上昇する。また、急速充電時においても電池温度が上昇する。温度センサ73により電池セルの本体部20の温度が検出され、コントローラ72は温度センサ73による電池セルの本体部20の温度を取り込んでペルチェモジュール71aのペルチェ素子を制御して空気温度調整装置71を通過する空気の温度を下げる。冷却された空気が温調ダクト30,40の内部を通過する。これにより、バスバー60,61,62,63,64,65,66,67が冷却される。これに伴い正極用の端子21、および、負極用の端子22が冷却される。その結果、電池温度が下がる。
Next, the operation of the lithium ion secondary battery 10 configured as described above will be described.
The battery temperature rises when the load is high. Further, the battery temperature rises even during rapid charging. The temperature sensor 73 detects the temperature of the battery cell body 20, and the controller 72 takes in the temperature of the battery cell body 20 by the temperature sensor 73 and controls the Peltier element of the Peltier module 71 a to control the air temperature adjustment device 71. Reduce the temperature of the passing air. The cooled air passes through the inside of the temperature control ducts 30 and 40. Thereby, bus bar 60, 61, 62, 63, 64, 65, 66, 67 is cooled. Along with this, the positive electrode terminal 21 and the negative electrode terminal 22 are cooled. As a result, the battery temperature decreases.

一方、寒冷地において電池温度が低温になる。温度センサ73により電池セルの本体部20の温度が検出され、コントローラ72は温度センサ73による電池セルの本体部20の温度を取り込んでペルチェモジュール71aのペルチェ素子を制御して空気温度調整装置71を通過する空気の温度を上げる。昇温された空気が温調ダクト30,40の内部を通過する。これにより、バスバー60,61,62,63,64,65,66,67が昇温される。これに伴い正極用の端子21、および、負極用の端子22が昇温される。その結果、電池温度が上昇する。   On the other hand, the battery temperature becomes low in a cold region. The temperature sensor 73 detects the temperature of the battery cell body 20, and the controller 72 takes in the temperature of the battery cell body 20 by the temperature sensor 73 and controls the Peltier element of the Peltier module 71 a to control the air temperature adjustment device 71. Increase the temperature of the passing air. The heated air passes through the inside of the temperature control ducts 30 and 40. Thereby, the bus bars 60, 61, 62, 63, 64, 65, 66, and 67 are heated. Accordingly, the temperature of the positive electrode terminal 21 and the negative electrode terminal 22 is increased. As a result, the battery temperature rises.

このようにして、第1の温調ダクト30内を流れる空気により第1列のバスバー61,63,65,67が温調され、第1列のバスバー61,63,65,67の温調により電池セルの端子21,22を通して電池セルC1〜C9が温調される。また、第2の温調ダクト40内を流れる空気により第2列のバスバー60,62,64,66が温調され、第2列のバスバー60,62,64,66の温調により電池セルの端子21,22を通して電池セルC1〜C9が温調される。このとき、第1列セル間接続用導電部材(バスバー61,63,65,67)に対しては第1の温調ダクト30を、また、第2列セル間接続用導電部材(バスバー60,62,64,66)に対しては第2の温調ダクト40を配する構成とすることにより省スペース化が図られる。さらに、第1の温調ダクト30を用いて第1列セル間接続用導電部材(バスバー61,63,65,67)を、また、第2の温調ダクト40を用いて第2列セル間接続用導電部材(バスバー60,62,64,66)を、それぞれ集中的に温調でき、効率的な温調が行われる。   In this way, the temperature of the first row bus bars 61, 63, 65, 67 is adjusted by the air flowing through the first temperature adjustment duct 30, and the temperature adjustment of the first row bus bars 61, 63, 65, 67 is performed. The battery cells C1 to C9 are temperature-controlled through the battery cell terminals 21 and 22. Further, the temperature of the second row bus bars 60, 62, 64, 66 is controlled by the air flowing through the second temperature control duct 40, and the temperature of the second row bus bars 60, 62, 64, 66 is used to control the battery cells. The battery cells C1 to C9 are temperature-controlled through the terminals 21 and 22. At this time, the first temperature control duct 30 is used for the first row-cell connecting conductive member (bus bars 61, 63, 65, 67), and the second row-cell connecting conductive member (bus bar 60, 62, 64, 66), a space can be saved by adopting a configuration in which the second temperature control duct 40 is arranged. Further, the first row-cell connecting conductive member (bus bars 61, 63, 65, 67) is used by using the first temperature control duct 30, and the second row-cell is used by using the second temperature control duct 40. The connecting conductive members (bus bars 60, 62, 64, 66) can be temperature-controlled in an intensive manner, and efficient temperature control is performed.

上記実施形態によれば、以下のような効果を得ることができる。
(1)リチウムイオン二次電池の構成として、第1の温調ダクト30は、バスバー61,63,65,67の延設方向に延び、バスバー61,63,65,67の周囲を囲み、内部に温調用流体としての空気が通過する。また、第2の温調ダクト40は、バスバー60,62,64,66の延設方向に延び、バスバー60,62,64,66の周囲を囲み、内部に温調用流体としての空気が通過する。よって、バスバー60,61,62,63,64,65,66,67(電池セルの端子21,22)を直接温調する。これにより、電気伝導性がよいと共に熱伝導性のよいバスバー60,61,62,63,64,65,66,67(熱伝導性がよいと共に熱伝導性のよい端子21,22)が発熱等するが、効率的に温調することができる。
According to the above embodiment, the following effects can be obtained.
(1) As a configuration of the lithium ion secondary battery, the first temperature adjustment duct 30 extends in the extending direction of the bus bars 61, 63, 65, 67, surrounds the bus bars 61, 63, 65, 67, and Air as a fluid for temperature adjustment passes through. The second temperature control duct 40 extends in the extending direction of the bus bars 60, 62, 64, 66, surrounds the bus bars 60, 62, 64, 66, and air as a temperature control fluid passes therethrough. . Therefore, the temperature of the bus bars 60, 61, 62, 63, 64, 65, 66, 67 (battery cell terminals 21, 22) is directly controlled. As a result, the bus bars 60, 61, 62, 63, 64, 65, 66, 67 having good electrical conductivity and good thermal conductivity (terminals 21, 22 having good thermal conductivity and good thermal conductivity) generate heat and the like. However, the temperature can be controlled efficiently.

詳しくは、大型電池は、車載時のハンドリングのしやすさと安全性のため電槽(缶)自身は活物質から絶縁されており、そのため最大面積の側面からの冷却しかできず、熱伝導が悪く温調の効率が低い。また、正負の電極間にはセパレータがあり、熱伝導が悪く、電池セルの内部温調の効率が悪い。   Specifically, for large batteries, the battery case (can) itself is insulated from the active material for ease of handling and safety when mounted on the vehicle, so it can only be cooled from the side of the maximum area, and heat conduction is poor. Low temperature control efficiency. Moreover, there is a separator between the positive and negative electrodes, the heat conduction is poor, and the efficiency of the internal temperature control of the battery cell is poor.

これに対し本実施形態では、バスバー60,61,62,63,64,65,66,67(電池セルの端子21,22)を直接温調することにより、効率的に温調が可能となる。また、省スペース化を図ることができる。   On the other hand, in this embodiment, the temperature can be efficiently controlled by directly adjusting the temperature of the bus bars 60, 61, 62, 63, 64, 65, 66, 67 (battery cell terminals 21, 22). . Moreover, space saving can be achieved.

(2)流路形成部材としての温調ダクト30,40が端子21,22のカバーとして機能する。
(3)第1列セル間接続用導電部材(バスバー61,63,65,67)および第2列セル間接続用導電部材(バスバー60,62,64,66)は、複数である。また、第1の温調ダクト30、第2の温調ダクト40、および、温調用流体である空気(第1の温調ダクト30の内部を通過する空気、第2の温調ダクト40の内部を通過する空気)は、電気絶縁性を有する。これにより、図3のバスバー60,62間、および、バスバー62,64間、バスバー64,66間がショートすることがない。同様に、図3のバスバー61,63間、および、バスバー63,65間、バスバー65,67間がショートすることがない。
(2) The temperature control ducts 30 and 40 as flow path forming members function as covers for the terminals 21 and 22.
(3) There are a plurality of first row inter-cell connection conductive members (bus bars 61, 63, 65, 67) and second row inter-cell connection conductive members (bus bars 60, 62, 64, 66). The first temperature control duct 30, the second temperature control duct 40, and the air that is the temperature control fluid (air passing through the inside of the first temperature control duct 30, the inside of the second temperature control duct 40 The air passing through is electrically insulating. Thereby, there is no short circuit between the bus bars 60 and 62, between the bus bars 62 and 64, and between the bus bars 64 and 66 in FIG. Similarly, there is no short circuit between the bus bars 61 and 63, between the bus bars 63 and 65, and between the bus bars 65 and 67 in FIG.

(4)二次電池の温調装置69の構成として、リチウムイオン二次電池10と、温度検出手段としての温度センサ73と、流体温度調整手段としての空気温度調整装置71と、制御手段としてのコントローラ72とを備えている。温度センサ73により、電池セルの温度を検出し、空気温度調整装置71により第1の温調ダクト30の内部を通過させる空気および第2の温調ダクト40の内部を通過させる空気の温度を調整することができる。即ち、空気温度調整装置71は、第1の流路形成部材の内部を通過させる温調用流体である第1温調用流体および第2の流路形成部材の内部を通過させる温調用流体である第2温調用流体の温度を調整するためのものである。そして、コントローラ72は、温度センサ73により検出した電池セルの温度に基づいて空気温度調整装置71を制御して第1の温調ダクト30の内部を通過させる空気の温度および第2の温調ダクト40の内部を通過させる空気の温度を制御する。即ち、コントローラ72は、温度センサ73により検出した電池セルの温度に基づいて空気温度調整装置71を制御して、第1温調用流体および第2温調用流体の温度を制御する。これにより、最適な温調を実行することができる。   (4) As a configuration of the temperature control device 69 of the secondary battery, the lithium ion secondary battery 10, the temperature sensor 73 as the temperature detecting means, the air temperature adjusting device 71 as the fluid temperature adjusting means, and the control means And a controller 72. The temperature sensor 73 detects the temperature of the battery cell, and the air temperature adjusting device 71 adjusts the temperature of the air passing through the first temperature control duct 30 and the temperature of the air passing through the second temperature control duct 40. can do. That is, the air temperature adjusting device 71 is a first temperature adjusting fluid that is a temperature adjusting fluid that passes through the inside of the first flow path forming member and a temperature adjusting fluid that passes through the inside of the second flow path forming member. This is for adjusting the temperature of the temperature adjusting fluid. Then, the controller 72 controls the air temperature adjusting device 71 based on the temperature of the battery cell detected by the temperature sensor 73 and the temperature of the air passing through the inside of the first temperature control duct 30 and the second temperature control duct. The temperature of the air passing through the inside of 40 is controlled. That is, the controller 72 controls the air temperature adjusting device 71 based on the temperature of the battery cell detected by the temperature sensor 73 to control the temperatures of the first temperature adjusting fluid and the second temperature adjusting fluid. Thereby, optimal temperature control can be performed.

実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
・図4においては各電池セルC1〜C9を直列接続したが、図8に示すように電池セルC1〜C3、C4〜C6、C7〜C9をそれぞれ並列接続したものを直列接続した場合に適用して、図6,7に示す構成としてもよい。
The embodiment is not limited to the above, and may be embodied as follows, for example.
・ In FIG. 4, the battery cells C1 to C9 are connected in series. However, as shown in FIG. 8, the battery cells C1 to C3, C4 to C6, and C7 to C9 are connected in parallel. The configuration shown in FIGS.

図7において、電池セルC1,C2,C3における負極の端子22は、1本のバスバー80で接続されている。また、電池セルC1,C2,C3における正極の端子21および電池セルC4,C5,C6における負極の端子22は、1本のバスバー81で接続されている。さらに、電池セルC4,C5,C6における正極の端子21および電池セルC7,C8,C9における負極の端子22は、1本のバスバー82で接続されている。また、電池セルC7,C8,C9における正極の端子21は、1本のバスバー83で接続されている。   In FIG. 7, the negative terminals 22 in the battery cells C <b> 1, C <b> 2, C <b> 3 are connected by a single bus bar 80. Further, the positive terminal 21 in the battery cells C1, C2, C3 and the negative terminal 22 in the battery cells C4, C5, C6 are connected by a single bus bar 81. Further, the positive terminal 21 in the battery cells C4, C5, C6 and the negative terminal 22 in the battery cells C7, C8, C9 are connected by a single bus bar 82. The positive terminals 21 of the battery cells C7, C8, and C9 are connected by a single bus bar 83.

バスバー80,82はY方向に延び、かつ、一直線上に並んで設けられている。また、バスバー81,83はY方向に延び、かつ、一直線上に並んで設けられている。このように、第1列セル間接続用導電部材としてのバスバー80,82および第2列セル間接続用導電部材としてのバスバー81,83は、複数のバスバー(セル間接続用導電部材)を含んでいる。即ち、第1列セル間接続用導電部材群Gr11は1以上の第1列セル間接続用導電部材としてのバスバー80,82を有し、第2列セル間接続用導電部材群Gr12は1以上の第2列セル間接続用導電部材としてのバスバー81,83を有している。   The bus bars 80 and 82 extend in the Y direction and are arranged in a straight line. The bus bars 81 and 83 extend in the Y direction and are arranged in a straight line. As described above, the bus bars 80 and 82 as the first row inter-cell connection conductive members and the bus bars 81 and 83 as the second row inter-cell connection conductive members include a plurality of bus bars (inter-cell connection conductive members). It is out. That is, the first row cell connecting conductive member group Gr11 has one or more bus bars 80 and 82 as first row cell connecting conductive members, and the second row cell connecting conductive member group Gr12 is one or more. Bus bars 81 and 83 as second row inter-cell connecting conductive members.

図6に示すように、バスバー80およびバスバー82は樹脂製の第1の温調ダクト30により覆われており、内部に空気が流れる。バスバー81およびバスバー83は樹脂製の第2の温調ダクト40により覆われており、内部に空気が流れる。図6において温調ダクト30,40におけるA1,A2,B1,B2で示す部位(図8の等電位部に対応する部位)は絶縁性を有しても導電性を有していてもよい。   As shown in FIG. 6, the bus bar 80 and the bus bar 82 are covered with the first temperature control duct 30 made of resin, and air flows inside. The bus bar 81 and the bus bar 83 are covered with the second temperature control duct 40 made of resin, and air flows inside. In FIG. 6, the portions indicated by A1, A2, B1, and B2 in the temperature control ducts 30 and 40 (the portions corresponding to the equipotential portion in FIG. 8) may be insulative or conductive.

・図2においては電池セルの端子21,22は雌ねじの端子であり、ナット51によりバスバーを締結する構成であったが、これに代わり、図9に示すように、本体部20に螺入してバスバーを締結する端子90を用いてもよい。つまり、電池セルの本体部20の表面に台座50を載せ、さらに、その上にバスバー60〜67を配置し、端子90を、バスバー60〜67および台座50を通して電池セルの本体部20に螺入する構成としてもよい。   In FIG. 2, the battery cell terminals 21 and 22 are female screw terminals, and the bus bar is fastened by the nut 51. Instead, as shown in FIG. Alternatively, a terminal 90 for fastening the bus bar may be used. That is, the pedestal 50 is placed on the surface of the battery cell main body 20, the bus bars 60 to 67 are further disposed thereon, and the terminals 90 are screwed into the battery cell main body 20 through the bus bars 60 to 67 and the pedestal 50. It is good also as composition to do.

・図10に示すように、四角箱型の電池セルの本体部20の側面に突条25を設け、隣接する電池セルにおける突条25同士を接触させ、隣接する電池セルの本体部20の間に空気流路となる隙間Ga1を形成して、バスバー60〜67の温調に加えて電池セルの本体部20間に形成した隙間Ga1に空気を流すことにより温度を調整するようにしてもよい。他にも、隙間Ga1に空気を流す構成に代わり、電池セルの本体部20間に温調用のジャケットを挟み込む構成としてもよい。   -As shown in FIG. 10, the protrusion 25 is provided in the side surface of the main-body part 20 of a square box-type battery cell, the protrusions 25 in adjacent battery cells are made to contact, and between the main-body parts 20 of adjacent battery cells. In addition to the temperature control of the bus bars 60 to 67, the gap Ga <b> 1 serving as an air flow path may be formed in the air gap, and the temperature may be adjusted by flowing air through the gap Ga <b> 1 formed between the battery cell body portions 20. . In addition, instead of the configuration in which air is allowed to flow through the gap Ga1, a configuration in which a temperature adjustment jacket is sandwiched between the main body portions 20 of the battery cells may be employed.

・流路形成部材としての温調ダクト30,40の内部には温調用流体としての空気を流したが、他にも、例えば、流路形成部材の内部に温調用流体としてのシリコーンオイルを流してもよい。シリコーンオイルは絶縁体である。   -Although air as a temperature adjusting fluid is flowed inside the temperature adjusting ducts 30 and 40 as the flow path forming member, for example, silicone oil as a temperature adjusting fluid is allowed to flow inside the flow path forming member. May be. Silicone oil is an insulator.

・流路形成部材(図1の場合、温調ダクト30,40)における流路の断面形状は問わない。例えば、円形でも四角形状でも台形状でもよい。特に、図2に示すように、台座50の上にバスバー60を配置するとともにバスバー60の上にナット51を配置した構成においては上ほど幅狭になってので、この形状に合わせた流路断面形状とすると、よりコンパクト化が図られる。   The cross-sectional shape of the flow path in the flow path forming member (in the case of FIG. 1, the temperature control ducts 30 and 40) is not limited. For example, it may be circular, square or trapezoidal. In particular, as shown in FIG. 2, in the configuration in which the bus bar 60 is disposed on the pedestal 50 and the nut 51 is disposed on the bus bar 60, the width becomes narrower toward the top. When the shape is adopted, the size can be further reduced.

・図5の空気温度調整装置71は、その内部にペルチェモジュール71aが配置されている構成としたが、これに限定されるものではなく、他にも例えば冷却用の熱交換器と加熱用の熱交換器を具備し、流路を切り替えることにより空気を冷却または加熱する構成であってもよい。   The air temperature adjusting device 71 in FIG. 5 has a configuration in which the Peltier module 71a is disposed therein, but is not limited to this, and other examples include, for example, a heat exchanger for cooling and a heating device The structure which comprises a heat exchanger and cools or heats air by switching a flow path may be sufficient.

・二次電池はリチウムイオン二次電池であったが、これに限定されることなく、他にも例えば、鉛蓄電池、ニッケル水素電池等であってもよい。
・二次電池の温調装置69(リチウムイオン二次電池10)を搭載する車両は問わない。例えば、電気自動車、ハイブリッド車、燃料電池車、産業車両等に搭載するとよい。
-Although the secondary battery was a lithium ion secondary battery, it is not limited to this, For example, a lead storage battery, a nickel hydride battery, etc. may be sufficient.
-The vehicle which mounts the temperature control apparatus 69 (lithium ion secondary battery 10) of a secondary battery is not ask | required. For example, it may be mounted on an electric vehicle, a hybrid vehicle, a fuel cell vehicle, an industrial vehicle, or the like.

10…リチウムイオン二次電池、21…端子、22…端子、30…第1の温調ダクト、40…第2の温調ダクト、60,61,62,63,64,65,66,67…バスバー、69…二次電池の温調装置、71…空気温度調整装置、72…コントローラ、73…温度センサ、C1〜C9…電池セル、Gr1…第1列セル間接続用導電部材群、Gr2…第2列セル間接続用導電部材群、Gr11…第1列セル間接続用導電部材群、Gr12…第2列セル間接続用導電部材群、Mb…電池モジュール。   DESCRIPTION OF SYMBOLS 10 ... Lithium ion secondary battery, 21 ... Terminal, 22 ... Terminal, 30 ... 1st temperature control duct, 40 ... 2nd temperature control duct, 60, 61, 62, 63, 64, 65, 66, 67 ... Bus bar, 69 ... Secondary battery temperature control device, 71 ... Air temperature adjustment device, 72 ... Controller, 73 ... Temperature sensor, C1-C9 ... Battery cell, Gr1 ... Conductive member group for connection between first row cells, Gr2 ... Second row inter-cell connecting conductive member group, Gr11... First row inter-cell connecting conductive member group, Gr12... Second row inter-cell connecting conductive member group, Mb.

Claims (5)

複数の電池セルを並設して構成した電池モジュールと、
前記電池セルの隣接方向に沿って延び、前記電池セルから突出する端子に連結されかつ隣接する前記電池セルの前記端子同士を電気的に接続する第1列セル間接続用導電部材群および第2列セル間接続用導電部材群と、
前記第1列セル間接続用導電部材群の周囲を囲む態様でかつ前記第1列セル間接続用導電部材群の延設方向に配置される第1の流路形成部材と、
前記第2列セル間接続用導電部材群の周囲を囲む態様でかつ前記第2列セル間接続用導電部材群の延設方向に配置される第2の流路形成部材と、
を有し、
前記第1列セル間接続用導電部材群および前記第2列セル間接続用導電部材群は、前記電池セルの並設される方向にそれぞれ対応して並設され、
前記第1列セル間接続用導電部材群は1以上の第1列セル間接続用導電部材を有し、
前記第2列セル間接続用導電部材群は1以上の第2列セル間接続用導電部材を有し、
前記第1の流路形成部材および前記第2の流路形成部材は、温調用流体が通過可能であることを特徴とする二次電池。
A battery module configured by arranging a plurality of battery cells in parallel;
A first row inter-cell connecting conductive member group that extends along an adjacent direction of the battery cells, is connected to a terminal protruding from the battery cell, and electrically connects the terminals of the adjacent battery cells; Conductive member group for connection between row cells;
A first flow path forming member disposed in an extending direction of the first row-cell connecting conductive member group in an aspect surrounding the first row-cell connecting conductive member group; and
A second flow path forming member disposed in an extending direction of the second row-cell connecting conductive member group in an aspect surrounding the second row-cell connecting conductive member group; and
Have
The first row inter-cell connecting conductive member group and the second row inter-cell connecting conductive member group are juxtaposed corresponding to the direction in which the battery cells are juxtaposed,
The first row cell connection conductive member group includes one or more first row cell connection conductive members,
The second row inter-cell connecting conductive member group has one or more second row inter-cell connecting conductive members,
The secondary battery, wherein the first flow path forming member and the second flow path forming member are capable of passing a temperature adjusting fluid.
前記第1列セル間接続用導電部材および前記第2列セル間接続用導電部材は、複数であり、
前記第1の流路形成部材、前記第2の流路形成部材および前記温調用流体は、電気絶縁性を有することを特徴とする請求項1に記載の二次電池。
The first row inter-cell connecting conductive member and the second row inter-cell connecting conductive member are plural,
The secondary battery according to claim 1, wherein the first flow path forming member, the second flow path forming member, and the temperature adjusting fluid have electrical insulation.
請求項1または2に記載の二次電池と、
前記電池セルの温度を検出する温度検出手段と、
前記第1の流路形成部材の内部を通過させる前記温調用流体である第1温調用流体および前記第2の流路形成部材の内部を通過させる前記温調用流体である第2温調用流体の温度を調整するための流体温度調整手段と、
前記温度検出手段により検出した前記電池セルの温度に基づいて前記流体温度調整手段を制御して、前記第1温調用流体および前記第2温調用流体の温度を制御する制御手段と、
を備えたことを特徴とする二次電池の温調装置。
The secondary battery according to claim 1 or 2,
Temperature detecting means for detecting the temperature of the battery cell;
A first temperature adjusting fluid that is the temperature adjusting fluid that passes through the inside of the first flow path forming member and a second temperature adjusting fluid that is the temperature adjusting fluid that passes through the inside of the second flow path forming member. Fluid temperature adjusting means for adjusting the temperature;
Control means for controlling the temperature of the fluid temperature adjusting means based on the temperature of the battery cell detected by the temperature detecting means to control the temperature of the first temperature adjusting fluid and the second temperature adjusting fluid;
A temperature control device for a secondary battery, comprising:
請求項1または2に記載の二次電池を搭載してなる車両。   A vehicle comprising the secondary battery according to claim 1. 請求項3に記載の二次電池の温調装置を搭載してなる車両。   A vehicle comprising the secondary battery temperature control device according to claim 3.
JP2011230142A 2011-10-19 2011-10-19 Secondary battery, secondary battery temperature control device and vehicle Expired - Fee Related JP5678863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011230142A JP5678863B2 (en) 2011-10-19 2011-10-19 Secondary battery, secondary battery temperature control device and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011230142A JP5678863B2 (en) 2011-10-19 2011-10-19 Secondary battery, secondary battery temperature control device and vehicle

Publications (2)

Publication Number Publication Date
JP2013089511A JP2013089511A (en) 2013-05-13
JP5678863B2 true JP5678863B2 (en) 2015-03-04

Family

ID=48533203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011230142A Expired - Fee Related JP5678863B2 (en) 2011-10-19 2011-10-19 Secondary battery, secondary battery temperature control device and vehicle

Country Status (1)

Country Link
JP (1) JP5678863B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0896842A (en) * 1994-09-22 1996-04-12 Mitsubishi Chem Corp Lithium ion secondary battery
JP3414004B2 (en) * 1994-11-22 2003-06-09 日産自動車株式会社 Electric vehicle battery temperature controller
JPH11238530A (en) * 1998-02-23 1999-08-31 Matsushita Electric Ind Co Ltd Cooling method for modular battery and its manufacture
JP2001060465A (en) * 1999-08-23 2001-03-06 Japan Storage Battery Co Ltd Battery
JP4353240B2 (en) * 2006-11-24 2009-10-28 トヨタ自動車株式会社 Power system
JP5119936B2 (en) * 2008-01-16 2013-01-16 トヨタ自動車株式会社 Power storage device
JP5428386B2 (en) * 2009-02-25 2014-02-26 株式会社デンソー Battery system
JP5375651B2 (en) * 2010-02-17 2013-12-25 株式会社デンソー Laminated cell battery structure
JP5659554B2 (en) * 2010-05-17 2015-01-28 株式会社デンソー Battery pack
JP2012169129A (en) * 2011-02-14 2012-09-06 Auto Network Gijutsu Kenkyusho:Kk Battery connection assembly and battery module

Also Published As

Publication number Publication date
JP2013089511A (en) 2013-05-13

Similar Documents

Publication Publication Date Title
JP4415570B2 (en) Battery
EP3182483B1 (en) Battery pack
JP6134999B2 (en) Battery assembly
KR101453780B1 (en) Battery module container, battery module temperature control apparatus and power storage system having them
JP5646039B2 (en) Battery module voltage detection assembly and battery module employing the same
JP5677177B2 (en) Battery assembly
US20120244404A1 (en) Prismatic cell system with thermal management features
US20150104686A1 (en) Battery and Cell Block for a Battery
WO2009090773A1 (en) Temperature control mechanism
CN103972610A (en) Battery system having battery cells and an apparatus for controlling the temperature of the battery cells
US20160111760A1 (en) Power storage module
JP2011023179A (en) Battery pack, vehicle equipped therewith, and bus bar for battery pack
JP2009134901A (en) Battery system
US20150280184A1 (en) Support Structure for Battery Cells Within a Traction Battery Assembly
US20160111762A1 (en) Electrical storage apparatus
US20200153064A1 (en) Battery module and battery pack
JP2010113961A (en) Battery pack
KR20240000413A (en) High voltage battery module
JP2012221801A (en) Battery pack
CN111355005B (en) Assembly for electrical connection and battery pack or vehicle
CN102593393B (en) Flexibly-packaged battery pack
JP2014123516A (en) Battery pack
JP5678863B2 (en) Secondary battery, secondary battery temperature control device and vehicle
JP5692132B2 (en) Power storage device
JP7085555B2 (en) Battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141222

R151 Written notification of patent or utility model registration

Ref document number: 5678863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees